半导体中的电子能量状态
半导体物理
半导体物理思考题第一章半导体中的电子状态1、为什么内壳层电子能带窄,外层电子能带宽?答:内层电子处于低能态,外层电子处于高能态,所以外层电子的共有化运动能力强,因此能带宽。
(原子的内层电子受到原子核的束缚较大,与外层电子相比,它们的势垒强度较大。
)2、为什么点阵间隔越小,能带越宽?答:点阵间隔越小,电子共有化运动能力越强,能带也就越宽。
3、简述半导体的导电机构答:导带中的电子和价带中的空穴都参与导电。
4、什么是本征半导体、n型半导体、p型半导体?答:纯净晶体结构的半导体称为本征半导体;自由电子浓度远大于空穴浓度的杂质半导体称为n型半导体;空穴浓度远大于自由电子浓度的杂质半导体称为p型半导体。
5、什么是空穴?电子和空穴的异同之处是什么?答:(1)在电子脱离价键的束缚而成为自由电子后,价键中所留下的空位叫空穴。
(2)相同点:在真实空间的位置不确定;运动速度一样;数量一致(成对出现)。
不同点:有效质量互为相反数;能量符号相反;电子带负电,空穴带正电。
6、为什么发光器件多半采用直接带隙半导体来制作?答:直接带隙半导体中载流子的寿命很短,同时,电子和空穴只要一相遇就会发生复合,这种直接复合可以把能量几乎全部以光的形式放出,因此发光效率高。
7、半导体的五大基本特性答:(1)负电阻温度效应:温度升高,电阻减小。
(2)光电导效应:由辐射引起的被照射材料的电导率改变的现象。
(3)整流效应:加正向电压时,导通;加反向电压时,不导通。
(4)光生伏特效应:半导体和金属接触时,在光照射下产生电动势。
(5)霍尔效应:通有电流的导体在磁场中受力的作用,在垂直于电流和磁场的方向产生电动势的现象。
第二章半导体中杂质和缺陷能级1、简述实际半导体中杂质与缺陷来源。
答:①原材料纯度不够;②制造过程中引入;③人为控制掺杂。
2、什么是点缺陷、线缺陷、面缺陷?答:(1)点缺陷:三维尺寸都很小,不超过几个原子直径的缺陷;(2)线缺陷:三维空间中在二维方向上尺寸较小,在另一维方向上尺寸较大的缺陷;(3)面缺陷:二维尺寸很大而第三维尺寸很小的缺陷。
半导体物理知识归纳及习题讲解 2
半导体物理绪 论 一、什么是半导体导体半导体 绝缘体 电导率ρ <310- 9310~10- 910> cm ∙Ω此外,半导体还有以下重要特性1、 温度可以显著改变半导体导电能力例如:纯硅(Si ) 若温度从 30C 变为C 20时,ρ增大一倍2、 微量杂质含量可以显著改变半导体导电能力 例如:若有100万硅掺入1个杂质(P . Be )此时纯度99.9999% ,室温(C27 300K )时,电阻率由214000Ω降至0.2Ω3、 光照可以明显改变半导体的导电能力例如:淀积在绝缘体基片上(衬底)上的硫化镉(CdS )薄膜,无光照时电阻(暗电阻)约为几十欧姆,光照时电阻约为几十千欧姆。
另外,磁场、电场等外界因素也可显著改变半导体的导电能力。
综上:● 半导体是一类性质可受光、热、磁、电,微量杂质等作用而改变其性质的材料。
二、课程内容本课程主要解决外界光、热、磁、电,微量杂质等因素如何影响半导体性质的微观机制。
预备知识——化学键的性质及其相应的具体结构晶体:常用半导体材料Si Ge GaAs 等都是晶体固体非晶体:非晶硅(太阳能电池主要材料)晶体的基本性质:固定外形、固定熔点、更重要的是组成晶体的原子(离子)在较大范围里(610-m )按一定方式规则排列——称为长程有序。
单晶:主要分子、原子、离子延一种规则摆列贯穿始终。
多晶:由子晶粒杂乱无章的排列而成。
非晶体:没有固定外形、固定熔点、内部结构不存在长程有序,仅在较小范围(几个原子距)存在结构有序——短程有序。
§1 化学键和晶体结构1、 原子的负电性化学键的形成取决于原子对其核外电子的束缚力强弱。
电离能:失去一个价电子所需的能量。
亲和能:最外层得到一个价电子成为负离子释放的能量。
(ⅡA 族和氧除外) 原子负电性=(亲和能+电离能)18.0⨯ (Li 定义为1)● 负电性反映了两个原子之间键合时最外层得失电子的难易程度。
● 价电子向负电性大的原子转移ⅠA 到ⅦA ,负电性增大,非金属性增强同族元素从上到下,负电性减弱,金属性增强2、 化学键的类型和晶体结构的规律性ⅰ)离子晶体:(NaCl)由正负离子静电引力形成的结合力叫离子键,由离子键结合成的晶体叫离子晶体(极性警惕)● 离子晶体的结构特点:任何一个离子的最近邻必是带相反电荷的离子。
半导体物理-第1章-半导体中的电子态
金刚石结构的(111) 面层包含了套构的原 子,形成了双原子层 的A层。以双原子层的 形式按ABCABC层排 列
金刚石结构的[100]面的投 影。0和1/2表示面心立方 晶格上的原子,1/4,3/4 表示沿晶体对角线位移1/4 的另一个面心立方晶格上的 原子。
2.每个原子最外层价电子为一个s态电子和三个p态电 子。在与相邻四个原子结合时,四个共用的电子对完全 等价,难以区分出s与p态电子,因而人们提出了“杂 化轨道”的概念:一个s和三个p轨道形成了能量相同 的sp3杂化轨道。之间的夹角均为109°28 ’。
3. 结晶学元胞为立方对 称的晶胞,可看作是两 个面心立方晶胞沿立方 体的空间对角线互相位 移了1/4对角线长度套 构而成。
Ψ(r,t) = Aexp[i2π(k ·r – v t)]
(3)
其中k 为波矢,大小等于波长倒数1/λ ,方
向与波面法线平行,即波的传播方向。得
能量:E = hν
动量:p = hk
(4) (5)
对自由电子,势能为零,故薛定谔方程为:
2
2m0
d 2 (x)
dx2
E (x)
(6)
由于无边界条件限制,故k取值可连续变化。即:与经 典物理(粒子性)得出相同结论。
能带形成的另一种情况
硅、锗外壳层有4个价电子,形成晶体时,产生SP杂化 轨道。原子间可能先进行轨道杂化(形成成键态和反键 态),再分裂成能带。
原子能级
反成键态
成键态
半导体(硅、锗)能带的特点
存在轨道杂化,失去能带与孤立原子能级的对应关系。 杂化后能带重新分开为上能带和下能带,上能带称为导 带,下能带称为价带。
半导体物理第1章 半导体中的电子状态
能带成因
当N个原子彼此靠近时,根据不相容原理 ,原来分属于N个原子的相同的价电子能 级必然分裂成属于整个晶体的N个能量稍 有差别的能带。
S i1 4 :1 s 2 2 s 2 2 p 6 3 s 2 3 p 2
能带特点
分裂的每一个能带称为允带,允带间的能量范 围称为禁带
一.能带论的定性叙述 1.孤立原子中的电子状态
主量子数n:1,2,3,…… 角量子数 l:0,1,2,…(n-1)
s, p, d, ... 磁量子数 ml:0,±1,±2,…±l 自旋量子数ms:±1/2
n1
主量子数n确定后:n= 2(2l 1) 2n2 0
能带模型:
孤立原子、电子有确定的能级结构。 在固体中则不同,由于原子之间距离很近,相互
Ⅲ-Ⅴ族化合物,如 G a A S , I n P 等 部分Ⅱ-Ⅵ族化合物,如硒化汞,碲化汞
等半金属材料。
1.1.3 纤锌矿型结构
与闪锌矿型结构相比 相同点 以正四面体结构为基础构成 区别 具有六方对称性,而非立方对称性 共价键的离子性更强
1.2半导体中的电子状态和能带
1.2.1原子的能级和晶体的能带
1.3半导体中电子的运动——有效质量
1.3.1半导体中的E(k)与k的关系 设能带底位于波数k,将E(k)在k=0处按
泰勒级数展开,取至k2项,可得
E (k)E (0 )(d d E k)k 0k1 2(d d k 2E 2)k 0k2
由于k=0时能量极小,所以一阶导数为0,有
E(k)E(0)1 2(d d2E 2k)k0k2
1.1.2 闪锌矿型结构和混合键
Ⅲ-Ⅴ族化合物半导体材料 结晶学原胞结构特点 两类原子各自组成的面心立方晶格,沿
半导体物理学(第一章)
22
半导体物理学 黄整
第一章 半导体中的电子状态
波函数对动量的周期性
Ψ k ( x) = uk ( x)eikx
uk ( x + na ) = uk ( x)
能量是k的周期函数,准连续的有理数k构成周期性变 化的k空间晶格结构,其晶格参数为:
2π b= a
23
半导体物理学 黄整
第一章 半导体中的电子状态
12
半导体物理学 黄整
第一章 半导体中的电子状态
练习
1、单胞是基本的、不唯一的单元。 、单胞是基本的、不唯一的单元。 ( ) 2、按半导体结构来分,应用最为广泛的 、按半导体结构来分, 是( )。 3、写出三种立方单胞的名称,并分别计 、写出三种立方单胞的名称, 算单胞中所含的原子数。 算单胞中所含的原子数。 4、计算金刚石型单胞中的原子数。 、计算金刚石型单胞中的原子数。
2
E0
2 2 1 d 2E h k E ( k ) − E ( 0) = 2 k 2 = * 2 dk k =0 2 mn
31
p = * 2 mn
有效质量
半导体物理学 黄整
第一章 半导体中的电子状态
电子的平均速度
在周期性势场内,电子的平均速度 可表示为波 在周期性势场内,电子的平均速度u可表示为波 包的群速度
h ∆y∆p y ≥ 2
r r p = hk
不确定关系:
h ∆z∆pz ≥ 2 h ∆t ∆E ≥ 2
波粒二象性:
5
E = hω = hν
半导体物理学 黄整
第一章 半导体中的电子状态
经典描述:
x,y,z,t
适于描述晶体中原子核的运动
定态描述:
半导体物理复习资料
第一章 半导体中的电子状态1.导体、半导体、绝缘体的划分:Ⅰ导体内部存在部分充满的能带,在电场作用下形成电流;Ⅱ绝缘体内部不存在部分充满的能带,在电场作用下无电流产生; Ⅲ半导体的价带是完全充满的,但与之上面靠近的能带间的能隙很小,电子易被激发到上面的能带,使这两个能带都变成部分充满,使固体导电。
2.电子的有效质量是*n m ,空穴的有效质量是*p m ;**np m m -=,电量等值反号,波矢k 与电子相同 能带底电子的有效质量是正值,能带顶电子的有效质量是负值。
能带底空穴的有效质量是负值,能带顶空穴的有效质量是正值。
3.半导体中电子所受的外力dtdkh f ⋅=的计算。
4.引进有效质量的意义:概括了半导体内部势场的作用,使得在解决半导体中电子在外力作用下的运动规律时,可以不涉及半导体内部势场的作用。
第二章 半导体中杂质和缺陷能级1.施主能级:被施主杂质束缚的电子的能量状态称为施主能级E D ;施主能级很接近于导带底;受主能级:被受主杂质束缚的空穴的能量状态称为受主能级E A ;受主能级很接近于价带顶。
施主能级图 受主能级图2.浅能级杂质:杂质的电离能远小于本征半导体禁带宽度的杂质,电离后向相应的能带提供电子或空穴。
深能级杂质:能级位于禁带中央位置附近,距离相应允带差值较大。
深能级杂质起复合中心、陷阱作用;浅能级杂质起施主、受主作用。
3.杂质的补偿作用:半导体中同时含有施主和受主杂质,施主和受主先相互抵消,剩余的杂质发生电离。
在Ⅲ-Ⅴ族半导体中(Ga-As )掺入Ⅳ族杂质原子(Si ),Si 为两性杂质,既可作施主,亦可作受主。
设315100.1-⨯=cm N A ,316101.1-⨯=cm N D ;则316100.1-⨯=-=cm N N n A D 由p n n i ⋅=2,可得p 值;①p n ≈时,近似认为本征半导体,i F E E =;②p n μμ=时,本征电导p n σσ=; p n >>时,杂质能级靠近导带底;第三章 半导体中载流子的统计分布1.费米分布函数(简并半导体)⎪⎪⎭⎫ ⎝⎛⋅-+=Tk E E E f F 0exp 11)((本征);⎪⎪⎭⎫ ⎝⎛⋅-+=T k E E E f F 0exp 2111)((杂质);玻尔兹曼分布函数(非简并半导体) ⎪⎪⎭⎫ ⎝⎛⋅-=T k E A E f B0exp )(;2.费米能级:TF N F E ⎪⎭⎫⎝⎛∂∂==μ;系统处于热平衡状态,也不对外界做功的情况下,系统中增加一个电子所引起系统自由能的变化,等于系统的化学势,也就是等于系统的费米能级。
半导体物理课件:第一章 半导体中的电子状态
14
1.1 半导体的晶格结构和结合性质
4. 闪锌矿结构和混合键
与金刚石结构的区别
▪ 共价键具有一定的极性 (两类原子的电负性不 同),因此晶体不同晶面 的性质不同。
▪ 不同双原子复式晶格。
常见闪锌矿结构半导体材料 ▪ Ⅲ-Ⅴ族化合物 ▪ 部分Ⅱ-Ⅵ族化合物,如硒化汞,碲化汞等半金属材料。
2024/1/4
量子力学认为微观粒子(如电子)的运动须用波 函数来描述,经典意义上的轨道实质上是电子出 现几率最大的地方。电子的状态可用四个量子数 表示。 (主量子数、角量子数、磁量子数、自旋量子数)
▪ 能级存在简并
2024/1/4
19
1.2 半导体中的电子状态和能带
▪ 电子共有化运动
原子中的电子在原子核的势场和其它电子的作用 下,分列在不同的能级上,形成所谓电子壳层 不同支壳层的电子分别用 1s;2s,2p;3s,3p,3d;4s…等符号表示,每一壳层对 应于确定的能量。
29
1.2 半导体中的电子状态和能带
▪ 金刚石结构的第一布里渊区是一个十四面体。
2024/1/4
30
1.2 半导体中的电子状态和能带
3. 导体、半导体、绝缘体的能带
能带产生的原因:
▪ 定性理论(物理概念):晶体中原子之间的相 互作用,使能级分裂形成能带。
▪ 定量理论(量子力学计算):电子在周期场中 运动,其能量不连续形成能带。
•结果每个二度简并的能级都分裂为二个彼此相距 很近的能级;两个原子靠得越近,分裂得越厉害。
2024/1/4
22
1.2 半导体中的电子状态和能带
▪ 内壳层的电子,轨道交叠少,共有化运动弱,可忽略 ▪ 外层的价电子,轨道交叠多,共有化运动强,能级分
半导体物理基础(准费米能级)
第二章半导体物理基础一般而言,制作太阳能电池的最基本材料是半导体材料,因而本章将介绍一些半导体物理的基本知识,包括半导体中的电子状态和能带、本征与掺杂半导体、pn结以及半导体的光学性质等内容。
一、半导体中的电子状态和能带1、原子的能级和晶体的能带(m)一般的晶体结合,可以概括为离子性结合,共价结合,金属性结合和分子结合(范得瓦尔斯结合)四种不同的基本形式。
晶体的结合形式半导体材料主要靠的是共价键结合。
饱和性:一个原子只能形成一定数目的共价键;方向性:原子只能在特定方向上形成共价键;共价键的特点:电子的共有化运动当原子相互接近形成晶体时,不同原子的内外各电子壳层之间就有一定程度的交叠,相邻原子最外层交叠最多,内壳层交叠较少。
原子组成晶体后,由于电子壳层的交叠,电子不再完全局限在某一原子上,可以由一个原子转移到相邻的原子上去,因而,电子可以在整个晶体中运动,这种运动称为电子的共有化运动。
电子只能在相似壳层间转移;最外层电子的共有化运动最显著;当两个原子相距很远时,如同两个孤立的原子,每个能级是二度简并的。
当两个原子互相靠近时,每个原子中的电子除了受到本身原子势场的作用,还要受到另一个原子势场的作用,其结果是每一个二度简并的能级都分裂为二个彼此相距很近的能级,两个原子靠得越近,分裂得越厉害。
当N个原子互相靠近形成晶体后,每一个N度简并的能级都分裂成N个彼此相距很近的能级,这N 个能级组成一个能带,这时电子不再属于某一个原子而是在晶体中作共有化运动。
分裂的每一个能带都称为允带,允带之间因没有能级称为禁带。
所有固体中均含有大量的电子,但其导电性却相差很大。
量子力学与固体能带论的发展,使人们认识到固体导电性可根据电子填充能带的情况来说明。
2、金属、绝缘体与半导体固体能够导电,是固体中电子在外电场作用下作定向运动的结果。
由于电场力对电子的加速作用,使电子的运动速度和能量都发生了变化。
也就是说,电子与外电场间发生了能量交换。
第1章半导体物理半导体中的电子状态2
硅和锗在布里渊区中导带等能面示意图
2.硅和锗的价带结构
价带顶位于k=0,即在布里渊区的中心,能带是简并的。计入自旋,价带为六度 简并。如果考虑自旋-轨道耦合,可以取消部分简并,得到一组四度简并的状态 和另一组二度简并的状态,分为两支。
四度简并的能量表示式
E(k)
2 2m0
A
k
2
B2
k
4
C
2
(
2E
k
2 y
)
k
0
1 mz
=
1
2
(
2E
k
2 z
)
k
0
上式可改写为
式中Ec表示E(k0) 上式为一椭球方程,表明这种情况下的等能面是环绕 k0的一系列椭球面。
2.回旋共振
(1)等能面是球面
f q B 力的大小f qB sin qB, sin '' cos
电子在恒定磁场中的运动
2(k
x
2
k
y
2
k
y
2
k
z
2
k
z
2
k
x2)
..
1 2
二度简并的能量表示式为
E(k
)
2 2m0
A
k
2
式中△是自旋-轨道耦合的分裂能量,常数A、B、C由计算不能准确求出,
需借助于回旋共振试验定出。
对于式1,同一个k,E(k)可以有两个值,在k=0处,能量相重合,这表 明硅、锗有两种有效质量不同的空穴。
qB mz
v
' y
icvz'
0
要使 vx' , v'y , vz' 有非零解的条件是其系数行列式
半导体物理第三章半导体中的电子状态
有化运动:2s能级引起“2s”的共有化运动,2p能级引起
“共2有p化”的运动。
2p
• 2s • • •
► 晶体中电子的运动
► 晶体中电子做共有化运动时的能量是怎样的?
a: 考虑一些相同的原子,当它们之间的距离很大时,可以 忽略它们之间的相互作用,每个原子都可以看成孤立的, 它们有完全相同的电子能级。如果把这些原子看成一个 系统,则每一个电子能级都是简并的。(2个原子构成的 系统,为二度简并(不计原子本身的简并时);N个原 子构成的系统,为N度简并)。
b: 能带的形成:原子相互靠近时,由于之间的相互作用, 使简并解除,原来具有相同能量的能级,分裂成具有不 同能量的一些能级组成的带,称为能带。原子之间的距 离愈小它们之间的相互作用愈强,能带的宽度也愈大。 (图3.2)
• 原子能级和能带之间并不一定都存在一一对应的关系。 当共有化运动很强时,能带可能很宽而发生能带间的重 叠,碳原子组成的金刚石就是属于这种情况。(图3.3)
3:处于低能级的内壳层电子共有化运动弱,所以能级分裂小, 能带较窄;处于高能级的外壳层电子共有化运动强,能级分 裂大,因而能带较宽。
4:每个能带都是共有化电子可能的能量状态,称为允带;各允 带之间有一定的能量间隙,电子能量不可能在这一能量间隙 内,称之为禁带。
5:每个允带包含的能级数一般等于孤立原子相应能级的简并度 (不计自旋简并)× 组成晶体的原子数目。
设一维晶格长为L,
则有:
L
0
(
x
)
2
dx
1
( 归一化)
即:
L
0
2
A dx 1,
取A
1, L
则 ( x )=
1 exp(ikx) L
第一章 半导体中的电子状态
k v * mn
(1)在整个布里渊区内,V~K不是线形关系 (2)正负K态电子的运动速度大小相等, 符号相反.
H ( E ) cos k1
E ( k ) E ( k )
1 dE(k ) 1 dE(k ) V (k ) V (k ) h d (k ) h dk
(3)V(k)的大小与能带的宽窄有关 内层:能带窄,E(k)的变化比较慢, V(k)小.
物理学中对外界作用力的处理
微观粒子的运动规律为什么用量子力学 而不是牛顿定律?如何理解量子力学对 粒子的运动状态分析时的处理方式?单 个粒子或者多个粒子? 处理物理粒子的各种作用时一般怎么处 理? 什么叫做“场”?
E hv
P hk
1.能量 E(k)
德布罗意关系
E
1 (hk) 2 E mo v 2 2m0
能带
原子级能
d
原子轨道
允带
{ {
{
禁带 p 禁带
s
原子能级分裂为能带的示意图
s 能级:共有化运动弱,能级分裂 晚,形成能带窄;
p、d 能级:共有化运动强,能级 分裂早,形成的能带宽。
二、一维理想晶格的电子能带
d () 0 2 dx
2
与晶格势场有关
1、一维理想晶格的势场和 电子能量E(k)
磁量子数m 同一亚层(l值相同)的几条轨道对原子核的取向 不同。磁量子数m是描述原子轨道或电子云在空间的 伸展方向。某种形状的原子轨道,可以在空间取不同 方向的伸展方向,从而得到几个空间取向不同的原子 轨道。这是根据线状光谱在磁场中还能发生分裂,显 示出微小的能量差别的现象得出的结果。 m取值受 角量子数取值限制,对于给定的l值,m= -l,...,-2, -1,0,+1,+2…+l,共2l+1个值。这些取值意味着 在角量子数为l的亚层有2l+1个取向,而每一个取向 相当于一条“原子轨道”。如l=2的d亚层,m= -2, -1,0,+1,+2,共有5个取值,表示d亚层有5条伸 展方向不同的原子轨道,即dxy、dxz、dyz、dx2— y2、dz2。我们把同一亚层(l相同)伸展方向不同的 原子轨道称为等价轨道或简并轨道。
半导体物理第二章
反键态
3p
导带
sp3
3s 成键态 价带
半导体物理第二章
晶体中的电子与孤立原子中的电子不同,也和自由运动 的电子不同。孤立原子中的电子是在该原子的核和其他 电子的势场中运动,自由电子是在一恒定为零的势场中 运动,而晶体中的电子是在严格周期性重复排列的原子 间运动。
研究发现,电子在周期性势场中运动的基本特点和自由 电子的运动十分相似。下面先简单介绍一个自由电子的 运动。
➢ 组成晶体的原子的外层电子共有化运动较强,其行为与自由电子 相似,常称为准自由电子。而内层电子的共有化运动较弱,其行 为与孤立原子中的电子相似。
半导体物理第二章
E-k关系
对于无限晶体,波失 k 可以连续取值;对于某一确定的 k值,
薛定谔方程存在一系列分立的能量本征值Enk和相应的本征函数
nk (r) ,能量本征值En随ቤተ መጻሕፍቲ ባይዱ矢 k 是连续变化的。可以用 k
• 随着原子与原子愈来愈近,电子轨道交叠愈多,电子不 再完全局限于一定的原子,而可以在整个晶体中运动 (电子共有化)。电子兼有原子运动和共有化运动。只 有在最外层电子的共有化特征才是显著的。
半导体物理第二章
原子能级与能带的对应
❖ 对于原子的内层电子,其电子
E
轨道很小,因而形成的能带较
窄。这时,原子能级与能带之
半导体物理第二章
多电子问题 单电子问题
为了计算具体晶体中的本征态和相应的能量本征值,必须得 到包括和原子核以及和其它电子的相互作用在内的周期势场 U(x), 并对单个电子求解薛定谔方程。
2 [
2U(x) ](x)E(x)
2m
这是一个自洽问题,因为势场U(x)依赖于晶体中电子所处的 具体状态,称为自洽势。
半导体物理半导体中的电子状态
半导体物理半导体中的电子状态半导体物理:半导体中的电子状态半导体是一种在电性能上介于导体和绝缘体之间的材料。
半导体中的电子状态对于半导体器件的特性和性能起着至关重要的作用。
本文将探讨半导体中的电子状态,并介绍与之相关的几个重要概念。
1. 能带结构半导体中的电子状态与能带结构密切相关。
能带是将材料中的电子能级按照能量高低进行分类的一种方式。
在半导体中,一般存在两个主要的能带,即价带和导带。
价带是电子处于较低能量状态的能带,而导带则是电子处于较高能量状态的能带。
能带之间的能隙决定了电子的跃迁行为。
2. 杂质能级半导体中的杂质能级是指由掺入杂质引起的局部能量水平。
掺杂是通过向半导体中引入少量的杂质元素改变其电子状态。
掺入五价元素(如磷)会产生施主能级,该能级位于导带上方,提供自由电子;而掺入三价元素(如硼)会产生受主能级,该能级位于价带下方,吸收自由电子。
杂质能级的引入对半导体器件的性能起着决定性作用。
3. 载流子在半导体中,载流子是负责电荷传输的粒子。
主要有电子(负载流子)和空穴(正载流子)两种类型。
在纯净的半导体中,电子和空穴的浓度相等,称为本征半导体。
通过掺杂,可以改变载流子的浓度,从而实现半导体的导电性的调控。
4. 载流子的浓度与掺杂浓度的关系半导体材料的光、热、电等特性与掺杂浓度有关。
掺杂浓度越高,材料的导电性能越好。
在一定范围内,载流子浓度与掺杂浓度成正比。
然而,过高的掺杂浓度可能导致材料中的杂质能级相互重叠,从而影响器件的性能。
5. 半导体的禁带宽度禁带宽度是指价带和导带之间的能量间隔,决定了半导体材料的电导率。
半导体的禁带宽度较小,比绝缘体的小,但比导体的大。
通过控制禁带宽度,可以实现对半导体的电学性质调控。
总结:本文讨论了半导体中的电子状态。
通过对能带结构、杂质能级、载流子浓度与掺杂浓度关系,以及禁带宽度等概念的介绍,我们可以更好地理解半导体器件的工作原理和性能特点。
半导体物理作为一门重要的学科领域,对于现代电子技术的发展和应用具有重要意义。
第1章 半导体中的电子状态
⒈半导体中电子的平均速度 根据量子力学,电子的运动可以看作波包的运 动,波包的群速就是电子运动的平均速度(波包中 心的运动速度)。 设波包有许多角频率ω相近的波 组成,则波包的群速为:
§1.1半导体中的电子状态和能带
§1.1.1晶体中的电子状态
能带特点: (1)原子中的电子能级分裂成N个彼此靠的很 近的能级,组成一个能带称为允带,晶体中的电 子分布在这些能级中,能带由下至上能量增高; 允带间的能量间隙称为禁带 (2)内层电子受到的束缚强,共有化运动弱, 能级分裂小,对应的能带窄;外层电子子受束缚 弱,共有化运动强,能级分裂明显,对应的能带 宽。
§1.1半导体中的电子状态和能带
§1.1.1晶体中的电子状态
共有化状态数---每一个能带包含的能级数。与 孤立原子的简并度有关。 s能级分裂为N个能级(N个共有化状态); p能级本身是三度简并,分裂为3N 能级(3N 个共有化状态)。 但并不是所有的能带都一一对应着原子中的电 子轨道,我们来观察一下金刚石型结构的价电 子能带示意图。
§1.1半导体中的电子状态和能带
§1.1.1晶体中的电子状态
1、电子共有化运动 原子中的电子在原子核的势场和其它电子的作用 下,分列在不同的能级上,形成所谓电子壳层 ~ 不同支壳层的电子分别用 1s;2s,2p;3s,3p,3d;4s…等符号表示,每一壳层 对应于确定的能量。 当原子相互接近形成晶体时,不同原子的内外各 电子壳层之间就有了一定程度的交叠,相邻原子 最外壳层交叠最多,内壳层交叠较少。
§1.2 克龙尼克-潘纳模型下的能带结构
导体、半导体、绝缘体的能带 从能带论的角度来看,固体能够导电是由于在电 场力作用下电子能量发生变化,从一个能级跃迁到另 一个能级上去。对于满带,能级全部为电子所占满, 所以满带中的电子不形成电流,对导电没有贡献;对 于空的能带,由于没有电子,也同样对导电没有贡献; 而被电子部分占满的能带,在外电场作用下,电子可 以从电场中吸收能量跃迁到未被电子占据的能级上形 成了电流,起导电作用。
半导体物理 第1章 半导体中的电子态
常用参数
• 晶格常数:硅 0.543nm, 锗 0.566nm
• 密度: Si : 5.00*1022cm-3,
•
Ge: 4.42*1022cm-3
• 共价键半径: Si : 0.117nm,
•
Ge: 0.122nm.
2.闪锌矿型结构和混合键
在金刚石结构中,若由两 类原子组成,分别占据两 套面心立方,则称为闪锌 矿结构。
堆积方式:III、V族原子构成双原子层堆积,每 一个原子层都是一个[111]面, III、V族化合物具 有离子性,因而构成一个电偶极层。
IIIV:[111]方向,III族原子层为[111]面。
与金刚石结构一样,闪锌矿结构的III-V化合物都由 两个面心立方结构套构而成。称这种晶格为双原子 复式晶格。晶格的周期性原胞中含有两个原子:一 个是III原子,另一个是V族原子。
结果:
n个靠得很近的能级 “准连续”带, 即形成了能带.
允带:能级分裂形成的每一个能带。
禁带:能级间没有能带的区域。
能带的特点: 1、在原有的能级基础上发生 分裂(分裂后的能级数与原子数有关),不 会大幅度改变原有的能级结构
★半导体中的能级分裂情况
原子能级 能带
能级电子的“座位” 能带总的座位集合 电子只能在这些位置上 作“跳跃”运动,能量 是突变、非连续变化的。 实际是准连续变化。
a.晶体中电子的波函数与自由电子的波函数形
式相似。反映出了晶体中电子的波函数实 际上相当于一被调幅的自由电子波。
且uk(x)= uk(x+a)
b.在空间某点找到电子的概率与波函数的强 度成比例。在晶体中找到电子的概率是周期 性变化的。反映出电子共有化运动的特征。
|Ψ|2=ΨkΨk* =uk(x)uk* (x) c. 与自由电子中的波函数一样,波矢k描述晶体中电 子的共有化运动状态。注意: 晶体中电子波函数K 取值非连续. 只要晶体边界确定,电子波函数的k值 即可被确定,与其它参量无关。
半导体物理(第一章)
3、布里渊区与能带
求解薛定谔方程可得出在晶格周期势场中运动的电子的 能量-动量(E~k)关系曲线。
当 k n ,(n=0, ±1, ±2…) 时,能量出现不连续——形成允带和
a 禁带。
允带出现的区域称为布里渊区。从k=0处向k>0和k<0延伸,分别有 第一布里渊区、第二布里渊区……,每一个布里渊区对应一个能带。
体的V(x)是很困难的。
研究发现,电子在周期性势场中运动的基本特点和自由电 子的运动十分相似。
1、自由电子的运动状态
V(x)=0。求解薛定谔方程可以得出:
( x) Ae-ikx
2k 2 E
k为波矢,k的大小为
k
2
2m0
(第六版以前的教材中的定义与此不同)
根据德布罗意关系,电子的能量、动量与频率、波矢之间 的关系为
1.2 半导体中的电子状态和能带
1.2.1 原子能级和晶体能带
单晶半导体是由按确定规律周期排列的原子构成,相邻原 子之间的间距只有几个埃,原子密度非常大。对于c-Si,原 子密度高达5×1022cm-3。所以,单晶半导体中电子的能量状 态与孤立原子中的一定不同,但可以想象,一定存在着某种 联系。
单个原子中电子的壳层排布为1s2 2s2 2p6 3s2 3p6 3d10……, 但多个原子密集排布在一起时,相似壳层对应的能级会发生 交叠——电子变为在整个晶体中运动——电子的共有化运动。 最外壳层电子的共有化最显著!
电子状态用波函数x描述, x满足薛定谔方程(假设
为一维单个电子):
2 2m0
d2 dx 2
V (x) (x)
E (x)
半导体第一章 半导体中的电子状态
(1)在整个布里渊区内,V~K不是线形关系.
(2)正负 K 态电子的运动速度大小相等, 符 号相反.
E (k ) E (k )
V (k ) 1 dE (k ) h d (k ) 1 dE (k ) h dk V (k )
(3) V(k) 的大小与能带的宽窄有关.
内层: 能带窄, E(k)的变化比较慢, V(k)小.
电子共有化运动示意图
3s
○
3s
○
3s
○
3s
○
○
2p
2p
2p
2p
○
○ ○
○ ○
○
○
○
(2)能级分裂
a. s 能级 设有A、B两个原子
孤立时, 波函数(描述 微观粒子的状态)为 A和B,不重叠.
简并度=状态/能级数 =2/1=2
孤立原子的能级
A . B 两原子相互靠近,
电子波函数应是A和B 的线性叠加:
1.自由电子
h
2 2
d
2 2
8 m dx
(x) E (x)
ikx
( x ) Ae
* A
2
, 其波矢
k
2
电子在空间是等几率分布的,即自由电子在 空间作自由运动。
微观粒子具有波粒二象性
由粒子性
p m 0V E 1 2 m 0V
2
1 p
2
2 m0
n 2a
分布几率是晶格的周期函数,但对每个原胞 的相应位置,电子的分布几率一样的。 波矢k描述晶体中电子的共有化运动状态。
3. 布里渊区与能带
简约布里渊区
能带
k
简述半导体的热平衡状态
简述半导体的热平衡状态半导体的热平衡状态是指在热力学平衡状态下,半导体材料的电子、空穴等载流子浓度和分布情况。
在热平衡状态下,半导体中的载流子浓度和分布情况是稳定的,不会随时间变化。
一、载流子分布在热平衡状态下,半导体中的载流子(电子和空穴)浓度是稳定的,即载流子分布不随时间变化。
载流子浓度的大小取决于材料的掺杂浓度和温度。
在一定温度下,掺杂浓度越高,载流子浓度越大;温度升高时,载流子浓度会略有增加。
二、能带结构半导体的能带结构是指电子在半导体中的能量分布情况。
在热平衡状态下,能带结构也是稳定的,即电子的能量分布不随时间变化。
能带结构包括导带、价带和禁带。
导带是电子的能量较高的状态,价带是电子能量较低的状态,禁带是导带和价带之间的能量范围,其中没有电子态。
三、载流子迁移率在热平衡状态下,载流子的迁移率也是稳定的,即载流子在电场作用下的运动速度不随时间变化。
载流子迁移率的大小取决于材料的掺杂浓度、温度和电场强度。
在一定温度下,掺杂浓度越高、电场强度越大,载流子迁移率越大;温度升高时,载流子迁移率会略有增加。
四、载流子寿命在热平衡状态下,载流子的寿命也是稳定的,即载流子在半导体中的存在时间不随时间变化。
载流子的寿命取决于材料中的缺陷、杂质和环境因素等。
在一定条件下,缺陷和杂质越少,环境因素越稳定,载流子的寿命越长。
综上所述,半导体的热平衡状态是指在热力学平衡状态下,半导体材料的电子、空穴等载流子浓度和分布情况稳定的状态。
在热平衡状态下,半导体的能带结构、载流子迁移率和载流子寿命等参数也是稳定的。
这些参数的稳定性对于半导体器件的性能和可靠性具有重要意义。
半导体中的电子状态
01
半导体基本概念及性质
半导体材料的特点及分类
半导体材料的特点
• 介于导体和绝缘体之间的高电阻率 • 温度敏感性 • 光电响应性
半导体材料的分类
• 元素半导体:如硅、锗 • 化合物半导体:如镓砷、镉碲 • 合金半导体:如硅锗合金、镓砷磷合金
半导体中的能带结构
能带理论的基本概念
• 波函数表示法 • 能带表示法 • 矩阵元表示法
电子态的性质
• 电子态的归一化 • 电子态的叠加 • 电子态的纠缠
电子态的跃迁与吸收光谱
电子态的跃迁
• 量子跃迁:电子从一个能量状态跃迁到另一个能量状态 • 跃迁概率:电子跃迁的几率 • 跃迁矩阵元:描述电子跃迁的物理量
吸收光谱
• 光吸收:电子从低能量状态跃迁到高能量状态的过程 • 吸收系数:描述光吸收强度的物理量 • 吸收光谱:不同波长光吸收的强度分布
03
半导体中的电子状态
半导体中的价带电子态
价带电子态的特点
• 能量较低 -主要分布在原子核附近 • 与晶格振动相互作用
价带电子态的分布
• 电子态密度:描述电子态在空间分布的物理量 • 能带结构:描述电子态能量的分布
半导体中的导带电子态
导带电子态的特点
• 能量较高 • 主要分布在晶格之外 • 与自由电子类似
02
电子状态的基本概念
电子态的定义与分类
电子态的定义
• 电子在原子核外的能量状态 • 电子的量子数:主量子数、角量子数、磁量子数
电子态的分类
• 束缚态:电子在原子或分子内的能量状态 • 自由态:电子在原子或分子外的能量状态 • 激态:电子在激发态上的能量状态
电子态的表示方法与性质
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
共价键 混合键
1、金刚石结构
Si,Ge,C 等IV族元素,原子的最外 层有四个价电子
正四面体结构:每个原子周围 有四个最近邻的原子。
共价键:
由同种晶体组成的元素半导体,其原 子间无负电性差,它们通过共用一对 自旋相反而配对的价电子结合在一 起。
金刚石结构:复式晶格。由两个 面心立方晶格沿立方对称晶胞的 体对角线错开1/4长度套构而成。
第一章 半导体中的电子能量状态
▪ 晶体中能带的形成 固体
非晶体 晶体
物质
液体
单晶体 多晶体
气体
§1·1 半导体的晶体结构和结合性质
Crystal Structure and Bonds in Semiconductors
重点: 晶体结构: 1金刚石型: Ge、Si 2闪锌矿型: GaAs 3 纤锌矿型
化学键: 共价键+离子键
▪ 闪锌矿(Zinc Blende Structure), GaAs, InP
晶格由两种不同原子组成的面心立方晶格套构 而成。双原子复式格子
III-V族化合物,每个原子被四个异族原子 包围。 共价键中有一定的离子性,称为极性半导 体。
Semiconductor Physics-2003
排列方式 以双原子层ABCABC
半导体的晶体结构 金刚石结构 闪锌矿结构
晶格常数a (埃)
Si
Ge
GaAs
5.43089 5.65754 5.6419
两原子间最短距离
硅:0.235nm 锗:0.245nm
硅的原子密度 5.00x1022cm-3
锗的原子密度 4.42x1022cm-3
Crystal Structure and Bonds in Semiconductors
Ge: a=5.43089埃 Si: a=5.65754埃
金刚石结构的结晶学原胞
Crystal Structure and Bonds in Semiconductors
2、闪锌矿结构和混合键
材料: Ⅲ-Ⅴ族和Ⅱ-Ⅵ族二元化合物半导体。
例如:GaAs、GaP、SiC、SiGe、 InP、InAs、InSb………
13
Crystal Structure and Bonds in Semiconductors
3、纤维锌矿结构:
ZnO、GaN、AlN、ZnS、ZnTe、CdS、CdTe……
Байду номын сангаас
1*1*1 top
side
2*2*1
ref
去掉两个角就 和文献图中的 结构一样了