顺序表的创建插入与删除

合集下载

线性顺序表的插入与删除(实验报告)

线性顺序表的插入与删除(实验报告)

一、实验目的和要求通过对顺序表的编程练习,加强对顺序表的特点、顺序存储结构及其基本运算的理解和掌握。

提前了解实验相关的c语言的知识。

使用C语言根据相应算法编写一个程序,实现建立线性顺序表、插入和删除等基本操作。

要求仔细阅读下面的内容,编写一个C程序,上机调试通过,并观察其结果,写出实验报告书。

二、实验内容和原理内容:建立一个容量10的顺序表,在其中插入3个元素,然后作删除运算。

原理:在第i个元素前插入元素,从第i个元素开始到最后一个元素均向后移动一个位置,然后将新元素插入到第i个位置,将线性表的长度加1。

删除第i个元素,从第i+1个元素开始到最后一个元素均向前移动一个位置,然后将线性表的长度减1。

三、主要仪器设备计算机一台四、实验主程序#include<stdio.h>#include<stdlib.h>struct List{int size;int n;int *head;};void init(struct List *pl,int size){pl->size=size;pl->n=0;pl->head=malloc(size*sizeof(int)); }void in(int i,int val,struct List *pl){int k;if(pl->n==pl->size){printf("list is full.\n");return;}if(i>pl->n)i=pl->n+1;if(i<1)i=1;for(k=pl->n-1;k>=i-1;--k)pl->head[k+1]=pl->head[k];pl->head[i-1]=val;++pl->n;}void out(int i,struct List *pl){int k;if(pl->n==0){printf("list is empty.\n");return;}if(i<1||i>pl->n){printf("this element is not in the list.\n");return;}for(k=i;k<=pl->n;++k)pl->head[k-1]=pl->head[k];--pl->n;return;}void print(const struct List *pl) {int i;for(i=0;i!=pl->n;++i)printf("%d ",pl->head[i]);printf("\n");}int main(void){int i;struct List list;init(&list,10);for(i=0;i!=5;++i)in(i+1,i,&list);print(&list);in(1,5,&list);print(&list);in(10,4,&list);print(&list);in(5,50,&list);print(&list);out(1,&list);print(&list);out(list.n,&list);print(&list);out(3,&list);print(&list);getchar();return 0;}实验结果五、实验心得通过实验学习,我理解了线性顺序表的插入与删除的算法,了解到线性顺序表的插入与删除得效率低下,感到受益匪浅。

顺序表的基本操作--插入,删除,合并

顺序表的基本操作--插入,删除,合并
Status ListInsert_Sq(sqlist*L,inti,ElemType e)
{
ElemType*newbase,*p,*q;
if(i<1||i>L->length+1)returnERROR;
if(L->length>=L->listsize)
{
newbase=(ElemType*)realloc(L->elem,(L->listsize+LISTINCREMENT)*sizeof(ElemType));
printf("Listsize: %d\n\n",La.listsize);
}
else
printf("error!");
/*------------------INIT-----------------*/
if(InitList_sq(&Lb))
{
printf("Init is ok!\n");
printf("Length: %d\n",Lb.length);
实验
准备
你为本次实验做了哪些准备:
在课后认真复习,基于上课的基础上,对于线性表的存储,插入,删除,合并等有了一定的了解,对于书上给出的程序反复捉摸,达到了较熟练的程度。
实验
进度
本次共有1个练习,完成个。
实验
总结

本次实验的收获、体会、经验、问题和教训:
顺序表初始化、插入、删除算法。
实现两个有序表合并算法.
for(i=1;i<=n;i++)
{
scanf("%d",&e) ;

建立一个顺序表,表中元素为学生,每个学生信息包含姓名、学号和成绩三部分,对该表实现输出、插入、删除、

建立一个顺序表,表中元素为学生,每个学生信息包含姓名、学号和成绩三部分,对该表实现输出、插入、删除、

云南大学物理实验教学中心实验报告课程名称:计算机软件技术基础实验项目:实验二、线性表(顺序存储)及其应用学生姓名:学号:学院系级专业成绩指导教师:实验时间:年日时分至时分实验地点:实验类型:教学(演示□验证□综合█设计□)学生科研□课外开放□测试□其它□一、实验目的:掌握顺序表的建立及基本操作。

二、问题:建立一个顺序表,表中元素为学生,每个学生信息包含姓名、学号和成绩三部分,对该表实现:①输出、②插入、③删除、④查找功能,并计算出平均成绩和总成绩。

三、程序的编写与调试1、原程序:#include <iostream>using namespace std;typedef struct{ long double num; char name[10]; int score; } STUDENT; class sq_LList{ private:int mm;int nn;STUDENT *v;public:sq_LList(int);void prt_sq_LList();void ins_sq_LList(int, STUDENT);void del_sq_LList(int);void sea_num_sq_LList(int);voidvoid cal_sq_LList(int);};/*输出*/sq_LList ::sq_LList(int m){ mm=m;v=new STUDENT [mm];v[0].num=970156; strcpy(v[0].name,"张小明"); v[0].score=87; v[1].num=970157; strcpy(v[1].name,"李小青"); v[1].score=96;v[2].num=970158; strcpy(v[2].name,"刘华");v[2].score=85; v[3].num=970159; strcpy(v[3].name,"王伟");v[3].score=93; v[4].num=970160; strcpy(v[4].name,"李启明"); v[4].score=88;nn=5;}void sq_LList ::prt_sq_LList(){ int i;for(i=0; i<nn; i++){ cout<<"学号: "<<v[i].num<<" 姓名: "<<v[i].name<<" "<<"分数: "<<v[i].score<<endl;}}/*插入*/void sq_LList ::ins_sq_LList(int i, STUDENT b){ int k;if(nn==mm){cout<<"overflow"; return ;}if(i>nn) i=nn+1;if(i<1) i=1;for(k=nn; k>=i; k--)v[k]=v[k-1];v[i-1]=b; nn=nn+1;}/*删除*/void sq_LList ::del_sq_LList(int i){ int k;if(nn==0){cout<<"underflow"<<endl; return ;}if((i<1)||(i>nn)){cout<<"Not this element in the list!"<<endl; return ;}for(k=i; k<nn; k++)v[k-1]=v[k];nn=nn-1;}/*按学号查找*/void sq_LList ::sea_num_sq_LList(int i){ int k,t ;____t=0;for(i=0;i<nn;i++){ if(v[i].num==k){ t=t+1;cout<<"学号: "<<v[i].num<<" 姓名: "<<v[i].name<<" "<<"分数: "<<v[i].score<<endl;}}if(t==0)cout<<"No this student in the list!"<<endl;}/*按姓名查找*/void sq_LList ::sea_name_sq_LList(int i, char y[]){ int t;____t=0;for(i=0;i<nn;i++){ if(strcmp(y,v[i].name)=0){t=t+1cout<<"学号: "<<v[i].num<<" 姓名: "<<v[i].name<<" "<<"分数: "<<v[i].score<<endl;}}if(t==0) cout<<"No this student in the list!"<<endl }/*计算*/void sq_LList ::cal_sq_LList(int m){ int i;float sum,avr;{ sum=0;for(i=0;i<nn;i++){sum=sum+v[i].score;avr=sum/(i+1);}}cout<<"总分:"<<sum<<endl;cout<<"平均分:"<<avr<<endl;}int main(){ int mx; sq_LList s1(100);while (1){ cout<<"1.输出 2.插入 3.删除 4.查找 5.计算 0.退出\n";cout<<"输入0-5:";cin>>mx;switch(mx){ case 1: s1.prt_sq_LList(); break;case 2: int i; STUDENT b;cout<<"输入插入点位置和插入元素值:";cin>>i>>b.num>>>>b.score;s1.ins_sq_LList(i,b); s1.prt_sq_LList(); break; case 3: cout<<"请输入删除学生的位置:";cin>>i;s1.del_sq_LList(i);s1.prt_sq_LList(); break; case 4: int main(){ int mx;while (1){cout<<"1.按学号查找 2.按姓名查找 0.返"<<endl;cout<<"输入0-2:";cin>>mx;switch (mx){casecout<<"请输入要查找学生的学号:";s1.sea_num_sq_LList(i); break;casecout<<"请输入要查找学生的姓名:";s1.sea_name_sq_LList(); break;case 0: cout<<"返回"<<endl; return ;}}return 0;} break;case 5: s1.cal_sq_LList(); break;case 0: cout<<"程序结束"<<endl; return 0;}}return 0;2、正确程序:#include <iostream>using namespace std;typedef struct{ long double num; char name[10]; int score; } STUDENT; class sq_LList{ private:int mm;int nn;STUDENT *v;public:sq_LList(int);void prt_sq_LList();void ins_sq_LList(int, STUDENT);void del_sq_LList(int);void sea_num_sq_LList(int);void sea_name_sq_LList();void cal_sq_LList(int);/*输出*/sq_LList ::sq_LList(int m){ mm=m;v=new STUDENT [mm];v[0].num=970156; strcpy(v[0].name,"张小明"); v[0].score=87; v[1].num=970157; strcpy(v[1].name,"李小青"); v[1].score=96;v[2].num=970158; strcpy(v[2].name,"刘华");v[2].score=85; v[3].num=970159; strcpy(v[3].name,"王伟");v[3].score=93; v[4].num=970160; strcpy(v[4].name,"李启明"); v[4].score=88;nn=5;}void sq_LList ::prt_sq_LList(){ int i;for(i=0; i<nn; i++){ cout<<"学号: "<<v[i].num<<" 姓名: "<<v[i].name<<" "<<"分数: "<<v[i].score<<endl;}}/*插入*/void sq_LList ::ins_sq_LList(int i, STUDENT b){ int k;if(nn==mm){cout<<"overflow"; return ;}if(i>nn) i=nn+1;if(i<1) i=1;for(k=nn; k>=i; k--)v[k]=v[k-1];v[i-1]=b; nn=nn+1;}/*删除*/void sq_LList ::del_sq_LList(int i){ int k;if(nn==0){cout<<"underflow"<<endl; return ;}if((i<1)||(i>nn)){cout<<"Not this element in the list!"<<endl; return ;}for(k=i; k<nn; k++)v[k-1]=v[k];nn=nn-1;}/*按学号查找*/void sq_LList ::sea_num_sq_LList(int i){ int k,t ;cin>>k;t=0;for(i=0;i<nn;i++){ if(v[i].num==k){ t=t+1;cout<<"学号: "<<v[i].num<<" 姓名: "<<v[i].name<<" "<<"分数: "<<v[i].score<<endl;}}if(t==0)cout<<"No this student in the list!"<<endl;}/*按姓名查找*/void sq_LList ::sea_name_sq_LList(){ char y[10]; int i,t;cin>>y;t=0;for(i=0;i<nn;i++){ if(strcmp(y,v[i].name)==0){t=t+1;cout<<"学号: "<<v[i].num<<" 姓名: "<<v[i].name<<" "<<"分数: "<<v[i].score<<endl;}}if(t==0) cout<<"No this student in the list!"<<endl; }/*计算*/void sq_LList ::cal_sq_LList(int m){ int i;float sum,avr;{ sum=0;for(i=0;i<nn;i++){sum=sum+v[i].score;avr=sum/(i+1);}}cout<<"总分:"<<sum<<endl;cout<<"平均分:"<<avr<<endl;}int main(){ int mx; sq_LList s1(100);while (1){ cout<<"1.输出 2.插入 3.删除 4.查找 5.计算 0.退出\n";cout<<"输入0-5:";cin>>mx;switch(mx){ case 1: s1.prt_sq_LList(); break;case 2: int i; STUDENT b;cout<<"输入插入点位置和插入元素值:";cin>>i>>b.num>>>>b.score;s1.ins_sq_LList(i,b); s1.prt_sq_LList(); break; case 3: cout<<"请输入删除学生的位置:";cin>>i;s1.del_sq_LList(i);s1.prt_sq_LList(); break; case 4:{ int mx;while (1){cout<<"1.按学号查找 2.按姓名查找 0.返"<<endl;cout<<"输入0-2:";cin>>mx;switch (mx){case 1: cout<<"请输入要查找学生的学号:";s1.sea_num_sq_LList(i); break;case 2: cout<<"请输入要查找学生的姓名:";s1.sea_name_sq_LList(); break;case 0: cout<<"返回"<<endl; return 0;}}return 0;} break;case 5: s1.cal_sq_LList(i); break;case 0: cout<<"程序结束"<<endl; return 0;}}return 0;}四、实验总结通过此次试验,我对线性表(顺序存储)有了全面的认识,知道了什么是线性表,以及线性表有什么作用;并学会了如何根据要求建立一个实际的线性表,包括线性表的输出、插入、删除、查。

顺序表的基本操作实验报告

顺序表的基本操作实验报告

湖南第一师范学院信息科学与工程系实验报告课程名称:数据结构与算法成绩评定:实验项目名称:顺序表的基本操作指导教师:王杰文学生姓名:沈丽桃学号:10403080118 专业班级:教育技术实验项目类型:验证性实验地点:科B305 实验时间: 2011年 10月8 日一、实验目的与要求:实验目的:实现顺序表的创建、查找、插入、删除与输出基本原理:顺序表的基本操作二、实验环境:(硬件环境、软件环境)1.硬件环境:奔ⅣPC。

2.软件环境:Windows XP 操作系统,TC2.0或VC++。

三、实验内容:(原理、操作步骤、程序代码等)#include<stdio.h># define maxlength 100 /#后不应该有空格/struct LIST{int elements[maxlength];int last;}L;typedef int position;void main(){position p,p1; /p和x最好赋值/int x,x1,i,choice;position Locate(int x,struct LIST*y);void Insert(int x,position p,struct LIST*y);void Delete(position p,struct LIST *y);printf("option:Locate 1,Insert 2,Delete 3\n");printf("please choice:");scanf("%d",&choice);switch(choice){case 1:{printf("please input a number:");scanf("%d",&x);p1=Locate(x,&L);if(p1==101)printf(“the number does not exist”);else printf("the position is:%d",p1); /break;/}case 2:{printf("please input a numer:");scanf("%d",x1); /x1钱应加取地址符&/printf("please input the position:");scanf("%d",&p);Insert(x1,p,&L);for(i=0;i<=st;i++)printf("%d",L.elements[i]);printf("\n"); /break;/}case 3:{printf("please input the position:");scanf("%d",&p);Delete(p,&L);for(i=0;i<=st;i++)printf("%d",L.elements[i]);printf("\n"); /break;/}}position Locate(int x,struct LIST*y) /把变量x改为m/{int q;if(st>maxlength-1)printf("error:list is full");else if((p>st)||(p<1))printf("error:position does not exist");else{for(q=1;q<st;q++){if(elements[q]==x) /x改为m/(主要错误是elements[q]应改为L.elements[q] return q;else return 101;}}}void Insert(int x,position p,struct LIST*y){position q;if(st>maxlength-1)printf("error:list is full");else if((p>st)||(p<1))printf("error:position does not exist");else{for(q=st;q>=p;q--){L.elements[q+1]=L.elements[q];st=st+1;L.elements[q]=x;}}}Void Delete(position p,struct LIST*y) /这个问题重复出现,V要改为小写/ {position q;if(st>maxlength-1)printf("error:list is full");else if((p>st)||(p<1))printf("error:position does not exist");else{st=st-1;for(q=p;q<=st;q++)L.elements[q]=L.elements[q+1];}}error C2146:syntax error:missing’)’before identifier’p’error C2081:’position’:name in formal parameter list illegalerror C2146:syntax error:missing’:’before identifier’p’error C2059:syntax error:’type’error C2059:syntax error:’)’error C2143:syntax error:missing’;’before’type’warning C4020:’Insert’:too many actual parameterswarning C4013:’delete’undefined;assuming extern returning interror C2065:’position’:undeclared identifiererror C2146:syntax error:missing’)’before identifier ‘Locate’error C2143:syntax error:missing’)’before ‘type’error C2198:’Locate’:too few avtual parameterserror C2059:syntax error:’)’error C2065:’q’:undeclared identifiererror C2065:’elements’:undeclared identifiererror C2109:subscript requires array or pointer typewarning C4098:’main’:’void’function returning a valuewarning C4098:’main’:’void’function returning a valueerror C2146:syntax error:missing’);before identifier ’p’error C2081:’position’:name in formal parameter list illegalerror C2061:syntax error:identifier’p’error C2059:syntax error:’;’error C2059:syntax error:’,’error C2059:syntax error :’)’四、实验体会# define maxlength 100 /#后不应该有空格/要先对数组进行初始化,存入一些数据position p,p1; /p和x最好赋值/scanf("%d",x1); /x1钱应加取地址符&/if(elements[q]==x) /x改为m/(主要错误是elements[q]应改为L.elements[q]Void Delete(position p,struct LIST*y) /这个问题重复出现,V要改为小写/switch每个case语句写完要加break;一开始不知所措,首先应该有一个大的方向,把主程序编号,再逐步求精,落实到每一个函数的编写。

实验一:顺序表的插入和删除

实验一:顺序表的插入和删除

实验报告一------顺序表的插入和删除1.实验目的1、输入一批整型数据,建立顺序表;2、实现顺序表的插入(输入插入位置i,插入元素)3、实现顺序表的删除(输入删除元素位置i)4、实现顺序表中数据的显示;5、实现顺序表中数据的查找和定位;6、编写主函数,调试上述算法。

2.实验源代码#include<stdio.h>#define max 100void sequenlist(int s[],int n) //建立一个顺序表{for(int i=0;i<n;i++){printf("顺序表第%d个元素是:\n",i+1);scanf("%d",&s[i]);}printf("所以该顺序表输出为:\n");for(int j=0;j<n;j++){printf("%d\t",s[j]);}putchar('\n');}void insert(int s[],int &n,int i,int x) //顺序表的插入{if(n==max||i<1||i>n+1)printf("插入失败!!!\n");elsefor(int k=n-1;k>=i-1;k--){s[k+1]=s[k];}s[i-1]=x;n++;}void dele(int s[],int &n,int i) //删除元素位置i {if(i<1||i>n+1)printf("无法删除!!!\n");elsefor(int j=i-1;j<n;j++){s[j]=s[j+1];}n--;}void disp(int s[],int n) //输出顺序表数据{printf("该顺序表输出为:\n");for(int j=0;j<n;j++){printf("%d\t",s[j]);}putchar('\n');}void locate(int s[],int &n,int x) //查找和定位{int k;for(int j=0;j<n;j++){if(s[j]==x)k=j+1;}printf("您要查找的数据位于第%d位!\n",k);}int main(){int s[max];int n;int i,x;int num;printf("请输入顺序表的数据元素个数:\n");scanf("%d",&n);sequenlist(s,n); //顺序表的建立printf("******************************************************\n" );printf("*************1.插入***********************************\n");printf("*************2.删除***********************************\n");printf("*************3.输出***********************************\n");printf("*************4.查找***********************************\n");printf("******************************************************\n" );while(1){printf("请选择:\n");scanf("%d",&num);switch(num){case 1:printf("请选择要插入的位置:\n");scanf("%d",&i);printf("请选择要插入的数据:\n");scanf("%d",&x);insert(s,n,i,x);break;case 2:printf("请选择您要删除的元素位置:\n");scanf("%d",&i);dele(s,n,i);break;case 3:disp(s,n);break;case 4:printf("请选择您要查询的元素:\n");scanf("%d",&x);locate(s,n,x);break;default:goto l;break;}}l:return 0;}3.实验结果见下图!。

顺序表的实现-包含插入-删除-查找等操作-完整源代码-有注释-包你喜欢.

顺序表的实现-包含插入-删除-查找等操作-完整源代码-有注释-包你喜欢.

实验一顺序表的实现实验目的:熟练掌握顺序表的基本操作(插入、删除、查找等)实验内容:顺序表中的基本操作的实现(初始化、插入、删除、求表长、按值查找、按位置查找)实验要求:以顺序表的动态分配存储结构来实现;所有基本操作均应该以函数的形式表示;要有运行结果并考虑到顺序表中所有情况。

一、实验算法描述:1、顺序表的声明和创建typedef struct{int* data;//int*型元素int length;//顺序表的实际长度int listsize;//顺序表的最大长度}sqlist;void creatsqlist(sqlist &list){list.data=(int*)malloc(sizeof(int)*maxsize);//开辟一个名为l的顺序表if(!list.data)//判断顺序表是否存在exit(1);list.length=0;list.listsize=maxsize;}2、初始化函数initsqlist(list)void initsqlist(sqlist &list)//初始化操作{int* p;int n;cout<<"请输入顺序表元素数(1-50):"<<endl;//让用户输入顺序表元素个数cin>>n;cout<<"您申请的顺序表的长度是---"<<n<<endl;p=list.data;//p指向头指针cout<<"请依次输入无重复数字的有序顺序表(相邻数据用空格隔开,回车键完成输入):"<<endl;for(int i=0;i<n;i++)//逐个赋值{cin>>*p;p++;list.length++;}cout<<"您输入的递增顺序表为:"<<endl;//打印出初始化的顺序表for(i=0;i<n;i++)cout<<list.data[i]<<"\t";cout<<endl;}3、输出函数put(list)void put(sqlist &list) //输出函数{ int i;for(i=0;i<list.length;i++)cout<<list.data[i]<<"\t";cout<<endl;}4、定位函数locateElem(list)void locateElem(sqlist &list){int i,j=0,b;cout<<"请输如要查找的字符:\n";cin>>b;for(i=0;i<list.length;i++)if(list.data[i]==b){j=i+1;break;}if(j)cout<<"该数字的位置是:"<<j<<endl;elsecout<<"很抱歉,表中没有这个数字,请重试!"<<endl; }5、插入函数insert(list)void insert(sqlist &list)//插入函数{int i;cout<<"您想在第几位插入数字:\n";cin>>i;int x;cout<<"请输入要插入的数字:\n";cin>>x;int j;if(i<0||i>list.length){cout<<"位置错误"<<endl;put(list);}else{ for(j=list.length;j>=i;j--)list.data[j]=list.data[j-1];list.data[j]=x;list.length++;}cout<<"插入操作完成后的顺序表:"<<endl;put(list);}6、删除函数delete1(list)和delete2(list)void delete1(sqlist &list)//删除第i个位置的数字的函数{int i,b;cout<<"请输入你想要删除数据的位置:"<<endl;cin>>i;if(i<0||i>list.length){cout<<"输入错误!"<<endl;return;}else{b=list.data[i-1];for(i=i-1;i<list.length-1;i++)list.data[i]=list.data[i+1];--list.length;cout<<"需要删除的元素是:"<<b<<endl;cout<<"删除操作完成后的顺序表是:"<<endl;put(list);}}void delete2(sqlist &list)//删除指定数字的函数{int b;cout<<"输入您想删除的数字:"<<endl;cin>>b;int i,j=0;for(i=0;i<list.length;i++){if(list.data[i]==b){j=i+1;break;}}if(j!=0){for(;i<list.length-2 ;i++)list.data[i]=list.data[i+1];--list.length;cout<<"该位置是第"<<i<<"位"<<endl;cout<<"删除操作完成后的顺序表是:"<<endl;put(list);}elsecout<<"很遗憾,表中没有找到此数字,删除不成功,请重试!"<<endl;}二、实验程序描述:主函数如下:int main(){int flag;sqlist l;creatsqlist(l);initsqlist(l);cout<<endl<<"********************************************************* *****************"<<endl;cout<<"请输入要进行的操作序号:\n";cout<<"1.插入字符"<<endl<<"2.查找数字"<<endl<<"3.删除第i位数字"<<endl<<"4.删除指定数字"<<endl<<"0.退出"<<endl<<endl;cin>>flag;do{switch(flag){case 1:insert(l);break;case 2:locateElem(l);break;case 3:delete1(l);break;case 4:delete2(l);break;default:cout<<"请重新输入||代码错误"<<endl;}cout<<"*********************************************************** ***************"<<endl;cout<<"请输入要进行的操作序号:\n";cout<<"1.插入字符"<<endl<<"2.查找数字"<<endl<<"3.删除第i位数字"<<endl<<"4.删除指定数字"<<endl<<"0.退出"<<endl<<endl;cin>>flag;}while(flag!=0);return 0;}三、实验结果(输入和输出):1、输入界面:2、插入操作:3、查找操作:4、删除操作:最新文件仅供参考已改成word文本。

顺序表实验报告

顺序表实验报告

顺序表实验报告1. 简介顺序表是一种常用的数据结构,它在计算机科学中有着重要的应用。

本实验旨在通过实践操作顺序表,深入理解其原理和实现方式。

2. 实验目的本次实验有以下几个目的:- 学习使用顺序表来存储和操作数据;- 掌握顺序表的插入、删除、查找等基本操作;- 理解顺序表的实现原理,并分析其优缺点。

3. 实验环境和工具本实验所用环境为Windows系统,编程语言为C++。

编程工具可以选择Visual Studio或者其他C++开发工具。

4. 实验步骤4.1 实验准备首先,我们需要定义顺序表的数据结构。

例如,我们可以定义一个结构体,其中包含一个数组和一个指示当前表中元素个数的变量。

4.2 插入操作接下来,我们可以编写插入操作的函数。

插入操作的目的是将一个元素插入到指定位置,并保持表中其他元素的顺序。

可以使用循环将需要移动的元素逐个后移,然后将新元素插入到指定位置。

4.3 删除操作与插入操作类似,删除操作也需要保持表中其他元素的顺序。

可以使用循环将需要删除的元素之后的元素逐个前移,然后将最后一个元素的位置置为空。

4.4 查找操作查找操作可以通过循环遍历表中的元素,并与目标元素进行比较,直到找到相等的元素或者遍历到表尾。

5. 实验结果与分析经过实验,我们可以发现使用顺序表存储数据的效率较高。

顺序表的插入和删除操作时间复杂度为O(n),其中n为表中元素个数。

这是因为插入或删除一个元素后,需要移动其他元素以保持顺序。

而查找操作的时间复杂度为O(n),在最坏的情况下需要遍历整个表才能找到目标元素。

此外,顺序表还具有便于随机访问的优点。

由于顺序表中元素在内存中连续存储,可以直接通过索引访问表中的任意元素,因此查找效率较高。

然而,顺序表也有一些缺点。

首先,插入和删除操作需要移动大量元素,当表中元素个数较大时,操作的时间复杂度会较高。

其次,由于顺序表必须预先分配一定大小的连续空间,因此当表中元素个数超过初始大小时,需要进行动态扩容操作。

线性表的基本操作

线性表的基本操作

实验一线性表的基本操作一、实验目的学习掌握线性表的顺序存储结构、链式存储结构。

设计顺序表的创建、插入、删除等基本操作,设计单链表的建立、插入、删除等基本操作。

二、实验内容1.顺序表的实践(1)顺序表的创建:基于顺序表的动态分配存储结构,创建一个顺序表S,初始状态S=(1,2,3,4,5)。

(2)顺序表的遍历:依次输出顺序表的每个数据元素。

(3)顺序表的插入:在顺序表S=(1,2,3,4,5)的数据元素4和5之间插入一个值为9的数据元素。

(4)顺序表的删除:顺序表S=(1,2,3,4,9,5)中删除指定位置(i=3)的数据元素3。

(5)顺序表的按值查找:查找顺序表S中第1个值等于4的数据元素位序。

(6)顺序表的清空:释放顺序表的存储空间。

2.单链表的实践(1)单链表的创建:创建一个包括头结点和4个元素结点的单链表L=(5,4,2,1)。

(2)单链表的遍历:依次输出顺序表的每个数据元素。

(3)单链表的取值:输出单链表中第i个(i=2)数据元素的值。

(4)单链表的插入:在已建好的单链表的指定位置(i=3)插入一个结点3。

(5)单链表的删除:在一个包括头结点和5个结点的单链表L=(5,4,3,2,1)中,删除指定位置(i=2)的结点,实现的基本操作。

(6)求单链表的表长:输出单链表的所有元素和表长。

(7)单链表的判空:判断单链表是否为空表。

(8)单链表的清空:释放单链表的存储空间。

三、程序源代码1.线性表的基本操作#include <iostream>#include<stdlib.h>using namespace std;#define OK 1#define OVERFLOW -2#define ERROR 0#define LIST_INIT_SIZE 100#define LISTINCEREMENT 10typedef int Status;typedef int Elemtype;typedef Elemtype *Triplet;typedef struct { //定义结构体类型:顺序表Elemtype *elem;int length;int listsize;} Sqlist;Status Initlist( Sqlist &L ) { //int n,i;L.elem = (Elemtype*) malloc (LIST_INIT_SIZE*sizeof(Elemtype));if(!L.elem) {return(OVERFLOW);}cout << "输入元素个数和各元素的值:";cin >> n;for(int i=0; i<n; i++) {cin >> L.elem[i];}L.length = n;L.listsize = LIST_INIT_SIZE;return OK;}Status TraverList(Sqlist L) {for(int i=0; i<L.length; i++) {cout << L.elem[i]<<" ";}cout << endl;}Status ListInsert (Sqlist &L,int i,Elemtype e) { //插入Elemtype *newbase,*p,*q;if(i<1||i>L.length+1) return ERROR;//i不合法if(L.length >= L.listsize) { //需要重新分配存储空间newbase = (Elemtype *) realloc(L.elem,(L.listsize + LISTINCEREMENT)*sizeof (Elemtype));if(!newbase) exit(OVERFLOW);//分配失败L.elem = newbase;L.listsize += LISTINCEREMENT;}q = &(L.elem[i-1]);for(p=&(L.elem[L.length-1]); p>=q; --p)*(p+1)=*p;*q=e;++L.length;return OK;}Status ListDelete(Sqlist &L,int i,Elemtype &e) { //删除Elemtype *p,*q;if((i<1)||(i>L.length)) return ERROR;p=&(L.elem[i-1]);e=*p;q=L.elem+L.length-1;for(++p; p<=q; ++p)*(p-1)=*p;--L.length;return OK;}Status LocateElem(Sqlist L,Elemtype &e) { //查找int i;Elemtype *p;i=1;p=L.elem;while(i<=L.length&&*(p++)!=e) ++i;if(i<=L.length) return i;else return 0;}Status ClearList(Sqlist &L) {free(L.elem);cout << "该表已被清空!";return OK;}int main() {Sqlist L;int i,z;Elemtype e;if(Initlist(L)==OVERFLOW) {cout << endl << "OVERFLOW";return 0;}TraverList(L);while(1) {cout << "-------------------" << endl;cout << "选择要执行的基本操作:" << endl << "1:插入元素" << endl << "2.删除元素" << endl << "3.查找元素" << endl<< "4.退出" << endl;cin >> z;switch(z) {case 1:cout << "输入要插入元素的位置和值:" << endl;cin >> i >> e;if(ListInsert(L,i,e)==OK)TraverList(L);elsecout << "插入的位置不合法。

顺序表的查找插入与删除实验报告

顺序表的查找插入与删除实验报告

顺序表的查找插入与删除实验报告顺序表的查找、插入与删除实验报告《数据结构》实验报告一学院:班级:姓名:程序名学号:日期:一、上机实验的问题和要求:顺序表的搜寻、填入与删掉。

设计算法,同时实现线性结构上的顺序表的产生以及元素的搜寻、填入与删掉。

具体内容同时实现建议:1.从键盘输入10个整数,产生顺序表,并输入结点值。

2.从键盘输入1个整数,在顺序表搜寻该结点的边线。

若找出,输入结点的边线;若打听不到,则显示“找不到”。

3.从键盘输入2个整数,一个则表示欲填入的边线i,另一个则表示欲填入的数值x,将x挂入在对应位置上,输出顺序表所有结点值,观察输出结果。

4.从键盘输入1个整数,表示欲删除结点的位置,输出顺序表所有结点值,观察输出结果。

二、源程序及注解:#include#include/*顺序表的定义:*/#include#definelistsize100/*表空间大小可根据实际需要而定,这里假设为100*/typedefintdatatype;/*datatype可以是任何相应的数据类型如int,float或char*/typedefstruct{datatypedata[listsize];/*向量data用作放置表中结点*/intlength;/*当前的表中长度*/}seqlist;voidmain(){seqlistl;inti,x;intn=10;/*欲建立的顺序表长度*/l.length=0;voidcreatelist(seqlist*l,intn);voidprintlist(seqlistl,intn);intlo catelist(seqlistl,datatypex);voidinsertlist(seqlist*l,datatypex,inti);voiddele telist(seqlist*l,inti);1createlist(&l,n);/*建立顺序表*/printlist(l,n);/*打印顺序表*/printf(\输入要查找的值:\scanf(\i=locatelist(l,x);/*顺序表查找*/printf(\输入要插入的位置:\scanf(\printf(\输入要插入的元素:\scanf(\insertlist(&l,x,i);/*顺序表插入*/printlist(l,n);/*打印顺序表*/printf(\输入要删除的位置:\scanf(\deletelist(&l,i);/*顺序表删除*/printlist(l,n);/*打印顺序表*/}/*顺序表的创建:*/voidcreatelist(seqlist*l,intn){inti;for(i=0;ilength=n;}/*顺序表的列印:*/voidprintlist(seqlistl,intn){inti;for(i=0;i/*顺序表的查找:*/intlocatelist(seqlistl,datatypex){inti=0;while(iif(i2/*顺序表的插入:*/voidinsertlist(seqlist*l,datatypex,inti){intj;if(i<1||i>l->length+1){printf(\插入位置非法\\n\exit(0);}if(l->length>=listsize){printf(\表空间溢出,退出运行\\n\exit(0);}for(j=l->length-1;j>=i-1;j--)l->data[j+1]=l->data[j];l->data[i-1]=x;l->length++;}/*顺序表的删除:*/voiddeletelist(seqlist*l,inti){intj;if(l->length==0){printf(\现行表为空,退出运行\\n\exit(0);}if(i<1||i>l->length){printf(\删除位置非法\\n\exit(0);}for(j=i;j<=l->length-1;j++)l->data[j-1]=l->data[j];l->length--;}3三、运行输出结果:四、调试和运行程序过程中产生的问题及采取的措施:4。

数据结构实验顺序表的基本操作

数据结构实验顺序表的基本操作

数据结构实验-顺序表的基本操作顺序表是一种线性数据结构,它的元素在内存中是连续存储的。

顺序表具有随机访问的特点,可以通过下标直接访问元素,因此在访问元素时具有较高的效率。

顺序表的基本操作包括插入、删除、查找等,下面将对这些基本操作进行详细介绍。

1. 初始化:初始化顺序表需要为其分配一定的内存空间,以存储元素。

可以使用静态分配或动态分配两种方式来初始化顺序表。

静态分配是在编译时为顺序表分配固定大小的内存空间,而动态分配是在运行时根据需要动态地为顺序表分配内存空间。

2. 插入操作:插入操作是将一个元素插入到顺序表的指定位置上。

在插入元素之前,需要判断顺序表是否已满,如果已满则需要进行扩容操作。

插入元素时,需要将插入位置以及其后的元素向后移动一位,为插入元素腾出位置。

插入操作的时间复杂度为O(n),其中n为顺序表的长度。

3. 删除操作:删除操作是将顺序表中的一个元素删除。

在删除元素之前,需要判断顺序表是否为空,如果为空则无法进行删除操作。

删除元素时,需要将删除位置后面的元素向前移动一位,覆盖删除位置上的元素。

删除操作的时间复杂度为O(n),其中n为顺序表的长度。

4. 查找操作:查找操作是根据给定的关键字,在顺序表中查找满足条件的元素。

可以使用顺序查找或二分查找两种方式进行查找。

顺序查找是从顺序表的第一个元素开始,逐个比较关键字,直到找到满足条件的元素或遍历完整个顺序表。

二分查找是在有序顺序表中进行查找,每次将待查找区间缩小一半,直到找到满足条件的元素或待查找区间为空。

查找操作的时间复杂度为O(n),其中n为顺序表的长度。

5. 修改操作:修改操作是将顺序表中的一个元素修改为新的值。

修改操作需要先进行查找操作,找到待修改的元素,然后将其值修改为新的值。

修改操作的时间复杂度为O(n),其中n为顺序表的长度。

6. 遍历操作:遍历操作是依次访问顺序表中的每个元素。

可以使用for循环或while循环进行遍历,从第一个元素开始,依次访问每个元素,直到遍历完整个顺序表。

顺序表基本操作

顺序表基本操作

顺序表基本操作顺序表是一种非常常见的线性数据结构,它由一组连续的存储单元组成,可以存储各种类型的数据。

在实际应用中,我们经常需要对顺序表进行一些基本操作,包括创建、插入、删除、查找和修改等。

下面将逐个介绍这些操作。

1. 创建顺序表创建顺序表的第一步是定义一个数组,用于存储数据。

可以根据需求选择合适的数组大小,然后逐个将数据元素存入数组中。

2. 插入元素在顺序表中插入元素可以分为两种情况:在指定位置插入元素和在表尾插入元素。

在指定位置插入元素时,需要将插入位置后的所有元素后移一个位置,然后将新元素插入到指定位置。

在表尾插入元素时,只需将新元素直接添加到表尾即可。

3. 删除元素删除顺序表中的元素同样也有两种情况:删除指定位置的元素和删除指定值的元素。

删除指定位置的元素时,需要将删除位置后的所有元素前移一个位置,然后将最后一个元素置空。

删除指定值的元素时,需要先找到该元素的位置,然后进行删除操作。

4. 查找元素查找顺序表中的元素可以分为两种情况:按照位置查找和按照值查找。

按照位置查找时,直接根据给定的位置返回对应的元素即可。

按照值查找时,需要遍历整个顺序表,逐个比较元素的值,找到匹配的元素后返回其位置。

5. 修改元素修改顺序表中的元素也需要根据给定的位置进行操作,直接将指定位置的元素修改为新的值即可。

除了上述基本操作,顺序表还可以进行其他一些常用的操作,如获取表长、判断是否为空表、清空表等。

6. 获取表长获取顺序表的表长即为数组的长度,可以通过数组的长度属性或者循环遍历数组的方式来获取。

7. 判断是否为空表判断顺序表是否为空表可以通过判断数组的长度是否为0来实现。

8. 清空表清空顺序表即将数组中的元素全部置空,可以通过循环遍历数组,并将每个元素置空来实现。

总结顺序表是一种非常常用的数据结构,它提供了一系列基本操作来对数据进行增删改查等操作。

在实际应用中,我们经常需要使用顺序表来存储和操作数据。

熟练掌握顺序表的基本操作对于编程和算法的学习都非常重要。

数据结构实验报告(实验)

数据结构实验报告(实验)

深 圳 大 学 实 验 报 告课程名称: 数据结构实验与课程设计 实验项目名称: 实验一:顺序表的应用 学院: 计算机与软件学院 专业: 指导教师: **报告人: 文成 学号: ********** 班级: 5 实验时间: 2012-9-17实验报告提交时间: 2012-9-24教务部制一、实验目的与要求:目的:1.掌握线性表的基本原理2.掌握线性表地基本结构3.掌握线性表地创建、插入、删除、查找的实现方法要求:1.熟悉C++语言编程2.熟练使用C++语言实现线性表地创建、插入、删除、查找的实现方法二、实验内容:Problem A: 数据结构——实验1——顺序表例程Description实现顺序表的创建、插入、删除、查找Input第一行输入顺序表的实际长度n第二行输入n个数据第三行输入要插入的新数据和插入位置第四行输入要删除的位置第五行输入要查找的位置Output第一行输出创建后,顺序表内的所有数据,数据之间用空格隔开第二行输出执行插入操作后,顺序表内的所有数据,数据之间用空格隔开第三行输出执行删除操作后,顺序表内的所有数据,数据之间用空格隔开第四行输出指定位置的数据Sample Input611 22 33 44 55 66888 352Sample Output11 22 33 44 55 6611 22 888 33 44 55 6611 22 888 33 55 6622HINT第i个位置是指从首个元素开始数起的第i个位置,对应数组内下标为i-1的位置Problem B: 数据结构——实验1——顺序表的数据交换Description实现顺序表内的元素交换操作Input第一行输入n表示顺序表包含的·n个数据第二行输入n个数据,数据是小于100的正整数第三行输入两个参数,表示要交换的两个位置第四行输入两个参数,表示要交换的两个位置Output第一行输出创建后,顺序表内的所有数据,数据之间用空格隔开第二行输出执行第一次交换操作后,顺序表内的所有数据,数据之间用空格隔开第三行输出执行第二次交换操作后,顺序表内的所有数据,数据之间用空格隔开注意加入交换位置的合法性检查,如果发现位置不合法,输出error。

顺序表的基本操作

顺序表的基本操作

2.输入5个数,分别为1,2,3,4,5
3.求线性表是否为空:
4.求线性表的长度:
5.输出顺序表的第4个元素:
6.输出第一次出现元素3的位置:
7.向线性表中插入一个元素:
8.删除元素4,并输出
9.输出线性表的元素:
10.在线性表的-1位置插入数据:
11.清空线性表的所有元素
五、实验总结
1.由于线性表是采用的是数组存储,因此,在第i个位置添加或删除
一个元素时,需要移动n-i个位置,其时间复杂度为O(n)
2.顺序表的删除并非真正意义的删除,由于数组的特殊原因,只是
显示的一种“假象”,如果采用动态的扩展空间,可以实现真正意。

数据结构删除顺序表上指定的值

数据结构删除顺序表上指定的值

数据结构删除顺序表上指定的值数据结构是计算机科学中非常重要的一门学科,其中顺序表是最基本的数据结构之一。

在顺序表中,我们可以通过下标来访问其中的元素,但是删除指定值时需要进行一些操作。

下面将介绍如何在顺序表中删除指定的值。

一、顺序表的介绍顺序表是一种线性结构,它的元素存储在一段连续的内存区域中。

这些元素按照顺序排列,可以通过下标来访问。

对于大小为n 的顺序表,每个元素占用 a 个存储单元,总共需要占用 an 个存储单元。

二、顺序表的实现顺序表可以通过数组来实现,数组的下标表示元素在顺序表中的位置。

在插入和删除操作时需要移动其他元素,因此时间复杂度较高,为O(n)。

三、删除顺序表上指定的值删除顺序表上指定的值需要先找到该值所在的位置,然后将后面所有的元素向前移动一位。

具体操作如下:1. 遍历顺序表,找到指定的值 val 所在的位置 i;2. 从位置 i+1 开始,将后面的所有元素向前移动一位;3. 将顺序表的长度减 1。

代码实现如下:``` pythondef delete_value(lst, val):for i in range(len(lst)):if lst[i] == val:for j in range(i+1, len(lst)):lst[j-1] = lst[j]lst.pop()breakreturn lst```四、时间复杂度分析遍历顺序表的时间复杂度为 O(n),移动元素的时间复杂度也为 O(n),因此删除指定的值的时间复杂度为 O(n)。

五、总结顺序表是一种基本的数据结构,删除指定值的操作需要自己实现。

虽然时间复杂度比较高,但是在一些小数据集下使用还是比较方便的。

同时也要注意顺序表的元素个数不能太多,否则删除操作的时间复杂度会变得很高。

数据结构实验报告顺序表

数据结构实验报告顺序表

数据结构实验报告顺序表数据结构实验报告:顺序表一、引言数据结构是计算机科学的重要基础,它研究数据的组织方式和操作方法。

顺序表是一种常见的数据结构,它以数组的形式存储数据元素,具有随机访问和插入删除方便的特点。

本实验旨在深入理解顺序表的实现原理和操作方法,并通过实验验证其性能。

二、实验目的1. 掌握顺序表的基本概念和实现原理;2. 熟悉顺序表的插入、删除、查找等操作;3. 分析顺序表的时间复杂度,并进行性能测试。

三、实验过程1. 顺序表的定义和初始化顺序表是一种线性表,它以一组连续的存储单元来存储数据元素。

在实验中,我们使用数组来实现顺序表。

首先,定义一个结构体来表示顺序表,包括数据元素和当前长度等信息。

然后,通过动态分配内存来初始化顺序表。

2. 插入元素顺序表的插入操作是将一个新元素插入到指定位置,同时移动后面的元素。

在实验中,我们可以通过循环将后面的元素依次向后移动,然后将新元素放入指定位置。

3. 删除元素顺序表的删除操作是将指定位置的元素删除,并将后面的元素依次向前移动。

在实验中,我们可以通过循环将后面的元素依次向前移动,然后将最后一个元素置为空。

4. 查找元素顺序表的查找操作是根据指定的值查找元素所在的位置。

在实验中,我们可以通过循环遍历顺序表,逐个比较元素的值,找到匹配的位置。

五、实验结果与分析在实验中,我们通过插入、删除、查找等操作对顺序表进行了测试,并记录了操作所需的时间。

通过分析实验结果,我们可以得出以下结论:1. 顺序表的插入操作的时间复杂度为O(n),其中n为元素的个数。

因为插入操作需要移动后面的元素,所以时间复杂度与元素个数成正比。

2. 顺序表的删除操作的时间复杂度也为O(n),与插入操作相同,需要移动后面的元素。

3. 顺序表的查找操作的时间复杂度为O(n),需要逐个比较元素的值。

六、结论通过本次实验,我们深入理解了顺序表的实现原理和操作方法。

顺序表以数组的形式存储数据,具有随机访问和插入删除方便的特点。

顺序表的建立、输入、输出、查找、插入、删除(数据结构)

顺序表的建立、输入、输出、查找、插入、删除(数据结构)

顺序表的建⽴、输⼊、输出、查找、插⼊、删除(数据结构)1.顺序表的基本操作实践。

(1)建⽴4个元素的顺序表list[]={2,3,4,5},实现顺序表建⽴的基本操作。

(2)在list[]={2,3,4,5}的元素4和5之间插⼊⼀个元素9,实现顺序表插⼊的基本操作。

(3)在list[]={2,3,4,9,5}中删除指定位置(i=3)上的元素4,实现顺序表的删除的基本操作。

#include <stdio.h>#include <stdlib.h>#include <iostream>#define MAXSIZE 10using namespace std;typedef int ElemType;typedef struct {ElemType a[MAXSIZE];int length;} S;void CreatList(S &L) {scanf("%d", &L.length);for(int i = 1; i <= L.length; i ++) scanf("%d",&L.a[i]);} //创建列表void PutList(S L) {for(int i = 1; i <= L.length; i ++) {printf("%d ",L.a[i]);}printf("\n");} //输出列表void InserElem(S &L, int i, ElemType x) { j iif(i < 1 || i > L.length) return; 2 3 4 5 9for(int j = L.length+1; j > i; j --) { j-1jL.a[j] = L.a[j-1]; 2 3 4 9 5}L.a[i] = x;L.length++;} //插⼊void DeleElem(S &L, int i) {for(int j = i; j < L.length; j ++) {L.a[j] = L.a[j+1]; j j+1} 2 3 4 9 5L.length--;}//删除int main() {S L;CreatList(L);InserElem(L,4,9);PutList(L);DeleElem(L,3);PutList(L);return0;}结果E:\c++>b42345234952395。

顺序表的基本操作 头歌

顺序表的基本操作 头歌

顺序表的基本操作头歌顺序表是一种常见的数据结构,它可以用数组来实现。

下面我将从多个角度全面回答顺序表的基本操作。

1. 创建顺序表:创建顺序表需要确定表的最大容量,然后分配一块连续的内存空间作为数组来存储数据元素。

可以通过动态分配或静态定义数组来创建顺序表。

2. 插入元素:在顺序表中插入元素可以分为两种情况:在指定位置插入元素,需要将插入位置之后的元素向后移动一位,然后将要插入的元素放入指定位置。

在表尾插入元素,直接将元素放入表尾即可。

3. 删除元素:删除顺序表中的元素也可以分为两种情况:删除指定位置的元素,需要将删除位置之后的元素向前移动一位,覆盖要删除的元素。

删除指定值的元素,需要遍历顺序表,找到要删除的元素的位置,然后进行删除操作。

4. 查找元素:查找顺序表中的元素可以通过遍历顺序表,逐一比较元素的值来实现。

可以根据需求选择查找第一个匹配的元素、查找所有匹配的元素或者查找最后一个匹配的元素。

5. 修改元素:修改顺序表中的元素需要先找到要修改的元素位置,然后进行修改操作。

6. 获取元素:获取顺序表中的元素可以直接通过索引来获取,即通过下标访问数组中的元素。

7. 判断顺序表是否为空:判断顺序表是否为空可以通过判断表的长度是否为0来实现。

8. 获取顺序表的长度:获取顺序表的长度即为顺序表中元素的个数。

9. 清空顺序表:清空顺序表即将表的长度设置为0,可以简单地将表的长度置为0或者重新创建一个空的顺序表。

10. 销毁顺序表:销毁顺序表即释放顺序表占用的内存空间,可以通过释放数组所占用的内存来实现。

以上就是顺序表的基本操作,包括创建、插入、删除、查找、修改、获取、判断是否为空、获取长度、清空和销毁顺序表。

希望以上回答能够满足你的需求。

c++有序顺序表的建立与基本操作

c++有序顺序表的建立与基本操作

c++有序顺序表的建立与基本操作【C++有序顺序表的建立与基本操作】一、引言在C++编程中,有序顺序表是非常常见的数据结构之一。

它可以帮助我们存储和操作一组有序的数据,是程序中非常实用的工具。

本文将从有序顺序表的概念入手,逐步深入探讨其建立和基本操作,帮助读者更好地理解和运用这一数据结构。

二、有序顺序表的概念有序顺序表是一种线性表,其中元素按照一定的顺序排列。

在C++中,我们通常使用数组来实现有序顺序表。

通过数组,我们可以轻松地存储一组有序的数据,并且可以方便地进行各种基本操作,如插入、删除、查找等。

三、有序顺序表的建立1. 定义结构体或类我们需要定义一个结构体或类,用于表示有序顺序表。

结构体或类中应包含元素存储的数组,以及记录当前元素个数和表长的变量。

2. 初始化在建立有序顺序表时,我们需要对其进行初始化。

可以通过动态内存分配来分配数组空间,并对其他变量进行初始化。

需要注意的是,数组的大小应该根据实际需要进行调整,以防止空间浪费。

3. 插入元素在有序顺序表中插入元素是一个常见的操作。

当插入元素时,我们需要保持顺序表的有序性。

可以通过比较元素大小的方式,找到合适的位置并将元素插入其中。

四、有序顺序表的基本操作1. 插入操作有序顺序表的插入操作是比较常见的操作之一。

当我们需要向顺序表中插入新元素时,我们首先需要找到合适的位置,然后将其插入其中。

2. 删除操作删除操作是有序顺序表中另一个重要的操作。

当我们需要删除某个元素时,我们可以通过查找元素的方式找到需要删除的元素,然后将其后的元素向前移动,从而达到删除的目的。

3. 查找操作有序顺序表中的查找操作也是常见的操作之一。

当我们需要查找某个元素时,可以通过顺序查找或二分查找的方式进行查找,以获取所需的元素。

五、个人观点和理解有序顺序表是C++编程中非常常见的数据结构之一。

它能够帮助我们高效地存储和操作数据,是程序中的重要工具。

在实际应用中,我们需要灵活地运用有序顺序表的建立和基本操作,以解决实际问题。

数据结构图实验报告

数据结构图实验报告

数据结构图实验报告一、实验目的本次实验的主要目的是深入理解和掌握数据结构图的基本概念、原理和操作方法,通过实际编程和操作,提高对数据结构的应用能力和解决问题的能力。

二、实验环境本次实验使用的编程语言为C++,开发环境为Visual Studio 2019。

三、实验内容(一)线性表1、顺序表实现顺序表的创建、插入、删除、查找等基本操作。

分析顺序表在不同操作下的时间复杂度。

2、链表实现单链表、双向链表的创建、插入、删除、查找等基本操作。

比较单链表和双向链表在操作上的优缺点。

(二)栈和队列1、栈实现顺序栈和链式栈。

用栈解决表达式求值问题。

2、队列实现顺序队列和链式队列。

用队列模拟银行排队问题。

(三)树1、二叉树实现二叉树的创建、遍历(前序、中序、后序)。

计算二叉树的深度和节点数。

2、二叉搜索树实现二叉搜索树的插入、删除、查找操作。

分析二叉搜索树的性能。

(四)图1、图的存储实现邻接矩阵和邻接表两种图的存储方式。

比较两种存储方式的优缺点。

2、图的遍历实现深度优先遍历和广度优先遍历算法。

用图的遍历解决最短路径问题。

四、实验步骤(一)线性表1、顺序表定义一个数组来存储顺序表的元素,并使用一个变量记录当前表的长度。

插入操作时,需要判断插入位置是否合法,如果合法则将插入位置后的元素依次向后移动一位,然后将新元素插入指定位置。

删除操作时,先判断删除位置是否合法,合法则将删除位置后的元素依次向前移动一位,并更新表的长度。

查找操作通过遍历数组来实现。

分析不同操作的时间复杂度,插入和删除操作在最坏情况下为O(n),查找操作在平均情况下为 O(n/2)。

2、链表对于单链表,定义一个节点结构体,包含数据域和指向下一个节点的指针域。

通过操作指针来实现插入、删除和查找操作。

双向链表则在节点结构体中增加指向前一个节点的指针,使得操作更加灵活,但也增加了空间复杂度。

比较单链表和双向链表在插入、删除操作中指针的调整过程,得出双向链表在某些情况下更方便,但空间开销较大的结论。

顺序表的逻辑结构

顺序表的逻辑结构

顺序表的逻辑结构
顺序表是一种线性结构,具有连续的存储空间和相对固定的大小。

在顺序表中,数据元素的排列顺序与它们在存储器中的物理位置相同。

这种逻辑结构使得顺序表在访问、查找和删除元素时具有良好的性能。

顺序表的逻辑结构可以用一个一维数组来表示,数组中的元素按照顺序排列,每个元素具有相同的数据类型。

顺序表的长度可以通过数组的容量来表示,数组中元素的下标可以作为顺序表中元素的位置。

顺序表的插入和删除操作需要移动元素的位置,因此这些操作的时间复杂度与顺序表的长度相关。

在插入或删除元素时,需要移动后续元素的位置,因此其时间复杂度为O(n)。

相比之下,访问和查找
元素时只需要通过下标访问数组中的元素,因此时间复杂度为O(1)。

顺序表的优势在于可以随机访问任意位置的元素,因此适合于需要快速访问元素的应用场景。

但是,随着顺序表长度的增加,插入和删除操作的时间复杂度会变得越来越高。

因此,在需要频繁进行插入和删除操作的场合,可能需要考虑其他数据结构,如链表。

总之,顺序表的逻辑结构为其提供了良好的访问性能,但在插入和删除操作时效率较低。

在实际应用中,需要根据具体情况选择合适的数据结构来满足需求。

- 1 -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

#include <stdio.h>
#define maxsize 1024 //定义maxsize 是1024
#define inplen 10 //定义inplen 是10
typedef int datatype;
typedef struct
{
datatype data[maxsize];
int last;
}sequenlist;
//创建一个顺序表并且将之初始化
sequenlist *CreatInit(void)
{
sequenlist *l;
l = new sequenlist( ); //使用动态分配sequenlist 空间大小l->last=-1; //空表
return l;
}
//打印出顺序表
void println(sequenlist *head)
{
sequenlist *p = head;
int i = 0;
printf(" Now the squenlist is:");
for (i = 0; i <= p->last; i++)
{
printf("%d ", p->data[i]);
}
}
//计算出顺序表的长度
int Length(sequenlist *head)
{
return head->last+1;
}
//给顺序表结点data[i]赋值
sequenlist *Setvalue(sequenlist *head)
{
int i;
sequenlist *p = head;
for (i = 0; i < inplen; i++)
{
printf("\n Input the %d value:", i + 1); //i 是下标值
scanf("%d", &p->data[i]); //键盘上输入10 个结点的值
}
p->last = i-1;
//输出线性表的长度
printf("\n The length of sequenlist is %d \n",Length(p));
println(p);
return head;
}
//输入一个x 的值,并在顺序表中查找是否有此值,并返回位置序号int Locate(sequenlist *head,int x)
{
int i = 0;
sequenlist *p=head;
while(i<p->last+1) //当i<节点个数,查找
{ if(p->data[i]==x) {
printf("\n The locate is %d ",i+1);
return (i+1);
}
else i++;
}
printf("\n Not Found!");//当i>节点个数,则显示出错
return 0;
}
//在顺序表中插入一个结点
sequenlist *Insert(sequenlist *head,int i,int x)
//i 是节点位置,x 是结点的值
{
int j;
sequenlist *l=head;
if (l->last >= maxsize - 1) // =是考虑到顺序表恰好满了
printf("\n OverFlow!");
else
{ //表不满,插入节点
for (j = l->last; j>=i-1; j--)
l->data[j + 1] = l->data[j];
l->data[i - 1] = x;
l->last += 1;
}
return l;
}
//在顺序表中删除某个i 结点
sequenlist *Delete(sequenlist *head,int i)//i 是节点序号
{
int j;
sequenlist *p=head;
if (i<1||i>p->last + 1) //如果结点i 序号不在线性表中,则出错
{ printf("\n ERROR!");
}
else
{ for (j = i; j< p->last+1; j++)
p->data[j - 1] = p->data[j];
p->last--;
}
return p;
}
int main( )
{ sequenlist *l; // L 是顺序表指针
int i=0,x=0;
l=CreatInit(); // 调用创建顺序表指针
l=Setvalue(l); //调用给顺序表结点赋值函数
printf("\n\n please input an ingeter to locate:");
scanf("%d", &x) ; //输入一个结点的值x
Locate(l,x); //调用查找结点值为x 的位置的函数
//输入一个节点的位置序号和值,输入过程中记得中间有空格printf("\n\n please input the place and value of insertion:"); scanf("%d %d", &i,&x);
l=Insert(l,i,x); //调用在线性表中插入结点函数
println(l); //输出插入一个结点后的线性表
printf("\n\n please input the place of deletion:");
scanf("%d",&i);//输入要删除结点的位置序号
l=Delete(l,i); //调用删除结点函数
println(l); //输出删除一个结点后的线性表
return 1;
}。

相关文档
最新文档