纠错编码习题解答汇总
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纠错编码习题解答
第一章
1.1 Solution: p=0.05
(1)The correct decoding P c is P c= P0 =C40p0(1-p)4=0.8145
(2)The decoding error P e is P e = P2+P4 = C42p2(1-p)2 + C44p4(1-p)0 = 0.0135
(3)The decoding failure P f is P f= C41p(1-p)3 + C43p3(1-p) = 0.1720
1.2 Solution:
Because the success rate does not fall below 99%,then the decoding failure P f <1% .And p<<1, P f = P1 = n*0.001*0.999n-1 < 0.01
So n<=10 .then the maximum blocklength n such that the success rate does not fall below 99% is 10.
1.3 Solution: p=0.01
P f = P2 = C42p2(1-p)2 = C42 * 0.012 * 0.992 = 0.000588
So the decoding failure rate is 0.000588.
1.4 Solution:
(a)Error: There is one error
(b)Correct
(c)Failure
(d)Error: There is two error
1.5 Solution:
S1 = v1+v2+v3+v4+v6+v8+v9+v12
S2 = v2+v3+v4+v5+v7+v9+v10+v13
S3 = v3+v4+v5+v6+v8+v10+v11+v14
4 1235781115
1.6 Solution
(1)s=(0000) ~e = 0000 0000 0000 000
~c= ~e+v1 = (000000000000000)+(100010011001001)= (100010011001001)
(2)s=(1011) ~e = 0000 0001 0000 000
~c= ~e+v2 = (000000010000000)+(001001110100110)= (001001100100110)
1.7 Solution
(1) v=(1011 110) s=(110)
~e = (001 0000) ~c=(1001 110)
(2) v=(1100 110) s=(100)
~e = (0000 100) ~c=(1100 010)
(3) v=(0001 011) s=(000)
~e=(0000 000) ~c=(0001 011)
第二章
i j .
2.2 Solution
1 1 1 1 1 1 1 r1-r
2 1 0 0 0 1 0 1
G2= 0 1 1 1 0 1 0 r2-r3 0 1 0 0 1 1 1 = G1
0 0 1 1 1 0 1 0 0 1 0 1 1 0
0 0 0 1 0 1 1 r3-r40 0 0 1 0 1 1
G1 is systematic form.
And every liner coder is equivalent to a systematic linear code
So the (7,4) linear codes generated by G1 and G2 equivalent.
2.3 Solution
(a) C 0 = (000) G = (000000) C 1 = (001) G = (001110) C 2 = (010) G = (010101) C 3 = (011) G = (011011) C 4 = (100) G = (100011) C 5 = (101) G = (101101) C 6 = (110) G = (110110) C 7 = (111) G = (111000)
(b)If p=0 then
If p=1 then
2.4 Solution
Because the (4,3) even-parity code is a linear code , The minimum distance d(C i ,C j )= W min = 2 The error detection limit is L=2-1=1
The error correction is t=(2-1)/2=ly 0.
2.5 Solution
1 1 1 0 1 0 0 0
1 1 1 0 1 0 0 0 0 1 1 1 0 1 0 0 r4-r3-r2-r1 0 1 1 1 0 1 0 0 H= 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 1
So the systematic forms is 1 1 1 0 1 0 0 0
0 1 1 1 0 1 0 0
1 1 0 1 0 0 1 0
1 0 1 1 0 0 0 1
Because H = [P T | I n-k] and G=[I k | P]
Then G = 1 0 0 0 1 0 1 1
0 1 0 0 1 1 1 0
0 0 1 0 1 1 0 1
0 0 0 1 0 1 1 1
2.6 Solution
1 1 1 0 1 0 0 0 1 0 1 1
0 1 1 1 0 1 0 0 H T = 1 1 1 1
H= 1 1 0 1 0 0 1 0 1 1 0 1
1 1 1 1 1 1 1 1 0 1 1 1
1 0 0 1
0 1 0 1
0 0 1 1
0 0 0 1
第三章
3.1 solution
Because x3+1
x4+x+1 x7+x3+1
x7+x4+x3
x4+1
x4+x+1
then q(x)= x3+1 and r(x)= x
check answer : p1(x)q(x)+r(x)= (x3+1)( x4+x+1)+x= x7+x3+1 = p2(x) so the solution is correct.
3.2 Solution