实验二-图像增强处理实习报告
数字图像处理实习报告
数字图像处理实习报告在当今数字化的时代,数字图像处理技术在众多领域中发挥着至关重要的作用,从医疗诊断到卫星遥感,从娱乐产业到工业检测,其应用无处不在。
通过这次数字图像处理实习,我对这一领域有了更深入的了解和实践经验。
实习的初始阶段,我主要进行了相关理论知识的学习。
数字图像处理涵盖了众多概念,如图像的数字化表示、像素、灰度值、分辨率等。
了解这些基础知识是后续处理图像的基石。
同时,我还学习了常见的图像格式,如 JPEG、PNG、BMP 等,以及它们的特点和适用场景。
在掌握了一定的理论基础后,我开始接触图像处理的基本操作。
图像增强是我最先实践的部分,通过调整图像的对比度和亮度,能够使原本模糊不清或暗淡的图像变得更加清晰和易于观察。
例如,对于一张曝光不足的照片,增加亮度可以让隐藏在黑暗中的细节显现出来;而提高对比度则可以使图像中的不同区域更加分明,突出重点。
图像滤波是另一个重要的环节。
均值滤波可以有效地去除图像中的噪声,但在一定程度上会使图像变得模糊;中值滤波则能够在去除噪声的同时较好地保留图像的边缘细节。
我通过对不同类型和程度的噪声图像进行滤波处理,直观地感受到了它们的效果差异。
图像的几何变换也是实习中的关键内容。
图像的平移、旋转和缩放操作看似简单,但其背后涉及到复杂的数学计算。
在实际操作中,需要准确地计算变换矩阵,以确保图像在变换后的准确性和完整性。
实习过程中,我还深入研究了图像分割技术。
这是将图像分成不同区域或对象的过程,以便进行后续的分析和处理。
阈值分割是一种常见且简单的方法,通过设定一个阈值,将图像中的像素分为两类。
然而,对于复杂的图像,这种方法往往效果不佳,这时就需要更高级的分割算法,如基于边缘检测的分割或基于区域生长的分割。
在进行数字图像处理的过程中,我也遇到了一些挑战和问题。
例如,在处理大规模图像数据时,计算资源的限制可能导致处理速度缓慢;在选择图像处理算法时,需要根据具体的图像特点和需求进行权衡,否则可能无法达到理想的效果。
实验二空域图像增强
实验三空域图像增强一、实验目的与要求1、掌握灰度直方图的概念及其计算方法;2、熟练掌握直力图均衡化和直方图规定化的计算过程;3、熟练掌握空域滤波中常用的平滑和锐化滤波器;4、掌握色彩直方图的概念和计算方法5、利用MATLAB程序进行图像增强。
二、实验内容与步骤1、图像的直方图与直方图均衡方法a. 从硬盘加载cameraman.tif图象(using function imread).b. 显示图象.c. 显示图象的直方图(using function imhist).d. 用直方图均衡方法进行图象增强.e. 对处理后的图象显示其直方图.f. 比较图象的质量并且进行讨论.代码如下:I=imread(‘原图像名.gif); % 读入原图像J=histeq(I); %对原图像进行直方图均衡化处理Imshow(I); %显示原图像Title(‘原图像’); %给原图像加标题名Figure;imshow(J); %对原图像进行屏幕控制;显示直方图均衡化后的图像Title(‘直方图均衡化后的图像’) ; %给直方图均衡化后的图像加标题名Figure; subplot(1,2,1) ;%对直方图均衡化后的图像进行屏幕控制;作一幅子图作为并排两幅图的第1幅图Imhist(I,64); %将原图像直方图显示为64级灰度Title(‘原图像直方图’) ; %给原图像直方图加标题名Subplot(1,2,2); %作第2幅子图Imhist(J,64) ; %将均衡化后图像的直方图显示为64级灰度Title(‘均衡变换后的直方图’) ; %给均衡化后图像直方图加标题名从处理前后的图像可以看出,许多在原始图像中看不清楚的细节在直方图均衡化处理后所得到的图像中都变得十分清晰。
2、对图象加入躁声,改变噪声参数(均值、方差或比例),比较其影响。
使用3x3或7x7的均值滤波器、中值滤波器对不同强度的高斯噪声和椒盐噪声,进行滤波处理;能够正确地评价处理的结果;能够从理论上作出合理的解释。
数字图像处理实习报告
数字图像处理实习报告
本次实习主要任务是进行数字图像处理相关工作,包括图像的预处理、特征提取、图像分割和图像识别等方面的工作。
实习过程中,我主要负责了图像处理算法的编写与优化,以及实验数据的收集与分析。
通过这次实习,我对数字图像处理技术有了更深入的了解,并且提升了自己的编程能力和团队协作能力。
在图像处理算法的编写与优化过程中,我主要使用了Python
语言和常用的图像处理库,如OpenCV和PIL等。
我研究了不同的图像处理算法,并对其进行了实验验证,优化了算法的性能和效果。
通过这些工作,我深入了解了图像处理算法的实现原理和优化方法,提升了自己在图像处理领域的技术水平。
在实验数据的收集与分析过程中,我主要负责了实验数据的采集和整理工作。
我使用了各种图像采集设备,包括相机、摄像头等,对不同场景下的图像进行了采集和整理。
然后我利用Python和Matlab等工具对实验数据进行了分析和结果展示,
为后续的图像处理算法提供了重要的支持和参考。
总的来说,这次实习让我对数字图像处理有了更深入的了解,提升了自己的技术能力和实践能力。
我在实习过程中遇到了不少困难和挑战,但通过团队合作和自我努力,最终都得以克服,取得了一定的成果。
通过这次实习,我深刻地感受到了数字图像处理技术的重要性和广阔的应用前景,也对自己未来的发展方向有了更清晰的认识。
希望通过这次实习的经历,我能够为将来的学习和工作打下坚实的基础。
图像增强操作实习报告
图像增强操作实习报告一、实习目的在熟悉数字图像增强的基本原理和方法基础上,在理论指导下,能运用Photoshop软件对图像进行有针对性的增强操作,对多种图像增强方法获得的结果图像进行比较和分析,进一步熟悉和掌握Photoshop软件操作技能,巩固所学理论知识。
二、实习内容应用Photoshop软件对图像作灰度拉伸、对比度增强、直方图均衡化、图像平滑、中值滤波、边缘增强、边缘检测、伪彩色增强、假彩色合成等处理。
三、实习步骤1.打开一幅灰度图像。
源图像:2.灰度拉伸。
(1)线性拉伸:线性拉伸:在“图像→调整→色阶”中,可以通过直接设置原图像灰度值的输人范围和所需的输出范围来简单的完成某—灰度段到另一灰度段的灰度调整映射变换。
(2)曲线拉伸:曲线拉伸:在“图像调整→曲线”中,在弹出的“曲线”对话框中,直接用鼠标拖动改变灰度输人、输出曲线的形状就可以完成任意线形的灰度变换。
3.对比度增强:对比度增强可以通过“图像→调整→亮度/对比度”来直接对原图侔的亮度成对比度进行调整,观察增强处理前后图像直方图的变化。
4.直方图均衡化:直方图均衡可调用“图像→调整→色调均化”菜单项,即可达到直方图均衡的效果。
5.图像平滑。
(1)图像的3x3均匀平滑可以在“滤镜→模糊→模糊”中实现,观察处理前后图像细节和边缘的变化;也可以调用“模糊”对话框中的“高斯模糊”来观察高斯平滑处理的结果,改变半径,观察图像的变化,(2)通过“滤镜→其他→自定”菜单项调出模板对话框,可以输人自定义的平滑算子或其他增强算子,改变模板的大小和缩放比例,观察处理的效果。
6.中值滤波:先使用“滤镜→杂色→添加杂色”菜单添加噪声,再使用“滤镜→杂色→中间值”中值滤波操作,设置滤波半径。
(1)使用“滤镜→风格化”的“查找边缘”,“等高线”,“照亮边缘”等可以提取图像的边缘,改变参数,提取图像的最佳边缘。
(2)使用“滤镜→其他→自定”,输入教材讲述的边缘检测算子,分析处理的效果,比较这些算子的特点。
图形图像处理实训报告总结三篇
总结,汉语词语,读音为zǒngjié,意思是总地归结。
简洁文档网今天为大家精心准备了图形图像处理实训报告总结三篇,希望对大家有所帮助!通过这次实训,我收获了很多,一方面学习到了许多以前没学过的专业知识与知识的应用,另一方面还提高了自己动手做项目的能力。
本次实训,是对我能力的进一步锻炼,也是一种考验。
从中获得的诸多收获,也是很可贵的,是非常有意义的。
在实训中我学到了许多新的知识。
是一个让我把书本上的理论知识运用于实践中的好机会,原来,学的时候感叹学的内容太难懂,现在想来,有些其实并不难,关键在于理解。
在这次实训中还锻炼了我其他方面的能力,提高了我的综合素质。
首先,它锻炼了我做项目的能力,提高了独立思考问题、自己动手操作的能力,在工作的过程中,复习了以前学习过的知识,并掌握了一些应用知识的技巧等。
其次,实训中的项目作业也使我更加有团队精神。
从那里,我学会了下面几点找工作的心态:一、继续学习,不断提升理论涵养。
在信息时代,学习是不断地汲取新信息,获得事业进步的动力。
作为一名青年学子更应该把学习作为保持工作积极性的重要途径。
走上工作岗位后,我会积极响应单位号召,结合工作实际,不断学习理论、业务知识和社会知识,用先进的理论武装头脑,用精良的业务知识提升能力,以广博的社会知识拓展视野。
二、努力实践,自觉进行角色转化。
只有将理论付诸于实践才能实现理论自身的价值,也只有将理论付诸于实践才能使理论得以检验。
同样,一个人的价值也是通过实践活动来实现的,也只有通过实践才能锻炼人的品质,彰显人的意志。
必须在实际的工作和生活中潜心体会,并自觉的进行这种角色的转换三、提高工作积极性和主动性。
实习,是开端也是结束。
展现在自己面前的是一片任自己驰骋的沃土,也分明感受到了沉甸甸的责任。
在今后的工作和生活中,我将继续学习,深入实践,不断提升自我,努力创造业绩,继续创造更多的价值。
可以说这次实训不仅使我学到了知识,丰富了经验。
实验二 图像增强处理实习报告
实验二图像增强处理实习报告1.实验目的和内容1.1.实验目的掌握图像合成和显示增强的基本方法,理解存储的图像数据与显示的图像数据之间的1.2.实验要求熟练根据图像中的地物特征进行图像合成显示、拉伸、图像均衡化等显示增强操作。
理解直方图的含义,能熟练的利用直方图进行多波段的图像显示拉伸增强处理。
1.3.软件和数据ENVI 软件。
TM 图像数据。
上次实验合成后的图像数据文件AA。
1.4.实验内容图像的彩色合成显示图像的基本拉伸方法图像均衡化方法图像规定化2.实验过程通过合成和拉伸增强显示图像中的信息。
2.1.图像合成图像合成方法:伪彩色合成、彩色合成两种方式。
其中彩色合成包括:真彩色合成、假彩色合成、模拟真彩色合成。
操作:使用(4,3,2)进行RGB 合成显示图像。
图像窗口为#1。
移动图像窗口的红色选框到玄武湖,将光标十字放在红框内,双击,显示光标位置窗口。
该窗口中出现了Scrn 和Data,二者后面的RGB 的值是不同的。
2.1.1伪彩色合成在新的窗口显示第4 波段图像,窗口为#2。
操作:菜单:窗口菜单Tools-Color Mapping-Density slice…,选择Band 4,确定。
在“Density Slice”窗口中,点击“应用”按钮,窗口#2 的图像变成了彩色。
设置默认的分级数为3 个:在“Density Slice”窗口,点击Options-Set number of default range,输入3,确定。
点击Options-Apply default range,点击Apply 按钮。
查看窗口#2 内的变化。
重复上面步骤,设置分级数为10,查看图像的变化。
基本的特征是:长江是绿色的,玄武湖是红色的。
在新的窗口显示波段4,窗口编号为#3。
菜单:窗口菜单Tools-Color Mapping-ENVI Color table…依次点击Color Tables 下的颜色方案列表,查看#3 图像的变化。
光电图像处理实验报告(图像增强)
电子科技大学实验报告学生姓名: XXX学号: XXXXXXXXXX指导教师: XXX日期: 2010年3月25日一、实验室名称: 光电楼327机房二、实验项目名称: 图像增强三、实验原理:图像在生成、获取、传输等过程中,受照明光源性能、成像系统性能、通道带宽和噪声等因素的影响,造成对比度偏低、清晰度下降、并引入干扰噪声。
因此,图像增强的目的,就是改善图像质量,获得更适合于人眼观察、或者对后续计算机处理、分析过程更有利的图像。
图像增强是有选择地突出某些对人或计算机分析有意义的信息,抑制无用信息,提高图像的使用价值。
1、对数与指数变换提高对比度(1) 对数变换,低灰度区扩展,高灰度区压缩。
(2) 指数变换,高灰度区扩展,低灰度区压缩。
对合适的图像选择对数变换或者指数变换,均可提高图像对比度。
cb y x f a y x g ln ]1),(ln[),(++=1),(]),([-=-a y x f c b y x g2、中值滤波中值滤波法是把邻域内所有像素按灰度顺序排列,然后取中间值作为中心像素的输出。
中值滤波可以有效的去除椒盐噪声。
四、实验目的:1、熟练掌握各种灰度域变换的图像增强原理及方法;2、熟悉直方图均衡化和直方图规格化的原理及方法;3、了解空域滤波中常用的平滑和锐化滤波器;4、熟悉和掌握利用Matlab 工具进行图像的读、写、显示及基本的图像处理步骤;5、利用Matlab 工具进行图像增强处理。
五、实验内容:1、读取一幅低对比度图像,分别对其进行对数变换与指数变换。
进行变换前,应根据需要分别选取合适的指数和对数函数(即确定a、b、c 等调节因子),画出指数和变换曲线。
程序设计及处理过程中,要求在同一窗口中分别显示原始图像、变换结果及其直方图。
2、读取一幅含有椒盐噪声的被污染图像,并对其进行中值滤波处理。
要求在同一窗口中显示原始图像及中值滤波的结果。
(选作内容)六、实验器材(设备、元件):计算机,Matlab软件七、实验步骤:1、对数与指数变换提高对比度⑴打开计算机,从计算机中选择一幅对比度较低的图像作为原始图像。
图像增强 实验报告
基于像素的图像增强 实验报告姓名:赵传 学号:1120120260一、 实验目的图像增强作为基本的图像处理技术,其目的是对图像进行加工,以得到对具体应用来说视觉效果更“好”更“有用”的图像。
由于具体应用的目的和要求不同,因而“好”和“有用”的含义也不相同,因此图像增强技术是面向具体问题的。
从根本上说,图像增强的通用标准是不存在的。
本实验通过应用课堂上介绍过的图像空域增强方法中的点处理,在MATLAB 软件上进行编程,实现对不同图像(主要是黑白图像)的处理,从而加深对这些方法在原理层面的认识;同时通过简单的判断,较为“主观”给出不同方法处理不同问题时的优劣程度。
二、 引言由于受自然环境,获取图像的手段(传感器)、方式,图像传输,图像接收等一系列因素的影响,使得获取的图像信息往往存在许多问题,如:图像偏暗、偏亮、动态范围小、有噪点、对比度小等。
严重影响了有用信息的提取,因此,图像后期处理(图像增强技术)就显得十分重要。
在这门课程中,我学到了图像增强技术根据其处理的空间不同,可分为两大类:空域方法和频域方法。
前者直接在图像所在像素空间进行处理;而后者是通过对图像进行傅里叶变换后在频域上间接进行的。
在空域方法中,根据每次处理是针对单个像素还是小的子图像块又可分为两种:一种是基于像素的图像增强,也叫点处理,这种增强过程中对每个像素的处理与其他像素无关;另一种是基于模板的图像增强,也叫空域滤波,这种增强过程中的每次处理操作都是基于图像中的某个小的区域。
本实验主要针对点处理。
点处理有以下几种方式:1. 图像反转。
所谓图像反转,简单说来就是使黑变白,使白变黑。
2. 分段线性变换。
增强图像对比度实际是增强原图的各部分的反差,也就是说增强图像中感兴趣的灰度区域,相对抑制那些不感兴趣的灰度区域。
3. 指数变换。
也叫γ校正,通过设置γ 的值γγ≥≤(1还是1) 从而根据具体需要增强图像对比度。
4. 对数变换。
对于因动态范围太大而引起的失真,最常用的是借助对数形式对动态范围进行调整。
图像增强实验报告
课程: 数字图像处理实验日期: 2012年 4 月日成绩:实验一图像增强与平滑一.实验目的及要求1.了解MATLAB的操作环境和基本功能。
2.掌握MATLAB中图像增强与平滑的函数的使用方法。
3.加深理解图像增强与平滑的算法原理。
二.实验原理图像增强的目的是改善图像的视觉效果,或者使图像更适合于人或机器进行分析处理。
通过图像增强,可以减少图像中的噪声,提高目标与背景的对比度,也可以强调或抑制图像中的某些细节。
从处理的作用域出发,图像增强可以分为空间域法和频率域法。
前者在空间域直接对像素进行处理,后者在图像的变换域内处理,然后经逆变换获得增强图像。
图像增强技术主要有:空域变换增强、空域滤波增强、频域增强。
点运算可以在空域内进行图像灰度修正、图像灰度变换以及图像直方图修正。
空域滤波增强主要应用平滑滤波器、中值滤波器以及锐化滤波器。
频域增强主要应用高通滤波和同态滤波。
图像增强还包括图像的伪彩色处理。
彩色图像中包含有丰富的细节信息,为了获得清晰的彩色图像,保护原有的彩色信息,消除亮度不够对彩色图像像质的影响, 应用图像增强技术对彩色图像进行处理,既可以得到清晰的彩色图像,又可以保护原有的彩色信息。
总之图像增强技术就是对图像中感兴趣的特征有选择地突出,而衰减其不需要的特征。
三、实验内容(一)研究以下程序,分析程序功能;输入执行各命令行,认真观察命令执行的结果。
熟悉程序中所使用函数的调用方法,改变有关参数,观察试验结果。
(可将每段程序保存为一个.m文件)1.直方图均衡化clear all; close all % Clear the MATLAB workspace of any variables% and close open figure windows.I = imread('pout.tif'); % Rea ds the sample images ‘ pout.tif’, and stores it inimshow(I) % an array named I.display the imagefigure, imhist(I) % Create a histogram of the image and display it in% a new figure window.[I2,T] = histeq(I); % Histogram equalization.figure, imshow(I2) % Display the new equalized image, I2, in a new figure window.figure, imhist(I2) % Create a histogram of the equalized image I2.figure,plot((0:255)/255,T); % plot the transformation curve.课程: 数字图像处理实验日期: 2012年 4 月日成绩:imwrite (I2, 'pout2.png'); % Write the newly adjusted image I2 to a disk file named% ‘pout2.png’.imfinfo('pout2.png') % Check the contents of the newly written file功能:直方图均衡化的基本思想是将原始图像的直方图变换为均匀分布的形式,从而增加图像灰度的动态范围,达到增强图像对比度的效果。
遥感图像处理实习报告
遥感图像处理实习报告在当今科技飞速发展的时代,遥感技术作为获取地球表面信息的重要手段,已经在众多领域得到了广泛应用。
为了更深入地了解和掌握遥感图像处理的技术和方法,我参加了本次遥感图像处理实习。
通过这次实习,我不仅学到了专业知识,还提高了实践操作能力,对遥感技术有了更全面的认识。
一、实习目的本次实习的主要目的是让我们熟悉遥感图像处理的基本流程和方法,掌握常用的遥感图像处理软件,学会对遥感图像进行几何校正、辐射校正、图像增强、图像分类等操作,并能够运用所学知识解决实际问题,提高对遥感数据的分析和应用能力。
二、实习内容(一)数据准备在实习开始前,我们收集了一系列的遥感图像数据,包括不同传感器、不同分辨率、不同波段组合的图像。
这些数据涵盖了城市、农田、森林、水域等多种地物类型,为后续的处理和分析提供了丰富的素材。
(二)软件学习我们使用了 ERDAS IMAGINE 和 ENVI 这两款主流的遥感图像处理软件。
通过学习这两款软件的基本操作界面、功能模块和工具菜单,我们逐渐熟悉了如何导入数据、显示图像、进行图像裁剪和拼接等基本操作。
(三)几何校正几何校正是遥感图像处理中的重要环节,它可以消除由于传感器姿态、地球曲率、地形起伏等因素引起的图像几何变形。
我们首先选取了具有精确地理坐标的控制点,然后利用多项式模型对图像进行几何校正,通过不断调整参数,使校正后的图像与实际地理坐标相匹配。
(四)辐射校正辐射校正旨在消除由于传感器性能、大气散射和吸收等因素引起的图像辐射误差。
我们采用了基于直方图匹配和辐射定标的方法,对图像的亮度和对比度进行了调整,使不同时相、不同传感器获取的图像具有可比性。
(五)图像增强为了突出图像中的有用信息,我们运用了多种图像增强技术,如对比度拉伸、直方图均衡化、滤波等。
通过这些操作,图像中的地物特征更加清晰,有利于后续的分析和识别。
(六)图像分类图像分类是遥感图像处理的核心任务之一,我们尝试了监督分类和非监督分类两种方法。
实验2 图像增强(一)
end end g=uint8(g); figure(1); imshow(g,[]) [g]=graywindow('82821227',900,1000);
4/7=0.57
0.25
5/7=0.71
0.17
6/7=0.86
0.10
1
1
1
0.12
实验报告要求: 1. 实验目的 2. 实验内容,每题分开写,并标明题号,写出主要代码和问 题的分析 3. 实验小结和体会 特别提醒:
1、 当堂完成实验的小组,经老师检查提问,不用交实验报告。 2、 提高题尽量做,思考题有兴趣的同学可以试试,很有意思,做
end end end end g=mat2gray(g); >> imshow(f);
>> imhist(f);
>> [g] = im3adjust( f,70,160,0,255 ); >> imshow(g);
>> imhist(g);
>> plot(f,g);
5、 将图片 lung.bmp 进行旋转 90 度,缩小为原图一半的变换。
2、 分别做出图片 heart1 和 moon 的直方图,并对其进行均衡化。 将得到的结果图片和原图片比较,效果如何?为什么对不同的 图片进行均衡化会有如此差别?根据直方图总结什么样的图片 不适合用直方图均衡化方法进行增强。
图像增强实验报告
图像增强实验报告篇一:图像处理实验报告——图像增强实验报告学生姓名:刘德涛学号:2010051060021指导老师:彭真明日期:2013年3月31日一、实验室名称:光电楼329、老计算机楼309机房二、实验项目名称:图像增强三、实验原理:图像增强是为了使受到噪声等污染图像在视觉感知或某种准则下尽量的恢复到原始图像的水平之外,还需要有目的性地加强图像中的某些信息而抑制另一些信息,以便更好地利用图像。
图像增强分频域处理和空间域处理,这里主要用空间域的方法进行增强。
空间域的增强主要有:灰度变换和图像的空间滤波。
1.灰度变换灰度变换主要有线性拉伸、非线性拉伸等。
灰度图像的线性拉伸是将输入图像的灰度值的动态范围按线性关系公式拉伸到指定范围或整个动态范围。
令原图像f(x,y)的灰度变化范围为[a,b],线性变换后图像g(x,y)的范围为[a',b'],线性拉伸的公式为:b'?a'g(x,y)?a?[f(x,y)?a] b?a灰度图像的非线性拉伸采用的数学函数是非线性的。
非线性拉伸不是对图像的灰度值进行扩展,而是有选择地对某一灰度范围进行扩展,其他范围的灰度值则可能被压缩。
常用的非线性变换:对数变换和指数变换。
对数变换的一般形式:g(x,y)?a?ln[f(x,y)?1] blnc指数变换的一般形式:g(x,y)?bc[f(x,y)?a]?1(a,b,c用于调整曲线的位置和形状的参数。
)2.图像的空间滤波图像的空间滤波主要有图像的空域平滑和锐化。
图像的平滑是一种消除噪声的重要手段。
图像平滑的低频分量进行增强,同时抑制高频噪声,空域中主要的方法有领域平均、中值滤波、多帧相加平均等方法。
图像锐化能使图像的边缘、轮廓处的灰度具有突变特性。
图像的锐化主要有微分运算的锐化,包括梯度法和拉普拉斯法算子。
四、实验目的:1.熟悉和掌握利用Matlab工具进行数字图像的读、写、显示等数字图像处理基本步骤。
遥感数字图像处理实验报告
遥感数字图像处理及应用实验报告姓名:学号:专业:学院:学校:实验一遥感图像统计特性一、实验目的掌握遥感图像常用的统计特性的意义和作用,能运用高级程序设计语言实现遥感图像统。
二、实验内容编程实现对遥感图像进行统计特性分析,均值、方差(均方差)、直方图、相关系数等。
三、实验原理1.均值像素值的算术平均值,反映图像中地物的平均反射强度。
公式为:2.方差像素值与平均值差异的平方和,反映了像素值的离散程度。
也是衡量图像信息量大小的重要参数。
公式为:3.相关系数反映了两个波段图像所包含信息的重叠程度。
f,g为两个波段的图像。
公式为:四、实验数据及图像显示:原始图像:运行结果:实验二遥感图像增强处理一、实验目的掌握常用遥感图像的增强方法,能运用高级程序设计语言实现遥感图像的增强处理。
二、实验内容编程实现对遥感图像的IHS 变换、IHS 逆变换、进行统计特性分析,均值、方差(均方差)、直方图、相关系数等。
三、实验原理:1.IHS变换2.SPOT图像真彩色模拟模拟真彩色:通过某种形式的运算得到模拟的红、绿、蓝三个通道,然后通过彩色合成近似的产生真彩色图像。
(1)SPOT IMAGE 公司提供的方法该方法实际上是将原来的绿波段当作蓝波段,红波段(0.61-0.68 μm)仍采用原来的波段,绿波段用绿波段、红波段、红外波段的算术平均值来代替。
(2)ERDAS IMAGING 软件中的方法此法将原来的绿波段当作蓝波段,红波段仍采用原来的波段,绿波段用绿波段、红外波段按3:1 的加权算术平均值来代替。
四、实验数据及图像显示原始图像:ISH变换所的图像:SPORT真彩色图像:实验三遥感图像融合一、实验目的掌握多源遥感图像融合的原理与方法,能运用高级程序设计语言实现遥感图像的融合。
二、实验内容选择IHS 变换、PCA 变换和Brovey 变换三种方法中的一种,编程实现多源遥感图像融合,即将低空间分辨率的多光谱图像与高空间分辨率的全色图像实现融合。
图像增强的实验报告
图像增强的实验报告图像增强的实验报告引言:图像增强是数字图像处理领域中的一项重要任务。
通过改善图像的质量和清晰度,图像增强可以使我们更好地观察和分析图像中的细节。
本实验旨在探索图像增强的不同方法,并评估它们在不同场景下的效果。
实验设计:为了比较不同的图像增强方法,我们选择了一组具有不同特征的图像作为实验对象。
这些图像包括自然风景、人像和低对比度图像。
我们将使用以下三种方法进行图像增强:直方图均衡化、自适应直方图均衡化和增强对比度自适应拉伸。
实验步骤:1. 直方图均衡化:直方图均衡化是一种常用的图像增强方法,它通过重新分布图像的像素值来增强对比度。
我们首先将图像转换为灰度图像,然后计算灰度直方图。
接下来,我们使用累积分布函数对直方图进行均衡化,使得图像中的像素值分布更加均匀。
最后,我们将均衡化后的图像转换回原始图像的颜色空间。
2. 自适应直方图均衡化:直方图均衡化在某些情况下可能会导致图像的局部细节丢失。
为了解决这个问题,我们使用自适应直方图均衡化方法。
在这种方法中,我们将图像分成许多小区域,并对每个区域的直方图进行均衡化。
通过这种方式,我们可以保留图像的局部特征,并增强整体对比度。
3. 增强对比度自适应拉伸:增强对比度自适应拉伸是一种简单而有效的图像增强方法。
它通过将图像的像素值映射到一个更大的范围来增强对比度。
我们首先计算图像的平均亮度和标准差,然后使用以下公式对图像进行拉伸:enhanced_pixel = (pixel - mean) * (max_stretch / std) + mean其中,pixel是原始图像中的像素值,mean是图像的平均亮度,std是图像的标准差,max_stretch是拉伸的最大范围。
实验结果:我们将三种图像增强方法应用于不同类型的图像,并进行了对比分析。
结果显示,直方图均衡化方法在某些情况下可以显著增强图像的对比度,特别是对于低对比度图像。
然而,它可能会导致图像的噪声增加和细节丢失。
图像处理实验报告
——————————————————————————————————————————————————————班级:学号:姓名:同组姓名:指导老师:实验一 MATLAB数字图像处理初步一、实验目的与要求1.熟悉及掌握在MATLAB中能够处理哪些格式图像。
2.熟练掌握在MATLAB中如何读取图像。
3.掌握如何利用MATLAB来获取图像的大小、颜色、高度、宽度等等相关信息。
4.掌握如何在MATLAB中按照指定要求存储一幅图像的方法。
5.图像间如何转化。
二、实验原理及要求一幅图像可以被定义为一个二维函数f(x,y),其中x和y是空间(平面)坐标,f 在任何坐标处(x,y)处的振幅称为图像在该点的亮度。
灰度是用来表示黑白图像亮度的一个术语,而彩色图像是由单个二维图像组合形成的。
例如,在RGB彩色系统中,一幅彩色图像是由三幅独立的分量图像(红、绿、蓝)组成的。
因此,许多为黑白图像处理开发的技术适用于彩色图像处理,方法是分别处理三副独立的分量图像即可。
图像关于x和y坐标以及振幅连续。
要将这样的一幅图像转化为数字形式,就要求数字化坐标和振幅。
将坐标值数字化成为取样;将振幅数字化成为量化。
采样和量化的过程如图1所示。
因此,当f的x、y分量和振幅都是有限且离散的量时,称该图像为数字图像。
作为MATLAB基本数据类型的数值数组本身十分适于表达图像,矩阵的元素和图像的像素之间有着十分自然的对应关系。
——————————————————————————————————————————————————————班级:学号:姓名:同组姓名:指导老师:图1 图像的采样和量化根据图像数据矩阵解释方法的不同,MATLAB把其处理为4类:➢亮度图像(Intensity images)➢二值图像(Binary images)➢索引图像(Indexed images)➢RGB图像(RGB images)(1) 亮度图像一幅亮度图像是一个数据矩阵,其归一化的取值表示亮度。
图像处理实验报告——图像增强-推荐下载
对图像进行平滑处理,可以处理高斯噪声,但是很带来图像的边缘细节模糊。
对于具有对称特性的算子,conv2和imfilter处理的图像效果是一样的,非对称的算子,处理的效果一般不样。
对图像进行锐化处理,会得到图像的边缘部分,变化小部分对应的灰度值较小。
10、总结及心得体会:总结:通过本次的图像增强实验了解了图像的最基本的像素级的操作,对图像的变换有了一定的了解,同时增加了自己对数字图像的了解。
心得体会:一些看起来很简单的图像处理,要自己编程进行实现比不是一件很简单的事,所以对于理论要多加以实践才能更好地掌握。
11、对本实验过程及方法、手段的改进意见:如果对现有的某些简单的函数进行限制使用,要求学生自己编写,可以很大程度的增强学生的编程能力。
报告评分:指导教师签字:图1 线性拉伸变换原图和结果图图2 线性拉伸变换灰度变换曲线)图像的非线性灰度变换(指数变换)图3 指数拉伸变换原图和结果图图4 对数拉伸变换灰度变换曲线)图像的非线性灰度变换(中值滤波)图5 中值滤波原图和结果图)光电图像的空域平滑处理像像像像像像像像像像像像图7 算子的3D图)光电图像的空域高通滤波图8 平滑处理原图、加噪图和结果图图9 算子的3D图)数字图像的线性灰度变换%拉伸到15到230clc,close all,clear all;remax=230;remin=15;y=imread('cloud_24bitgry.jpg');y=rgb2gray(y);subplot(1,2,1),imshow(y);y=double(y);title('原始图像');ymax=max(max(y));ymin=min(min(y));[a,b]=size(y);%灰度变换程序for m=1:a;for n=1:b;result_image(m,n)=(remax-remin)/(ymax-ymin)*(y(m,n)-ymin)+remin;endendresult_image=uint8(result_image);subplot(1,2,2),imshow(result_image); imwrite(result_image,'灰度线性变换.jpg','jpg');%保存图像title('灰度变换图像');o=[]for x=1:255;if x<ymin;k=remin;elseif x>ymax;k=remax;elsek=(remax-remin)/(ymax-ymin)*(x-ymin)+remin;endo=[o,k];end%画变换曲线图x=1:255;figure,plot(x,o);title('灰度变换曲线');xlabel('f(x,y)'),ylabel('g(x,y)');(2)图像的非线性灰度变换(指数变换)%灰度对数变换clc,close all,clear all;imb=1.56;ima=13;imc=0.05;y=imread('Einstein.jpg');y=rgb2gray(y);subplot(1,2,1),imshow(y);title('原始图像'); y=double(y);[a,b]=size(y);%对数变换程序for m=1:a;for n=1:b;result_image(m,n)=imb^(imc*(y(m,n)-ima))-1;endendsubplot(1,2,2),imshow(result_image,[]);titl e('变换图像');imwrite(uint8(result_image),'灰度对数变换. jpg','jpg');%保存图像u=[];for x=0:255;o=imb^(imc*(x-ima))-1;u=[u,o];endx=0:255;figure(),plot(x,u);title('对数变换曲线'); xlabel('f(x,y)'),ylabel('g(x,y)');(3)图像的非线性灰度变换(中值滤波)%灰度对数变换clc,close all,clear all;imb=1.56;ima=13;imc=0.05;y=imread('lowlight_spn24.jpg');y=rgb2gray(y);subplot(1,2,1),imshow(y);title('原始图像'); [a,b]=size(y);%中值滤波变换程序o=y;for m=2:a-1;for n=2:b-1;O=[y(m-1,n-1),y(m,n-1),y(m+1,n-1),y(m-1,n),y(m,n),y(m+1,n),y(m-1,n+1),y(m,n+1),y(m+1,n+1)];o(m,n)=median(O);endendsubplot(1,2,2),imshow(o);title('滤波图像');(4)光电图像的空域平滑处理%平滑去噪clc,close all,clear all;y=imread('Einstein.jpg');y=rgb2gray(y);subplot(2,2,1),imshow(y),title('原始图像'); y=imnoise(y,'gauss',0.002);%加噪声subplot(2,2,2),imshow(y);title('加噪图像'); y=double(y);h1=1/273*[1,4,7,4,7;4,16,26,16,4;7,26,41,26,7;4,16,26,16,4;1,4,7,4,1];M=conv2(y,h1);%卷积处理图像subplot(2,2,3),imshow(uint8(M));title('卷积去噪图像');M=imfilter(y,h1);subplot(2,2,4),imshow(uint8(M));title('函数去噪图像');x=-9:10;y=-9:10;h1=imresize(h1,4,'bilinear');[X,Y]=meshgrid(x,y);figure,surfc(X,Y,h1);(5)光电图像的空域高通滤波% 图像锐化程序clc,close all,clear all;y=imread('Einstein.jpg');y=rgb2gray(y);subplot(1,3,1),imshow(y),title('原始图像'); y=double(y);h1=[-1,0,1;-1,0,1;-1,0,1];sum(sum(h1))M=conv2(y,h1);%卷积处理图像subplot(1,3,2),imshow(uint8(M));title('卷积锐化图像');M=imfilter(y,h1);subplot(1,3,3),imshow(uint8(M));title('图像锐化图像');x=-5:6;y=-5:6;h1=imresize(h1,4,'bilinear');[X,Y]=meshgrid(x,y);figure,surfc(X,Y,h1);。
图像增强技术实验报告
图像增强技术实验报告
近年来,随着数字图像处理技术的快速发展,图像增强技术在各个
领域得到了广泛的应用。
本实验旨在探究图像增强技术的原理和方法,通过实际操作加深对该技术的理解和掌握。
首先,在本实验中我们使用了常见的图像增强技术包括灰度拉伸、
直方图均衡化、滤波等方法。
针对不同的图像特点和需求,我们选择
了不同的增强方法进行处理,并分析比较它们的效果和适用场景。
在实验过程中,我们首先对原始图像进行了灰度拉伸处理,通过拉
伸灰度范围来增强图像的对比度,使得图像中的细节更加清晰。
接着,我们运用直方图均衡化技术,将图像的像素分布均匀化,从而提高了
图像的整体亮度和细节展现。
同时,我们还尝试了一些滤波方法,如
均值滤波、中值滤波等,来去除图像中的噪声和平滑图像。
通过实验数据分析,我们发现不同的图像增强方法在处理不同类型
的图像时会产生不同的效果。
比如对于对比度较低的图像,灰度拉伸
和直方图均衡化能够取得比较好的增强效果;而对于受到噪声干扰的
图像,则需要采用滤波方法进行去噪处理。
综合以上实验结果,我们深入探讨了图像增强技术的优缺点以及适
用范围。
图像增强技术在医疗影像、航空航天、安防监控等领域具有
广泛的应用前景,在实际应用中需要根据图像特点和需求选择合适的
增强方法,以达到最佳的效果。
通过本次实验,我们对图像增强技术有了更深入的了解,并在实践中提升了我们的技术水平和解决问题的能力。
希望今后能够进一步拓展应用领域,将图像增强技术发挥到更大的作用,为社会发展和人类福祉做出更大的贡献。
图像处理实验报告实验报告
一、实验目的1、熟悉位图文件的文件格式,掌握位图数据读取并在屏幕上显示的方法。
2、掌握在计算机上进行直方图均衡化以及线性增强的方法。
3、通过实验体会一些主要的分割算子对图像处理的效果,以及各种因素对分割效果的影响。
4、熟练掌握应用MATLAB软件编程进行图像处理。
二、实验环境一台pc机,MATLAB软件编程环境。
三、实验内容1、图像的现实和读取:运用MATLAB软件编程,读取指定的256色灰度图像的数据,显示该文件的文件头和信息头数据的值,并在屏幕上显示该图象。
2、直方图的显示和均衡化:运用MATLAB软件编程,实现内容1中图像直方图的显示和均衡化。
3、图像分割:使用Prewitt 算子、Sobel 算子对图像进行边缘检测处理,完成图像分割实验。
4、图像增强:编写线性增强的程序及相应的显示程序,对指定图象进行线性增强,将原始图象及增强后的图象都显示于屏幕上,比较增强的效果。
四、实验步骤1、打开计算机,启动MATLAB程序。
2、图像读取与显示。
MATLAB中从图像文件中读取数据用函数imread(),这个函数的作用就是将图像文件的数据读入矩阵中,用imshow()函数显示出来。
imread('C:\Users\weixiaoxu\Desktop\图像处理\图像处理.jpg','jpg');imshow('C:\Users\weixiaoxu\Desktop\图像处理\图像处理.jpg');title('原图像')3、直方图的显示A=imread('C:\Users\weixiaoxu\Desktop\图像处理\图像处理.jpg','jpg'); figure;imhist(A),title('对应直方图')4、直方图均衡化MATLAB提供了histeq函数(自动直方图均衡化)I=imread('C:\Users\weixiaoxu\Desktop\图像处理\图像处理.jpg','jpg'); K=histeq(I);figure;imshow(K),title('经直方图均衡化后的图')figure;imhist(K),title('直方图均衡化后的直方图')5、图像的边缘检测用Sobel算子做边缘检测[A,map]=imread('C:\Users\weixiaoxu\Desktop\图像处理\图像处理.jpg','jpg'); image=double(A);u=zeros(1,9);k=zeros(1,9);for i=2:255,for j=2:255,u(1)=0*image(i,j);u(2)=2*image(i,j+1);u(3)=1*image(i-1,j+1);u(4)=0*image(i-1,j);u(5)=-1*image(i-1,j-1);u(6)=-2*image(i,j-1);u(7)=-1*image(i+1,j-1);u(8)=0*image(i+1,j);u(9)=1*image(i+1,j+1);rimage1(i,j)=abs(sum(u));k(1)=0*image(i,j);k(2)=0*image(i,j+1);k(3)=1*image(i-1,j+1);k(4)=2*image(i-1,j);k(5)=1*image(i-1,j-1);k(6)=0*image(i,j-1);k(7)=-1*image(i+1,j-1);k(8)=-2*image(i+1,j);k(9)=-1*image(i+1,j+1);rimage2(i,j)=abs(sum(k));xiaoqiu(i,j)=rimage1(i,j)+rimage2(i,j);end,end,figure,imshow(xiaoqiu,map),title('Sobel锐化');用prewitt算子做边缘检测[A,map]=imread('C:\Users\weixiaoxu\Desktop\图像处理\图像处理.jpg','jpg'); image=double(A);u=zeros(1,9);k=zeros(1,9);for i=2:255,for j=2:255,u(1)=0*image(i,j);u(2)=1*image(i,j+1);u(3)=1*image(i-1,j+1);u(4)=0*image(i-1,j);u(5)=-1*image(i-1,j-1);u(6)=-1*image(i,j-1);u(7)=-1*image(i+1,j-1);u(8)=0*image(i+1,j);u(9)=1*image(i+1,j+1);rimage1(i,j)=abs(sum(u));k(1)=0*image(i,j);k(2)=0*image(i,j+1);k(3)=-1*image(i-1,j+1);k(4)=1*image(i-1,j);k(5)=1*image(i-1,j-1);k(6)=0*image(i,j-1);k(7)=-1*image(i+1,j-1);k(8)=-1*image(i+1,j);k(9)=-1*image(i+1,j+1); rimage2(i,j)=abs(sum(k));xiaoqiu(i,j)=rimage1(i,j)+rimage2(i,j);end,end,figure,imshow(xiaoqiu,map),title('prewitt边缘检测');7、图像的处理均值滤波I=imread('C:\Users\weixiaoxu\Desktop\图像处理\图像处理.jpg','jpg');h=fspecial('average',3);I2=uint8(round(filter2(h,I)));imshow(I2),title('均值滤波')中值滤波I=imread('C:\Users\weixiaoxu\Desktop\图像处理\图像处理.jpg','jpg');I3=medfilt2(I,[3,3]);imshow(I3),title('中值滤波')五、实验总结通过本次试验基本掌握了应用MATLAB软件编程进行图像处理的方法,熟悉了位图文件的文件格式,掌握了位图数据读取显示,直方图均衡化以及线性增强的方法,并学会了运用分割算子对图像进行边缘检测和图像分割处理的方法。
实验影像技术实习报告
一、实习背景随着现代医学的不断发展,影像技术在临床诊断、治疗和科研等领域发挥着越来越重要的作用。
为了更好地了解影像技术的基本原理和应用,提高自己的实践能力,我于XX年XX月XX日至XX年XX月XX月在XX医院影像科进行了为期一个月的实习。
二、实习目的1. 了解影像技术的基本原理和发展趋势;2. 掌握影像设备的使用方法和操作技巧;3. 学习影像图像的采集、处理和分析方法;4. 培养临床思维和团队协作能力。
三、实习内容1. 影像设备操作实习期间,我熟悉了X光机、CT、MRI、超声等影像设备的操作流程。
在带教老师的指导下,我掌握了设备的基本操作,如设备启动、参数设置、图像采集等。
2. 影像图像采集在实习过程中,我参与了多种影像图像的采集工作。
例如,X光平片、CT扫描、MRI成像等。
通过实际操作,我了解了不同影像设备的成像原理和适用范围,掌握了图像采集的基本技巧。
3. 影像图像处理实习期间,我学习了影像图像处理的基本方法,如图像增强、滤波、锐化等。
通过实践操作,我掌握了图像处理软件的使用,如Photoshop、MATLAB等。
4. 影像图像分析在实习过程中,我参与了部分影像图像的分析工作。
在老师的指导下,我学习了如何根据图像特征判断病变部位、性质和范围,为临床诊断提供依据。
5. 临床实践在实习期间,我跟随医生参与临床工作,观察了多种疾病的影像学表现。
通过临床实践,我提高了自己的临床思维能力,为今后的临床工作打下了基础。
四、实习收获1. 理论知识与实践相结合:通过实习,我深刻体会到理论知识与实践操作的重要性,二者相辅相成,缺一不可。
2. 提高影像技术操作能力:在实习过程中,我熟练掌握了影像设备的操作方法和图像处理技巧,为今后从事影像技术工作奠定了基础。
3. 培养临床思维能力:通过临床实践,我提高了自己的临床思维能力,为今后的临床工作打下了基础。
4. 增强团队协作能力:在实习过程中,我学会了与同事沟通、协作,共同完成工作任务。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验二图像增强处理实习报告
1.实验目的和内容
1.1.实验目的
掌握图像合成和显示增强的基本方法,理解存储的图像数据与显示的图像数据之间的1.2.实验要求
熟练根据图像中的地物特征进行图像合成显示、拉伸、图像均衡化等显示增强操作。
理解直方图的含义,能熟练的利用直方图进行多波段的图像显示拉伸增强处理。
1.3.软件和数据
ENVI 软件。
TM 图像数据。
上次实验合成后的图像数据文件AA。
1.4.实验内容
图像的彩色合成显示
图像的基本拉伸方法
图像均衡化方法
图像规定化
2.实验过程
通过合成和拉伸增强显示图像中的信息。
2.1.图像合成
图像合成方法:伪彩色合成、彩色合成两种方式。
其中彩色合成包括:真彩色合成、假彩色合成、模拟真彩色合成。
操作:
使用(4,3,2)进行RGB 合成显示图像。
图像窗口为#1。
移动图像窗口的红色选框到玄武湖,将光标十字放在红框内,双击,显示光标位置窗口。
该窗口中出现了Scrn 和Data,二者后面的RGB 的值是不同的。
2.1.1伪彩色合成
在新的窗口显示第4 波段图像,窗口为#2。
操作:
菜单:窗口菜单Tools-Color Mapping-Density slice…,选择Band 4,确定。
在“Density Slice”窗口中,点击“应用”按钮,窗口#2 的图像变成了彩色。
设置默认的分级数为3 个:在“Density Slice”窗口,点击Options-Set number of default range,输入3,确定。
点击Options-Apply default range,点击Apply 按钮。
查看窗口#2 内的变化。
重复上面步骤,设置分级数为10,查看图像的变化。
基本的特征是:长江是绿色的,玄武湖是红色的。
在新的窗口显示波段4,窗口编号为#3。
菜单:窗口菜单Tools-Color Mapping-ENVI Color table…
依次点击Color Tables 下的颜色方案列表,查看#3 图像的变化。
2.1.2真彩色合成
TM 图像的3,2,1 分别对应R,G,B 三个波段范围,所以,(3,2,1)的合成就是真彩色合成。
使用(3,2,1)进行RGB 合成显示。
窗口为#4。
2.1.3假彩色合成
任意三个波段合成显示,如果不是真彩色,那么就是假彩色。
窗口#1 中的(4,3,2)合成就是标准的假彩色合成。
操作:
使用(5,4,2)进行RGB 合成显示。
窗口为#5。
将#1 到#5 窗口连接显示,比较不同合成方式的差异:在#5 窗口,点击Tool-Link-LinkDisplay…。
按照#1-#5 的顺序排列各个窗口以便于显示。
2.1.4模拟真彩色合成
本部分内容需要利用代数运算的知识,在图像变换部分进行练习。
关闭所有的窗口:点击ENVI 菜单Window-close all display windows
2.2.图像拉伸
图像拉伸包括:线性拉伸,2%拉伸,高斯拉伸,平方根拉伸,交互拉伸等,常用的是2%拉伸和交互拉伸。
数据:图像AA。
流程:图像合成显示-图像拉伸-图像保存。
其中,图像保存并不总是必要的。
菜单:图像窗口中的“Enhance”。
拉伸输入的数据可以是:
全景窗口Scroll
图像窗口Image
放大窗口Zoom
2.2.1.窗口图像拉伸
按照(4,3,2)彩色合成显示图像。
窗口编号为#1。
依次点击菜单中Scroll,Image,Zoom 对应linear 2%拉伸,查看三个窗口显示的变化。
Image
Zoom
Scroll
2.2.2.
3.实验结果分析
3.1.问题:Scrn 和Data 两个值分别是什么含义?为什么不同?
Scrn为屏幕显示的颜色的RGB,Data是源数据图像的RGB。
3.2.在假彩色合成时,那种颜色能够较好地突出水陆差异?
RAINBOW彩色表
3.3.哪种合成方法更好的突出了植被与水体的差异?
假彩色合成
3.4.
3.5.。