答案(电子科大版)图论及其应用第一章
电子科技大学研究生试题《图论及其应用》(参考答案)
电子科技大学研究生试题《图论及其应用》(参考答案)考试时间:120分钟一.填空题(每题3分,共18分)1.4个顶点的不同构的简单图共有__11___个;2.设无向图G 中有12条边,已知G 中3度顶点有6个,其余顶点的度数均小于3。
则G 中顶点数至少有__9___个;3.设n 阶无向图是由k(k ?2)棵树构成的森林,则图G 的边数m= _n-k____;4.下图G 是否是平面图?答__是___; 是否可1-因子分解?答__是_.5.下图G 的点色数=)(G χ______, 边色数=')(G χ__5____。
图G二.单项选择(每题3分,共21分)1.下面给出的序列中,是某简单图的度序列的是( A )(A) (11123); (B) (233445); (C) (23445); (D) (1333).2.已知图G 如图所示,则它的同构图是( D )3. 下列图中,是欧拉图的是( D )4. 下列图中,不是哈密尔顿图的是(B )5. 下列图中,是可平面图的图的是(B )AC DA B CD6.下列图中,不是偶图的是( B )7.下列图中,存在完美匹配的图是(B )三.作图(6分)1.画出一个有欧拉闭迹和哈密尔顿圈的图;2.画出一个有欧拉闭迹但没有哈密尔顿圈的图;3.画出一个没有欧拉闭迹但有哈密尔顿圈的图;解: 四.(10分)求下图的最小生成树,并求其最小生成树的权值之和。
解:由克鲁斯克尔算法的其一最小生成树如下图:权和为:20.五.(8分)求下图G 的色多项式P k (G).解:用公式(G P k -G 的色多项式:)3)(3)()(45-++=k k k G P k 。
六.(10分) 22,n 3个顶点的度数为3,…,n k 个顶点的度数为k ,而其余顶点的度数为1,求1度顶点的个数。
解:设该树有n 1个1度顶点,树的边数为m.一方面:2m=n 1+2n 2+…+kn k另一方面:m= n 1+n 2+…+n k -1 v v 13图G由上面两式可得:n 1=n 2+2n 3+…+(k -1)n k七.证明:(8分) 设G 是具有二分类(X,Y)的偶图,证明(1)G 不含奇圈;(2)若|X |≠|Y |,则G 是非哈密尔顿图。
图论(张先迪-李正良)课后习题答案(第一章)
图论(张先迪-李正良)课后习题答案(第⼀章)习题⼀作者---寒江独钓1.证明:在n 阶连通图中(1) ⾄少有n-1条边;(2) 如果边数⼤于n-1,则⾄少有⼀条闭迹;(3) 如果恰有n-1条边,则⾄少有⼀个奇度点。
证明: (1) 若G 中没有1度顶点,由握⼿定理:()2()21v V G m d v n m n m n ∈=≥?≥?>-∑若G 中有1度顶点u ,对G 的顶点数作数学归纳。
当n=2时,结论显然;设结论对n=k 时成⽴。
当n=k+1时,考虑G-u,它仍然为连通图,所以,边数≥k-1.于是G 的边数≥k.(2) 考虑G 中途径:121:n n W v v v v -→→→→L若W 是路,则长为n-1;但由于G 的边数⼤于n-1,因此,存在v i 与v j ,它们相异,但邻接。
于是:1i i j i v v v v +→→→→L 为G 中⼀闭途径,于是也就存在闭迹。
(3) 若不然,G 中顶点度数⾄少为2,于是由握⼿定理:()2()21v V G m d v n m n m n ∈=≥?≥?>-∑这与G 中恰有n-1条边⽭盾! 2.(1)2n ?12n 2?12n ?1 (2)2n?2?1(3) 2n?2。
证明:u 1的两个邻接点与v 1的两个邻接点状况不同。
所以,两图不同构。
4.证明下⾯两图同构。
u 1 v 1证明:作映射f : v i ? u i (i=1,2….10)容易证明,对?v i v j ∈E ((a)),有f (v i v j,),=,u i,u j,∈,E,((b)) (1≤ i ≤ 10, 1≤j ≤ 10 )由图的同构定义知,图(a)与(b)是同构的。
5.指出4个顶点的⾮同构的所有简单图。
分析:四个顶点的简单图最少边数为0,最多边数为6,所以可按边数进⾏枚举。
(a)v 2 v 3u 4u(b)6.证明:1)充分性:当G 是完全图时,每个顶点的度数都是n ?1,共有n 个顶点,总的度数为n(n ?1),因此总的边数是n(n?1)2=(n 2). 2)必要性:因为G 是简单图,所以当G 是完全图的时候每个顶点的度数才达到最⼤:n ?1.若G 不是完全图,则⾄少有⼀个顶点的度数⼩于n ?1,这样的话,总的度数就要⼩于n (n ?1),因此总的边数⼩于(n 2),⽭盾。
电子科技大学研究生图论总结
第一章:图论基本概念 1.定义平凡图/非平凡图 简单图/复合图 空图 n 阶图 连通图/非连通图完全图n K12n n n m K偶图,m n K 完全偶图,m n m K mn K 正则图图和补图,自补图 自补图判定方法 定点的度 d v 最小度 最大度 握手定理2d v m图的度序列与图序列,图序列判定方法(注意为简单图) 图的频序列 2.图运算删点/删边 图并/图交/图差/图对称差 图联 积图/合成图111122,u adjv u v u adjv 或 超立方体 3.连通性 途径 迹 路图G 不连通,其补图连通一个图是偶图当且仅当它不包含奇圈 4.最短路算法(b t A T ) 5.矩阵描述邻接矩阵及其性质,图的特征多项式 关联矩阵 6.极图??L 补图 完全L 部图 完全L 几乎等部图 托兰定理第二章:树 1.定义树:连通的无圈图 森林 树的中心和树的形心?入<=sqrt(2m(n-1)/n)生成树 根树 出度 入度 树根 树叶 分支点 m 元根树 完全m 元根树 2.性质每棵非平凡树至少有两片树叶图G 是树当且仅当G 中任意两点都被唯一的路连接T 是(n,m)树,则m = n – 1 具有k 个分支的森林有n-k 条边每个n 阶连通图边数至少为n-1(树是连通图中边的下界) 每个连通图至少包含一棵生成树 3.计算 生成树计数 递推计数法: G G e G e关联矩阵计数法:去一点后,每个非奇异阵对应一棵生成树最小生成树(边赋权)避圈法 破圈法完全m 元树: 11m i t第三章:图的连通性1. 割边、割点和块(性质使用反证法) 割边: w G e w G边e 为割边当且仅当e 不在任何圈中割点: w G v w Gv 是无环连通图G 的一个顶点,v 是G 的割点当且仅当V(G-e)可以被划分为两个子集,v 在两个子集内点互连的路上 块:没有割点的连通子图 G 顶点数>=3,G 是块当且仅当G 无环且任意两顶点位于同一圈上v 是割点当且仅当v 至少属于G 的两个不同的块2. 连通度点割 k 顶点割 最小点割(最少用几个点把图割成两份) G 的连通度 G连通图没顶点割时连通度 1G n ,非连通图 0G边割 k 边割 最小边割(最少用几条边把图割成两份) G 的边连通度 G递推到无圈,自环不算圈性质: 任意图G 有 G G GG 是(n,m)连通图, 2m G nG 是(n,m)单图,若 2n G,则G 必定连通 G 是(n,m)单图,对应k n ,若 22n k G,则G 是k 连通G 是(n,m)单图,若 2n G,则 G G敏格尔定理: G 中分离不相邻x,y 的最小点数等于独立的x,y 路最大数目G 中分离x,y 的最小边数等于边不重x,y 路最大数目第四章 E 图与H 图 一、 E 图(走完所有边) 1. 定义,性质与判定E 图(欧拉环游)与E 迹,走完所有边回到出发点与不回到出发点E 图性质与判定:E 图 G 的顶点度数为偶数度 G 的边集合能划分为圈 E 迹性质与判定:E 迹 G 中只有两个顶点度为奇数 2. 求解路径算法 找欧拉环游:都是偶数度点:Fleury 算法(避割边行走)两奇数点欧拉环游:奇数点补充最短路后得到欧拉环游多奇数点欧拉环游:补充偶数度并不断交换 (中国邮路问题算法) 二、 H 图(走完所有点) 1. 定义与性质H 图(H 圈)与H 路:走完所有点回到出发点与不回到出发点 G 图是H 图 w G S S 2. H 图判定3n 的单图G ,如果 2nGG 是H 图3n 的单图G ,任意不相邻u,v 有 d u d v n G 是H 图图G 的闭包是H 图 G 是H 图 度序列判定法:123n d d d d ,3n ,若对任意的2nm,有m d m 或n m d n m ,则G 是H 图123n d d d d ,3n ,若对任意的2nm,有m d m 且n m d n m ,则G 是非H 图 2. 极大非哈密尔顿图定义:如果图G 的度大于等于其他非H 图,则称G 为极大非H 图(非H 图的度上限),m n C 图: ,2m n m m n m C K K K,m n C 图是非H 图G 是非H 图 G 度弱于某个,m n C 图(证) N 阶单图G 度优于所有,m n C 图 G 为H 图 彼得森图是超H 图4. TSP 问题(边赋权近似最优H 圈求解)最优H 图下界:去点求最小生成树,选最小关联边12e e , 11w T w e w e第五章 图的匹配与因子分解 1.边匹配定义: 匹配 饱和点/非饱和点 最大匹配/完美匹配 M 交错路/M 可扩路 贝尔热定理:G 的匹配M 是最大匹配,当且仅当G 不包含M 可扩路(反证) 2.偶图匹配Hall 定理(偶图匹配存在性定理,完美匹配): N S S 推论:k 正则偶图G 存在完美匹配(证) 匹配算法: 匈牙利算法最优匹配算法3.点覆盖边匹配数等于点覆盖数时匹配为最大匹配覆盖为最小覆盖 哥尼定理:偶图中最大匹配边数等于最小覆盖点数(用) 4.托特定理一般图G 有完美匹配当且仅当 G S S推论:没有割边的3正则图存在完美匹配(充分条件)(证) 5.因子分解因子分解,n 度正则因子 一因子分解:2n K 可一因子分解具有H 圈的三正则图可一因子分解 若三正则图有割边,则它不能一因子分解 二因子分解: G 的一个H 圈肯定是一个二因子,但二因子不一定是H 圈(二因子可以不连通)21n K 可2因子分解2n K 可分解为一个1因子和n-1个2因子之和。
图论及其应用 第一章答案
)2214(题后两个算法不作要求题,除第图的基本概念<1.>若G 是简单图,证明:()()2V G E G ⎛⎫≤ ⎪⎝⎭。
证明:()()1()()()1v Gd v V G d v V G V G ∈≤-∴≤-∑(当且仅当G 是完全图时取等号) 又11()()()()122v G E G d v V G V G ∈=≤-∑ ()()2V G E G ⎛⎫∴≤ ⎪⎝⎭。
<2.>设G 是(,)p q 简单图,且12p q -⎛⎫>⎪⎝⎭。
求证G 为连通图。
证明:反证法,假设G 为非连通图。
设G 有两个连通分支1G 和2G ,且112212()1,()1,V G p V G p p p p =≥=≥+= 则1212()()22p p E G E G q ⎛⎫⎛⎫+=≤+⎪ ⎪⎝⎭⎝⎭而1211221(1)(1)(1)(2)222222p p p p p p p p p -⎛⎫⎛⎫⎛⎫----+-=+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭2222221212121222()2()222p p p p p p p p p p +-+-+-+++-==12(1)(1)0p p =--≤(因为121,1p p ≥≥),矛盾。
<3.>超图H 是有序二元组((),())V H E H ,其中()V H 是顶点非空有限集合,()E H 是()V H 的非空子集簇,且()()i i E E H E V H ∈=。
其中,()E H 中的元素i E 称为超图的边,没有相同边的超图称为简单超图。
证明:若H 是简单超图,则21υε≤-,其中,υε分别是H 的顶点数和边数。
证明:()V H υ=,有一条边的子集个数为1υ⎛⎫ ⎪⎝⎭,有i 条边的子集个数为,1,,.i n i υ⎛⎫= ⎪⎝⎭又02,211i i υυυυυυυ=⎛⎫⎛⎫⎛⎫=∴++=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑ 。
<4.>若G 是二部图,则2()()4V G E G ≤。
图论参考答案
图论参考答案图论参考答案图论作为一门数学分支,研究的是图的性质与关系。
图由节点(顶点)和连接节点的边组成,它可以用来解决许多实际问题,如网络规划、社交网络分析等。
本文将从图的基本概念、图的表示方法、图的遍历算法以及图的应用等方面进行探讨。
一、图的基本概念图由节点和边构成,节点表示对象,边表示节点之间的关系。
图可以分为有向图和无向图两种类型。
在有向图中,边有方向,表示从一个节点到另一个节点的箭头;而在无向图中,边没有方向,表示节点之间的双向关系。
图中的节点可以用来表示不同的实体,如人、地点、物品等。
而边则表示节点之间的关系,可以是实体之间的联系、交互或者依赖关系等。
图的度是指与节点相连的边的数量。
在无向图中,节点的度等于与之相连的边的数量;而在有向图中,节点的度分为入度和出度,入度表示指向该节点的边的数量,出度表示从该节点出发的边的数量。
二、图的表示方法图可以使用邻接矩阵和邻接表两种方式进行表示。
邻接矩阵是一个二维数组,其中的元素表示节点之间的关系。
如果节点i和节点j之间有边相连,则邻接矩阵中的第i行第j列的元素为1;否则为0。
邻接矩阵的优点是可以快速判断两个节点之间是否有边相连,但是对于稀疏图来说,会浪费大量的空间。
邻接表是一种链表的形式,其中每个节点都有一个指针指向与之相连的节点。
邻接表的优点是可以有效地节省空间,适用于稀疏图。
但是在判断两个节点之间是否有边相连时,需要遍历链表,效率较低。
三、图的遍历算法图的遍历算法是指以某个节点为起点,按照一定的规则依次访问图中的所有节点。
深度优先搜索(DFS)是一种常用的图遍历算法。
它的思想是从起始节点开始,沿着一条路径一直访问到最后一个节点,然后回溯到上一个节点,继续访问其他路径。
DFS可以用递归或者栈来实现。
广度优先搜索(BFS)是另一种常用的图遍历算法。
它的思想是从起始节点开始,先访问所有与起始节点直接相连的节点,然后再依次访问与这些节点相连的节点。
图论及其应用1-3章习题答案(电子科大) (1)
学号:201321010808 姓名:马涛习题14.证明图1-28中的两图是同构的证明 将图1-28的两图顶点标号为如下的(a)与(b)图作映射f : f(v i )→u i (1≤ i ≤ 10)容易证明,对∀v i v j ∈E((a)),有f(v i v j )=u i u j ∈E((b)) (1≤ i ≤ 10, 1≤j ≤ 10 ) 由图的同构定义知,图1-27的两个图是同构的。
6.设G 是具有m 条边的n 阶简单图。
证明:m =⎪⎪⎭⎫⎝⎛2n 当且仅当G 是完全图。
证明 必要性 若G 为非完全图,则∃ v ∈V(G),有d(v)< n-1 ⇒ ∑ d(v) < n(n-1) ⇒ 2m <n(n-1)⇒ m < n(n-1)/2=⎪⎪⎭⎫⎝⎛2n , 与已知矛盾!充分性 若G 为完全图,则 2m=∑ d(v) =n(n-1) ⇒ m= ⎪⎪⎭⎫⎝⎛2n 。
9.证明:若k 正则偶图具有二分类V = V 1∪V 2,则 | V 1| = |V 2|。
(a)v 1v 2 v 3 v 4v 5 v 6v 7v 8 v 9v 10 u 1 u 2u 3u 4u 5 u 6 u 7 u 8 u 9 u 10 (b)证明 由于G 为k 正则偶图,所以,k | V 1 | =m = k | V 2 | ⇒ ∣V 1∣= ∣V 2 ∣。
12.证明:若δ≥2,则G 包含圈。
证明 只就连通图证明即可。
设V(G)={v 1,v 2,…,v n },对于G 中的路v 1v 2…v k ,若v k 与v 1邻接,则构成一个圈。
若v i1v i2…v in 是一条路,由于δ≥ 2,因此,对v in ,存在点v ik 与之邻接,则v ik ⋯v in v ik 构成一个圈 。
17.证明:若G 不连通,则G 连通。
证明 对)(,_G V v u ∈∀,若u 与v 属于G 的不同连通分支,显然u 与v 在_G 中连通;若u 与v 属于g 的同一连通分支,设w 为G 的另一个连通分支中的一个顶点,则u 与w ,v 与w 分别在_G 中连通,因此,u 与v 在_G 中连通。
[工学]电子科大研究生图论课件——第1_2章基本概念_树讲课讲稿
例 证明下面两图同构。
v1
v2
v6
v10 v5
v7
v8 v9
v3
v4 (a)
u1
u6 u5
u2
u8
u10
u3
u7
u9
u4
(b)
证明 作映射 f : vi ↔ ui (i=1,2….10),易知该映射为双射。
完全偶图:是指具有二分类(X, Y)的简单偶 图,其中 X的每个顶点与 Y 的每个顶点相连, 若 |X|=m,|Y|=n,则这样的偶图记为 Km,n
例
G1
G2
K1,3
四个图均为偶图;
K 3,3
K1,3 , K3,3为完全偶图
例
偶图
不是偶图
简单图G 的补图: 设 G =(V, E),则图 H =(V,E1\E) 称为G 的补图,记为 H G , 其中集合
度序列: 一个图G的各个点的度d1, d2,…, dn构成的非负整数 组 (d1, d2,…, dn)称为G的度序列 。它是刻画图的特 征的重要“拓扑不变量”。
正整数k的划分: 是指将k表示为若干正整数的和,或指一 个无序正整数组,组中正整数的和是k。
图划分: 正整数k的一个划分(d1, d2,…, dn)能成为某简 单图的度序列的k的划分.
图论作为一个数学分支,有一套完整 的体系和广泛的内容,在这里我们 只准备介绍图论的初步知识,其目 的是今后在其它有关学科的学习和 研究时,可以用图论的基本知识作 为工具。
第一章 图的基本概念
§1.1 图和简单图
一.图的定义
定义1 一个图 G 定义为一个有序对(V, E),记为G = (V, E), 其中
电子科技大学研究生试题《图论及其应用》(参考答案)
电子科技大学研究生试题《图论及其应用》(参考答案)考试时间:120分钟一.填空题(每题3分,共18分)1.4个顶点的不同构的简单图共有__11___个;2.设无向图G 中有12条边,已知G 中3度顶点有6个,其余顶点的度数均小于3。
则G 中顶点数至少有__9___个;3.设n 阶无向图是由k(k ≥2)棵树构成的森林,则图G 的边数m= _n-k____;4.下图G 是否是平面图?答__是___; 是否可1-因子分解?答__是_.5.下图G 的点色数=)(G χ______, 边色数=')(G χ__5____。
图G图G二.单项选择(每题3分,共21分)1.下面给出的序列中,是某简单图的度序列的是( A )(A) (11123); (B) (233445); (C) (23445); (D) (1333).2.已知图G 如图所示,则它的同构图是( D )3. 下列图中,是欧拉图的是( D )4. 下列图中,不是哈密尔顿图的是(B )5. 下列图中,是可平面图的图的是(B )A Bb c123A B 3CDAD6.下列图中,不是偶图的是( B )7.下列图中,存在完美匹配的图是(B )三.作图(6分)1.画出一个有欧拉闭迹和哈密尔顿圈的图;2.画出一个有欧拉闭迹但没有哈密尔顿圈的图;3.画出一个没有欧拉闭迹但有哈密尔顿圈的图;解:四.(10分)求下图的最小生成树,并求其最小生成树的权值之和。
A B DC123A B DC解:由克鲁斯克尔算法的其一最小生成树如下图:权和为:20.五.(8分)求下图G 的色多项式P k(G).解:用公式)()()(e G P G P e G P k k k •+=-,可得G 的色多项式:)3)(2()1()()(3)()(2345---=++=k k k k k k k G P k 。
六.(10分) 一棵树有n 2个顶点的度数为2,n 3个顶点的度数为3,…,n k 个顶点的度数为k ,而其余顶点的度数为1,求1度顶点的个数。
电子科技大学《图论及其应用》-08年研究生试卷
电子科技大学研究生试卷一.填空题(每题2分,共20分)1.若n 阶单图G 的最大度是∆,则其补图的最小度()G δ=_n −1−∆_; 2.若图111(,)G n m =,222(,)G n m =,则它们的联图12G G G =∨的顶点数=_nn 1+nn 2;边数=mm 1+mm 2+nn 1nn 2;3.G 是一个完全l 部图,i n 是第i 部的的顶点数i=1,2,3,…,l 。
则它的边数为∑nn ii nn jj 1≤ii≤j≤l ;4.下边赋权图中,最小生成树的权值之和为5. 若n G K =,则G 的谱()spec G =�−1n −1n −116. 5个顶点的不同构的树的棵数为__4___;7. 5阶度极大非哈密尔顿图族是CC 1,5,CC 2,5;8. G 为具有二分类(X,Y)的偶图,则G 包含饱和X 的每个顶点的匹配的充分必要条件是|N (S )|≥|S |,对所有S ⊆X 成立9.3阶以上的极大平面图每个面的次数为 3 ;3阶以上的极大外平面图的每 个内部面的次数为__3__;10. n 方体的点色数为___2___;边色数为___n ___。
二.单项选择(每题3分,共12分)1.下面给出的序列中,不是某图的度序列的是( B ) (A) (33323); (B) (12222); (C) (5533); (D) (1333).2.设V(G)={}1,2,3,4,5,{}()(1,2),(2,3),(3,4),(4,5),(5,1)E G =则图(,)G V E =的补图是( B3.下列图中,既是欧拉图又是哈密尔顿图的是( B )4.下列说法中不正确的是( C ) (A)每个连通图至少包含一棵生成;(B) 2 3 5 (A) 2 35(B)23 5 (C) 234(D)(C)(D) (A)1(B)k 正则偶图(k>0)一定存在完美匹配; (C)平面图(*)*G G ≅,其中*G 表示G 的对偶图; (D)完全图2n K 可一因子分解。
电子科技大学图论及其应用 第1章
例 判断下面两图是否同构。
u1
v1
解 两图不同构。 若两图同构,则两图中唯一的与环关联的两个点u1与v1一定 相对应,而u1的两个邻接点与v1的两个邻接点状况不同,u1 邻接有4度点,而v1没有。 所以,两图不同构。
例 指出4个顶点的非同构的所有简单图。
分析:四个顶点的简单图最少边数为0,最多边数为6,所以 可按边数进行枚举。 解 (a) (b) (c)
四、顶点的度、度序列
设v为G 的顶点,G 中以v为端点的边的条数(环计算两次)称 为点v的度数,简称为点v的度,记为dG (v),简记为d(v)。 相关术语和记号
G : 图G 的顶点的最小度
G :图G 的顶点的最大度
奇点:度数为奇数的顶点 偶点:度数为偶数的顶点 k-正则图: 每个点的度均为k 的简单图 例如,完全图和完全偶图Kn, n 均是正则图。
完全偶图是指具有二分类(X, Y )的简单偶图,其中X的 每个顶点与Y 的每个顶点相连,若 |X|=m,|Y|=n,则这 样的偶图记为Km,n。
例
偶图
不是偶图
例
G1
G2
K1, 3
K3, 3
四个图均为偶图
K1, 3, K3, 3为完全偶图
偶图是一种常见数学模型。
例 学校有6位教师将开设6门课程。六位教师的代号分别是 xi (i=1,2,3,4,5,6 ),六门课程代号是yi (i=1,2,3,4,5,6 )。已知教 师x1能够胜任课程y2和y3;教师x2能够胜任课程y4和y5;教师 x3能够胜任课程y2;教师x4能够胜任课程y6和y3;教师x5能够 胜任课程y1和y6;教师x6能够胜任课程y5和y6。请画出老师和 课程之间的状态图。 解
dG (v) dG (v) n 1 。
电子科大研究生图论05-14年图论期末试题
波士顿:亚特兰大,芝加哥,纳什维尔
芝加哥:亚特兰大,波士顿,丹佛,路易维尔
丹佛:芝加哥,路易维尔,迈阿密,纳什维尔
路易维尔:芝加哥,丹佛,迈阿密
迈阿密:亚特兰大,丹佛,路易维尔,纳什维尔
纳什维尔:亚特兰大,波士顿,丹佛,迈阿密
(要求用图论方法求解)
九.(8分)求下图G的色多项式Pk(G).
由T8导出的树中a到b路 就是最短路。
2006研究生图论期末试题(120分钟)
一、填空题(15分,每空1分)
1、若两个图的顶点与顶点之间,边与边之间都存在 对应,而且它们的关联关系也保持其 关系,则这两个图同构。
2、完全图 的生成树的数目为 ;阶为6的不同构的树有 棵。
3、设无向图 有12条边,已知 中度为3的结点有6个,其余结点的度数均小于3,则
六.(10分)设 是赋权完全偶图G=(V,E)的可行顶点标号,若标号对应的相等子图 含完美匹配 ,则 是G的最优匹配。
七.(10分)求证:在n阶简单平面图G中有 ,这里 是G的面数。
八、(10分)来自亚特兰大,波士顿,芝加哥,丹佛,路易维尔,迈阿密,以及纳什维尔的7支垒球队受邀请参加比赛,其中每支队都被安排与一些其它队比赛(安排如下所示)。每支队同一天最多进行一场比赛。建立一个具有最少天数的比赛时间表。
2.设V(G)= , 则图 的补图是()
3.下列图中,既是欧拉图又是哈密尔顿图的是( )
4.下列说法中不正确的是( )
(A)每个连通图至少包含一棵生成树;
(B)k正则偶图(k>0)一定存在完美匹配;
(C)平面图 ,其中 表示G的对偶图;
(D)完全图 可一因子分解。
三、(10分)设图G的阶为14,边数为27,G中每个顶点的度只可能为3,4或5,且G有6个度为4的顶点。问G中有多少度为3的顶点?多少度为5的顶点?
电子科技大学《图论及其应用》复习总结--第一章图的基本概念
电⼦科技⼤学《图论及其应⽤》复习总结--第⼀章图的基本概念⼀、重要概念图、简单图、图的同构、度序列与图序列、偶图、补图与⾃补图、两个图的联图、两个图的积图1.1 图⼀个图G定义为⼀个有序对(V, E),记为G = (V, E),其中(1)V是⼀个有限⾮空集合,称为顶点集或边集,其元素称为顶点或点;(2)E是由V中的点组成的⽆序点对构成的集合,称为边集,其元素称为边,且同⼀点对在E中可出现多次。
注:图G的顶点数(或阶数)和边数可分别⽤符号n(G) 和m(G)表⽰。
连接两个相同顶点的边的条数,叫做边的重数。
重数⼤于1的边称为重边。
端点重合为⼀点的边称为环。
1.2 简单图⽆环⽆重边的图称为简单图。
(除此之外全部都是复合图)注: 1.顶点集和边集都有限的图称为有限图。
只有⼀个顶点⽽⽆边的图称为平凡图。
其他所有的图都称为⾮平凡图。
边集为空的图称为空图。
2.n阶图:顶点数为n的图,称为n阶图。
3.(n, m) 图:顶点数为n的图,边数为m的图称为(n, m) 图1.3 邻接与关联:顶点u与v相邻接:顶点u与v间有边相连接(u adj v);其中u与v称为该边的两个端点。
注:1.规定⼀个顶点与⾃⾝是邻接的。
2.顶点u与边e相关联:顶点u是边e的端点。
3.边e1与边e2相邻接:边e1与边e2有公共端点。
1.4 图的同构设有两个图G1=(V1,E1)和G2=(V2,E2),若在其顶点集合间存在双射,使得边之间存在如下关系:u1,v1∈V1,u2,v2∈ V2 ,设u1↔u2,v1↔v2,; u1v1∈E1 当且仅当u2v2∈E2,且u1v1与u2v2的重数相同。
称G1与G2同构,记为:G1≌G2注:1、图同构的两个必要条件: (1) 顶点数相同;(2) 边数相同。
2、⾃⼰空间的理解:通过空间的旋转折叠可以进⾏形态转换1.5 完全图、偶图1、在图论中,完全图是⼀个简单图,且任意⼀个顶点都与其它每个顶点有且只有⼀条边相连接。
图论第一章课后习题解答
d (v) =2m
推论 3 在任何图中,奇点个数为偶数。 推论 4 正则图的阶数和度数不同时为奇数。 定义 5 一个图 G 的各个点的度 d1, d2,…, dn 构成的非负整数组 (d1, d2,…, dn)称为 G 的 度序列。 若对一个非负整数组(d1, d2,…, dn), 则称这个数组是可图的。 定理 5 且 设有非负整数组 Π = (d1, d2,…, dn),
bi 个 (i = 1,2,…,s),则有 列。 定理 7
bi = n。故非整数组(b ,b ,…, b )是 n 的一个划分,称为 G 的频序
1 2 s
s
i 1
一个 n 阶图 G 和它的补图 G 有相同的频序列。
§1.2 子图与图的运算
且 H 中边的重数不超过 G 中对应边的 定义 1 如果 V H V G ,E H E G , 重数,则称 H 是 G 的子图,记为 H G 。有时又称 G 是 H 的母图。 当 H G ,但 H G 时,则记为 H G ,且称 H 为 G 的真子图。G 的生成子图是 指满足 V(H) = V(G)的子图 H。 假设 V 是 V 的一个非空子集。以 V 为顶点集,以两端点均在 V 中的边的全体为边集 所组成的子图,称为 G 的由 V 导出的子图,记为 G[ V ];简称为 G 的导出子图,导出子图 G[V\ V ]记为 G V ; 它是 G 中删除 V 中的顶点以及与这些顶点相关联的边所得到的子图。 若 V = {v}, 则把 G-{v}简记为 G–v。 假设 E 是 E 的非空子集。以 E 为边集,以 E 中边的端点全体为顶点集所组成的子图 称为 G 的由 E 导出的子图,记为 G E ;简称为 G 的边导出子图,边集为 E \ E 的 G 的 导出子图简记为 G E 。若 E e ,则用 G–e 来代替 G-{e}。 定理 8 简单图 G 中所有不同的生成子图(包括 G 和空图)的个数是 2m 个。 定义 2 设 G1,G2 是 G 的子图。若 G1 和 G2 无公共顶点,则称它们是不相交的;若 G1 和 G2 无公共边,则称它们是边不重的。G1 和 G2 的并图 G1∪G2 是指 G 的一个子图,其顶点 集为 V(G1)∪V(G2),其边集为 E(G1)∪E(G2);如果 G1 和 G2 是不相交的,有时就记其并图为 G1+G2。类似地可定义 G1 和 G2 的交图 G1∩G2,但此时 G1 和 G2 至少要有一个公共顶点。
图论及其应用全 电子科技大学ppt课件
8
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
(二)、图的定义与图论模型
1、图的定义
一个图是一个序偶<V,E>,记为G=(V,E),其中:
(1) V是一个有限的非空集合,称为顶点集合,其 元素称为顶点或点。用|V|表示顶点数;
(2) E是由V中的点组成的无序对构成的集合,称 为边集,其元素称为边,且同一点对在E中可以 重复出现多次。用|E|表示边数。
3
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
[5] 李尉萱,《图论》,湖南科学技术出版社,1979
[6] 美,Douglas B.West《图论导引》,机械工业出 版社,2007 李建中,骆吉洲译
[7] 杨洪,《图论常用算法选编》,中国铁道出版社, 1988
12
1
0.5 n 0
0.5
1 2 1.5 t1
0.5
00
1 0.8
0.6 0.4 x 0.2
用点抽象分子式中的碳原子和氢原子,用边抽象原子间
的化学键。
通过这样的建模,能很好研究简单烃的同分异构现象.
例如:C4H10的两种同分异构结构图模型为:
h hh h
h hhh h
hhh
hh
h
h h hh
h
13
0.5
00
1 0.8
0.6 0.4 x 0.2
顶点u与v相邻接:顶点u与v间有边相连接;其中u与v称为 该边的两个端点;
顶点u与边e相关联:顶点u是边e的端点; 边e1与边e2相邻接:边e1与边e2有公共端点;
图论及其应用第2章答案(电子科大版)
图论及其应用第2章答案(电子科大版)
习题二(yangchun):
7.证明:非平凡树的最长路的起点和终点均是1度的。
证明设是非平凡树T中一条最长路,若则与在中的邻接点只能有一个,否则,若与除了中顶点之外的其他顶点相连,则可以继续延长,这与是最长路是相矛盾的。
若与上的某顶点相连,则就构成了圈,这与数相矛盾,推出不是最长路。
即说明与是树叶,则与均是一
度的。
所以非平凡树的最长路的起点和终点均是度的。
9.证明:顶点度数为偶数的连通图本身可构成一个包含所有边的闭迹。
证明:证明:由于是连通非平凡的且每个顶点度数为偶数,所以中至少
存在圈,从中去掉中的边,得到的生成子图,若没有边,则的边集合能划分为圈。
否则,的每个度数均为偶数的连通图,反复这样抽取,最终划分为若干圈。
设是的边划分中的一个圈。
若仅由此圈组成,则显然是闭迹。
否则,由于连通,所以,必然存有公共顶点。
于是,是一条含有与的边的迹,如此拼接下去,得到包含的所有边的一条闭迹.
16.Kruskal算法能否用来求:
(1)赋权连通图中的最大权的树?
(2)赋权图中的最小权的最大森林?如果可以,怎样实现?
答:1、不能,由Kruskal算法得到的任何生成树一定是最小生成树。
2、能。
[工学]图论及其应用第1章教学文案
显然,若正整数 k 有图划分,则k 必须是偶数
例 偶数4有五种划分: 4,3+1,2+2,1+1+2,1+1+1+1
但属于图划分的却只有两种:
2+1+1
1+1+1+1
n
对一个非负整数组(d1, d2,…, dn),i1 di 2m , 若存在一个
简单图G,以它为度序列,则称这个数组是可图的。
定理5 设有非负整数组Π = (d1, d2,…, dn),且
n
di 2m
i 1
是一个偶数,n-1≥d1≥d2≥…≥dn, Π是可图的充要条件为
( d 2 1 , d 3 1 , , d d 1 1 1 , d d 1 2 , , d n )
例如
v1
v2
图中
v3
d (v1) = 5 d (v2) = 4 d (v3) = 3 d (v4) = 0
d (v5) = 2
v4
注:该图中各点的度数
v5
之和等于14,恰好
是边数7的两倍
定理2 (握手定理): 对任意的有m条边的图 G = (V, E)。有
d (v) 2m
vV
(1.1)
证明 因图 G 的任一条边均有两个端点 (可以相同),在 计算度时恰被计算两次 (每个端点各被计算了一次),所 以各点的度数之和恰好为边数的两倍,即 (1.1) 式成立。
当H G ,但H ≠ G时,则记为H G ,且称H为G的 真子图。G的生成子图是指满足V(H) = V(G)的子图H。 例如
v1
图论及其应用第一章答案(电子科大版)
习题一(yangchun):4.证明下面两图同构。
证明:作映射f : v i ↔ u i (i=1,2….10)容易证明,对∀v i v j ∈E ((a)),有f (v i v j,),=,u i,u j,∈,E,((b)) (1≤ i ≤ 10, 1≤j ≤ 10 ) 由图的同构定义知,图(a)与(b)是同构的。
5.证明:四个顶点的非同构简单图有11个。
证明:设四个顶点中边的个数为m ,则有: m=0:m=1 :m=2:m=3:m=4:(a)v 234(b)m=5:m=6:因为四个顶点的简单图最多就是具有6条边,上面所列出的情形是在不同边的条件下的不同构的情形,则从上面穷举出的情况可以看出四个顶点的非同构简单图有11个。
11.证明:序列(7,6,5,4,3,3,2)和(6,6,5,4,3,3,1)不是图序列。
证明:由于7个顶点的简单图的最大度不会超过6,因此序列(7,6,5,4,3,3,2)不是图序列;(6,6,5,4,3,3,1)是图序列1112312(1,1,,1,,,)d d n d d d d d π++=--- 是图序列(5,4,3,2,2,0)是图序列,然而(5,4,3,2,2,0)不是图序列,所以(6,6,5,4,3,3,1)不是图序列。
●12.证明:若,则包含圈。
证明:下面仅对连通图的下的条件下进行证明,不连通的情形可以通过分成若干个连通的情形来证明。
设,对于中的路若与邻接,则构成一个闭路。
若是一条路,由于,因此,对于,存在与之邻接,则构成一个圈。
●17.证明:若G 不连通,则连通。
证明:对于任意的,若与属于G 的连通分支,显然与在中连通;若与属于的同一连通分支,则与分别在中连通,因此,与在中连通。
18.证明:若,则.证明:若为的割边,则=,若为的非割边,则=,所以,若,则有.。
图论作业电子科大 杨春
图论作业第一章4.证明:将图1-28的两图顶点标号为如下的(a)与(b)图作映射f : f(v i )→u i (1≤ i ≤ 10)容易证明,对∀v i v j ∈E((a)),有f(v i v j )=u i u j ∈E((b)) (1≤ i ≤ 10, 1≤j ≤ 10 )由图的同构定义知,图1-27的两个图是同构的。
6. 证明:必要性 若G 为非完全图,则∃ v ∈V(G),有d(v)< n-1 ⇒ ∑ d(v) < n(n-1) ⇒ 2m <n(n-1)⇒ m < n(n-1)/2=⎪⎪⎭⎫⎝⎛2n , 与已知矛盾!充分性 若G 为完全图,则 2m=∑ d(v) =n(n-1) ⇒ m= ⎪⎪⎭⎫⎝⎛2n 。
9. 证明:由于G 为k 正则偶图,所以,k | V 1 | =m = k | V 2 | ⇒ ∣V 1∣= ∣V 2 ∣。
12. 证明:δ≧2,在图G 中任取一点u ,则d(u)≧2.存在u1≠u 与u 相邻接。
由于d(u) ≧2,则存在u2≠u 与u1邻接,由于图是有限图,如此下去定会返回u ,由圈的定义可知图G 包含圈。
(a)v 2 3u 4u (b)17.证明:设u、v是G的任意两个顶点。
若u和v在G中不邻接,则在中他们邻接。
若u和v在G中邻接,他们属于G的同一分支。
在另一个分支中有一点w,在中u和v均与w邻接,即uwv是一条通路,故是连通图。
第二章2.证明:由题意可知如果一棵树恰有两个1度的顶点,则其他顶点的度必为2(如果树其他顶点至少有一个大于2,则该树度为1的顶点树必然大于2),连通的无圈图称为树,一棵树恰有两个1度的顶点而且其他顶点的度数为2,显然这样的树均是路。
16.对于(1)和(2)都可以用Kruskal算法。
具体用法是:对(1)有两种方法:<1>把Kruskal算法中的“小”字换为“大”字。
<2>重新规定图的权为:W’(e)=1/w(e) 当w(e)≠0M(充分大)当w(e)=0这样就可直接用Kruskal算法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4. 证明下面两图同构。
v1
u1
v2
v6v10 v5v7 Nhomakorabeav8 v9
v3
v4 (a)
u6 u5
u2
u8
u10
u3
u7
u9
u4
(b)
证明:作映射 f : vi ↔ ui (i=1,2….10)
容易证明,对vi v j E ((a)),有 f (v i vj,),,ui,uj,,E,((b))
1j 10 ) 由图的同构定义知,图(a)与(b)是同构的。
5.证明:四个顶点的非同构简单图有 11 个。
证明:设四个顶点中边的个数为 m,则有:
m=0:
(1 i 10,
m=1 :
m=2:
m=3: m=4:
m=5: m=6:
因为四个顶点的简单图最多就是具有 6 条边,上面所列出的情形是在不同边的条
件下的不同构的情形,则从上面穷举出的情况可以看出四个顶点的非同构简单图
此,对于 ,存在 与之邻接,则
构成一个圈。
证明:对于任意的
17.证明:若 G 不连通,则 连通。 ,若 与 属于 G 的连通分支,显然 与 在 中连通;
若 与 属于 的同一连通分支,则 与 分别在 中连通,因此, 与 在 中连通。
18. 证 明 : 若
,则
.
证明:若 为 的割边,则
=
= ,所以,若
,则有
,若 为 的非割边,则 .
有 11 个。
11.证明:序列(7,6,5,4,3,3,2)和(6,6,5,4,3,3,1)
不是图序列。
证明:由于 7 个顶点的简单图的最大度不会超过 6,因此序列(7,6,5,4,3,3,2)不
是图序列;
(6,6,5,4,3,3,1)是图序列
1 (d2 1, d3 1, , dd11 1, dd12 , , dn ) 是图序列
(5,4,3,2,2,0)是图序列,然而(5,4,3,2,2,0)不是图序列,所以(6,6,5,4,3,3,1) 不是图序列。
12.证明:若 ,则 包含圈。
证明:下面仅对连通图的下的条件下进行证明,不连通的情形可以通过分成若干
个连通的情形来证明。设
,对于 中的路
若 与 邻接,则构成一个闭路。若
是一条路,由于 ,因