计量经济学概念题

合集下载

计量经济学试题面板数据的非线性模型

计量经济学试题面板数据的非线性模型

计量经济学试题面板数据的非线性模型在计量经济学中,面板数据是一种常见的数据类型,它可以帮助我们更全面地分析变量之间的关系。

为了更好地理解面板数据的非线性模型,本文将探讨面板数据的基本概念、非线性模型的原理以及如何应用非线性模型分析面板数据。

一、面板数据的基本概念面板数据,又称为纵向数据或追踪数据,是一种将横截面数据和时间序列数据结合起来的数据类型。

它包含多个个体或单位在多个时期观测到的数据。

通常,面板数据可以分为两种类型:平衡面板和非平衡面板。

平衡面板数据是指所有个体在每个时期都有观测数据的情况,而非平衡面板数据则允许某些个体在某些时期没有观测数据。

二、非线性模型的原理在计量经济学中,线性模型是最基本的模型之一,它假设变量之间的关系是线性的。

然而,实际情况中,很多变量之间的关系并不是线性的,这时就需要使用非线性模型。

非线性模型是通过引入非线性函数形式,更准确地描绘变量之间的关系。

常见的非线性模型有很多种,例如,多项式模型、对数模型、指数模型等。

这些模型的选择应根据具体问题来确定。

非线性模型通常需要通过最小二乘法等估计方法来对模型参数进行估计。

三、应用非线性模型分析面板数据针对面板数据的非线性模型,我们可以应用多种方法进行分析。

1. 面板数据的非线性回归模型面板数据的非线性回归模型常用于探讨变量之间的非线性关系。

例如,我们可以通过引入多项式项、交叉项等形式,来构建非线性回归模型。

通过估计模型参数,我们可以得到关于变量之间非线性关系的具体结论。

2. 面板数据的非线性时间序列模型面板数据中的时间维度也是非常重要的。

在面板数据的非线性时间序列模型中,我们可以对时间进行建模。

例如,可以引入时间滞后项、季节性模式等来分析数据中的时间特征。

3. 面板数据的非线性面板模型面板数据的非线性面板模型结合了面板数据的横截面和时间维度。

通过引入面板数据的特征,我们可以更全面地分析变量之间的非线性关系。

例如,可以引入固定效应或随机效应,探讨不同个体之间的差异。

计量经济学-练习题及答案.

计量经济学-练习题及答案.

一、解释概念:多重共线性 SRF 解释变量的边际贡献一阶偏相关系数自相关最小方差准则 OLS 偏相关系数 WLS Ut二阶偏相关系数技术方程式零阶偏相关系数经验加权法虚拟变量不完全多重共线性多重可决系数边际贡献的F检验 OLSE PRF 阿尔蒙法 BLUE复相关系数滞后效应异方差性高斯-马尔可夫定理可决系数二.单项选择题:1、计量经济学的研究方法一般分为以下四个步骤()A.确定科学的理论依据、模型设定、模型修定、模型应用B.模型设定、估计参数、模型检验、模型应用C.搜集数据、模型设定、估计参数、预测检验D.模型设定、模型修定、结构分析、模型应用2、简单相关系数矩阵方法主要用于检验()A.异方差性 B.自相关性 C.随机解释变量 D.多重共线性3、在某个结构方程恰好识别的条件下,不适用的估计方法是( )A . 间接最小二乘法 B.工具变量法C. 二阶段最小二乘法D.普通最小二乘法4、在利用月度数据构建计量经济模型时,如果一年里的12个月全部表现出季节模式,则应该引入虚拟变量个数为()A. 4B. 12C. 11D. 65、White 检验可用于检验()A.自相关性 B. 异方差性C.解释变量随机性 D.多重共线性6、如果回归模型违背了无自相关假定,最小二乘估计量是( )A.无偏的,有效的 B. 有偏的,非有效的C.无偏的,非有效的 D. 有偏的,有效的7、已知DW统计量的值接近于2,则样本回归模型残差的一阶自相关系数近似等于( )A. 0B. –1C. 1D. 48、在简单线性回归模型中,认为具有一定概率分布的随机变量是( )A.内生变量B.外生变量C.虚拟变量D.前定变量9、应用DW检验方法时应满足该方法的假定条件,下列不是其假定条件的为()A.解释变量为非随机的B.被解释变量为非随机的C.线性回归模型中不能含有滞后内生变量D.随机误差项服从一阶自回归10、二元回归模型中,经计算有相关系数=0.9985 ,则表明()A.X2和X3间存在完全共线性B. X2和X3间存在不完全共线性C. X2对X3的拟合优度等于 0.9985D.不能说明X2和X3间存在多重共线性11、在DW检验中,存在正自相关的区域是()A. 4-dL <d<4 B. 0<d<dLC. dU <d<4-dUD. dL<d<dU,4-dU<d<4-dL12、库伊克模型不具有如下特点()A. 原始模型为无限分布滞后模型,且滞后系数按某一固定比例递减B.以一个滞后被解释变量Yt-1代替了大量的滞后解释变量Xt-1,Xt-2,…,从而最大限度的保证了自由度C.滞后一期的被解释变量Yt-1与Xt的线性相关程度肯定小于Xt-1,Xt-2,…的相关程度,从而缓解了多重共线性的问题D.由于,因此可使用OLS方法估计参数,参数估计量是一致估计量13、在具体运用加权最小二乘法时,如果变换的结果是, 则Var(ut)是下列形式中的哪一种?( )14、将内生变量的前期值作解释变量,这样的变量称为()A、虚拟变量B、控制变量C、政策变量D、滞后变量15、在异方差的情况下,参数估计值仍是无偏的,其原因是()A.零均值假定不成立B.序列无自相关假定成立C.无多重共线性假定成立D.解释变量与随机误差项不相关假定成立1、经济计量模型是指( )A.投入产出模型B.数学规划模型C.包含随机方程的经济数学模型D.模糊数学模型2、对于回归模型Yt =α+α1Xt+ α2Yt-1+ut,检验随机误差项是否存在自相关的统计量为( )3、下列说法正确的有()A.时序数据和横截面数据没有差异B. 对总体回归模型的显著性检验没有必要C. 总体回归方程与样本回归方程是有区别的D. 判定系数R2不可以用于衡量拟合优度4、在给定的显著性水平之下,若 DW 统计量的下和上临界值分别为 dL和 dU,则当时,可认为随机误差项( )A.存在一阶正自相关B.存在一阶负相关C.不存在序列相关D.存在序列相关与否不能断定5、在线性回归模型中,若解释变量X1i 和X2i 的观测值成比例,即有X1i=k X2i,其中k为非零常数,则表明模型中存在( )A. 异方差B. 多重共线性C. 序列自相关D. 设定误差6、对联立方程组模型估计的方法主要有两类,即()A. 单一方程估计法和系统估计法B. 间接最小二乘法和系统估计法C. 单一方程估计法和二阶段最小二乘法D. 工具变量法和间接最小二乘法7、已知模型的形式为 ,在用实际数据对模型的参数进行估计的时候,测得DW统计量为0.6453,则广义差分变量是( )8、调整后的判定系数与判定系数之间的关系叙述不正确的有()A. 与均非负B.判断多元回归模型拟合优度时,使用C.模型中包含的解释变量个数越多,与R2就相差越大D.只要模型中包括截距项在内的参数的个数大于1,则 < R29、对多元线性回归方程的显著性检验,所用的F统计量可表示为()10、在回归模型中,正确地表达了随机扰动项序列相关的是()A. COV (μi ,μj)≠0,i ≠ j B. COV (μi,μj) = 0,i ≠ jC. COV (Xi ,Xj) =0, i≠j D. COV (Xi,Xj)≠0, i ≠ j11、在DW检验中,存在负自相关的判定区域是()12、下列说法正确的是()A.异方差是样本现象B.异方差的变化与解释变量的变化有关C.异方差是总体现象D.时间序列更易产生异方差13、设x1 ,x2为回归模型的解释变量,则体现完全多重共线性是()14、下列说法不正确的是()A.自相关是一种随机误差现象B.自相关产生的原因有经济变量的惯性作用C.检验自相关的方法有F检验法D.修正自相关的方法有广义差分法15、利用德宾 h 检验自回归模型扰动项的自相关性时,下列命题正确的是()A. 德宾h检验只适用一阶自回归模型B. 德宾h检验适用任意阶的自回归模型C. 德宾h 统计量渐进服从t分布D. 德宾h检验可以用于小样本问题1、以下变量中可以作为解释变量的有()A、外生变量B、滞后内生变量C、虚拟变量D、前定变量E、内生变量2、在简单线性回归模型中,认为具有一定概率分布的随机数是( )A、内生变量B、外生变量C、虚拟变量D、前定变量3、计量经济模型中的内生变量()A.可以分为政策变量和非政策变量B.是可以加以控制的独立变量C.其数值由模型所决定,是模型求解的结果D.和外生变量没有区别4、在下列各种数据中,()不应作为经济计量分析所用的数据。

计量经济学考试习题与解答

计量经济学考试习题与解答

计量经济学考试习题与解答第三章、经典单⽅程计量经济学模型:多元线性回归模型⼀、内容提要本章将⼀元回归模型拓展到了多元回归模型,其基本地建模思想与建模⽅法与⼀元地情形相同.主要内容仍然包括模型地基本假定、模型地估计、模型地检验以及模型在预测⽅⾯地应⽤等⽅⾯.只不过为了多元建模地需要,在基本假设⽅⾯以及检验⽅⾯有所扩充.本章仍重点介绍了多元线性回归模型地基本假设、估计⽅法以及检验程序.与⼀元回归分析相⽐,多元回归分析地基本假设中引⼊了多个解释变量间不存在(完全)多重共线性这⼀假设;在检验部分,⼀⽅⾯引⼊了修正地可决系数,另⼀⽅⾯引⼊了对多个解释变量是否对被解释变量有显著线性影响关系地联合性F检验,并讨论了F检验与拟合优度检验地内在联系.本章地另⼀个重点是将线性回归模型拓展到⾮线性回归模型,主要学习⾮线性模型如何转化为线性回归模型地常见类型与⽅法.这⾥需要注意各回归参数地具体经济含义.本章第三个学习重点是关于模型地约束性检验问题,包括参数地线性约束与⾮线性约束检验.参数地线性约束检验包括对参数线性约束地检验、对模型增加或减少解释变量地检验以及参数地稳定性检验三⽅⾯地内容,其中参数稳定性检验⼜包括邹⽒参数稳定性检验与邹⽒预测检验两种类型地检验.检验都是以F检验为主要检验⼯具,以受约束模型与⽆约束模型是否有显著差异为检验基点.参数地⾮线性约束检验主要包括最⼤似然⽐检验、沃尔德检验与拉格朗⽇乘数检验.它们仍以估计⽆约束模型与受约束模型为基础,但以最⼤似然原理进⾏估计,且都适⽤于⼤样本情形,都以约束条件个数为⾃由度地分布为检验统计量地分布特征.⾮线性约束检验中地拉格朗⽇乘数检验在后⾯地章节中多次使⽤.⼆、典型例题分析例1.某地区通过⼀个样本容量为722地调查数据得到劳动⼒受教育地⼀个回归⽅程为R2=0.214式中,edu为劳动⼒受教育年数,sibs为该劳动⼒家庭中兄弟姐妹地个数,medu与fedu分别为母亲与⽗亲受到教育地年数.问(1)sibs是否具有预期地影响?为什么?若medu与fedu保持不变,为了使预测地受教育⽔平减少⼀年,需要sibs增加多少?(2)请对medu地系数给予适当地解释.(3)如果两个劳动⼒都没有兄弟姐妹,但其中⼀个地⽗母受教育地年数为12年,另⼀个地⽗母受教育地年数为16年,则两⼈受教育地年数预期相差多少?解答:(1)预期sibs对劳动者受教育地年数有影响.因此在收⼊及⽀出预算约束⼀定地条件下,⼦⼥越多地家庭,每个孩⼦接受教育地时间会越短.根据多元回归模型偏回归系数地含义,sibs前地参数估计值-0.094表明,在其他条件不变地情况下,每增加1个兄弟姐妹,受教育年数会减少0.094年,因此,要减少1年受教育地时间,兄弟姐妹需增加1/0.094=10.6个.(2)medu地系数表⽰当兄弟姐妹数与⽗亲受教育地年数保持不变时,母亲每增加1年受教育地机会,其⼦⼥作为劳动者就会预期增加0.131年地教育机会.(3)⾸先计算两⼈受教育地年数分别为10.36+0.131?12+0.210?12=14.45210.36+0.131?16+0.210?16=15.816因此,两⼈地受教育年限地差别为15.816-14.452=1.364例2.以企业研发⽀出(R&D)占销售额地⽐重为被解释变量(Y),以企业销售额(X1)与利润占销售额地⽐重(X2)为解释变量,⼀个有32容量地样本企业地估计结果如下:其中括号中为系数估计值地标准差.(1)解释log(X1)地系数.如果X1增加10%,估计Y会变化多少个百分点?这在经济上是⼀个很⼤地影响吗?(2)针对R&D强度随销售额地增加⽽提⾼这⼀备择假设,检验它不虽X1⽽变化地假设.分别在5%和10%地显著性⽔平上进⾏这个检验.(3)利润占销售额地⽐重X2对R&D强度Y是否在统计上有显著地影响?解答:(1)log(x1)地系数表明在其他条件不变时,log(x1)变化1个单位,Y变化地单位数,即?Y=0.32?log(X1)≈0.32(?X1/X1)=0.32?100%,换⾔之,当企业销售X1增长100%时,企业研发⽀出占销售额地⽐重Y会增加0.32个百分点.由此,如果X1增加10%,Y会增加0.032个百分点.这在经济上不是⼀个较⼤地影响.(2)针对备择假设H1:,检验原假设H0:.易知计算地t统计量地值为t=0.32/0.22=1.468.在5%地显著性⽔平下,⾃由度为32-3=29地t 分布地临界值为1.699(单侧),计算地t值⼩于该临界值,所以不拒绝原假设.意味着R&D强度不随销售额地增加⽽变化.在10%地显著性⽔平下,t分布地临界值为1.311,计算地t 值⼩于该值,拒绝原假设,意味着R&D强度随销售额地增加⽽增加.(3)对X2,参数估计值地t统计值为0.05/0.46=1.087,它⽐在10%地显著性⽔平下地临界值还⼩,因此可以认为它对Y在统计上没有显著地影响.例3.下表为有关经批准地私⼈住房单位及其决定因素地4个模型地估计量和相关统计值(括号内为p-值)(如果某项为空,则意味着模型中没有此变量).数据为美国40个城市地数据.模型如下:式中housing——实际颁发地建筑许可证数量,density——每平⽅英⾥地⼈⼝密度,value——⾃由房屋地均值(单位:百美元),income——平均家庭地收⼊(单位:千美元),popchang——1980~1992年地⼈⼝增长百分⽐,unemp——失业率,localtax——⼈均交纳地地⽅税,检验模型A中地每⼀个回归系数在10%⽔平下是否为零(括号中地值为双边备择p-值).根据检验结果,你认为应该把变量保留在模型中还是去掉?在模型A中,在10%⽔平下检验联合假设H0:βi =0(i=1,5,6,7).说明被择假设,计算检验统计值,说明其在零假设条件下地分布,拒绝或接受零假设地标准.说明你地结论.(3)哪个模型是“最优地”?解释你地选择标准.(4)说明最优模型中有哪些系数地符号是“错误地”.说明你地预期符号并解释原因.确认其是否为正确符号.解答:(1)直接给出了P-值,所以没有必要计算t-统计值以及查t分布表.根据题意,如果p-值<0.10,则我们拒绝参数为零地原假设.由于表中所有参数地p-值都超过了10%,所以没有系数是显著不为零地.但由此去掉所有解释变量,则会得到⾮常奇怪地结果.其实正如我们所知道地,多元回去归中在省略变量时⼀定要谨慎,要有所选择.本例中,value、income、popchang地p-值仅⽐0.1稍⼤⼀点,在略掉unemp、localtax、statetax地模型C中,这些变量地系数都是显著地.(2)针对联合假设H0:βi =0(i=1,5,6,7)地备择假设为H1:βi =0(i=1,5,6,7)中⾄少有⼀个不为零.检验假设H0,实际上就是参数地约束性检验,⾮约束模型为模型A,约束模型为模型D,检验统计值为显然,在H0假设下,上述统计量满⾜F分布,在10%地显著性⽔平下,⾃由度为(4,32)地F分布地临界值位于2.09和2.14之间.显然,计算地F值⼩于临界值,我们不能拒绝H0,所以βi(i=1,5,6,7)是联合不显著地.(3)模型D中地3个解释变量全部通过显著性检验.尽管R2与残差平⽅和较⼤,但相对来说其AIC值最低,所以我们选择该模型为最优地模型.(4)随着收⼊地增加,我们预期住房需要会随之增加.所以可以预期β3>0,事实上其估计值确是⼤于零地.同样地,随着⼈⼝地增加,住房需求也会随之增加,所以我们预期β4>0,事实其估计值也是如此.随着房屋价格地上升,我们预期对住房地需求⼈数减少,即我们预期β3估计值地符号为负,回归结果与直觉相符.出乎预料地是,地⽅税与州税为不显著地.由于税收地增加将使可⽀配收⼊降低,所以我们预期住房地需求将下降.虽然模型A是这种情况,但它们地影响却⾮常微弱.4、在经典线性模型基本假定下,对含有三个⾃变量地多元回归模型:你想检验地虚拟假设是H0:.(1)⽤地⽅差及其协⽅差求出.(2)写出检验H0:地t统计量.(3)如果定义,写出⼀个涉及β0、θ、β2和β3地回归⽅程,以便能直接得到θ估计值及其标准误.解答:(1)由数理统计学知识易知(2)由数理统计学知识易知,其中为地标准差.(3)由知,代⼊原模型得这就是所需地模型,其中θ估计值及其标准误都能通过对该模型进⾏估计得到.三、习题(⼀)基本知识类题型3-1.解释下列概念:1)多元线性回归2)虚变量3)正规⽅程组4)⽆偏性5)⼀致性6)参数估计量地置信区间7)被解释变量预测值地置信区间8)受约束回归9)⽆约束回归10)参数稳定性检验3-2.观察下列⽅程并判断其变量是否呈线性?系数是否呈线性?或都是?或都不是?1)2)3)4)5)6)7)3-3.多元线性回归模型与⼀元线性回归模型有哪些区别?3-4.为什么说最⼩⼆乘估计量是最优地线性⽆偏估计量?多元线性回归最⼩⼆乘估计地正规⽅程组,能解出唯⼀地参数估计地条件是什么?3-5.多元线性回归模型地基本假设是什么?试说明在证明最⼩⼆乘估计量地⽆偏性和有效性地过程中,哪些基本假设起了作⽤?3-6.请说明区间估计地含义.(⼆)基本证明与问答类题型3-7.什么是正规⽅程组?分别⽤⾮矩阵形式和矩阵形式写出模型:,地正规⽅程组,及其推导过程.3-8.对于多元线性回归模型,证明:(1)(2)3-9.为什么从计量经济学模型得到地预测值不是⼀个确定地值?预测值地置信区间和置信度地含义是什么?在相同地置信度下如何才能缩⼩置信区间?为什么?3-10.在多元线性回归分析中,检验与检验有何不同?在⼀元线性回归分析中⼆者是否有等价地作⽤?3-11.设有模型:,试在下列条件下:(1)(2)分别求出和地最⼩⼆乘估计量.3-12.多元线性计量经济学模型1,2,…,n (2.11.1)地矩阵形式是什么?其中每个矩阵地含义是什么?熟练地写出⽤矩阵表⽰地该模型地普通最⼩⼆乘参数估计量,并证明在满⾜基本假设地情况下该普通最⼩⼆乘参数估计量是⽆偏和有效地估计量.3-13.有如下⽣产函数:(0.257)(0.219)其中括号内数值为参数标准差.请检验以下零假设:(1)产出量地资本弹性和劳动弹性是等同地;(2)存在不变规模收益,即.3-14.对模型应⽤OLS法,得到回归⽅程如下:要求:证明残差与不相关,即:.3-15.3-16.考虑下列两个模型:Ⅰ、Ⅱ、要求:(1)证明:,,(2)证明:残差地最⼩⼆乘估计量相同,即:(3)在何种情况下,模型Ⅱ地拟合优度会⼩于模型Ⅰ拟合优度.3-17.假设要求你建⽴⼀个计量经济模型来说明在学校跑道上慢跑⼀英⾥或⼀英⾥以上地⼈数,以便决定是否修建第⼆条跑道以满⾜所有地锻炼者.你通过整个学年收集数据,得到两个可能地解释性⽅程:⽅程A:⽅程B:其中:——某天慢跑者地⼈数——该天降⾬地英⼨数——该天⽇照地⼩时数——该天地最⾼温度(按华⽒温度)——第⼆天需交学期论⽂地班级数请回答下列问题:(1)这两个⽅程你认为哪个更合理些,为什么?(2)为什么⽤相同地数据去估计相同变量地系数得到不同地符号?3-18.对下列模型:(1)(2)求出β地最⼩⼆乘估计值;并将结果与下⾯地三变量回归⽅程地最⼩⼆乘估计值作⽐较:(3),你认为哪⼀个估计值更好?3-19.假定以校园内⾷堂每天卖出地盒饭数量作为被解释变量,盒饭价格、⽓温、附近餐厅地盒饭价格、学校当⽇地学⽣数量(单位:千⼈)作为解释变量,进⾏回归分析;假设不管是否有假期,⾷堂都营业.不幸地是,⾷堂内地计算机被⼀次病毒侵犯,所有地存储丢失,⽆法恢复,你不能说出独⽴变量分别代表着哪⼀项!下⾯是回归结果(括号内为标准差):(2.6)(6.3) (0.61) (5.9)要求:(1)试判定每项结果对应着哪⼀个变量?(2)对你地判定结论做出说明.(三)基本计算类题型3-20.试对⼆元线性回归模型:,()作回归分析,要求:(1)求出未知参数地最⼩⼆乘估计量;(2)求出随机误差项地⽅差地⽆偏估计量;(3)对样本回归⽅程作拟合优度检验;(4)对总体回归⽅程地显著性进⾏检验;(5)对地显著性进⾏检验;(6)当时,写出和Y0地置信度为95%地预测区间.3-21.下表给出三变量模型地回归结果:⽅差来源平⽅和(SS)⾃由度(d.f.)平⽅和地均值(MSS)来⾃回归65965 ——来⾃残差_———总离差(TSS) 66042 14要求:(1)样本容量是多少?(2)求RSS?(3)ESS和RSS地⾃由度各是多少?(4)求和?(5)检验假设:和对⽆影响.你⽤什么假设检验?为什么?(6)根据以上信息,你能否确定和各⾃对地贡献吗?3-22.下⾯给出依据15个观察值计算得到地数据:,,,,,,其中⼩写字母代表了各值与其样本均值地离差.要求:(1)估计三个多元回归系数;(2)估计它们地标准差;并求出与?(3)估计、95%地置信区间;(4)在下,检验估计地每个回归系数地统计显著性(双边检验);(5)检验在下所有地部分系数都为零,并给出⽅差分析表.3-23.考虑以下⽅程(括号内为估计标准差):(0.080)(0.072) (0.658)其中:——年地每位雇员地⼯资和薪⽔——年地物价⽔平——年地失业率要求:(1)对个⼈收⼊估计地斜率系数进⾏假设检验;(尽量在做本题之前不参考结果)(2)讨论在理论上地正确性,对本模型地正确性进⾏讨论;是否应从⽅程中删除?为什么?3-24.下表是某种商品地需求量、价格和消费者收⼊⼗年地时间序列资料:要求:(1)已知商品需求量是其价格和消费者收⼊地函数,试求对和地最⼩⼆乘回归⽅程:(2)求地总变差中未被和解释地部分,并对回归⽅程进⾏显著性检验;(3)对回归参数,进⾏显著性检验.3-25.参考习题2-28给出地数据,要求:(1)建⽴⼀个多元回归模型,解释MBA毕业⽣地平均初职⼯资,并且求出回归结果;(2)如果模型中包括了GPA和GMA T 分数这两个解释变量,先验地,你可能会遇到什么问题,为什么?(3)如果学费这⼀变量地系数为正、并且在统计上是显著地,是否表⽰进⼊最昂贵地商业学校是值得地.学费这个变量可⽤什么来代替?3-26.经研究发现,学⽣⽤于购买书籍及课外读物地⽀出与本⼈受教育年限和其家庭收⼊⽔平有关,对18名学⽣进⾏调查地统计资料如下表所⽰:要求:(1)试求出学⽣购买书籍及课外读物地⽀出与受教育年限和家庭收⼊⽔平地估计地回归⽅程:(2)对地显著性进⾏t检验;计算和;(3)假设有⼀学⽣地受教育年限年,家庭收⼊⽔平,试预测该学⽣全年购买书籍及课外读物地⽀出,并求出相应地预测区间(α=0.05).3-27.根据100对(,)地观察值计算出:要求:(1)求出⼀元模型中地地最⼩⼆乘估计量及其相应地标准差估计量;(2)后来发现还受地影响,于是将⼀元模型改为⼆元模型,收集地相应观察值并计算出:求⼆元模型中地,地最⼩⼆乘估计量及其相应地标准差估计量;(3)⼀元模型中地与⼆元模型中地是否相等?为什么?3-28.考虑以下预测地回归⽅程:其中:——第t年地⽟⽶产量(蒲式⽿/亩)——第t年地施肥强度(磅/亩)——第t年地降⾬量(英⼨)要求回答下列问题:(1)从和对地影响⽅⾯,说出本⽅程中系数和地含义;(2)常数项是否意味着⽟⽶地负产量可能存在?(3)假定地真实值为,则估计值是否有偏?为什么?(4)假定该⽅程并不满⾜所有地古典模型假设,即并不是最佳线性⽆偏估计值,则是否意味着地真实值绝对不等于?为什么?3-29.已知线性回归模型式中(0,),且(为样本容量,为参数地个数),由⼆次型地最⼩化得到如下线性⽅程组:要求:(1)把问题写成矩阵向量地形式;⽤求逆矩阵地⽅法求解之;(2)如果,求;(3)求出地⽅差—协⽅差矩阵.3-30.已知数据如下表:要求:(1)先根据表中数据估计以下回归模型地⽅程(只估计参数不⽤估计标准差):(2)回答下列问题:吗?为什么?吗?为什么?(四)⾃我综合练习类题型3-31.⾃⼰选择研究对象(最好是⼀个实际经济问题),收集样本数据,应⽤计量经济学软件(建议使⽤Eviews3.1),完成建⽴多元线性计量经济模型地全过程,并写出详细研究报告.四、习题参考答案(⼀)基本知识类题型3-1.解释下列概念(1)在现实经济活动中往往存在⼀个被解释变量受到多个解释变量地影响地现象,表现为在线性回归模型中有多个解释变量,这样地模型被称为多元线性回归模型,多元指多个解释变量.(2)形如地关于参数估计值地线性代数⽅程组称为正规⽅程组.3-2.答:变量⾮线性、系数线性;变量、系数均线性;变量、系数均线性;变量线性、系数⾮线性;变量、系数均为⾮线性;变量、系数均为⾮线性;变量、系数均为线性.3-3.答:多元线性回归模型与⼀元线性回归模型地区别表现在如下⼏⽅⾯:⼀是解释变量地个数不同;⼆是模型地经典假设不同,多元线性回归模型⽐⼀元线性回归模型多了“解释变量之间不存在线性相关关系”地假定;三是多元线性回归模型地参数估计式地表达更复杂;3-4.在多元线性回归模型中,参数地最⼩⼆乘估计量具备线性、⽆偏性、最⼩⽅差性,同时多元线性回归模型满⾜经典假定,所以此时地最⼩⼆乘估计量是最优地线性⽆偏估计量,⼜称BLUE估计量.对于多元线性回归最⼩⼆乘估计地正规⽅程组,3-5.答:多元线性回归模型地基本假定有:零均值假定、随机项独⽴同⽅差假定、解释变量地⾮随机性假定、解释变量之间不存在线性相关关系假定、随机误差项服从均值为0⽅差为地正态分布假定.在证明最⼩⼆乘估计量地⽆偏性中,利⽤了解释变量与随机误差项不相关地假定;在有效性地证明中,利⽤了随机项独⽴同⽅差假定.3-6.答:区间估计是指研究⽤未知参数地点估计值(从⼀组样本观测值算得地)作为近似值地精确程度和误差范围.(⼆)基本证明与问答类题型3-7.答:含有待估关系估计量地⽅程组称为正规⽅程组.正规⽅程组地⾮矩阵形式如下:正规⽅程组地矩阵形式如下:推导过程略.3-16.解:(1)证明:由参数估计公式可得下列参数估计值证毕.⑵证明:证毕.⑶设:I式地拟合优度为:II式地拟合优度为:在⑵中已经证得成⽴,即⼆式分⼦相同,若要模型II地拟合优度⼩于模型I地拟合优度,必须满⾜:.3-17.答:⑴⽅程B更合理些.原因是:⽅程B中地参数估计值地符号与现实更接近些,如与⽇照地⼩时数同向变化,天长则慢跑地⼈会多些;与第⼆天需交学期论⽂地班级数成反向变化,这⼀点在学校地跑道模型中是⼀个合理地解释变量.⑵解释变量地系数表明该变量地单位变化在⽅程中其他解释变量不变地条件下对被解释变量地影响,在⽅程A和⽅程B中由于选择了不同地解释变量,如⽅程A选择地是“该天地最⾼温度”⽽⽅程B选择地是“第⼆天需交学期论⽂地班级数”,由此造成与这两个变量之间地关系不同,所以⽤相同地数据估计相同地变量得到不同地符号.3-18.答:将模型⑴改写成,则地估计值为:将模型⑵改写成,则地估计值为:这两个模型都是三变量回归模型⑶在某种限制条件下地变形.如果限制条件正确,则前两个回归参数会更有效;如果限制条件不正确则前两个回归参数会有偏.3-19.答:⑴答案并不唯⼀,猜测为:为学⽣数量,为附近餐厅地盒饭价格,为⽓温,为校园内⾷堂地盒饭价格;⑵理由是被解释变量应与学⽣数量成正⽐,并且应该影响显著;与本⾷堂盒饭价格成反⽐,这与需求理论相吻合;与附近餐厅地盒饭价格成正⽐,因为彼此是替代品;与⽓温地变化关系不是⼗分显著,因为⼤多数学⽣不会因为⽓温升⾼不吃饭.(三)基本计算类题型3-22.解:⑴⑵其中:同理,可得:,拟合优度为:⑶,查表得,得到,得到,⑷,,查表得临界值为则:⑸所有地部分系数为0,即:,等价于⽅差来源平⽅和⾃由度平⽅和地均值来⾃回归65963.018 2 32981.509来⾃残差79.2507 12 6.6042总离差66042.269,,临界值为3.89值是显著地,所以拒绝零假设.3-23.解:⑴对给定在5%地显著⽔平下,可以进⾏t检验,得到地结果如下:3-28.解:⑴在降⾬量不变时,每亩增加⼀磅肥料将使第年地⽟⽶产量增加0.1蒲式⽿/亩;在每亩施肥量不变地情况下,每增加⼀英⼨地降⾬量将使第年地⽟⽶产量增加5.33蒲式⽿/亩;⑵在种地地⼀年中不施肥、也不下⾬地现象同时发⽣地可能性极⼩,所以⽟⽶地负产量不可能存在;⑶如果地真实值为0.40,并不能说明0.1是有偏地估计,理由是0.1是本题估计地参数,⽽0.40是从总体得到地系数地均值.⑷不⼀定.即便该⽅程并不满⾜所有地古典模型假设、不是最佳线性⽆偏估计值,也有可能得出地估计系数等于5.33.3-29.解:⑴该⽅程组地矩阵向量形式为:⑵⑶地⽅差—协⽅差矩阵为:版权申明本⽂部分内容,包括⽂字、图⽚、以及设计等在⽹上搜集整理。

《计量经济学》题库及答案

《计量经济学》题库及答案

《计量经济学》题库及答案计量经济学题库Ch1一、单项选择题1.计量经济学是一门(B)学科。

A.数学;B.经济;C.统计;D.测量2.狭义计量经济模型是指(C)。

A.投入产出模型;B.数学规划模型;C.包含随机误差项的经济数学模型;D.模糊数学模型3.在下列各种数据中,(C)不应作为经济计量分析所用的数据。

A.时间序列数据;B.横截面数据;C.计算机随机生成的数据;D.虚拟变量数据4.经济计量分析的工作程序(B)A.设定模型,检验模型,估计模型,改进模型B.设定模型,估计参数,检验模型,应用模型C.估计模型,应用模型,检验模型,改进模型D.搜集资料,设定模型,估计参数,应用模型5.同一统计指标按时间顺序记录的数据列称为(B)A.横截面数据;B.时间序列数据;C.修匀数据;D.原始数据6.判断模型参数估计量的符号、大小、相互之间关系的合理性属于(B)准则。

A.经济计量准则;B.经济理论准则;C.统计准则;D.统计准则和经济理论准则7.对下列模型进行经济意义检验,通常情况下哪一个模型通常被认为没有实际价值的(B)。

A.C i(消费)=500+0.8 I i(收入)B.Q i(商品需求)=10+0.8I i(收入)+0.9P i(价格)C.Q i(商品供给)=20+0.7P i(价格)D.Y i(产出量)=0.6K i0.5(资本)L i0.5(劳动)8.用模型描述现实经济系统的原则是(B)A.模型规模大小要适度,结构尽可能复杂B.以理论分析作先导,模型规模大小要适度C.模型规模越大越好;这样更切合实际情况D.以理论分析作先导,解释变量应包括所有解释变量二、多项选择题1.样本数据的质量问题可以概括为(ABCD)几个方面。

A.完整性;B.准确性;C.可比性;D.一致性2.经济计量模型的应用方向是(ABCD)。

A.用于经济预测;B.用于经济政策评价;C.用于结构分析D.用于检验和发展经济理论;E.仅用于经济预测、经济结构分析三、简答题1.在确定了被解释变量之后,怎样才能正确地选择解释变量?①选择主因,而且是独立影响被解释变量的变量,将次要原因归入随机扰动项。

计量经济学问答题

计量经济学问答题

计量经济学问答题第一章1.什么是计量经济学?计量经济学方法与一般经济数学方法有什么区别?答:计量经济学是经济学的一个分支学科,是以揭示经济活动中客观存在的数量关系为内容的分支学科,是由经济学、统计学和数学三者结合而成的交叉学科。

计量经济学方法揭示经济活动中各个因素之间的定量关系,用随机性的数学方程加以描述;一般经济数学方法揭示经济活动中各个因素之间的理论关系,用确定性的数学方程加以描述。

2.计量经济学的研究对象和内容是什么?计量经济学模型研究的经济关系有哪两个基本特征?答:计量经济学的研究对象是经济现象,主要研究经济现象中的具体数量规律,换言之,计量经济学是利用数学方法,根据统计测定的经济数据,对反映经济现象本质的经济数量关系进行研究。

计量经济学的内容大致包括两个方面:一是方法论,即计量经济学方法或理论计量经济学;二是应用,即应用计量经济学。

无论是理论计量经济学还是应用计量经济学,都包括理论、方法和数据三要素。

计量经济学模型研究的经济关系有两个基本特征:一是随机关系,二是因果关系。

4.建立与应用计量经济学模型的主要步骤有哪些?答:建立与应用计量经济学模型的主要步骤如下:(1)设定理论模型,包括选择模型所包含的变量,确定变量之间的数学关系和拟定模型中待估参数的数值范围:(2)收集样本数据,要考虑样本数据的完整性、准确性、可比性和一致性;(3)估计模型参数;(4)检验模型,包括经济意义检验、统计检验、计量经济学检验和模型预测检验。

5.计量经济学模型主要有哪些应用领域?各自的原理是什么?答:计量经济学模型主要有以下几个方面的用途:(1)结构分析,即研究一个或几个经济变量发生变化及结构参数的变动对其他变量以至整个经济系统产生何种影响。

其原理是弹性分析、乘数分析与比较静力分析。

(2)经济预测,即进行中短期经济的因果预测。

其原理是模拟历史,从已经发生的经济活动中找出变化规律。

(3)政策评价,即利用计量经济学模型定量分析政策变量变化对经济系统运行的影响,是对不同政策执行情况的“模拟仿真”。

计量经济学题库与答案

计量经济学题库与答案

A •增大 B.减小 C.有偏 D.非有效88 .如果方差膨胀因子VIF二10,则什么问题是严重的()。

A.异方差问题B•序列相关问题C •多重共线性问题D .解释变量与随机项的相关性89 •在多元线性回归模型中,若某个解释变量对其余解释变量的判定系数接近于1,则表明模型中存在()0A异方差B序列相关C多重共线性D高拟合优度90 •存在严重的多重共线性时,参数估计的标准差()oA •变大 B.变小 C.无法估计 D •无穷大91 .完全多重共线性时,下列判断不正确的是()。

A•参数无法估计B•只能估计参数的线性组合C •模型的拟合程度不能判断D .可以计算模型的拟合程度92 •设某地区消费函数yi=cO+dxi+中,消“费i支出不仅与收入x有关,而且与消费者的年龄构成有关,若将年龄构成分为小孩、青年人、成年人和老年人4个层次。

假设边际消费倾向不变,则考虑上述构成因素的影响时,该消费函数引入虚拟变量的个数为()A.1个B.2个C.3个D.4个93 •当质的因素引进经济计量模型时,需要使用()A.外生变量B.前定变量C.内生变量D.虚拟变量94 .由于引进虚拟变量,回归模型的截距或斜率随样本观测值的改变而系统地改变,这种模型称为()A.系统变参数模型系统模型C.变参数模型D.分段线性回归模型95 .假设回归模型为Q +/3 xi,+期毗Xi为随机变量,Xi与Ui相关则B的普通最小二乘估计量0A.无偏且一致B.无偏但不一致C.有偏但一致D.有偏且不一致96 •假定正确回归模型为Q+Blx1i+ 苦遗漏“ 了解释变量X2,且X1、X2线性相关则B1的普通最小二乘法估计量0A.无偏且一致B.无偏但不一致C.有偏但一致D.有偏且不一致99 .虚拟变量()A.主要来代表质的因素,但在有些情况下可以用来代表数量因素B只能代表质的因素C.只能代表数量因素D.只能代表季节影响因素100 .分段线性回归模型的几何图形是()oA.平行线B垂直线C.光滑曲线D.折线101 .如果一个回归模型中不包含截距项,对一个具有m个特征的质的因素要引入虚拟变量数目为()oA.mB.m-1C.m-2D.m+1102 •设某商品需求模型为yt=bO+b1xt+ut ,其中丫是商品的需求量,X是商品的价格,为了考虑全年12个月份季节变动的影响,假设模型中引入了12个虚拟变量,则会产生的问题为()。

计量经济学-参考答案

计量经济学-参考答案

一、解释概念:1、多重共线性:是指在多元线性回归模型中,解释变量之间存在的线性关系。

2、SRF:就是样本回归函数。

即是将样本应变量的条件均值表示为解释变量的某种函数。

3、解释变量的边际贡献:在回归模型中新加入一个解释变量所引起的回归平方和或者拟合优度的增加值。

4、一阶偏相关系数:反映一个经济变量与某个经济变量的线性相关程度时,剔除另一个变量对它们的影响的真实相关程度的指标。

5、最小方差准则:在模型参数估计时,应当选择其抽样分布具有最小方差的估计式,该原则就是最佳性准则,或者称为最小方差准则。

6、OLS:普通最小二乘估计。

是利用残差平方和为最小来求解回归模型参数的参数估计方法。

7、偏相关系数:反映一个经济变量与某个经济变量的线性相关程度时,剔除其它变量(部分或者全部变量)对它们的影响的真实相关程度的指标。

8、WLS:加权最小二乘法。

是指估计回归方程参数时,按照残差平方加权求和最小的原则进行的估计方法。

9、U t自相关:即回归模型中随机误差项逐项值之间的相关。

即Cov(U t,U s)≠0 t ≠s。

10、二阶偏相关系数:反映一个经济变量与某个经济变量的线性相关程度时,剔除另两个变量对它们的影响的真实相关程度的指标。

11、技术方程式:根据生产技术关系建立的计量经济模型。

13、零阶偏相关系数:反映一个经济变量与某个经济变量的线性相关程度时,不剔除任何变量对它们的影响的相关程度的指标。

也就是简单相关系数。

14、经验加权法:是根据实际经济问题的特点及经验判断,对滞后经济变量赋予一定的权数,利用这些权数构成各滞后变量的线性组合,以形成新的变量,再用最小二乘法进行参数估计的有限分布滞后模型的修正估计方法。

15、虚拟变量:在计量经济学中,我们把取值为0和1 的人工变量称为虚拟变量,用字母D表示。

(或称为属性变量、双值变量、类型变量、定性变量、二元型变量)16、不完全多重共线性:是指在多元线性回归模型中,解释变量之间存在的近似的线性关系。

计量经济学题(答案)

计量经济学题(答案)

《计量经济学》要点一、单项选择题知识点:第一章若干定义、概念时间序列数据定义横截面数据定义同一统计指标按时间顺序记录的数据称为( B )。

A、横截面数据B、时间序列数据C、修匀数据D、原始数据同一时间,不同单位相同指标组成的观测数据称为( B )A.原始数据B.横截面数据C.时间序列数据D.修匀数据变量定义(被解释变量、解释变量、内生变量、外生变量、前定变量)单方程中可以作为被解释变量的是(控制变量、前定变量、内生变量、外生变量);在回归分析中,下列有关解释变量和被解释变量的说法正确的有( C )A、被解释变量和解释变量均为随机变量B、被解释变量和解释变量均为非随机变量C、被解释变量为随机变量,解释变量为非随机变量D、被解释变量为非随机变量,解释变量为随机变量什么是解释变量、被解释变量?从变量的因果关系上,模型中变量可分为解释变量(Explanatory variable)和被解释变量(Explained variable)。

在模型中,解释变量是变动的原因,被解释变量是变动的结果。

被解释变量是模型要分析研究的对象,也常称为“应变量”(Dependent variable)、“回归子”(Regressand)等。

解释变量也常称为“自变量”(Independent variable)、“回归元”(Regressor)等,是说明应变量变动主要原因的变量。

因此,被解释变量只能由内生变量担任,不能由非内生变量担任。

单方程计量经济模型中可以作为被解释变量的是( C )A、控制变量B、前定变量C、内生变量D、外生变量单方程计量经济模型的被解释变量是( A )A、内生变量B、政策变量C、控制变量D、外生变量在回归分析中,下列有关解释变量和被解释变量的说法正确的有(C)A 、被解释变量和解释变量均为随机变量B 、被解释变量和解释变量均为非随机变量C 、被解释变量为随机变量,解释变量为非随机变量D 、被解释变量为非随机变量,解释变量为随机变量 双对数模型中参数的含义;双对数模型01ln ln ln Y X ββμ=++中,参数1β的含义是( D )A . X 的相对变化,引起Y 的期望值绝对量变化B .Y 关于X 的边际变化C .X 的绝对量发生一定变动时,引起因变量Y 的相对变化率D 、Y 关于X 的弹性双对数模型 μββ++=X Y ln ln ln 10中,参数1β的含义是 ( C )A. Y关于X的增长率 B .Y关于X的发展速度C. Y关于X的弹性D. Y关于X 的边际变化计量经济学研究方法一般步骤四步12点计量经济学的研究方法一般分为以下四个步骤( B )A.确定科学的理论依据、模型设定、模型修定、模型应用B.模型设定、估计参数、模型检验、模型应用C.搜集数据、模型设定、估计参数、预测检验D.模型设定、检验、结构分析、模型应用对计量经济模型应当进行哪些方面的检验?经济意义检验:检验模型估计结果,尤其是参数估计,是否符合经济理论。

李子奈计量经济学课后答案

李子奈计量经济学课后答案

2
习题参考答案
第一章 绪论 1-1.什么是计量经济学? 答: 计量经济学是经济学的一个分支学科, 是以揭示经济活动中客观存在的数量关系为内容 的分支学科,是由经济学、统计学和数学三者结合而成的交叉学科。 1-2.答:计量经济学自 20 年代末、30 年代初形成以来,无论在技术方法还是在应用方面 发展都十分迅速, 尤其是经过 50 年代的发展阶段和 60 年代的扩张阶段, 使其在经济学科占 据重要的地位,主要表现在:①在西方大多数大学和学院中,计量经济学的讲授已成为经济 学课程表中有权威的一部分; ②从 1969~2003 年诺贝尔经济学奖的 XX 位获奖者中有 XX 位 是与研究和应用计量经济学有关;著名经济学家、诺贝尔经济学奖获得者萨缪尔森甚至说: “第二次世界大战后的经济学是计量经济学的时代” 。③计量经济学方法与其他经济数学方 法结合应用得到发展; ④计量经济学方法从主要用于经济预测转向经济理论假设和政策假设 的检验;⑤计量经济学模型的应用从传统的领域转向新的领域,如货币、工资、就业、福利、 国际贸易等; ⑥计量经济学模型的规模不再是水平高低的衡量标准, 人们更喜欢建立一些简 单的模型,从总量上、趋势上说明经济现象。 1-3.答:计量经济学方法揭示经济活动中各个因素之间的定量关系,用随机性的数学方程 加以描述; 一般经济数学方法揭示经济活动中各个因素之间的理论关系, 用确定性的数学方 程加以描述。 1-4.答: 1-5.答:从计量经济学的定义看,它是定量化的经济学;其次,从计量经济学在西方国家 经济学科中居于最重要的地位看,也是如此,尤其是从诺贝尔经济学奖设立之日起,已有多 人因直接或间接对计量经济学的创立和发展作出贡献而获得诺贝尔经济学奖; 计量经济学与 数理统计学有严格的区别,它仅限于经济领域;从建立与应用计量经济学模型的全过程看, 不论是理论模型的设定还是样本数据的收集, 都必须以对经济理论、 对所研究的经济现象有 透彻的认识为基础。综上所述,计量经济学确实是一门经济学科。 1-6.计量经济学的研究的对象和内容是什么?计量经济学模型研究的经济关系有哪两个基 本特征?

计量经济学简答题(经典)

计量经济学简答题(经典)

计量经济学简答题(经典)1.什么是计量经济学?它与经济学、统计学和数学的关系怎样?答:1、计量经济学是一门运用经济理论和统计技术来分析经济数据的科学和艺术,它以经济理论为指导,以客观事实为依据,运用数学、统计学的方法和计算机技术,研究带有随机影响的经济变量之间的数量关系和规律。

2、经济理论、数学和统计学知识是在计量经济学这一领域进行研究的必要前提,这三者中的每一个对于真正理解现代经济生活中的数量关系是必要的,但不充分,只有结合在一起才行。

2计量经济学三个要素是什么?经济理论、经济数据和统计方法。

3.计量经济学模型的检验包括哪几个方面?其具体含义是什么?答:(1)经济意义检验,即根据拟定的符号、大小、关系,对参数估计结果的可靠性进行判断(2)统计检验,由数理统计理论决定。

包括:拟合优度检验、总体显著性检验。

(3)计量经济学检验,由计量经济学理论决定。

包括:异方差性检验、序列相关性检验、多重共线性检验。

(4)模型预测检验,由模型应用要求决定。

包括:稳定性检验:扩大样本重新估计;预测性能检验:对样本外一点进行实际预测。

4.计量经济学方法与一般经济数学方法有什么区别?答:计量经济学揭示经济活动中各因素之间的定量关系,用随机性的数学方程加以描述;一般经济数学方法揭示经济活动中各因素之间的理论关系,用确定性的数学方程加以描述。

5.计量经济学模型研究的经济关系有那两个基本特征?答:一是随机关系,二是因果关系6.计量经济学研究的对象和核心内容是什么?答:计量经济学的研究对象是经济现象,是研究经济现象中的具体数量规律。

计量经济学的核心内容包括两个方面:一是方法论,即计量经济学方法或者理论计量经济学。

二是应用,即应用计量经济学。

无论是理论计量经济学还是应用计量经济学,都包括理论、方法和数据三种要素。

7.计量经济学中应用的数据类型怎样?举例解释其中三种数据类型的结构。

答:计量经济模型:WAGE=f(EDU,EXP,GEND,μ)1)时间序列数据是按时间周期收集的数据,如年度或季度的国民生产总值。

计量经济学简答题经典)

计量经济学简答题经典)

1.什么是计量经济学?它与经济学、统计学和数学的关系怎样?答:1、计量经济学是一门运用经济理论和统计技术来分析经济数据的科学和艺术,它以经济理论为指导,以客观事实为依据,运用数学、统计学的方法和计算机技术,研究带有随机影响的经济变量之间的数量关系和规律。

2、经济理论、数学和统计学知识是在计量经济学这一领域进行研究的必要前提,这三者中的每一个对于真正理解现代经济生活中的数量关系是必要的,但不充分,只有结合在一起才行。

2计量经济学三个要素是什么?经济理论、经济数据和统计方法。

3.计量经济学模型的检验包括哪几个方面?其具体含义是什么?答:(1)经济意义检验,即根据拟定的符号、大小、关系,对参数估计结果的可靠性进行判断(2)统计检验,由数理统计理论决定。

包括:拟合优度检验、总体显著性检验。

(3)计量经济学检验,由计量经济学理论决定。

包括:异方差性检验、序列相关性检验、多重共线性检验。

(4)模型预测检验,由模型应用要求决定。

包括:稳定性检验:扩大样本重新估计;预测性能检验:对样本外一点进行实际预测。

4.计量经济学方法与一般经济数学方法有什么区别?答:计量经济学揭示经济活动中各因素之间的定量关系,用随机性的数学方程加以描述;一般经济数学方法揭示经济活动中各因素之间的理论关系,用确定性的数学方程加以描述。

5.计量经济学模型研究的经济关系有那两个基本特征?答:一是随机关系,二是因果关系6.计量经济学研究的对象和核心内容是什么?答:计量经济学的研究对象是经济现象,是研究经济现象中的具体数量规律。

计量经济学的核心内容包括两个方面:一是方法论,即计量经济学方法或者理论计量经济学。

二是应用,即应用计量经济学。

无论是理论计量经济学还是应用计量经济学,都包括理论、方法和数据三种要素。

7.计量经济学中应用的数据类型怎样?举例解释其中三种数据类型的结构。

答:计量经济模型:WAGE=f(EDU,EXP,GEND,μ)1)时间序列数据是按时间周期收集的数据,如年度或季度的国民生产总值。

计量经济学-期末考试-简答题

计量经济学-期末考试-简答题

计量经济学期末考试简答题1.简述计量经济学与经济学、统计学、数理统计学学科间的关系。

2.计量经济模型有哪些应用?3.简述建立与应用计量经济模型的主要步骤。

4.对计量经济模型的检验应从几个方面入手?5.计量经济学应用的数据是怎样进行分类的?6.在计量经济模型中,为什么会存在随机误差项?7.古典线性回归模型的基本假定是什么?8.总体回归模型与样本回归模型的区别与联系。

9.试述回归分析与相关分析的联系和区别。

10.在满足古典假定条件下,一元线性回归模型的普通最小二乘估计量有哪些统计性质?11.简述BLUE的含义。

12.对于多元线性回归模型,为什么在进行了总体显着性F检验之后,还要对每个回归系数进行是否为0的t检验?13.给定二元回归模型:,请叙述模型的古典假定。

14.在多元线性回归分析中,为什么用修正的决定系数衡量估计模型对样本观测值的拟合优度?15.修正的决定系数及其作用。

16.常见的非线性回归模型有几种情况?17. 18观察下列方程并判断其变量是否呈线性,系数是否呈线性,或都是或都不是。

19.什么是异方差性?试举例说明经济现象中的异方差性。

20.产生异方差性的原因及异方差性对模型的OLS估计有何影响。

21.检验异方差性的方法有哪些?22.异方差性的解决方法有哪些?23.什么是加权最小二乘法?它的基本思想是什么?24.样本分段法(即戈德菲尔特——匡特检验)检验异方差性的基本原理及其使用条件。

25.简述DW检验的局限性。

26.序列相关性的后果。

27.简述序列相关性的几种检验方法。

28.广义最小二乘法(GLS)的基本思想是什么?29.解决序列相关性的问题主要有哪几种方法?30.差分法的基本思想是什么?31.差分法和广义差分法主要区别是什么?32.请简述什么是虚假序列相关。

33.序列相关和自相关的概念和范畴是否是一个意思?34.DW值与一阶自相关系数的关系是什么?35.什么是多重共线性?产生多重共线性的原因是什么?36.什么是完全多重共线性?什么是不完全多重共线性?37.完全多重共线性对OLS估计量的影响有哪些?38.不完全多重共线性对OLS估计量的影响有哪些?39.从哪些症状中可以判断可能存在多重共线性?40.什么是方差膨胀因子检验法?41.模型中引入虚拟变量的作用是什么?42.虚拟变量引入的原则是什么?43.虚拟变量引入的方式及每种方式的作用是什么?44.判断计量经济模型优劣的基本原则是什么?45.模型设定误差的类型有那些?46.工具变量选择必须满足的条件是什么?47.设定误差产生的主要原因是什么?48.在建立计量经济学模型时,什么时候,为什么要引入虚拟变量?49.估计有限分布滞后模型会遇到哪些困难50.什么是滞后现像?产生滞后现像的原因主要有哪些?51.简述koyck模型的特点。

计量经济学试题计量经济学中的序列相关性与解决方法

计量经济学试题计量经济学中的序列相关性与解决方法

计量经济学试题计量经济学中的序列相关性与解决方法计量经济学试题: 计量经济学中的序列相关性与解决方法序列相关性是计量经济学中重要的概念之一,它描述了时间序列数据之间的相关程度。

在许多经济学研究中,序列相关性可能会导致问题,如伪回归和自相关误差。

为了解决这些问题,研究人员采用了一些方法来处理序列相关性。

本文将介绍序列相关性的定义、影响和解决方法。

一、序列相关性的定义序列相关性是指一组时间序列数据之间存在的相关关系。

它反映了一个变量的当前值与过去值的相关程度。

序列相关性可以判断变量之间是否存在依赖关系,以及时间趋势的演变和预测。

在计量经济学中,序列相关性通常使用自相关函数(acf)和偏自相关函数(pacf)来度量。

自相关函数衡量了序列与其自身在不同滞后期的相关性,而偏自相关函数则控制了其他滞后期的效应。

二、序列相关性的影响序列相关性对计量经济分析的结果具有重要影响。

当存在序列相关性时,经济学模型的估计结果可能会产生偏误。

这是因为序列相关性违反了线性回归模型的基本假设,导致参数估计失真。

此外,当序列相关性存在时,标准误差和t统计量的计算也会出现问题。

标准误差的计算通常基于误差项的无关性假设,而序列相关性违反了这一假设,导致标准误差被低估。

因此,对参数的显著性检验将失去准确性。

三、解决序列相关性的方法为了解决序列相关性的问题,计量经济学提出了许多方法和技术。

下面介绍几种常用的解决方法。

1. 差分法(Differencing Method)差分法是通过对时间序列数据进行差分,消除序列相关性的方法。

差分法可以消除序列的线性趋势,使数据变得稳定。

这种方法利用变量的差分来消除序列的相关性,使得模型的估计结果更可靠。

2. 自相关修正法(Autoregressive Model)自相关修正法是通过引入滞后变量来建模序列相关性。

自相关修正模型考虑变量的滞后值与当前值之间的关系,以控制序列相关性的影响。

常见的自相关修正模型包括自回归移动平均模型(ARMA)和自回归条件异方差模型(ARCH)。

计量经济学题库(超完整版)及答案

计量经济学题库(超完整版)及答案

计量经济学题库(超完整版)及答案四、简答题(每⼩题5分)1.简述计量经济学与经济学、统计学、数理统计学学科间的关系。

2.计量经济模型有哪些应⽤?3.简述建⽴与应⽤计量经济模型的主要步骤。

4.对计量经济模型的检验应从⼏个⽅⾯⼊⼿?5.计量经济学应⽤的数据是怎样进⾏分类的? 6.在计量经济模型中,为什么会存在随机误差项?7.古典线性回归模型的基本假定是什么? 8.总体回归模型与样本回归模型的区别与联系。

9.试述回归分析与相关分析的联系和区别。

10.在满⾜古典假定条件下,⼀元线性回归模型的普通最⼩⼆乘估计量有哪些统计性质? 11.简述BLUE 的含义。

12.对于多元线性回归模型,为什么在进⾏了总体显著性F 检验之后,还要对每个回归系数进⾏是否为0的t 检验?13.给定⼆元回归模型:01122t t t t y b b x b x u =+++,请叙述模型的古典假定。

14.在多元线性回归分析中,为什么⽤修正的决定系数衡量估计模型对样本观测值的拟合优度?15.修正的决定系数2R 及其作⽤。

16.常见的⾮线性回归模型有⼏种情况?17.观察下列⽅程并判断其变量是否呈线性,系数是否呈线性,或都是或都不是。

①t t t u x b b y ++=310 ②t t t u x b b y ++=log 10③ t t t u x b b y ++=log log 10 ④t t t u x b b y +=)/(1018. 观察下列⽅程并判断其变量是否呈线性,系数是否呈线性,或都是或都不是。

①t t t u x b b y ++=log 10 ②t t t u x b b b y ++=)(210③ t t t u x b b y +=)/(10 ④t b t t u x b y +-+=)1(11019.什么是异⽅差性?试举例说明经济现象中的异⽅差性。

20.产⽣异⽅差性的原因及异⽅差性对模型的OLS 估计有何影响。

计量经济学题库及答案

计量经济学题库及答案

计量经济学题库(超完整版)及答案一、单项选择题(每小题1分)1.计量经济学是下列哪门学科的分支学科(C ).A .统计学B .数学C .经济学D .数理统计学2.计量经济学成为一门独立学科的标志是(B ).A .1930年世界计量经济学会成立B .1933年《计量经济学》会刊出版C .1969年诺贝尔经济学奖设立D .1926年计量经济学(Economics )一词构造出来3.外生变量和滞后变量统称为(D ).A .控制变量B .解释变量C .被解释变量D .前定变量4.横截面数据是指(A ).A .同一时点上不同统计单位相同统计指标组成的数据B .同一时点上相同统计单位相同统计指标组成的数据C .同一时点上相同统计单位不同统计指标组成的数据D .同一时点上不同统计单位不同统计指标组成的数据5.同一统计指标,同一统计单位按时间顺序记录形成的数据列是(C )。

A .时期数据B .混合数据C .时间序列数据D .横截面数据6.在计量经济模型中,由模型系统内部因素决定,表现为具有一定的概率分布的随机变量,其数值受模型中其他变量影响的变量是()。

A .内生变量B .外生变量C .滞后变量D .前定变量7.描述微观主体经济活动中的变量关系的计量经济模型是( )。

A .微观计量经济模型B .宏观计量经济模型C .理论计量经济模型D .应用计量经济模型8.经济计量模型的被解释变量一定是( )。

A .控制变量B .政策变量C .内生变量D .外生变量9.下面属于横截面数据的是( )。

A .1991-2003年各年某地区20个乡镇企业的平均工业产值B .1991-2003年各年某地区20个乡镇企业各镇的工业产值C .某年某地区20个乡镇工业产值的合计数D .某年某地区20个乡镇各镇的工业产值10.经济计量分析工作的基本步骤是()。

A .设定理论模型→收集样本资料→估计模型参数→检验模型B .设定模型→估计参数→检验模型→应用模型C .个体设计→总体估计→估计模型→应用模型D .确定模型导向→确定变量及方程式→估计模型→应用模型11.将内生变量的前期值作解释变量,这样的变量称为()。

计量经济学习题及答案

计量经济学习题及答案

计量经济学习题及答案期中练习题1、回归分析中使⽤的距离是点到直线的垂直坐标距离。

最⼩⼆乘准则是指()A .使∑=-n t tt Y Y 1)?(达到最⼩值 B.使∑=-n t t t Y Y 1达到最⼩值 C. 使∑=-n t t t Y Y 12)(达到最⼩值 D.使∑=-nt t t Y Y 12)?(达到最⼩值 2、根据样本资料估计得出⼈均消费⽀出 Y 对⼈均收⼊ X 的回归模型为?ln 2.00.75ln i iY X =+,这表明⼈均收⼊每增加 1%,⼈均消费⽀出将增加()A. 0.75B. 0.75%C. 2D. 7.5%3、设k 为回归模型中的参数个数,n 为样本容量。

则对总体回归模型进⾏显着性检验的F 统计量与可决系数2 R 之间的关系为( ) A.)1/()1()/(R 22---=k R k n F B. )/(1)-(k )R 1/(R 22k n F --= C. )/()1(22k n R R F --= D. )1()1/(22R k R F --= 6、⼆元线性回归分析中 TSS=RSS+ESS 。

则 RSS 的⾃由度为()A.1B.n-2C.2D.n-39、已知五个解释变量线形回归模型估计的残差平⽅和为8002=∑t e ,样本容量为46,则随机误差项µ的⽅差估计量2σ为() 1、经典线性回归模型运⽤普通最⼩⼆乘法估计参数时,下列哪些假定是正确的()A.0)E(u i =B. 2i )V ar(u i σ=C. 0)u E(u j i ≠D.随机解释变量X 与随机误差i u 不相关E. i u ~),0(2i N σ 2、对于⼆元样本回归模型ii i i e X X Y +++=2211ββα,下列各式成⽴的有() A.0=∑i e B. 01=∑i i X e C. 02=∑i i X e D.0=∑i i Y e E. 021=∑i i X X 4、能够检验多重共线性的⽅法有()A.简单相关系数矩阵法B. t 检验与F 检验综合判断法C. DW 检验法D.ARCH 检验法E.辅助回归法计算题1、为了研究我国经济发展状况,建⽴投资(1X ,亿元)与净出⼝(2X ,亿元)与国民⽣产总值(Y ,亿元)的线性回归⽅程并⽤13年的数据进⾏估计,结果如下:S.E=(2235.26) (0.12) (1.28)2R =0.99 F=582 n=13问题如下:①从经济意义上考察模型估计的合理性;(3分)②估计修正可决系数2R ,并对2R 作解释;(3分)③在5%的显着性⽔平上,分别检验参数的显着性;在5%显着性⽔平上,检验模型的整体显着性。

计量经济学复习题(含答案)

计量经济学复习题(含答案)
100
55,60,65,70,75
65,70,74,80,85,88
180
200
110,115,120,130,135,140
120,136,140,144,145
120
140 160
79,84,90,94,98
80,93,95,103,108,113,115 102,107,110,116,118,125
• 解答: • (1)最小二乘法:就是以残差(被解释变量的 观测值与拟合值之间的差)平方和最小的原 则对回归模型中的系数进行估计的方法。 • (2)OLS估计量:运用最小二乘法计算出的 总体回归参数的估计量。
• (3)估计量的方差:回归参数估计量是一个 随机变量,其方差衡量了估计量与估计量 均值的偏离程度。
• 解答:(1)以y为纵轴,x为横轴作图。
• (2)y与x之间呈正相关关系。
• (3)从原始数据可知, yi 1110 , xi 1700
i 1
10
10
i 1
2 ( x x ) 33000 , • i i 1
10
10
( x x )( y
i 1 i
i
10

ˆi 和ui • (3) u 。 • 上述哪些量可以观察得到?如何观察得到 ?
• 答: ˆ 是 的回归估计量; • (1) 1 1
ˆ 是 • (2) 2 2
的回归估计量;
ˆi是ui 的估计量。 • (3) u • 在现实中,我们无法观测到 1, 2和ui , 但是只要得到一组观测数据,就可以通过 ˆ , ˆ 和u • 得到它们的估计量。 ˆi 1 2
• (3)在该散点图上,做出(1)中的条件均值点 。

计量经济学习题与解答3

计量经济学习题与解答3

第四章经典单方程计量经济学模型:放宽基本假定的模型一、内容提要本章主要介绍计量经济模型的二级检检验问题,即计量经济检验。

主要讨论对回归模型的若干基本经典假定是否成立进行检验、当检验发现不成立时继续采用OLS估计模型所带来的不良后果以及如何修正等问题。

具体包括异方差性问题、序列相关性问题、多重共线性问题以及随机解释变量这四大类问题。

异方差是模型随机扰动项的方差不同时产生的一类现象。

在异方差存在的情况下,OLS 估计尽管是无偏、一致的,但通常的假设检验却不再可靠,这时仍采用通常的t检验和F检验,则有可能导致出现错误的结论。

同样地,由于随机项异方差的存在而导致的参数估计值的标准差的偏误,也会使采用模型的预测变得无效。

对模型的异方差性有若干种检测方法,如图示法、Park与Gleiser检验法、Goldfeld-Quandt检验法以及White检验法等。

而当检测出模型确实存在异方差性时,通过采用加权最小二乘法进行修正的估计。

序列相关性也是模型随机扰动项出现序列相关时产生的一类现象。

与异方差的情形相类似,在序列相关存在的情况下,OLS估计量仍具无偏性与一致性,但通常的假设检验不再可靠,预测也变得无效。

序列相关性的检测方法也有若干种,如图示法、回归检验法、Durbin-Watson检验法以及Lagrange 乘子检验法等。

存在序列相关性时,修正的估计方法有广义最小二乘法(GLS)以及广义差分法。

多重共线性是多元回归模型可能存在的一类现象,分为完全共线与近似共线两类。

模型的多个解释变量间出现完全共线性时,模型的参数无法估计。

更多的情况则是近似共线性,这时,由于并不违背所有的基本假定,模型参数的估计仍是无偏、一致且有效的,但估计的参数的标准差往往较大,从而使得t-统计值减小,参数的显著性下降,导致某些本应存在于模型中的变量被排除,甚至出现参数正负号方面的一些混乱。

显然,近似多重共线性使得模型偏回归系数的特征不再明显,从而很难对单个系数的经济含义进行解释。

计量经济学简答题

计量经济学简答题

第一章1、什么叫计量经济学。

计量经济学是统计学、经济学和数学的结合,是根据理论和观测的事实,运用合理的推理方法使之联系起来同时推导,对实际经济现象进行的数量分析.2、计量经济学与经济理论、统计学、数学的联系是什么?计量经济学是统计学、数学和经济学的结合,经济学理论是分析经济数量关系的理论基础,经济统计是计量经济学据以估计参数、验证理论的基本依据,数理统计学是计量经济学的方法论基础。

3、运用计量经济学研究问题,一般可分为哪四个步骤?①模型设定,确定变量和数学关系式②估计参数,分析变量间具体的估计参数③模型检验,检验所的结论的可靠性④模型应用,作经济分析和经济预测4、设定合理计量经济模型应注意的问题。

要有科学的理论依据; 模型要选择适当的数学形式; 变量要具有可观测性.5、计量经济模型检验主要包括哪几个方面.包括经济意义检验、统计推断检验、计量经济学检验、模型预测检验。

6、简述模型应用的具体内涵?①经济结构分析,用已经估计出参数的模型,对所研究的经济关系作进行定量的考察,以说明经济变量之间的数量比例关系②经济预测,是指利用估计了参数的计量经济模型,由已知的或预先测定的解释变量,去预测被解释变量在所观测的样本数据以外的数值③政策评价,是利用计量经济模型对各种可供选择的政策方案的实施后果进行模拟预测,从而对各种政策方案作出评价④检验与发展经济理论,是利用计量经济模型去验证既有经济理论或提出新的理论结论7、经济变量用来描述经济因素数量水平的指标。

内生变量由模型系统内部因素所决定的变量,表现为具有一定概率分布的随机变量,是模型求解的结果.外生变量由模型系统之外的因素决定的变量,表现为非随机变量,它影响模型中的内生变量,其数值在模型求解之前就已经确定。

8、计量经济学应用的数据主要分为哪几类?时间序列数据、横截面数据、面板数据;虚拟变量数据。

第二章9、回归分析与相关分析之间的区别和联系。

相关分析与回归分析既有联系又有区别.首先,两者都是研究变量间的的依赖关系,并能测度线性依赖程度的大小.其次,两者间又有明显的区别.相关分析仅仅是从统计数据上测度变量间的相关程度,而无需考察两者间是否有因果关系,因此,变量的地位在相关分析中式对称的;回归分析则更关注具有统计相关关系的变量间的因果关系分析,变量的地位是不对称的,有解释变量和被解释变量之分.10、总体回归函数与样本回归函数的联系与区别。

计量经济学习题及全部答案

计量经济学习题及全部答案

计量经济学习题及全部答案Newly compiled on November 23, 2020《计量经济学》习题(一)一、判断正误1.在研究经济变量之间的非确定性关系时,回归分析是唯一可用的分析方法。

( ) 2.最小二乘法进行参数估计的基本原理是使残差平方和最小。

( )3.无论回归模型中包括多少个解释变量,总离差平方和的自由度总为(n -1)。

( ) 4.当我们说估计的回归系数在统计上是显着的,意思是说它显着地异于0。

( ) 5.总离差平方和(TSS )可分解为残差平方和(ESS )与回归平方和(RSS )之和,其中残差平方和(ESS )表示总离差平方和中可由样本回归直线解释的部分。

( ) 6.多元线性回归模型的F 检验和t 检验是一致的。

( )7.当存在严重的多重共线性时,普通最小二乘估计往往会低估参数估计量的方差。

( )8.如果随机误差项的方差随解释变量变化而变化,则线性回归模型存在随机误差项的自相关。

( )9.在存在异方差的情况下,会对回归模型的正确建立和统计推断带来严重后果。

( ) 10...DW 检验只能检验一阶自相关。

( ) 二、单选题1.样本回归函数(方程)的表达式为( )。

A .i Y =01i i X u ββ++B .(/)i E Y X =01i X ββ+C .i Y =01ˆˆi i X e ββ++D .ˆi Y =01ˆˆi X ββ+ 2.下图中“{”所指的距离是( )。

A .随机干扰项B .残差C .i Y 的离差D .ˆi Y 的离差 3.在总体回归方程(/)E Y X =01X ββ+中,1β表示( )。

A .当X 增加一个单位时,Y 增加1β个单位B .当X 增加一个单位时,Y 平均增加1β个单位C .当Y 增加一个单位时,X 增加1β个单位D .当Y 增加一个单位时,X 平均增加1β个单位 4.可决系数2R 是指( )。

A .剩余平方和占总离差平方和的比重B .总离差平方和占回归平方和的比重C .回归平方和占总离差平方和的比重D .回归平方和占剩余平方和的比重 5.已知含有截距项的三元线性回归模型估计的残差平方和为2i e ∑=800,估计用的样本容量为24,则随机误差项i u 的方差估计量为( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Cp11.a:Stochastic error term: Stochastic error term is a term that is added to a regression equation to introduce all of the variation in Y that cannot be explained by the included Xs.B:Linear : An equation is linear if plotting the function in terms of X and Y generates a straight line,c: Slope coefficient(β)shows the response of Y to a one-unit increase in X.d:: a linear regression model which has more than one independent variables .e:. Expected value:the expression β0+β1x is called the deterministic component of the regression equation ,this deterministic component can also be thought of as the expected value of Y given X.f:Residual: the difference between the estimated value of the dependent variable and the actual value of the dependent variable is defined as the residualCP2P43:a: Ordinary Least Squares is a regression estimation technique that calculates theβs so as to minimize the sum of the squared residuals.b:multivariate regression coefficient indicates the change in the dependent variable associated with a one-unit increase in the independent variable in question.c: total sum of squares is the squared variations of Y around its mean as a measure of the amount of variation to be explained by the regression. The explained sum of squares is the amount if the squared deviation of Yi from its mean that is explained by the regression line. Residual sum of squares is the unexplained in an empirical sense by the estimated regression equation.d: coefficient of determination is the ratio of the explained sum of squares to the total sum of squares.e: degrees of freedom is the excess of the number of observations(N) over the number of coefficients(including the intercept estimated (K+1).f: R^2 is the coefficient of determination.Chapter 31.a. Review the literature and develop the theoretical model.Specify the model.Hypothesize the expected signs of coefficient.Collect data.Estimate and evaluate the equation.Document the results.b. Apply other researchers’ model to my data set.c. Any mistakes in the specification of a model.d. The excess of the number of observations over the number of coefficient s to be estimated.Chapter 41.a. The regression model is linear.The error term has a zero population mean.All explanatory variables are uncorrelated with the err termObservations of the err term are uncorrelated with each other.The error term has a constant varianceNo explanatory variable is a perfect linear function of any other explanatory variables.The error term is normally distributed.b. An error term satisfying Assumption through one to five.c. A normal distribution with a mean equal to zero and a variance equal to one.d. SE is the square root of the estimated variance of β s.e. An estimate β is an unbiased estimator if its sampling distribution has as its expected value the true value of β.f. Best Linear Unbiased Estimator.g. The probability distribution of these β values across different samples. Chapter 51.a. A statement of the values that the researcher does not expect.b. A statement of the values that the researcher expects.c. We reject a true null hypothesisd. Indicate the probability of observing an estimated t-value greater than the critical t-value if the null hypothesis were correct.e. In which the alternative hypothesis has values on both sides if null hypothesis.f. When testing a hypothesis, you have to calculate a sample statistic and compare it with a critical value selected in advance.g. A value that divides the acceptance region from the rejection region when testing a null hypothesis.h. It is a ratio of departure of an estimated parameter from its notional value and its standard error.i. A range which contains the true value of an item a specified percentage of the time.j. A p-value for a t-score is the probability of observing a t score that big or bigger if the null hypothesis were true.CHAPTER 61.a. The omitted variable is an important explanatory variable that has been left outof a regression equation.b. The irrelevant variable is the variable included in an equation that doesn’t belong there.c. The specification bias is the bias caused by leaving a variable out of an equation.d. sequential specification search 6.4.2e. The specification error results from choosing the incorrect independent variables, the incorrect functional form and the incorrect form of the stochastic error term.f. The four valid criteria are to help decide whether a given variable belongs in the equation:g. expected bias 6.1.3CP71.a. Elasticity of Y with respect to X, the percentage change in the dependent variable caused by a 1 percent increase in the independent variable, holding the other varia bles in the equation constant can be calculated.b. In a doublelog functional form, the natural log of Y is the dependent variables an d the natural log of X is the independent variable.c. The semiology functional form is a variant of double-log equation in which some but not all of the variables are expressed in terms of their natural logsd. Polynomial functional forms express Y as a function of independent variables, so me of which are raised to powers other than one.e. The inverse functional form expresses Y as a function of the reciprocal of one or more of the independent variables.f. A slope dummy is a dummy variable that is multiplied by an independent variabl e to allow the slope of the relationship between the dependent variable and the pa rticular independent variable to change, depending on whether or not a particular condition is met.g. The natural log of a number is its logarithm to the base of the mathematical cons tant e, where e is an irrational and transcendental number approximately equal to2.718.h. The omitted condition, forms the basis against which the included conditions are compared.i. An interaction term is an independent variable in a regression equation that is th e multiple of two or more other independent variables.j. A form that is linear in the variables should be used unless a specific hypothesis s uggestions otherwise.k. An equation is linear in the coefficients only if the coefficients appear in their si mplest form, they are not raised to any powers and not multiplied or divided by ot her coefficients, and do not themselves include some sort of function.。

相关文档
最新文档