八年级数学-条形统计图与扇形统计图练习题(含解析)

合集下载

扇形统计图练习及答案

扇形统计图练习及答案

1、要反映出优秀、良好、及格和不及格人数占总人数的百分之几,应选用()统计图。

2、要绘制一幅能反映出全校各年级男女生人数的统计图,你认为绘制成()统计图较好。

3、右图是一件毛衣各种毛占总重量的统计图,根据右
图回答问题。

(1)()的含量最多,()的含量最少。

(2)兔毛含量比涤纶少占总数的()%。

(3)这件毛衣重400克,羊毛有()克,兔毛
有()克。

4、如下图,是王大伯家的蔬菜产量统计图,看图回答下面各题。

(1)茄子占总产量的()%。

(2)茄子有48千克,黄瓜有()千克,青菜有()千克。

(3)茄子千克数占黄瓜的()
(),占青菜的
()
()。

5、右图是一个鸡蛋各部分重量的统计图。

如果一个鸡蛋重60克,则:(9分)
(1)它的各部分分别重多少千克?
(2)蛋白比蛋黄多占鸡蛋的百分之几?
(3)其中蛋黄的质量比蛋白少百分之几?(结果保留一位小数)
1、扇形
2、复式条形
3、(1)羊毛;棉 (2)17 (3)240;32
4、(1)5 (2)336;576 (3)71;121
5、
(1)蛋壳:60×15%=9克 =0.009千克 蛋白:60×53%=31.8克 =0.0318千克 蛋黄:60×32%=19.2克=0.0192千克 (2)53%-32%=21% (3)(31.8-19.2)÷31.8≈39.6%。

初中数学八年级下册第二十章数据的分析单元检测练习试题一(含答案) (46)

初中数学八年级下册第二十章数据的分析单元检测练习试题一(含答案) (46)

初中数学八年级下册第二十章数据的分析单元检测练习试题一(含答案)某学校准备给教职工发放端午节福利,现随机对学校的一些教职工进行了粽子口味喜好的统计,并将统计结果绘制成如下图所示不完整的统计图,已知鲜肉粽15元/包,蛋黄粽12元/包,小枣粽和豆沙粽均为9元/包,调查中发现,每100人中,有40人喜欢蛋黄粽.(1)求出喜欢小枣粽的人数,并补全条形统计图;(2)假设此学校有教职工1000人,估计全校喜欢蛋黄粽的人数;(3)在(2)的基础上,学校预算1000元钱是否够买此次的福利粽;若不够,还差多少钱?【答案】(1)喜欢小枣粽的人数为120人,补全条形统计图如解图所示;见解析;(2)估计喜欢蛋黄粽的人数为400人;(3)学校预算的10000元不够,还需要2000元.【解析】【分析】(1)根据每100人中,有40人喜欢蛋黄粽,可以求出喜欢蛋黄粽的比例为40%,统计图中喜欢蛋黄粽的有240人,用上面所得比例估计总人数中喜欢蛋黄粽的人数比例,求出总人数,用总人数分别减去喜欢那三种粽子的人数即可解答;(2)用1000×蛋黄粽的人数占总比40%即可解答;(3)根据600人中喜欢每种粽子的人数所占比例,一次估算出1000人中,喜欢每种粽子的人数,从而求出每种粽子的数量,分别乘以各自单价,从而求出各自总价,进而解答.【详解】(1)由题知,抽查的总人数为:24040%600÷=(人)∴喜欢小枣粽的人数为60018060240120---=(人).∴补全条形统计图如解图所示;(2)根据题意,喜欢蛋黄粽的人数占总比为40%,估计喜欢蛋黄粽的人数为100040%400⨯=(人);(3)由(2)知,全校有1000名教职工,则喜欢鲜肉粽的人数有:1801000300600⨯=(人),喜欢蛋黄粽的有:100040%400⨯=(人),喜欢小枣粽的有:1201000200600⨯= (人),喜欢豆沙粽的有:601000100600⨯=(人),∴学校购买各类粽子所需要的费用为:30015400121009200912000⨯+⨯+⨯+⨯=元,∴学校预算的10000元不够,还需要12000100002000-=元.【点睛】本题考查条形统计图,突破此类问题的关键是数据统计图(表)的分析.错因分析:对统计图表中的数量关系理解不清,属于中等题..92.水果基地为了选出适应市场需求的小西红柿秧苗,在条件基本相同的情况下,把两个品种的小西红柿秧苗各300株分别种植在甲、乙两个大棚.对市场最为关注的产量和产量的稳定性进行了抽样调査,过程如下,请补充完整.收集数据从甲、乙两个大棚各收集了25株秧苗上的小西红柿的个数:甲26 32 40 51 44 74 44 63 7374 81 54 6241 33 54 43 34 51 63 64 73 6454 33乙27 35 46 55 48 36 47 68 8248 57 66 7527 36 57 57 66 58 61 71 38 4746 71整理数据按如下分组整理、描述这两组样本数据:(说明:45个以下为产量不合格,45个及以上为产量合格,其中45~65个为产量良好,65~85个为产量优秀)分析数据组样本数据的平均数、众数和方差如下表所示:得出结论a.估计甲大棚产量良好的秧苗数为________株;b.可以推断出________大棚的小西红柿秧苗品种更适应市场需求,理由为________________.(至少从两个不同的角度说明推断的合理性)【答案】120,乙;乙大棚里的秧苗众数产量比甲大棚里的多;乙大棚的秧苗产量方差比甲大棚的秧苗产量方差小,秧苗产量更稳定(答案不唯一)【解析】【分析】a.先完善两组样本数据表格,然后用样本数据中甲大棚产量良好的小西红柿株数÷25×300即得答案;b.从众数和方差两个方面进行比较即得答案.【详解】解:整理数据按如下分组整理、描述这两组样本数据:得出结论:a .估计甲大棚产量良好的秧苗数为5530012025+⨯=; b . ∵乙大棚里的秧苗众数产量是57,甲大棚里的秧苗众数产量是54,57>54;乙大棚里的秧苗产量方差是:215.04,甲大棚里的秧苗产量方差是:236.24,215.04<236.24;∴可以推断出乙大棚的小西红柿秧苗品种更适应市场需求;理由是:乙大棚里的秧苗众数产量比甲大棚里的多;乙大棚的秧苗产量方差比甲大棚的秧苗产量方差小,秧苗产量更稳定(答案不唯一).故答案为:a .120;b .乙,乙大棚里的秧苗众数产量比甲大棚里的多;乙大棚的秧苗产量方差比甲大棚的秧苗产量方差小,秧苗产量更稳定(答案不唯一).【点睛】错因分析:1.整理数据时记数错误;2.得出结论时没有掌握平均数、众数和方差的意义,没有掌握用样本估计总体.本题考查了平均数、众数、方差和用样本估计总体等知识,属于常考题型,熟练掌握基本知识是解题关键.93.甲、乙两名射击运动员在某次训练中各射击10发子弹,成绩如表:81且x乙=8,S乙2=1.8,S甲2=1.2,根据上述信息完成下列问题:(1)乙运动员射击训练成绩的众数是________,中位数是________.(2)求甲运动员射击成绩的平均数,并判断甲、乙两人在本次射击成绩的稳定性.【答案】(1)7;7.5;(2)甲在本次射击成绩的较稳定.【解析】试题分析:(1)根据出现次数最多的数为众数求出众数,然后从小到大排列这组数,取中间一个(共有奇数个)或两个的平均数(共有偶数个),即可得到中位数;(2)利用平均数的公式求出平均数,然后根据方差越小数据越稳定,可判断.试题解析:(1)乙运动员的成绩按照从小到大顺序排列为6,7,7,7,7,8,9,9,10,10,则乙运动员射击训练成绩的众数是7,中位数是(7+8)÷2=7.5;故答案为7;7.5;(2)甲运动员成绩的平均数为1×(8+9+7+9+8+6+7+8+10+8)=8.210(发);∵S乙2=1.8>S甲2=1.2,∴甲在本次射击成绩的较稳定.94.联合国规定每年的6月5日是“世界环境日”,为配合今年的“世界环境日”宣传活动,某实验中学课外活动小组对全校师生开展了“爱好环境,从我做起”为主题的问卷调查,并将调查结果分析整理后完成了下面的两个统计图.其中:A.能将垃圾放到规定的地方,而且还会考虑垃圾的分类;B.能将垃圾放到规定的地方,但不会考虑垃圾的分类;C.偶尔将垃圾放在规定的地方;D.随手乱扔垃圾.根据以上信息回答下列问题:(1)该校课外活动小组共调查了多少人?并补全条形统计图;(2)如果该校共有师生3060人,那么随手乱扔垃圾的约有多少人?【答案】(1)30人;详见解析;(2)随手乱扔垃圾的约有306人.【解析】【分析】(1)由条形统计图知,B种情况的有150人,由扇形统计图可知,B种情况的占总人数的50%,从而求出该校课外活动小组共调查的总人数.由统计图可求得D种情况的人数.(2)由(1)可知,D种情况的人数为300-(150+30+90)=30(人),从而求得D种情况的占总人数的百分比.已知该校共有师生3060人,便可求出随手乱扔垃圾的人数.【详解】解:(1)由统计图可知B种情况的有150人,占总人数的50%,所以调查的总人数为150÷50%=300(人)D种情况的人数为300﹣(150+30+90)=30人;(2)因为该校共有师生3060人.所以随手乱扔垃圾的人约为:3060×30÷300=306(人).答:随手乱扔垃圾的约有306人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.95.某单位组织职工观光旅游,旅行社的收费标准是:如果人数不超过25人,人均旅游费用为100元;如果超过25人,每增加1人,人均旅游费用降低2元,但人均旅游费用不得低于70元.该单位按旅行社的收费标准组团,结束后,共支付给旅行社2700元.求该单位这次共有多少人参加旅游?【答案】该单位这次参加旅游的共有30人.【解析】【分析】设该单位这次参加旅游的共有x人.因为100×25=2500<2700,所以x >25,根据题意可列方程得,[100-2(x-25)]x=2700,解方程即可求解。

八年级下册数学同步练习题库:数据的集中趋势(简答题:较易)

八年级下册数学同步练习题库:数据的集中趋势(简答题:较易)

数据的集中趋势(简答题:较易)1、“热爱劳动,勤俭节约”是中华民族的光荣传统,某小学校为了解本校3至6年级的3000名学生帮助父母做家务的情况,以便做好引导和教育工作,随机抽取了200名学生进行调查,按年级人数和做家务程度,分别绘制了条形统计图(图1)和扇形统计图(图2).(1)四个年级被调查人数的中位数是多少?(2)如果把“天天做”、“经常做”、“偶尔做”都统计成帮助父母做家务,那么该校3至6年级学生帮助父母做家务的人数大约是多少?(3)在这次调查中,六年级共有甲、乙、丙、丁四人“天天帮助父母做家务”,现准备从四人中随机抽取两人进行座谈,请用列表法或画树状图的方法求出抽取的两人恰好是甲和乙的概率.2、某校在开展读书交流活动中全体师生积极捐书.为了解所捐书籍的种类,对部分书籍进行了抽样调查,李老师根据调查数据绘制了如图所示不完整统计图.请根据统计图回答下面问题:(1)本次抽样调查的书籍有多少本?请补全条形统计图;(2)求出图1中表示文学类书籍的扇形圆心角度数;(3)本次活动师生共捐书1200本,请估计有多少本科普类书籍?3、为了了解某学校九年级学生每周平均课外阅读时间的情况,随机抽查了该学校九年级m名同学,对其每周平均课外阅读时间进行统计,绘制了如下条形统计图(图一)和扇形统计图(图二):(1)根据以上信息回答下列问题:①求m值.②求扇形统计图中阅读时间为5小时的扇形圆心角的度数.③补全条形统计图.(2)求出这组数据的平均数.4、一销售某品牌冰箱的公司有营销人员14人,销售部为制定销售人员月销售冰箱定额(单位:台),统计了14人某月的销售量如下表:(1)这14位营销员该月销售冰箱的平均数、众数和中位数分别是多少?(2)你认为销售部经历给这14为营销员定出每月销售冰箱的定额为多少台才比较合适?并说明理由. 5、某公司招聘一名公关人员,应聘者小王参加面试和笔试,成绩(100分制)如下表所示:(1)请计算小王面试平均成绩;(2)如果面试平均成绩与笔试成绩按6:4的比确定,请计算出小王的最终成绩.6、从全校1200名学生中随机选取一部分学生进行调查,调查情况:A .上网时间小时;B .1小时<上网时间小时;C .4小时<上网时间小时;D .上网时间>7小时.统计结果制成了如图统计图:(1)参加调查的学生有 人;(2)请将条形统计图补全;(3)请估计全校上网不超过7小时的学生人数.7、某校要在甲、乙两名学生中选拔一名参加市级歌唱比赛,对两人进行一次考核,两人的唱功、舞台形象、歌曲难度评分统计如下表所示,依次按三项得分的5﹕2﹕3确定最终成绩,请你计算他们各自最后得分,并确定哪位选手被选拔上.8、在“全民读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图,请根据相关信息,解答下列问题:(直接填写结果)(1)本次调查获取的样本数据的众数是 ; (2)这次调查获取的样本数据的中位数是 ;(3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有 人.9、近年来,中学生的身体素质普遍下降,某校为了提高本校学生的身体素质,落实教育部门“在校学生每天体育锻炼时间不少于1小时”的文件精神,对部分学生的每天体育锻炼时间进行了调查统计.以下是本次调查结果的统计表和统计图.(1)本次被调查的学生数是人;(2)统计表中a的值为;(3)各组人数的众数是;(4)根据调查结果,请你估计该校2400名学生中每天体育锻炼时间不少于1小时的学生人数.10、为了了解温州市中学生开展研究性学习的情况,抽查了某中学九年级甲、乙两班的部分学生,了解他们在一个月内参加研究性学习的情况,结果统计如下:(1)在这次抽查中甲班被抽查了人,乙班被抽查了人;(2)被抽查的学生中,甲班学生参加研究性学习的平均次数为次,中位数是次,乙班学生参加研究性学习的平均次数为次,中位数是次;(3)根据以上信息,用你学过的统计知识,推测甲、乙两班在开展研究性学习方面哪个班级更好一些?11、学期末,某班评选一名优秀学生干部,下表是班长、学习委员和团支部书记的得分情况:假设在评选优秀干部时,思想表现、学习成绩、工作能力这三方面的重要比为3:3:4,通过计算说明谁应当选为优秀学生干部.12、一位射击运动员在10次射击训练中,命中靶的环数如图.请你根据图表,完成下列问题:(1)补充完成下面成绩表单的填写:(2)求该运动员这10次射击训练的平均成绩.13、(8分)小青在九年级上学期的数学成绩如下表所示:(1)计算该学期的平时平均成绩;(2)如果学期的总评成绩是根据下图所示的权重计算,请计算出小青该学期的总评成绩。

(压轴题)初中数学八年级数学上册第六单元《数据的分析》测试题(答案解析)

(压轴题)初中数学八年级数学上册第六单元《数据的分析》测试题(答案解析)

一、选择题1.下表是某地援鄂医疗人员的年龄分布年龄/岁29303132m频数152018m,mA.众数、中位数B.众数、方差C.平均数、方差D.平均数、中位数2.某校调查了20名男生某一周参加篮球运动的次数,调查结果如表所示,那么这20名男生该周参加篮球运动次数的平均数与中位数分别是()次数2345人数22106A.4次,4次B.3.5次,4次C.4次,3.5次D.3次,3.5次3.随着体育中考的临近,我校随机地调查了50名学生,了解他们一周在校的体育锻炼时间,并根据数据绘成统计图如下,则关于这50个数据的说法错误的是()A.平均数是9B.众数是9C.中位数是9D.方差是94.八年级一,二班的同学在一次数学测验中的成绩统计情况如下表:班级参加人数中位数平均数方差一508480186二508580161于一班(优生线85分);③一班学生的成绩相对稳定.其中正确的是()A.②③B.①②C.①③D.①②③5.已知一组数据x1,x2,x3,把每个数据都减去2,得到一组新数据x1-2,x2-2,x3-2,对比这两组数据的统计量不变的是()A .平均数B .方差C .中位数D .众数6.在学校的一次年级数学统考中,八(1)的平均分为110 分,八(2)的平均分为90分,若两个班的总分相同,则两个班的平均分是( ) A .80分B .99分C .100分D .110分7.学习勾股定理时,数学兴趣小组设计并组织了“勾股定理的证明”的比赛,全班同学的比赛得分统计如表: 得分(分) 60 70 80 90 100 人数(人)8121073则得分的中位数和众数分别为( ) A .75,70B .75,80C .80,70D .80,808.若一组数据1a ,2a ,3a 的平均数为4,方差为3,那么数据12a +,22a +,32a +的平均数和方差分别是( ) A .4, 3B .6, 3C .3, 4D .6 59.已知:x 1,x 2,x 3...x 10的平均数是a ,x 11,x 12,x 13...x 50的平均数是b ,则x 1,x 2,x 3...x 50的平均数是( ) A .a +bB .2a b+ C .105060a b+ D .104050a b+ 10.射击训练中,甲、乙、丙、丁四人每人射击10次,平均环数均为8.7环,方差分别为2=0.51S 甲,2=0.41S 乙,2=0.62S 丙,2=0.45S 丁,则四人中成绩最稳定的是( ) A .甲 B .乙 C .丙 D .丁11.某校5个环保小队参加植树活动,平均每组植树10棵,已知第一、二、三、五组分别植树9棵、12棵、9棵、8棵,则第四小组植树( ) A .7棵B .9棵C .10棵D .12棵12.已知123,,x x x 的方差是1,数据12323,23,23x x x +++的方差是( ) A .1B .2C .4D .8二、填空题13.一组数据:9、12、10、9、11、9、10,则它的方差是_____.14.已知x 1,x 2…x 10的平均数是a ;x 11 ,x 12,…x 30的平均数是b ,则x 1,x 2…x 30的平均数是____.15.若3,2,x ,5的平均数是4,则x= _______.16.数据6,5,x ,4,7的平均数是5,那么这组数据的方差为________;17.小明在“生活劳动技能大赛之今天我当厨”项目比赛中,六位评委给他的分数如下表: 评委代号 Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ 评分809080959090这组分数的中位数是__________,众数是___________.18.下面是某校八年级(1)班一组女生的体重(单位:kg )36 35 45 42 33 40 42,这组数据的平均数是____,众数是_____,中位数是_____. 19.若一组数据123,,n x x x x ⋯⋯的平均数是a ,方差是b ,则1232323,2323n x x x x ---⋯⋯-、的平均数是_____________,方差是__________.20.某招聘考试成绩由笔试和面试组成,笔试占成绩的60%,面试占成绩的40%.小明笔试成绩为95分,面试成绩为85分,那么小明的最终成绩是_____.三、解答题21.某校为了了解初中学生每天的睡眠时间(单位为小时),随机调查了该校的部分初中学生,根据调查结果,绘制出如图统计图.请根据相关信息,解答下列问题:(1)本次接受调查的初中学生人数为 人,扇形统计图中的m = ,条形统计图中的n = ;(2)求统计调查的初中学生每天睡眠时间的平均数和方差.22.某山区中学280名学生参加植树节活动,要求每人植3至6棵,活动结束后随机抽查了若干名学生每人的植树量,并分为四种类型,A :3棵;B :4棵;C :5棵;D :6棵,将各类的人数绘制成扇形图(如图1)和条形图(如图2).回答下列问题:(1)这次调查一共抽查了______名学生的植树量;请将条形图补充完整; (2)被调查学生每人植树量的众数是______棵、中位数是______棵; (3)求被调查学生每人植树量的平均数,并估计这280名学生共植树多少棵? 23.小明与小东是某中学篮球队的队员,在最近五场球赛中的得分如表所示:第一场第二场第三场第四场第五场小明10139810小东12213212平均数中位数众数方差小明1010 2.8小东101232.4(3)若小明的下一场球赛得分是16分,则小明六场球赛得分的平均数、中位数、众数、方差分别是多少?24.为贯彻落实党中央关于全面建成小康社会的战略部署,某贫困地区的广大党员干部深入农村积极开展“精准扶贫”工作.经过多年的精心帮扶,截至2019年底,按照农民人均年纯收入3218元的脱贫标准,该地区只剩少量家庭尚未脱贫:现从这些尚未脱贫的家庭中随机抽取50户,统计其2019年的家庭人均年纯收入,得到如下图所示的条形图.(1)如果该地区尚未脱贫的家庭共有1000户,试估计其中家庭人均年纯收入低于2000元(不含2000元)的户数;(2)估计2019年该地区尚未脱贫的家庭人均年纯收入的平均值;(3)2020年初,由于新冠疫情,农民收入受到严重影响,上半年当地农民家庭人均月纯收入的最低值变化情况如上面的折线图所示.为确保当地农民在2020年全面脱贫,当地政府积极筹集资金,引进某科研机构的扶贫专项项目.据预测,随着该项目的实施,当地农民自2020年7月开始,以后每月家庭人均月纯收入都将比上一个月增加20元.已知2020年农村脱贫标准为农民人均年纯收入4000元,试根据以上信息预测该地区所有贫困家庭能否在2020年实现全面脱贫.25.某中学全校学生参加了“交通法规”知识竞赛,为了解全校学生竞赛成绩的情况,随机抽取了一部分学生的成绩,分成四组:A :6070x ≤<;B :7080x ≤<;C :8090x ≤<;D :90100x ≤≤(1)请将条形统计图补充完整;(2)在扇形统计图中,计算出D :90100x ≤≤这一组对应的圆心角是_______度; (3)所抽取学生成绩的中位数在哪个组内,并说明理由;(4)若该学校有1500名学生,估计这次竞赛成绩在A :6070x ≤<组的学生有多少人?26.在一次广场舞比赛中,甲、乙两个队参加表演的女演员的身高(单位:cm )分别是甲队:163 165 165 164 168 乙队:162 164 164 167 168(1)求甲队女演员身高的平均数、中位数﹑众数;(2)计算两队女演员身高的方差,并判断哪个队女演员的身高更整齐?【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】由频数分布表可知后两组的频数和为18,即可得知总人数,结合前两组的频数知出现次数最多的数据及中位数,进而可得答案. 【详解】解:由表可知,年龄为31岁与年龄为32岁的频数和为m +18−m =18, 则总人数为:15+20+18=53,故该组数据的众数为30岁,中位数为:30岁,即对于不同的m ,关于年龄的统计量不会发生改变的是众数和中位数, 故选:A . 【点睛】本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.2.A解析:A【分析】加权平均数:若n个数x1,x2,x3,…,x n的权分别是w1,w2,w3,…,w n,则(x1w1+x2w2+…+x n w n)÷(w1+w2+…+w n)叫做这n个数的加权平均数,依此列式计算即可求出参加篮球运动次数的平均数,根据中位数的定义,将这组数据按从小到大或从大到小排列,处在中间位置的数据是中位数,当数据的个数为偶数时,中间两个数据的平均数为这组数据的中位数.【详解】解:(2×2+3×2+4×10+5×6)÷20=(4+6+40+30)÷20=80÷20=4(次).由于这组数据共有20个,所以中位数为第10和11个数据的平均数,因此这组数据的中位数为(4+4)÷2=4(次)故选:A.【点睛】本题考查的是加权平均数和中位数的求法.本题易出现的错误是求2,3,4,5这四个数的平均数,对平均数的理解不正确,掌握相关定义是解题的关键.3.D解析:D【分析】利用加权平均数公式、方差公式以及众数、中位数的定义即可求解.【详解】解:A、平均数是:27128209161050⨯+⨯+⨯+⨯=9,故命题正确;B、众数是9,命题正确;C、中位数是9,命题正确;D、方差是:150[2(7-9)2+12(8-9)2+20(9-9)2+16(10-9)2]=0.72,故命题错误;故选:D.【点睛】本题考查了加权平均数公式、方差公式以及众数、中位数的定义,理解方差的计算公式是关键.4.B解析:B【分析】根据平均水平的判断主要分析平均数;优秀人数的判断从中位数不同可以得到;波动大小比较方差的大小. 【详解】解:从表中可知,平均成绩都是80,故①正确;一班的中位数是84,二班的中位数是85,由于优生线85分,故二班优生人数多于一班,故②正确;一班的方差大于二班的,又说明一班的波动情况大,所以③错误. 故选:B 【点睛】本题考查了平均数,中位数,方差的应用.解答关键是按照相关定义进行判定.5.B解析:B 【分析】根据平均数与方差的计算公式、中位数与众数的定义即可得. 【详解】由中位数与众数的定义得:中位数和众数均会变化 原来一组数据的平均数为1233x x x x ++= 新的一组数据的平均数为1231232222233x x x x x x x -+-+-++=-=-则这两组数据的平均数发生变化原来一组数据的方差为22221231()()()3S x x x x x x ⎡⎤=-+-+-⎣⎦新的一组数据的方差为2221231(22)(22)(22)3x x x x x x ⎡⎤--++--++--+⎣⎦2221231()()()3x x x x x x ⎡⎤=-+-+-⎣⎦ 2=S则这两组数据的方差不变 故选:B . 【点睛】本题考查了平均数与方差的计算公式、中位数与众数的定义,熟记掌握数据整理中的相关概念和公式是解题关键.6.B解析:B 【分析】设一班总人数为m ,二班总人数为n ,总成绩为y ,根据已知条件列式即可; 【详解】设一班总人数为m ,二班总人数为n ,总成绩为y ,则110y m =,90y n =, ∴11090m n =,得到911m n =, ∴两个班的平均分9110901109018011999201111n n m nn m nn n n ⨯++====++. 故答案是B . 【点睛】本题主要考查了平均数的知识点,准确分析是解题的关键.7.A解析:A 【分析】根据众数的定义,找到该组数据中出现次数最多的数即为众数;根据中位数定义,将该组数据按从小到大依次排列,处于中间位置的两个数的平均数即为中位数. 【详解】全班共有40人,40人分数,按大小顺序排列最中间的两个数据是第20,21个, 故得分的中位数是7080752+=(分), 得70分的人数最多,有12人,故众数为70(分), 故选A . 【点睛】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.8.B解析:B 【解析】分析:根据数据a 1,a 2,a 3的平均数为4可知13(a 1+a 2+a 3)=4,据此可得出13(a 1+2+a 2+2+a 3+2)的值;再由方差为3可得出数据a 1+2,a 2+2,a 3+2的方差. 详解:∵数据a 1,a 2,a 3的平均数为4, ∴13(a 1+a 2+a 3)=4, ∴13(a 1+2+a 2+2+a 3+2)=13(a 1+a 2+a 3)+2=4+2=6, ∴数据a 1+2,a 2+2,a 3+2的平均数是6; ∵数据a 1,a 2,a 3的方差为3,∴13[(a 1-4)2+(a 2-4)2+(a 3-4)2]=3, ∴a 1+2,a 2+2,a 3+2的方差为:13[(a 1+2-6)2+(a 2+2-6)2+(a 3+2-6)2] =13[(a 1-4)2+(a 2-4)2+(a 3-4)2] =3. 故选B .点睛:此题主要考查了方差和平均数,熟记方差的定义是解答此题的关键.9.D解析:D 【分析】根据平均数及加权平均数的定义解答即可. 【详解】∵x 1,x 2,x 3...x 10的平均数是a ,x 11,x 12,x 13...x 50的平均数是b , ∴x 1,x 2,x 3...x 50的平均数是:10401040104050a b a b++=+. 故选D. 【点睛】本题考查了平均数及加权平均数的求法,熟练运用平均数及加权平均数的定义求解是解决问题的关键.10.B解析:B 【分析】比较四个人的方差,然后根据方差的意义可判断谁的成绩最稳定. 【详解】解:∵S 甲2=0.51,S 乙2=0.41、S 丙2=0.62、S 丁2=0.45, ∴S 丙2>S 甲2>S 丁2>S 乙2, ∴四人中乙的成绩最稳定. 故选:B . 【点睛】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.11.D解析:D 【分析】根据平均数乘以5得到总数,减去其他四组的数量即可得到答案. 【详解】5109129812⨯----=(棵)故选:D. 【点睛】此题考查利用平均数求总数,理解平均数的意义,正确计算是解题的关键.12.C解析:C 【分析】根据平均数与方差的概念,求出数据2x 1+3,2x 2+3,2x 3+3的平均数与方差即可. 【详解】设数据1x ,2x ,3x 的平均数是x ,方差是2s , ∴()12313x x x x =++, ()()()2222123113s x x x x x x ⎡⎤=-+-+-=⎣⎦,∴数据21x +3,22x +3,23x +3的平均数为:()()()()12312311232323232333x x x x x x x x ⎡⎤=+++++=⨯+++=+⎣⎦', 方差为()()()222212312323232323233s x x x x x x ⎡⎤=+--++--++--⎣'⎦ ()()()222123143x x x x x x ⎡⎤=⨯-+-+-⎣⎦414=⨯=.故选:C . 【点睛】本题考查了求数据的平均数与方差的应用问题,灵活运算是解题的关键.二、填空题13.【分析】先由平均数的公式计算出这组数据的平均数再根据方差的公式计算即可【详解】解:这组数据的平均数是:(9+12+10+9+11+9+10)=10则它的方差是:3×(9﹣10)2+2×(10﹣10)解析:87【分析】先由平均数的公式计算出这组数据的平均数,再根据方差的公式计算即可. 【详解】解:这组数据的平均数是:17(9+12+10+9+11+9+10)=10, 则它的方差是:17 [3×(9﹣10)2+2×(10﹣10)2+(12﹣10)2+(11﹣10)2]=87;故答案为:87. 【点睛】本题考查方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.14.【分析】利用平均数的定义利用数据x1x2…x10的平均数为ax11x12…x30的平均数为b 可求出x1+x2+…+x10=10ax11+x12+…+x30=20b 进而即可求出答案【详解】因为数据x1解析:23a b+ 【分析】利用平均数的定义,利用数据x 1,x 2,…,x 10的平均数为a ,x 11,x 12,…,x 30的平均数为b ,可求出x 1+x 2+…+x 10=10a ,x 11+x 12+…+x 30=20b ,进而即可求出答案. 【详解】因为数据x 1,x 2,…,x 10的平均数为a ,则有x 1+x 2+…+x 10=10a , 因为x 11,x 12,…,x 30的平均数为b ,则有x 11+x 12+…+x 30=20b , ∴x 1,x 2,…,x 30的平均数=10+2300a b =23a b+. 故答案为:23a b+. 【点睛】本题考查的是样本加权平均数的求法.平均数是指在一组数据中所有数据之和再除以数据的个数.平均数是表示一组数据集中趋势的量数,它是反映数据集中趋势的一项指标.解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数.15.6【分析】利用平均数乘以数据的个数得到的和减去已知的几个数即可得到x 的值【详解】∵32x5的平均数是4∴故答案为:6【点睛】此题考查利用平均数求未知的数据正确掌握平均数的计算方法正确计算是解题的关键解析:6 【分析】利用平均数乘以数据的个数得到的和减去已知的几个数即可得到x 的值. 【详解】∵3,2,x ,5的平均数是4, ∴443256x =⨯---=, 故答案为:6. 【点睛】此题考查利用平均数求未知的数据,正确掌握平均数的计算方法,正确计算是解题的关键.16.2【分析】先根据平均数的计算公式求出x再利用方差的计算公式计算即可【详解】(6+5+x+4+7)=5解得x=3s2=(6−5)2+(5−5)2+(3−5)2+(4−5)2+(7−5)2=2故答案为:解析:2【分析】先根据平均数的计算公式求出x,再利用方差的计算公式计算即可.【详解】15(6+5+x+4+7)=5,解得x=3,s2=15[(6−5)2+(5−5)2+(3−5)2+(4−5)2+(7−5)2]=2.故答案为:2.【点睛】本题考查的是方差、平均数的计算,掌握算术平均数的计算公式、方差的计算公式S2=1 n[(x1−x)2+(x2−x)2+…+(x n−x)2]是解题的关键.17.90【分析】把所给出的数据按从小到大的顺序排列处于中间的数是中位数根据众数的意义知道在此组数据中出现次数最多的数就是该组数据的众数【详解】把此数据按从小到大的顺序排列为:808090909095;中解析:90【分析】把所给出的数据按从小到大的顺序排列,处于中间的数是中位数,根据众数的意义知道,在此组数据中出现次数最多的数就是该组数据的众数.【详解】把此数据按从小到大的顺序排列为:80,80,90,90,90,95;中间的数是:90,90,所以这组数据的中位数是90,因为在此组数据中出现次数最多的数是90,所以,该组数据的众数是90,故答案为:90,90.【点睛】此题主要考查了中位数与众数的意义及计算方法.18.【分析】分别利用平均数众数及中位数的定义求解后即可得出答案【详解】解:将数据重新排列为33353640424245所以这组数据的平均数为众数为中位数为故答案为:【点睛】此题考查了平均数众数和中位数一解析:39kg42kg40kg分别利用平均数、众数及中位数的定义求解后即可得出答案.【详解】解:将数据重新排列为33、35、36、40、42、42、45,所以这组数据的平均数为3335364042424539()7kg ++++++=,众数为42kg、中位数为40kg,故答案为:39kg、42kg、40kg.【点睛】此题考查了平均数、众数和中位数,一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以总个数.19.4b【分析】根据平均数和方差的变化规律即可得出答案【详解】∵数据x1x2…xn的平均数是a∴数据2x1-32x2-3…2xn-3的平均数是;∵数据x1x2…xn的方差是b∴数据2x1-32x2-3…解析:23a- 4b【分析】根据平均数和方差的变化规律,即可得出答案.【详解】∵数据x1、x2、…、x n的平均数是a,∴数据2x1-3、2x2-3、…、2x n-3的平均数是23a-;∵数据x1、x2、…、x n的方差是b,∴数据2x1-3、2x2-3、…、2x n-3的方差是224b b⋅=,故答案为:23a-;4b.【点睛】本题考查了平均数与方差,关键是掌握平均数与方差的计算公式和变化规律:若在原来数据前乘以同一个数,平均数也乘以同一个数,而方差要乘以这个数的平方,在数据上同加或减同一个数,方差不变.20.91【分析】根据加权平均数的计算公式列出算式再进行计算即可【详解】根据题意得:小明的最终成绩是95×60+85×40=91(分)故答案为91【点睛】本题考查的是加权平均数的求法本题易出现的错误是求9解析:91【分析】根据加权平均数的计算公式列出算式,再进行计算即可.【详解】根据题意得:小明的最终成绩是95×60%+85×40%=91(分).故答案为91.本题考查的是加权平均数的求法.本题易出现的错误是求95和85两个数的平均数,对平均数的理解不正确.三、解答题21.(1)40,25,15;(2)平均数:7,方差:1.15【分析】(1)根据5h的人数和所占的百分比,可以求得本次接受调查的初中学生人数,然后即可计算出m和n的值;(2)根据统计图中的数据,可以得到平均数,计算出方差.【详解】解:(1)本次接受调查的初中学生有:4÷10%=40(人),m%=10÷40×100%=25%,即m=25,n=40×37.5%=15,故答案为:40,25,15;(2)由条形统计图可得,x=140×(5×4+6×8+7×15+8×10+9×3)=7,s2=140[(5﹣7)2×4+(6﹣7)2×8+(7﹣7)2×15+(8﹣7)2×10+(9﹣7)2×3]=1.15.【点睛】本题考查了扇形统计图及条形统计图的信息关联、平均数和方差,熟练掌握概念和求法是解题的关键.22.(1)20,见解析;(2)4;4;(3)平均数为5.3棵,这280名学生共植树1848棵【分析】(1)由B类型的人数及其所占百分比可得总人数,总人数乘以D类型的对应的百分比即可求出其人数,据此可补全图形;(2)根据众数和中位数的概念可得答案;(3)先求出样本的平均数,再乘以总人数即可.【详解】解:(1)这次调查一共抽查植树的学生人数为8÷40%=20(人),D类人数=20×10%=2(人);条形图补充如图:故答案为:20;(2)植树4棵的人数最多,则众数是4,共有20人植树,其中位数是第10、11人植树数量的平均数,则中位数是4,故答案为:4、4;(3)448566275.320x⨯+⨯+⨯+⨯==(棵),5.3×280=1484(棵).答:估计这3280名学生共植树1484棵.【点睛】本题考查了条形统计图,扇形统计图,众数,中位数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23.(1)中位数为10,众数是2;(2)理由是小明与小东平均分相同,小明的大众大于小东,小明的方差小于小东,即小明的得分稳定,能正常发挥;(3)平均数:11分;中位数:10分;众数:10分;方差:223.【分析】(1)将各场比赛的得分按从小到大或从大到小的顺序排列,即可找到中位数;根据众数的定义求出众数.(2)根据方差的意义即可做出选择;(3)根据平均数、中位数、众数与方差的意义解答.【详解】解:(1)小明各场得分由大到小排列为:13,10,10,9,8;于是中位数为10;小东各场得分中,出现次数最多的是2,所以众数是2.故答案为:10,2;(2)教练选择小明参加下一场比赛的理由:小明与小东平均得分相同,小明的方差小于小东,即小明的得分稳定,能正常发挥.(3)再比一场,小明的得分情况从大到小排列为16,13,10,10,9,8;平均数:16(16+13+10+10+9+8)=11;中位数:10;众数:10;方差:S216=[(16﹣11)2+(13﹣11)2+(10﹣11)2+(10﹣11)2+(9﹣11)2+(8﹣11)2=223.综上所述:平均数:11分;中位数:10分;众数:10分;方差:223.【点睛】本题考查了平均数,中位数,方差的意义.①平均数表示一组数据的平均程度;②中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数);③众数是一组数据中出现次数最多的数;④方差是用来衡量一组数据波动大小的量.24.(1)120;(2)2.4千元;(3)可以预测该地区所有贫家庭能在2020年实现今面脱贫【分析】(1)用该地区尚未脱贫的家庭1000户乘以样本中家庭人均年纯收入低于2000元(不含2000元)的频率即可;(2)利用加权平均数进行计算;(3)求出当地农民2020年家庭人均年纯收入与4000进行大小比较即可.【详解】解:(1)依题意,可估计该地区尚未脱贫的1000户家庭中,家庭人均年纯收入低于2000元的户数为:6100012050⨯=(户);(2)依题意,可估计该地区尚未脱贫的家庭2019年家庭人均年纯收入的平均值为1(1.56 2.08 2.210 2.512 3.09 3.25) 2.450⨯⨯+⨯+⨯+⨯+⨯+⨯=(千元);(3)依题意:2020年该地区农民家庭人均月纯收入的最低值如下:50030015020030045047049051053055057050204000 +++++++++++=>,所以可以预测该地区所有贫家庭能在2020年实现今面脱贫.【点睛】本小题考查频数和频数的意义、加权平均数、条形图、折线图等基础知识,考查运算能力、推理能力、数据分析观念、应用意识,考查统计思想,利用样本中百分比估计总体的数量,以及利用统计表统计2020年该地区农民家庭人均月纯收入的最低值是解题关键.25.(1)见解析;(2)108 ;(3)C组;见解析;(4)150人【分析】(1)根据B组人数和所占的百分比,可以求得本次调查的人数,再根据条形统计图中的数据,可得到C组的人数,即可补全条形统计图;(2)用360°乘以D组对应的百分比可得其对应圆心角度数;(3)根据条形统计图中的数据,可以得到所抽取学生成绩的中位数落在哪个组内;(4)根据条形统计图中的数据,可以计算出这次竞赛成绩在A:60≤x<70组的学生有多少人.【详解】解:(1)∵被调查的总人数为12÷20%=60(人),∴C组人数为60-(6+12+18)=24(人),补全图形如下:(2)D组对应圆心角度数为:360°18108 60⨯=︒,故答案为:108;(3)中位数是第30、31个数据的平均数,而第30、31个数据均落在C组,所以中位数落在C组;(4)1500615060⨯=(人),答:这次竞赛成绩在A:60≤x<70组的学生有150人.【点睛】本题考查了条形统计图、扇形统计图、用样本估计总体、中位数,解答本题的关键是明确题意,利用数形结合的思想解答.26.(1)甲队女演员身高的平均数是165cm,中位数是165cm,众数是165cm;(2)甲队数据方差为2.8;乙队数据方差为4.8;甲队女演员的身高更整齐【分析】(1)根据平均数、众数、中位数的定义分别进行解答即可;(2)先求出乙队女演员的平均数身高,再根据方差公式求出甲队和乙队的方差,然后根据方差的意义即可得出答案. 【详解】解:(1)()()1163164165165168165cm 5⨯++++=, ∴甲队女演员身高的平均数是165cm , 把这些数从小到大排列,则中位数是165cm ,165cm 出现了2次,出现的次数最多,则众数是165cm ; (2)乙队女演员身高的平均数()()1162164164167168165cm 5=⨯++++=, 甲队数据方差()()()()()2222221163165164165165165165165168165 2.85s ⎡⎤=⨯-+-+-+-+-=⎣⎦甲,乙队数据方差()()()()()2222221162165164165164165167165168165 4.85s ⎡⎤=⨯-+-+-+-+-=⎣⎦乙,∵22s s <甲乙,∴甲队女演员的身高更整齐. 【点睛】本题考查了平均数、众数、中位数和方差,平均数表示一组数据的平均程度.众数是一组数据中出现次数最多的数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.。

2023届北京市西城区北京师范大附属中学八年级数学第一学期期末考试试题含解析

2023届北京市西城区北京师范大附属中学八年级数学第一学期期末考试试题含解析

2022-2023学年八上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(每题4分,共48分)1.如图,在△ABC 中,分别以点A 和点C 为圆心,大于12AC 长为半径画弧,两弧相交于点M ,N ,作直线MN 分别交BC ,AC 于点D ,E ,若AE=3cm ,△ABD 的周长为13cm ,则△ABC 的周长为( )A .16cmB .19cmC .22cmD .25cm2.下列计算,正确的是( )A .a 2﹣a=aB .a 2•a 3=a 6C .a 9÷a 3=a 3D .(a 3)2=a 63.长度分别为2,7,x 的三条线段能组成一个三角形,的值可以是( ) A .4 B .5 C .6 D .94.下列计算正确的是 ( ).A .()236a a =B .22a a a •=C .326a a a +=D .()3339a a = 5.如图,点E 是等腰三角形△ABD 底边上的中点,点C 是AE 延长线上任一点,连接BC 、DC ,则下列结论中:①BC=AD ;②AC 平分∠BCD ;③AC=AB ;④∠ABC=∠ADC .一定成立的是( )A .②④B .②③C .①③D .①② 6.已知23a =+,23b =-a 与b 的大小关系为( )A .a b =B .a b <C .a b >D .不能确定7.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±18.下列垃圾分类的图标中,轴对称图形是( )A .B .C .D .9.已知一组数据3,a ,4,5的众数为4,则这组数据的平均数为( )A .3B .4C .5D .610.若a 、b 、c 为三角形三边,则下列各项中不能构成直角三角形的是( ) A .a =7,b =24,c =25B .a =5,b =13,c =12C .a =1,b =2,c =3D .a =30,b =40,c =5011.叶绿体是植物进行光合作用的场所,叶绿体DNA 最早发现于衣藻叶绿体,长约0.00005米.其中,0.00005用科学记数法表示为( )A .0.5×10﹣4B .5×10﹣4C .5×10﹣5D .50×10﹣312.如图,A 和B 两地在一条河的两岸,现要在河上造一座桥MN ,使从A 到B 的路径AMNB 最短的是(假定河的两岸是平行直线,桥要与河岸垂直)( ) A . B . C .D .二、填空题(每题4分,共24分)13.如图所示,AB AC =,AD AE =,BAC DAE ∠=∠,点D 在线段BE 上.若125∠=︒,230∠=︒,则3∠=______.14.如图,△ABC 的两条高BD 、CE 相交于点O 且OB =OC .则下列结论: ①△BEC ≌△CDB ;②△ABC 是等腰三角形;③AE =AD ;④点O 在∠BAC 的平分线上,其中正确的有_____.(填序号)15.若式子()()2x 1x 1x 2--+的值为零,则x 的值为______. 16.已知4a x =,3b x =,则2a b x -= _________ .17.小强从镜子中看到的电子表的读数是15:01,则电子表的实际读数是______.18.因式分解:29x -=_____.三、解答题(共78分)19.(8分)如图,在ABC ∆中,90ACB ∠=︒,30B ∠=︒,AD 平分CAB ∠,延长AC 至E ,使CE AC =,连接DE .求证:BAD ∆≌EAD ∆20.(8分)如图,Rt ABC ∆中,90ACB ∠=,点D 为边AC 上一点,DE AB ⊥于点E ,点M 为BD 中点,CM 的延长线交AB 于点F .(1)求证:CM=EM ;(2)若50BAC ∠=,求EMF ∠的大小;21.(8分)如图,在平面直角坐标系中,点O 为坐标原点,点A(0,3)与点B 关于x 轴对称,点C(n,0)为x 轴的正半轴上一动点.以AC 为边作等腰直角三角形ACD ,∠ACD=90°,点D 在第一象限内.连接BD ,交x 轴于点F .(1)如果∠OAC=38°,求∠DCF 的度数;(2)用含n 的式子表示点D 的坐标;(3)在点C 运动的过程中,判断OF 的长是否发生变化?若不变求出其值,若变化请说明理由.22.(10分)如图,AB ∥CD ,直线EF 分别交直线AB 、CD 于点M 、N ,MG 平分∠EMB ,MH 平分∠CNF ,求证:MG ∥NH .23.(10分)如图,把长方形纸片OABC 放入平面直角坐标系中,使OA OC ,分别落在x y ,轴的的正半轴上,连接AC ,且45AC =2AO CO =.(1)求点A C ,的坐标;(2)将纸片OABC 折叠,使点A 与点C 重合(折痕为EF ),求折叠后纸片重叠部分CEF ∆的面积;(3)求EF 所在直线的函数表达式,并求出对角线AC 与折痕EF 交点D 的坐标.24.(10分)如图,在ABC 中,AB AC =,D 在边AC 上,且BD DA BC ==. ()1如图1,填空A ∠=______,C ∠=______.()2如图2,若M 为线段AC 上的点,过M 作直线MH BD ⊥于H ,分别交直线AB 、BC 与点N 、E .①求证:BNE 是等腰三角形;②试写出线段AN 、CE 、CD 之间的数量关系,并加以证明.25.(12分)解下列方程组:38526x y x y -=⎧⎨-=⎩,. 26.每到春夏交替时节,雄性杨树会以漫天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰.为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如图所示),并根据调查结果绘制了如下尚不完整的统计图.根据以上统计图,解答下列问题:(1)本次接受调查的市民公有__________人;(2)请补全条形统计图;(3)扇形统计图中请求出扇形E的圆心角度数.参考答案一、选择题(每题4分,共48分)1、B【分析】根据作法可知MN是AC的垂直平分线,利用垂直平分线的性质进行求解即可得答案.【详解】解:根据作法可知MN是AC的垂直平分线,∴DE垂直平分线段AC,∴DA=DC,AE=EC=6cm,∵AB+AD+BD=13cm,∴AB+BD+DC=13cm,∴△ABC的周长=AB+BD+BC+AC=13+6=19cm,故选B.【点睛】本题考查作图-基本作图,线段的垂直平分线的性质等知识,解题的关键是熟练掌握线段的垂直平分线的性质.2、D【解析】A、a2-a,不能合并,故A错误;B 、a 2•a 3=a 5,故B 错误;C 、a 9÷a 3=a 6,故C 错误;D 、(a 3)2=a 6,故D 正确,故选D .3、C【分析】根据三角形的三边关系可判断x 的取值范围,进而可得答案.【详解】解:由三角形三边关系定理得7-2<x <7+2,即5<x <1.因此,本题的第三边应满足5<x <1,把各项代入不等式符合的即为答案. 4,5,1都不符合不等式5<x <1,只有6符合不等式,故选C .【点睛】本题考查的是三角形的三边关系,属于基础题型,掌握三角形的三边关系是解题的关键. 4、A【解析】请在此填写本题解析!A. ∵ ()236a a =, 故正确;B. ∵ 23•a a a =, 故不正确;C. ∵a 3与a 2不是同类项,不能合并 ,故不正确;D. ∵ ()33327a a = , 故不正确;故选A.5、A【解析】根据全等三角形的判定和性质得出结论进而判断即可.【详解】∵点E 是等腰三角形△ABD 底边上的中点,∴BE =DE ,∠AEB =∠AED =90°,∴∠BEC =∠DEC =90°. 在△BEC 与△DEC 中,∵BE DE BEC DEC EC EC =⎧⎪∠=∠⎨⎪=⎩,∴△BEC ≌△DEC (SAS )∴BC =CD ,∠BCE =∠DCE ,∴∠ABC =∠ADC ,∴④∠ABC =∠ADC ;②AC 平分∠BC D 正确.故选A .【点睛】本题考查了等腰三角形的性质、全等三角形的判定和性质,关键是根据SAS 证明△BEC ≌△DEC .6、A进行化简,进而比较大小,即可得到答案.【详解】∵a =2=,2b = ∴a b =.故选A .【点睛】 本题主要考查二次根式的化简,掌握二次根式的分母有理化,是解题的关键. 7、B【解析】根据分式值为0的条件,分子为0分母不为0列式进行计算即可得. 【详解】∵分式2x 1x 1-+的值为零, ∴21010x x -=⎧⎨+≠⎩, 解得:x=1,故选B .【点睛】本题考查了分式值为0的条件,熟知分式值为0的条件是分子为0分母不为0是解题的关键.8、D【分析】根据轴对称图形的定义即可判断.【详解】解:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.故选:D .【点睛】本题考查了轴对称图形,只要掌握基本知识点,再认真审题,看清题目要求,细心做答本题就很容易完成.9、B【解析】试题分析:要求平均数只要求出数据之和再除以总的个数即可;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.依此先求出a ,再求这组数据的平均数.数据3,a ,1,5的众数为1,即1次数最多;即a=1.则其平均数为(3+1+1+5)÷1=1.故选B.考点:1.算术平均数;2.众数.10、C【解析】试题分析:要组成直角三角形,三条线段满足较小的平方和等于较大的平方即可.A、72+242=252,B、52+122=132,D、302+402=502,能构成直角三角形,不符合题意;C、12+22≠32,本选项符合题意.考点:本题考查勾股定理的逆定理点评:解答本题的关键是熟练掌握勾股定理的逆定理:两边的平方和等于第三边的平方,那么这样的三角形是直角三角形.11、C【解析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,0.00005=5⨯,510-故选C.12、D【分析】过A作河岸的垂线AH,在直线AH上取点I,使AI等于河宽,连接BI即可得出N,作出MN⊥a即可得到M,连接AM即可.【详解】解:根据河的两岸是平行直线,桥要与河岸垂直可知,只要AM+BN最短就符合题意,即过A作河岸a的垂线AH,垂足为H,在直线AH上取点I,使AI等于河宽.连结IB交河岸b于N,作MN垂直于河岸交河岸a于M点,连接AM.故选D.【点睛】本题考查了最短路线问题以及三角形三边关系定理的应用,关键是找出M、N的位置.二、填空题(每题4分,共24分)13、55°【分析】先证明△ABD ≌△ACE (SAS );再利用全等三角形的性质:对应角相等,求得∠2=∠ABE ;最后根据三角形内角与外角的性质即可求出答案.【详解】∵BAC DAE ∠=∠,∴∠1+∠CAD=∠CAE+∠CAD ,∴∠1=∠CAE ;在△ABD 与△ACE 中,1AD AE CAE AB AC =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS );∴∠2=∠ABE ;∵∠3=∠ABE+∠1=∠1+∠2,∠1=25°,∠2=30°,∴∠3=55°.故答案为:55°.【点睛】本题考查了全等三角形的判定及性质,三角形的外角性质;将所求的角与已知角通过全等及内角、外角之间的关系联系起来是解答此题的关键.14、①②③④【分析】由三角形内角和定理可得∠ABC =∠ACB ,可得AB =AC ;由AAS 可证△BEC ≌△CDB ;可得BE =CD ,可得AD =AE ;通过证明△AOB ≌△AOC ,可证点O 在∠BAC 的平分线上.即可求解.【详解】解:∵OB =OC ,∴∠OBC =∠OCB ,∵锐角△ABC 的两条高BD 、CE 相交于点O ,∴∠BEC =∠CDB =90°,∵∠BEC +∠BCE +∠ABC =∠CDB +∠DBC +∠ACB =180°,∴180°﹣∠BEC ﹣∠BCE =180°﹣∠CDB ﹣∠CBD ,∴∠ABC =∠ACB ,∴AB =AC ,∴△ABC 是等腰三角形,故②符合题意;∵∠OBC =∠OCB ,∠BDC =∠BEC =90°,且BC =BC ,∴△BEC ≌△CDB (AAS ),故①符合题意,∴BE =CD ,且AB =AC ,∴AD =AE ,故③符合题意;连接AO 并延长交BC 于F ,在△AOB 和△AOC 中,AB AC OB OC OA OA =⎧⎪=⎨⎪=⎩∴△AOB ≌△AOC (SSS ).∴∠BAF =∠CAF ,∴点O 在∠BAC 的角平分线上,故④符合题意,故正确的答案为:①②③④.【点睛】本题考查了全等三角形的判定和性质、等腰三角形的判定和性质,解题的关键是:灵活运用全等三角形的判定和性质.15、﹣1【分析】直接利用分式的值为零则分子为零分母不等于零,进而得出答案.【详解】∵式子()()2112x x x --+的值为零, ∴x 2﹣1=0,(x ﹣1)(x+2)≠0,解得:x =﹣1.故答案为﹣1.【点睛】此题主要考查了分式的值为零的条件,正确把握相关性质是解题关键.16、49【解析】分析:根据同底数幂的除法及乘法进行计算即可.详解:x a ﹣2b =x a ÷(x b •x b )=4÷(3×3)=49. 故答案为:49. 点睛:本题考查的是同底数幂的除法及乘法,解答此题的关键是逆用同底数幂的除法及乘法的运算法则进行计算.17、10:51【解析】由镜面对称的特点可知:该电子表的实际读数是:10:51.故答案为10:51.18、()()33x x +-【分析】根据公式法进行因式分解即可.【详解】解:()()2229333x x x x -=-=+-, 故答案为:()()33x x +-.【点睛】本题考查用公式法因式分解,熟练掌握公式法并灵活应用是解题的关键.三、解答题(共78分)19、见解析【分析】根据已知条件可得AE= 2AC ,然后根据30°所对的直角边是斜边的一半可得AB=2AC ,从而得出AB=AE ,然后根据角平分线的定义可得∠BAD=∠EAD ,最后利用SAS 即可证出结论.【详解】证明:∵CE AC =∴AE=CE +AC=2AC在Rt △ABC 中,90ACB ∠=︒,30B ∠=︒∴AB=2AC∴AB=AE∵AD 平分CAB ∠,∴∠BAD=∠EAD在BAD ∆和EAD ∆中AB AE BAD EAD AD AD =⎧⎪∠=∠⎨⎪=⎩∴BAD ∆≌EAD ∆(SAS )【点睛】此题考查的是全等三角形的判定和直角三角形的性质,掌握利用SAS判定两个三角形全等和30°所对的直角边是斜边的一半是解决此题的关键.20、(1)见解析;(2)100°【分析】(1)利用直角三角形斜边中线的性质定理即可证明;(2)先根据题意,得出∠ABC的度数;再根据等边对等角及三角形外角得出∠CMD=2∠CBM及∠DME=2∠EBM,从而求出∠CME的度数后即可得出答案.【详解】解:(1)DE AB⊥90DEB DCB∴∠=∠=︒∵M为BD中点,∴在Rt△DCB中,MC=12 BD,在Rt△DEB中,EM=12 BD,∴MC=ME;(2)∵∠BAC=50°,∠ACB=90°,∴∠ABC=90°-50°=40°,∵CM=MB,∴∠MCB=∠CBM,∴∠CMD=∠MCB+∠CBM=2∠CBM,同理,∠DME=2∠EBM,∴∠CME=2∠CBA=80°,∴∠EMF=180°-80°=100°.【点睛】本题考查了直角三角形斜边的中线、三角形外角,等腰三角形等边对等角等知识,熟练掌握性质定理是解题的关键.21、(1)18°;(2)点D的坐标(n+1,n);(1)OF的长不会变化,值为1.【分析】(1)根据同角的余角相等可得∠DCF =∠OAC,进而可得结果;(2)作DH⊥x轴于点H,如图1,则可根据AAS证明△AOC≌△CHD,于是可得OC=DH,AO=CH,进而可得结果;(1)方法一:由轴对称的性质可得AC=BC,于是可得AC=BC=DC,进一步即得∠BAC =∠ABC,∠CBD =∠CDB,而∠ACB+∠DCB =270°,则可根据三角形的内角和定理推出∠ABC+∠CBD =45°,进一步即得△OBF是等腰直角三角形,于是可得OB=OF,进而可得结论;方法2:如图2,连接AF交CD于点M,由轴对称的性质可得AC=BC,AF=BF,进一步即可根据等腰三角形的性质以及角的和差得出∠CAF=∠CBF,易得BC=DC,则有∠CBF=∠CDF,可得∠CAF=∠CDF,然后根据三角形的内角和定理可得∠AFD=∠ACD=90°,即得△AFB是等腰直角三角形,然后根据等腰直角三角形的性质可推出OF=OA,问题即得解决.【详解】解:(1)∵∠AOC=90°,∴∠OAC+∠ACO =90°.∵∠ACD=90°,∴∠DCF+∠ACO =90°,∴∠DCF =∠OAC,∵∠OAC=18°,∴∠DCF=18°;(2)过点D作DH⊥x轴于点H,如图1,则∠AOC =∠CHD=90°,∵△ACD是等腰直角三角形,∠ACD=90°,∴AC=CD,又∵∠OAC=∠DCF ,∴△AOC≌△CHD(AAS),∴OC=DH=n,AO=CH=1,∴点D的坐标为(n+1,n);(1)不会变化.方法一:∵点A(0,1)与点B关于x轴对称,∴AO=BO=1,AC=BC,∴∠BAC =∠ABC,又∵AC=CD,∴BC=CD,∴∠CBD =∠CDB,∵∠ACD=90°,∴∠ACB+∠DCB =270°,∴∠BAC +∠ABC+∠CBD +∠CDB=90°,∴∠ABC+∠CBD =45°,∵∠BOF=90°,∴∠OFB=45°,∴∠OBF =∠OFB=45°,∴OB=OF=1,即OF的长不会变化;方法2:如图2,连接AF交CD于点M,∵点A与点B关于x轴对称,∴AC=BC,AF=BF,∴∠OAC=∠OBC,∠OAF=∠OBF,∴∠OAF−∠OAC=∠OBF−∠OBC,即∠CAF=∠CBF,∵AC=CD,AC=BC,∴BC=CD,∴∠CBF=∠CDF,∴∠CAF=∠CDF,又∵∠AMC=∠DMF,∴∠AFD=∠ACD=90°,∴∠AFB=90°,∴∠AFO=∠OFB=45°,∴∠AFO=∠OAF=45°,∴OF=OA=1,即OF的长不会变化.【点睛】本题以直角坐标系为载体,主要考查了全等三角形的判定与性质、等腰直角三角形的判定与性质、三角形的内角和定理、轴对称的性质和等腰三角形的性质等知识,涉及的知识点多,属于常考题型,熟练掌握上述基本知识是解题的关键.22、详见解析.【分析】依据平行线的性质以及角平分线的定义,即可得到∠CNH=∠BMG,再根据平行线的性质即可得到∠CNM=∠BMN,依据∠HNM=∠GMN,即可得到MG∥NH.【详解】证明:∵MG平分∠EMB,MH平分∠CNF,∴∠CNH=12∠CNF,∠BMG=12∠BME=12∠AMN,∵AB∥CD,∴∠CNF =∠AMN ,∴∠CNH =∠BMG ,∵AB ∥CD ,∴∠CNM =∠BMN ,∴∠CNF +∠CNM =∠BMG +∠BMN ,即∠HNM =∠GMN ,∴MG ∥NH .【点睛】本题主要考查了平行线的判定与性质,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.23、(1)A (8,0),C (0,4);(2)10;(3)y=2x-6,(4,2)【分析】(1)设OC=a ,则OA=2a ,在直角△AOC 中,利用勾股定理即可求得a 的值,则A 和C 的坐标即可求得;(2)重叠部分是△CEF ,利用勾股定理求得AE 的长,然后利用三角形的面积公式即可求解;(3)根据(1)求得AC 的表达式,再由(2)求得E 、F 的坐标,利用待定系数法即可求得直线EF 的函数解析式,联立可得点D 坐标.【详解】解:(1)∵2AO CO =,∴设OC=a ,则OA=2a ,又∵AC =a 2+(2a )2=80,解得:a=4,则A 的坐标是(8,0),C 的坐标是(0,4);(2)设AE=x ,则OE=8-x ,如图,由折叠的性质可得:AE=CE=x ,∵C 的坐标是(0,4),∴OC=4,在直角△OCE 中,42+(8-x )2=x 2,解得:x=5,∴CF=AE=5,则重叠部分CEF ∆的面积是:12×5×4=10;(3)设直线EF的解析式是y=mx+n,由(2)可知OE=3,CF=5,∴E(3,0),F(5,4),∴30 54 m nm n+=⎧⎨+=⎩,解得:26 mn=⎧⎨=-⎩,∴直线EF的解析式为y=2x-6,∵A(8,0),C(0,4),设AC的解析式是:y=px+q,代入得:804p qq+=⎧⎨=⎩,解得124pq⎧=-⎪⎨⎪=⎩,∴AC的解析式是:1=42y x-+,联立EF和AC的解析式:=261=42y xy x-⎧⎪⎨-+⎪⎩,解得:=4=2 xy⎧⎨⎩,∴点D的坐标为(4,2).【点睛】本题为一次函数的综合应用,涉及矩形的性质、待定系数法、勾股定理及方程思想等知识.在(1)中求得A、C的坐标是解题的关键,在(2)中求得CF的长是解题的关键,在(3)中确定出E、F的坐标是解题的关键.本题考查知识点较多,综合性较强,难24、(1)36,72;(2)①证明见解析;②CD=AN+CE ,证明见解析.【分析】(1)根据题意可得△ABC ,△BCD ,△ABD 都是等腰三角形,根据等腰三角形的性质可得∠A=∠DBA=∠DBC=12∠ABC=12∠C ,然后利用三角形的内角和即可得解;(2)①通过“角边角”证明△BNH ≌△BEH ,可得BN=BE ,即可得证; ②根据题意可得AN=AB ﹣BN=AC ﹣BE ,CE=BE ﹣BC ,CD=AC ﹣AD=AC ﹣BD=AC ﹣BC ,则可得CD=AN+CE.【详解】解:(1)∵BD=BC ,∴∠BDC=∠C ,∵AB=AC ,∴∠ABC=∠C ,∴∠A=∠DBC ,∵AD=BD ,∴∠A=∠DBA ,∴∠A=∠DBA=∠DBC=12∠ABC=12∠C , ∵∠A+∠ABC+∠C=5∠A=180°,∴∠A=36°,∠C=72°;故答案为36,72;(2)①∵∠A=∠ABD=36°,∠B=∠C=72°,∴∠ABD=∠CBD=36°,∵BH ⊥EN ,∴∠BHN=∠EHB=90°,在△BNH 与△BEH 中,BHN BHE BH BHHBN HBE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△BNH ≌△BEH (ASA ),∴BN=BE ,∴△BNE 是等腰三角形;②CD=AN+CE ,理由:由①知,BN=BE ,∴AN=AB ﹣BN=AC ﹣BE ,∵CE=BE ﹣BC ,∴AN+CE=AC ﹣BC ,∵CD=AC ﹣AD=AC ﹣BD=AC ﹣BC ,∴CD=AN+CE.【点睛】本题主要考查等腰三角形的判定与性质,全等三角形的判定与性质.解此题的关键在于熟练掌握其知识点.25、1,5.x y =⎧⎨=-⎩【分析】将②变形得526x y =+③,然后将③代入①可求得y 的值,最后把y 的值代入方程③即可求得x 的值,进而得到方程组的解.【详解】解:(1)38,526x y x y -=⎧⎨-=⎩①;② 由②,得 526x y =+,③将③带入①,得3(526)8y y +-=,5.y =-将5y =-代入③,得()55261x =⨯-+=所以原方程组的解为1,5.x y =⎧⎨=-⎩【点睛】本题主要考查解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法,正确掌握解题方法是解题的关键.26、(1)2000;(2)详见解析;(3)1.8°【分析】(1)根据扇形统计图和条形统计图,利用A 类的数据求出总调查人数; (2)调查的总人数乘以D 所占的比例,即可求出D 的人数,从而补全条形统计图; (3)先求出E 所占的百分比,利用圆心角公式求解即可.【详解】(1) 根据扇形统计图和条形统计图可知,选A 的有300人,占总人数的15% 30015%=2000÷ (人)本次接受调查的市民公有2000人(2) D对应人数为:2000×25%=500补全条形统计图如下图所示(3)扇形E所在的百分比为:1-15%-12%-40%-25%=8%∴扇形E的圆心角度数为8 36028.8100︒⨯=︒【点睛】本题考查了统计的问题,掌握扇形图和条形图的性质、圆心角的公式是解题的关键.。

2021-2022年八上学期期末数学试题(含解析)

2021-2022年八上学期期末数学试题(含解析)
(3)这个小区有3000人,请你估计爱吃B种粽子的人数为.
23.已知y与x+2成正比例,当x=3时,y=﹣10.
(1)求y与x之间的函数表达式;
(2)当﹣2<x≤1时,求y的取值范围.
24.已知:如图,线段AC和射线AB有公共端点A.
(1)①在射线AB取一点P,使△APC是以AC为底边的等腰三角形;
(2)试说明CD=CE.
(3)若P为直线l1上一点,当∠POB=∠BDE时,求点P的坐标.
答案与解析
一、选择题(本大题共8小题,每小题3分,共24分,在每小题所给出的四个选项中,只有一个选项是正确的,请将正确选项的字母代号填涂在答题卡相应位置上)
1.下面调查中,最适合采用普查的是( )
A.对全国中学生视力状况的调查
A.40°B.55°
C.70°D.40°或55°或70°
【答案】D
【解析】
【分析】分三种情况,根据等腰三角形的性质分别计算,即可分别求得.
【详解】解:当∠A是顶角时, ,
当∠A与∠B都是底角时,∠A=∠B=70°,
当∠B是顶角时, ,
故∠B的度数是40°或55°或70°,
故选:D.
【点睛】本题考查了等腰三角形的性质,三角形的内角和定理,采用分类讨论的思想是解决本题的关键.
6.若式子 有意义,则一次函数 的图象可能是()
A. B. C. D.
【答案】A
【解析】
【分析】先求出k的取值范围,再判断出 及 的符号,进而可得出结论.
【详解】解:∵式子 有意义,

解得:k>2,
∴ >0, <0,
∴一次函数 的图象过一、三、四象限.
故选:A.
【点睛】本题考查的是一次函数的图象,熟知一次函数的图象与系数的关系是解答此题的关键.

初中数学八年级下册第二十章数据的分析单元检测练习题三(含答案) (183)

初中数学八年级下册第二十章数据的分析单元检测练习题三(含答案) (183)

初中数学八年级下册第二十章数据的分析单元检测练习题三(含答案)英才中学为了解中考体育科目训练情况从全校九年级学生中随机抽取了部分学生进行一次中考体育科目测试(把测试结果分为四个等级.A级:优秀;B 级:良好;C级:合格;D级:不合格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)求本次抽样测试的学生人数是人.(2)图2中条形统计图C级的人数是人;(3)该校九年级有学生500名,如果全部参加这次中考体育科目测试,请估计不及格的人数约有多少人?【答案】(1)40;(2)14;(3)100人.【解析】【分析】(1)用B级的人数除以B级所占的百分比,可得答案;(2)用抽测总人数乘以C及所占的比例,可得答案;(3)利用样本估计总体的方法知,全校总人数乘以D级所占的比例,可得答案.【详解】(1)本次抽样测试的学生人数是12÷30%=40(人).故答案为:40;(2)C级的人数为40×35%=14(人).故答案为:14;(3)根据题意得:500840⨯=100(人)答:估计不及格的人数约有100人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.112.珠海市水务局对某小区居民生活用水情况进行了调査.随机抽取部分家庭进行统计,绘制成如下尚未完成的频数分布表和频率分布直方图.请根据图表,解答下列问题:(1)b= ,c= ,并补全频数分布直方图;(2)为鼓励节约用水用水,现要确定一个用水量标准P(单位:吨),超过这个标准的部分按1.5倍的价格收费,若要使60%的家庭水费支出不受影响,则这个用水量标准P= 吨;(3)根据该样本,请估计该小区400户家庭中月均用水量不少于5吨的家庭约有多少户?【答案】(1)0.24,0.18;(2)5;(3)160【解析】【分析】(1)根据频数,频率,总人数之间的关系解决问题即可.(2)利用已知条件以及表格中的信息即可解决问题.(3)利用样本估计总体的思想解决问题即可.【详解】解:(1)总人数=4÷0.08=50,∴a=50-4-14-9-6-5=12,b=1250=0.24,c=950=0.18,故答案为:0.24,0.18;(2)50×60%=30,观察表格可知:这个用水量标准P=5吨,故答案为5.(3)400×96550++=160(户),答:估计该小区400户家庭中月均用水量不少于5吨的家庭约有160户.【点睛】本题考查频数分布表和频数分布直方图,样本估计总体等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.113.学校开展综合实践活动中,某班进行了小制作评比,作品上交时间为5月11日至5月30日,评委们把同学们上交作品的件数按5天一组分组统计,绘制了频数分布直方图如下,小长方形的高之比为:2:5:2:1.现已知第二组的上交作品件数是20件.求:(1)此班这次上交作品共 件;(2)评委们一致认为第四组的作品质量都比较高,现从中随机抽取2件作品参加学校评比,小明的两件作品都在第四组中,他的两件作品都被抽中的概率是多少?(请写出解答过程)【答案】(1)40(2)16【解析】 解:(1)40.(2)第四组的作品的件数为14042+5+2+1⨯=(件).设四件作品编号为1、2、3、4号,小明的两件作品分别为1、2号.从中随机抽取2件作品的所有结果为(1,2);(1,3);(1,4); (2,3);(2,4);(3,4),小明的两件作品都被抽中的情况有1种,∴他的两件作品都被抽中的概率是16.(1)用第二小组的频数除以该小组的份数占总份数的多少即可求得总人数:520402+5+2+1÷=.(2)根据频数、频率和总量的关系求出第四组的作品的件数,分别列举出所有可能结果后用概率的公式即可求解.114.一次安全知识测验中,学生得分均为整数,满分10分,这次测验中,甲,乙两组学生人数都为5人,成绩如下(单位:分):甲:8,8,7,8,9乙:5,9,7,10,9(1)填写下表:(2)已知甲组学生成绩的方差22=5s甲,计算乙组学生成绩的方差,并说明哪组学生的成绩更稳定.【答案】(1)甲:平均数8;乙:平均数8,中位数9;(2)甲组学生的成绩比较稳定.【解析】【分析】(1)根据平均数和中位数的定义求解可得;(2)根据方差的定义计算出乙的方差,再比较即可得.【详解】(1)甲的平均数:8878985,乙的平均数:59710985,乙的中位数:9;(2) 222222(58)(98)(78(108)(98)1655S -+-+-+-+=-=乙).∵22S S >乙甲,∴甲组学生的成绩比较稳定. 【点睛】本题考查了求平均数,中位数与方差,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.115.杭州市相关部门正在研究制定居民用水价格调整方案.小明想为政府决策提供信息,于是在某小区内随机访问了部分居民,就每月的用水量、可承受的水价调整的幅度等进行调查,并把调查结果整理成图1和图2.已知被调查居民每户每月的用水量在m 3之间,被调查的居民中对居民用水价格调价幅度抱“无所谓”态度的有8户,试回答下列问题:(1)上述两个统计图表是否完整,若不完整,试把它们补全;(2)若采用阶梯式累进制调价方案(如表1所示),试估计该小区有百分之几的居民用水费用的增长幅度不超过50%?来表1:阶梯式累进制调价方案【答案】(1)频数分布直方图见解析;(2)该小区有75%的居民用水费用的增长幅度不超过50%.【解析】【分析】(1)根据扇形统计表中角度的比例关系可得出统计样本的总数,继而可补充完整两个统计表;(2)设每月每户用水量为xm3的居民调价后用水费用的增长幅度不超过50%,由表一可知分x≤15与x>15两部分讨论,再结合图一可得出结论.【详解】(1)频数分布直方图,如图:(2)∵设每月每户用水量为xm3的居民调价后用水费用的增长幅度不超过50%当x≤15时,水费的增长幅度为2.5 1.81.8-×100%<50%,当x>15时,则15 2.5 3.3(15) 1.81.8x xx⨯+--≤50%,解得x≤20,∵从调查数据看,每月的用水量不超过20m3的居民有54户,5472=75%,又∵调查是随机抽取,∴该小区有75%的居民用水费用的增长幅度不超过50%.【点睛】考查了条形和扇形统计图以及解一元一次不等式,解题的关键是:①由样本中某项数据得出样本数;②结合表一得出关于x的一元一次不等式.本题难度不大,属于基础题,解决该类型的题目需要熟悉各种统计表.116.为宣传普及新冠肺炎防治知识,引导学生做好防控.某校举行了主题为“防控新冠,从我做起”的线上知识竞赛活动,测试内容为20道判断题,每道题5分,满分100分.为了解八、九年级学生此次竞赛成绩的情况,分别随机在八、九年级各抽取了20名参赛学生的成绩.已知抽查得到的八年级的数据如下:80,95,75,75,90,75,80,65,80,85,75,65,70,65,85,70,95,80,75,80.为了便于分析数据,统计员对八年级数据进行了整理,得到了表一:八、九年级成绩的平均数、中位数、优秀率如下:(分数80分以上、不含80分为优秀)(1)根据题目信息填空:a=________,c=________,m=________;(2)八年级王宇和九年级程义的分数都为80分,请判断王宇、程义在各自年级的排名哪位更靠前?请简述你的理由;(3)八年级被抽取的20名学生中,获得A 等和B 等的学生将被随机选出2名,协助学校普及新冠肺炎防控知识,求这两人都为B 等的概率.【答案】(1)10a =,77.5c =,25m =;(2)王宇在该年级的排名更靠前,理由见解析;(3)被选中的2人都为B 等的概率为632010=.【解析】【分析】(1)直接根据抽查得到的八年级的数据即可求出a ,c 和m 的值;(2)根据王宇和程义的成绩和所在年级抽查成绩的中位数进行比较即可得出结论;(3)令3名B 等的学生分别为a ,b ,c ,2名A 等的学生分别为m ,n 画树状图为,即可求出被选中的2人都为B 等的概率.【详解】(1)由题意可得:10a =,758077.52c +==, 3b =32%100%25%5m +∴=⨯=∴25m =;(2)王宇在该年级的排名更靠前,∵八年级王宇成绩大于中位数77.5分,名次在该年级抽查的学生数的10名或10名之前,九年级程义成绩小于中位数82.5分,名次在该年级抽查的学生数的10名之后,∴王宇在该年级的排名更靠前.(3)令3名B等的学生分别为a,b,c,2名A等的学生分别为m,n 画树状图为:共有20种等可能的结果数,其中被选中的2人都为B等有6种结果,所以被选中的2人都为B等的概率为63 2010.【点睛】此题考查了频数分布表,列表法或树状图法求概率以及中位数的知识.用到的知识点为:概率=所求情况数与总情况数之比.117.每年的4月15日是我国全民国家安全教育日.某中学在全校七、八年级共800名学生中开展“国家安全法”知识竞赛,并从七、八年级学生中各抽取20名学生,统计这部分学生的竞赛成绩(竞赛成绩均为整数,满分10分,6分及以上为合格).相关数据统计、整理如下:八年级抽取的学生的竞赛成绩:4,4,6,6,6,6,7,7,7,8,8,8,8,8,8,9,9,9,10,10.七、八年级抽取的学生的竞赛成绩统计表根据以上信息,解答下列问题:(1)填空:a=,b=,c=;(2)估计该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数;(3)根据以上数据分析,从一个方面评价两个年级“国家安全法”知识竞赛的学生成绩谁更优异.【答案】(1)a=7.5,b=8,c=8;(2)200人;(3)八年级“国家安全法”知识竞赛的学生成绩更优异【解析】(1)根据中位数、众数的定义结合条形统计图及八年级学生成绩即可求解;(2)先算出样本40人中竞赛成绩达到9分及以上的人数所占的百分比,然后用该百分比乘以总体400,即可求解;(3)由八年级的合格率高于七年级的合格率,可得八年级“国家安全法”知识竞赛的学生成绩更优异.【详解】解:(1)由条形统计图可得七年级成绩中最中间的两个人分数为7分和8分,故中位数a=78=7.52+,八年级成绩中最中间的两个人分数为8分和8分,故中位数b=88=82+,八年级成绩出现次数最多的是8分,故c=8,故答案为:7.5,8,8;(2) 40人中竞赛成绩达到9分及以上的人数所占的百分比为(5+5)÷40=25%,∴该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数=800×25%=200(人),故答案为:200(人);(3)∵八年级的合格率高于七年级的合格率,∴八年级“国家安全法”知识竞赛的学生成绩更优异.故答案为:八年级学生成绩更优异.本题考查中位数、众数、平均数的意义和计算方法,理解各个概念的内涵和计算方法是解题的关键.118.为了解2012年全国中学生创新能力大赛中竞赛项目“知识产权”笔试情况,随机抽查了部分参赛同学的成绩,整理并制作图表如下:请根据以上图表提供的信息,解答下列问题:(1)本次调查的样本容量为;(2)在表中:m= .n= ;(3)补全频数分布直方图:(4)参加比赛的小聪说,他的比赛成绩是所有抽查同学成绩的中位数,据此推断他的成绩落在分数段内;(5)如果比赛成绩80分以上(含80分)为优秀,那么你估计该竞赛项目的优秀率大约是【答案】(1)300;(2)120;0.3;(3)答案见解析;(4)80≤x<90;(5)60%【解析】【分析】(1)利用第一组的频数除以频率即可得到样本容量:30÷0.1=300.(2)m=0.4×300=120,n=90÷300=0.3.(3)根据80≤x<90组频数即可补全直方图.(4)根据中位数定义,找到位于中间位置的两个数所在的组即可:中位数为第150个数据和第151个数据的平均数,而第150个数据和第151个数据位于80≤x<90这一组,故中位数位于80≤x<90这一组.(5)将比赛成绩80分以上的两组数的频率相加即可得到计该竞赛项目的优秀率.【详解】解:(1)此次调查的样本容量为30÷0.1=300;故答案为:300;(2)n=90300=0.3;m=0.4×300=120;故答案为:120;0.3;(3)补全频数分布直方图如图:(4)中位数为第150个数据和第151个数据的平均数,而第150个数据和第151个数据位于80≤x<90这一组,故中位数位于80≤x<90这一组;故答案为:80≤x<90(5)将80≤x<90和90≤x≤100这两组的频率相加即可得到优秀率,优秀率为60%.故答案为:60%.【点睛】本题考查频数(率)分布表,频数分布直方图,频数、频率和总量的关系,中位数,用样本估计总体.119.某校对九年级400名学生进行了一次体育测试,并随机抽取甲、乙两个班各50名学生的测试成绩(成绩均为整数,满分50分)进行整理、描述和分析.下面给岀了部分信息.(用x表示成绩,数据分成5组:A:30≤x<34,B:34≤x<38,C:38≤x<42,D:42≤x<46,E:46≤x≤50)乙班成绩在D组的具体分数是:42 42 42 42 42 42 42 42 42 42 43 44 45 45甲,乙两班成绩统计表:根据以上信息,回答下列问题:(1)直接写出m、n的值;(2)小明这次测试成绩是43分,在班上排名属中游略偏上,小明是甲、乙哪个班级学生?说明理由;(3)假设该校九年级学生都参加此次测试,成绩达到45分及45分以上为优秀,估计该校本次测试成绩优秀的学生人数.【答案】(1)m=45,n=42;(2)小明是乙班级学生;理由见解析;(3)该校本次测试成绩优秀的学生人数为188人.【解析】【分析】(1)根据中位数、众数的意义和计算方法分别计算即可,(2)利用中位数的意义进行判断;(3)根据用样本估计总体的方法,估计总体的优秀率,进而计算出优秀的人数.【详解】解:(1)乙班的成绩从小到大排列,处在第25、26位的两个数都是42,因此中位数是42,即n=42,甲班的中位数一定落在D组,而甲班每组人数为:A组2人,B组2人,C 组10人,D组24人,E组12人,甲班的中位数是44.5,而D组:42≤x<46整数,因此排序后处在第25、26位的两个数分别是44,45,于是,可得甲班得45分的学生数为2+2+10+24﹣25=13(人),是出现次数最多的,所以,甲班成绩的众数是45,即m=45,故答案为:m=45,n=42;(2)∵小明的成绩为43分,且在班上排名属中游略偏上,而甲班中位数是44.5,乙班的中位数是42,∴小明是乙班级学生;(3)甲班得45分及45分以上的有:13+12=25(人),而乙班有:2+20=22(人),两个班的整体优秀率为:(25+22)÷100=47%,∴400×47%=188(人),即:该校本次测试成绩优秀的学生人数为188人.【点睛】考查中位数、众数、平均数、方差的意义和计算方法,明确各个统计量的意义是正确解答的前提.120.某校举办了一 次趣味数学竞赛,满分100分,学生得分均为整数,成绩达到60分及以上为合格,达到90分及以上为优秀这次竞赛中,甲、乙两组学生成绩如下(单位:分).甲组:30,60,60,60,60,60,70,90,90,100乙组:50,50,60,70,70,80,80,80,90,90(1)以上成绩统计分析表中a=________分,b=_________分,c=________分;(2)小亮同学说:“这次竞赛我得了70分,在我们小组中排名属中游略偏上!”观察上面表格判断,小亮可能是甲、乙哪个组的学生?并说明理由.(3)如果你是该校数学竞赛的教练员,现在需要你选择一组同学代表学校参加复赛,你会选择哪一组?并说明理由.【答案】(1)60,72,75;(2)小亮属于甲组学生,理由见解析;(3)选甲组同学代表学校参加竞赛,理由见解析【解析】【分析】(1)根据中位数及平均数的定义进行计算即可得解;(2)根据中位数的大小进行判断即可得解;(3)根据数据给出合理建议即可.【详解】(1)∵甲组:30,60,60,60,60,60,70,90,90,100∴6060602a+==;∵乙组:50,50,60,70,70,80,80,80,90,90∴505060707080808090907210b+++++++++==;7080752c +==;(2)小亮属于甲组学生,∵甲组中位数为60,乙组的中位数为75,而小亮成绩位于小组中上游 ∴小亮属于甲组学生;(3)选甲组同学代表学校参加竞赛,由甲组有满分同学,则可选甲组同学代表学校参加竞赛.【点睛】本题主要考查了中位数及平均数的相关概念,熟练掌握中位数及平均数的计算是解决本题的关键.。

2021年八上数学同步练习-统计与概率_数据收集与处理_条形统计图-综合题专训及答案

2021年八上数学同步练习-统计与概率_数据收集与处理_条形统计图-综合题专训及答案

2021年八上数学同步练习-统计与概率_数据收集与处理_条形统计图-综合题专训及答案2021八上数学同步练习-统计与概率_数据收集与处理_条形统计图-综合题-专训1、(2021长沙.八上期中) 某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m=;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为;(4)已知该校共有1200名学生,请你估计该校约有名学生最喜爱足球活动.2、(2019农安.八上期末) 某校组织了主题为“让勤俭节约成为时尚”的电子小组作品征集活动,现从中随机抽取部分作品,按A,B,C,D四个等级进行评价,并根据结果绘制了如下两幅不完整的统计图.(1)求抽取了多少份作品;(2)求此次抽取的作品中等级为B的作品的数量,并补全条形统计图;(3)若该校共征集到800份作品,请估计等级为A的作品约有多少份.3、(2019绿园.八上期末) 某班在一次班会课上,就“遇见路人摔倒后如何处理”的主题进行讨论,并对全班50 名学生的处理方式进行统计,得出相关统计表和统计图.组别A B C D处理方式迅速离开马上救助视情况而定只看热闹人数m30n5请根据表图所提供的信息回答下列问题:(1)求统计表中的m、n的值;(2)补全频数分布直方图;(3)若该校有2000 名学生,请据此估计该校学生采取“马上救助”方式的学生有多少人?4、(2017德惠.八上期末) 某课题小组为了解某品牌电动自行车的销售情况,对某专卖店第一季度该品牌A、B、C、D四种型号电动车的销量做了统计,绘制成如图所示的两幅统计图(均不完整)(1)该店第一季度售出这种品牌的电动自行车共多少辆?(2)把两幅统计图补充完整.5、(2017东台.八上期末) 为保证中小学生每天锻炼一小时,涟水县某中学开展了形式多样的体育活动项目,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的统计图(1)和图(2).(1)某班同学的总人数为人;(2)请根据所给信息在图(1)中将表示“乒乓球”项目的图形补充完整;(3)扇形统计图(2)中表示“篮球”项目扇形的圆心角度数为.6、(2017南安.八上期末) 某校八年级数学兴趣小组的同学调查了若干名家长对“初中生带手机上学”现象的看法,统计整理并制作了如下的条形与扇形统计图.依据图中信息,解答下列问题:(1)接受这次调查的家长共有人;(2)补全条形统计图;(3)在扇形统计图中,“很赞同”的家长占被调查家长总数的百分比是;(4)在扇形统计图中,“不赞同”的家长部分所对应扇形的圆心角度数是度.7、(2017萍乡.八上期末) 某校260名学生参加植树活动,要求每人植4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2),经确认扇形图是正确的,而条形图尚有一处错误.回答下列问题:(1)写出条形图中存在的错误,并说明理由;(2)写出这20名学生每人植树量的众数、中位数;(3)在求这20名学生每人植树量的平均数时,小宇是这样分析的:①小宇的分析是从哪一步开始出现错误的?②请你帮他计算出正确的平均数,并估计这260名学生共植树多少棵.8、(2018南召.八上期末) 某市团委举行以“我的中国梦”为主题的知识竞赛,甲、乙两所学校的参赛人数相等,比赛结束后,发现学生成绩分别为分,分,分,分,并根据统计数据绘制了如下不完整的统计图表:(1)乙学校的参赛人数是人;(2)在图①中,“ 分”所在扇形的圆心角度数为;(3)请你将图②补充完整;(4)求乙校成绩的平均分;9、(2018洛宁.八上期末) 学习了统计知识后,班主任王老师叫班长就本班同学的上学方式进行了一次调查统计,图1和图2是他通过收集数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息,解答以下问题:(1)在扇形统计图中,计算出“步行”部分所对应的圆心角的度数;(2)求该班共有多少名学生;(3)在图1中,将表示“乘车”的部分补充完整.10、(2018商水.八上期末) 某市积极开展“阳光体育进校园”活动,各校学生坚持每天锻炼一小时,某校根据实际,决定主要开设A:乒乓球,B:篮球,C:跑步,D:跳绳四种运动项目,为了解学生最喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图.请你结合图中信息解答下列问题.(1)请计算最喜欢B项目的人数所占的百分比.(2)请计算D项所在扇形图中的圆心角的度数.(3)请把统计图补充完整.11、(2018南召.八上期末) 某商场对一种新售的手机进行市场问卷调查,其中一个项目是让每个人按A(不喜欢)、B(一般)、C(不比较喜欢)、D(非常喜欢)四个等级对该手机进行评价,图①和图②是该商场采集数据后,绘制的两幅不完整的统计图,请你根据以上统计图提供的信息,回答下列问题:(1)本次调查的人数为多少人?A等级的人数是多少?请在图中补全条形统计图.(2)图①中,a等于多少?D等级所占的圆心角为多少度?12、(2018定安.八上期末) “知识改变命运,科技繁荣祖国”,我市中小学每年都要举办一届科技运动会,下图为我市某校今年参加科技运动会航模比赛(包括空模、海模、车模、建模四个类别)的参赛人数统计图:(1)该校参加车模、建模比赛的人数分别是人和人:(2)该校参加航模比赛的总人数是人,空模所在扇形的圆心角的度数是,并把条形统计图补充完整.(3)从全市中小学参加航模比赛选手中随机抽取80人,其中有32人获奖,今年我市中小学参加航模比赛人共有2485人,请你估算今年参加航模比赛的获奖人数约是多少人?13、(2017杭州.八上期中) 为了解学生对篮球、羽毛球、乒乓球、踢毽子、跳绳等5项体育活动的喜欢程度,某校随机抽查部分学生,对他们最喜欢的体育项目(每人只选一项)进行了问卷调查,并将统计数据绘制成如下两幅不完整的统计图:请解答下列问题:(1) m=%,这次共抽取了名学生进行调查;请补全条形统计图;(2)若全校有800名学生,则该校约有多少名学生喜爱打篮球?14、(2020五华.八上期末) 在慈善一日捐活动中,学校团总支为了了解本校学生的捐款情况,随机抽取了50名学生的捐款数进行了统计,并绘制成下面的统计图.(1)这50名同学捐款的众数为元,中位数为元;(2)该校共有600名学生参与捐款,请估计该校学生的捐款总数.15、(2017南宁.八上期中) 某校为了解学生对篮球、足球、排球、羽毛球、乒乓球这五种球类运动的喜爱情况,随机抽取一部分学生进行问卷调查,统计整理并绘制了以下两幅不完整的统计图:请根据以上统计图提供的信息,解答下列问题:(1)共抽取名学生进行问卷调查;(2)补全条形统计图,求出扇形统计图中“篮球”所对应的圆心角的度数;(3)该校共有2500名学生,请估计全校学生喜欢足球运动的人数.2021八上数学同步练习-统计与概率_数据收集与处理_条形统计图-综合题-答案1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:9.答案:10.答案:11.答案:12.答案:13.答案:14.答案:15.答案:。

(完整)扇形统计图练习题

(完整)扇形统计图练习题

《扇形统计图》练习题渝北区双湖小学校江小容一、填空1.如果只表示各种数量的多少,可以选用( )统计图表示;如果想要表示出数量增减变化的情况,可以选用( )统计图表示;如果要清楚地了解各部分数量与总数之间的关系,可以用( )统计图表示。

考查目的:三种统计图的特点及选择。

答案:条形;折线;扇形。

解析:可结合实例,通过比较和归纳,使学生深刻理解三种统计图的特点及应用选择。

2.下图是鸡蛋各部分质量统计图.从图中我们可以看出:一个鸡蛋中蛋壳的质量约占( ),蛋黄的质量约占()。

如果一个鸡蛋重80克,那么这个鸡蛋中的蛋白重( )克。

考查目的:扇形统计图中信息的读取;解决实际问题。

答案:15%,32%。

42.4。

解析:引导学生认真读图,分析题意,并在这一过程中理解扇形统计图的特点。

对于第三个问题,依据“求一个数的百分之几是多少"的数量关系进行解答。

3.如图,如果用整个图表示总体,那么()扇形表示总体的;()扇形表示总体的;剩下的C扇形表示总体的( )。

考查目的:单位“1”的理解;扇形面积与圆面积之间的关系.答案:A;B;.解析:如果用整个圆表示总体,把它看作单位“1",平均分成2份,那么B扇形表示其中的一份,占这个圆的;如果把它平均分成3份,那么A扇形表示其中的一份,占这个圆的;剩下的C 扇形表示总体的。

4.下图是某学校教师喜欢看的电视节目统计图.(1)喜欢《走进科学》的老师占全体老师人数的()%。

(2)喜欢( )节目和()节目的人数差不多。

(3)喜欢()节目的人数最少。

如果该学校有150名老师,那么喜欢新闻联播的老师有()人。

考查目的:通过观察扇形统计图获取信息,解决实际问题。

答案:(1)32;(2)大风车,新闻联播;(3)焦点访谈,42.解析:第(1)小题需要明确把整个圆看作单位“1”,已知的三个项目占总数的68%,则未知的一项所占的百分比为1-68%=32%;第(2)小题以及第(3)小题中“喜欢哪个节目的人数最少”的问题,可引导学生在没有数据的情况下,通过比较扇形面积的大小得出结论;最后一个填空是利用数量关系解决实际问题。

中考数学第一编教材知识梳理篇第八章统计与概率第一节数据的收集、整理与描述试题

中考数学第一编教材知识梳理篇第八章统计与概率第一节数据的收集、整理与描述试题

第八章统计及概率第一节数据的收集、整理及描述,河北8年中考命题规律)条形统计图202121(1)(2)(4)分析统计图扇形统计图、折线统计图,(1)求百分比;(2)补全折线统计图;(4)根据统计图选择最优77命题规律数据的收集与整理是河北的必考内容,除2021外每年设置1道题,考察题型为解答题,所占分值为2~7分.分析近8年河北中考试题可以看出,本课时常涉及到的考察类型有:(1)条形统计图与扇形统计图结合(考察2次);(2)折线统计图与统计表结合(考察2次);(3)扇形统计图与折线统计图结合(考察1次);(4)扇形统计图、条形统计图与统计表结合(考察2次).命题预测预计2021年中考仍会在解答题中考察统计图表的分析,且以两个统计图表为主,设问方式多为涉及补全统计图与统计表的计算,虽然2021年未考察此知识点,但2021年考察的可能性较大,复习应强化训练.,河北8年中考真题及模拟)统计图的分析(6次)1.(2021河北22题10分)如图①,A,B,C是三个垃圾存放点,点B,C分别位于点A的正北与正东方向,AC=100 m.四人分别测得∠C的度数如下表:甲乙丙丁∠C(单位:度)34363840他们又调查了各点的垃圾量,并绘制了以下尚不完整的统计图②,③:(1)求表中∠C度数的平均数x;(2)求A处的垃圾量,并将图②补充完整;(3)用(1)中的x作为∠C的度数,要将A处的垃圾沿道路AB都运到B处,,,cos37°,tan37°=0.75)解:(1)x=37°;(2)A 处的垃圾量为80 kg,补全条形统计图略;(3)运费是30元.2.(2021河北24题9分)A、B两地的路程为240 km,某经销商每天都要用汽车或火车将x吨保鲜品一次性由A地运往B地,受各种因素限制,下一周只能采用汽车与火车中的一种进展运输,且须提前预订.现有货运收费工程及收费标准表,行驶路程s(km)及行驶时间t(h)的函数图象(如图①),上周货运量折线统计图(如图②)等信息如下:货运收费工程及收费标准表运输工具运输费单价元/(吨·千米)冷藏单价元/(吨·时)固定费用元/次汽车25200火车5 2 280(1)汽车的速度为____km/h,火车的速度为____km/h;(2)设每天用汽车与火车运输的总费用分别为y汽(元)与y火(元),分别求y汽、y火及x的函数关系式(不必写出x的取值范围),及x为何值时,y汽>y火;(总费用=运输费+冷藏费+固定费用)(3)请你从平均数、折线图走势两个角度分析,建议该经销商应提前为下周预定哪种运输工具,才能使每天的运输总费用较省?解:(1)60;100;(2)y汽=500x+200,y火=396x+2 280,当x>20时,y 汽>y火;(3)从平均数分析,建议预定火车运输,总费用较省,从折线图走势分析,下周货运量周四(含周四)后大于20且呈上升趋势,建议预订火车运输,总费用较省.,中考考点清单)调查方式1.普查:对全体对象进展调查叫做普查.2.抽样调查:从总体中抽取局部个体进展调查,这种调查方式叫做抽样调查.【温馨提示】一般地,当总体中个体数目较多,普查的工作量较大;受客观条件的限制,无法对所有个体进展普查;调查具有破坏性时,不允许普查.这时我们往往会用抽样调查来表达样本估计总体的思想.总体、个体、样本及样本容量3.相关概念:总体:把要考察对象的__全部个体__叫做总体.个体:把组成总体的每一个对象叫做个体.样本:从总体中抽取的局部个体叫做总体的一个样本.样本容量:样本中包含个体的数目叫做样本容量.4.用样本估计总体时,样本容量越大,样本对总体的估计也就越准确.频数与频率5.频数:各组中数据的个数.6.频率=频数数据总个数.7.各组的频率之与为__1__.统计图表的认识与分析统计图表的认识与分析是河北近8年的必考题目,均在解答题中考察,类型有:单纯分析统计图表考察3次,及概率结合考察2次,及直角三角形结合考察1次,及函数图象结合考察1次.且每种类型的考察都会涉及到众数、中位数、平均数及方差的相关知识.8.各统计图的功能扇形统计图能清楚地表示出各局部在总体中所占的百分比,但是不能清楚地表示出每个工程的具体数目以及事物的变化情况条形统计图能清楚地表示出每个工程的具体数目,但是不能清楚地表示出各局部在总体中所占的百分比以及事物的变化情况折线统计图能清楚地反映事物的变化情况,但是不能清楚地表示出各局部在总体中所占的百分比以及每个工程的具体数目频数分布直方图能清晰地表示出收集或调查到的数据计算调查的样本容量:综合观察统计图表,从中得到各组的频数,或得到某组的频数,或得到某组的频数及该组的频率(百分比),利用样本容量=各组频数之与或样本容量=某组的频数该组的频率〔百分比〕,计算即可.(1)条形统计图:一般涉及补图,也就是求未知组的频数,方法如下:①未知组频数=样本总量-组频数之与;②未知组频数=样本容量×该组所占样本百分比.(2)扇形统计图:一般涉及补图,也就是求未知组的百分比或其所占圆心角的度数,方法如下:①未知组百分比=1-组百分比之与;②未知组百分比=未知组频数样本容量×100%;③假设求未知组在扇形统计图中圆心角的度数,利用360°×其所占百分比即可.(3)统计表:一般涉及求频数与频率(百分比),方法同上.,中考重难点突破)统计图的分析【例】(2021南京中考改编)为了了解2021 年某地区10万名大、中、小学生50 m 跑成绩情况,教育部门从这三类学生群体中各抽取了10%的学生进展检测,整理样本数据,并结合2021年抽样结果,得到以下统计图.(1)本次检测抽取了大、中、小学生共________名,其中小学生________名;(2)根据抽样的结果,估计2021 年该地区10万名大、中、小学生中,50 m 跑成绩合格的中学生人数为多少名;(3)比拟2021年及2021 年抽样学生50 m 跑成绩合格率情况,写出一条正确的结论.【解析】(1)总人数×抽取的比例=抽取大、中、小学生的人数,抽取的总人数×小学生的人数所占比例=抽取的小学生人数;(2)总人数×中学生人数占总人数的比例×中学生合格的人数占中学生总人数的比例=中学生50 m 跑成绩合格的人数;(3)根据条形统计图中反映出的数量关系,比拟两年的合格率的变化情况,写出一条正确的结论即可,此题答案不唯一.【学生解答】(1)10 000;4 500;(2)36 000;(3)此题答案不唯一,以下答案仅供参考,例如:及2021年相比,2021 年该市大学生50 m 跑成绩合格率下降了5%.(2021长沙中考)为积极响应市委市政府“加快建立天蓝·水碧·地绿的美丽长沙〞的号召,我市某街道决定从备选的五种树中选购一种进展栽种,为了更好地了解社情民意,工作人员在街道辖区范围内随机抽取了局部居民,进展“我最喜欢的一种树〞的调查活动(每人限选其中一种树),并将调查结果整理后,绘制成下面两个不完整的统计图:请根据所给信息解答以下问题:(1)这次参及调查的居民人数为________; (2)请将条形统计图补充完整;(3)请计算扇形统计图中“枫树〞所在扇形的圆心角度数;(4)该街道辖区内现有居民8万人,请你估计这8万人中最喜欢玉兰树的有多少人?解:(1)这次参及调查的居民人数有37537.5%=1 000(人);(2)选择“樟树〞的有10 00-250-375-125-100=150(人),补全条形图如图;(3)360°×1001 000=360°.答:扇形统计图中“枫树〞所在扇形的圆心角度数为36°;(4)8×2501 000=2(万人).答:估计这8万人中最喜欢玉兰树的约有2万人.,中考备考方略)1.(2021重庆中考)以下调查中,最适合采用全面调查(普查)方式的是( B) A.对重庆市辖区内长江流域水质情况的调查B.对乘坐飞机的旅客是否携带违禁物品的调查C.对一个社区每天丢弃塑料袋数量的调查D.对重庆电视台“天天630〞栏目收视率的调查2.(2021苏州中考)小明统计了他家今年5月份打的次数及通话时间,并列出了频数分布表,那么通话时间不超过15 min的频率为( D)通话时间x/min 0<x≤55<x≤1010<x≤1515<x≤20频数(通话次数)201695A B C D3.(2021内江中考)为了解某市参加中考的32 000名学生的体重情况,抽查了其中1 600名学生的体重进展统计分析,以下表达正确的选项是( B) A.32 000名学生是总体B.1 600名学生的体重是总体的一个样本C.每名学生是总体的一个个体D.以上调查是普查4.空气是由多种气体混合而成的,为了简明扼要地介绍空气的组成情况,较好地描述数据,最适合使用的统计图是( A)A.扇形图B.条形图C.折线图D.直方图5.(2021成都中考)第十二届全国人大四次会议审议通过的?中华人民共与国慈善法?将于今年9月1日正式实施,为了了解居民对慈善法的知晓情况,某街道办从辖区居民中随机选取了局部居民进展调查,并将调查结果绘制成如下图的扇形图.假设该辖区约有居民9 000人,那么可以估计其中对慈善法“非常清楚〞的居民约有__2__700__人.6.(2021沧州八中一模)在大课间活动中,同学们积极参加体育锻炼.小红在全校随机抽取一局部同学就“一分钟跳绳〞进展测试,并以测试数据为样本绘制如下图的局部频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)与扇形统计图.假设“一分钟跳绳〞次数不低于130次的成绩为优秀,全校共有1 200名学生,根据图中提供的信息,估计该校学生“一分钟跳绳〞成绩优秀的人数为__480__人.7.(2021杭州中考)某汽车厂去年每个季度汽车销售数量(辆)占当季汽车产量(辆)百分比的统计图如下图.根据 统计图答复以下问题:(1)假设第一季度的汽车销售量为2 120辆,求该季的汽车产量;(2)圆圆同学说:“因为第二,第三这两个季度汽车销售数量占当季汽车产量是从75%降到50%,所以 第二季度的汽车产量一定高于第三季度的汽车产量〞,你觉得圆圆说的对吗?为什么?解:(1)2 100÷0.7=3 000(辆),所以第一季度的产量为3 000辆;(2)圆圆的说法不对.因为百分比仅能够表示所要考察的数据在总量所占的比例,并不能反映总量的大小.8.(2021永州中考)二孩政策的落实引起了全社会的关注,某校学生数学兴趣小组为了了解本校同学对父母生育二孩的态度,在学校抽取了局部同学对父母生育二孩所持的态度进展了问卷调查,调查分别为非常赞同、赞同、无所谓、不赞同等四种态度,现将调查统计结果制成了如图两幅统计图,请结合两幅统计图,答复以下问题:(1)在这次问卷调查中一共抽取了________名学生,a =________%; (2)请补全条形统计图;(3)持“不赞同〞态度的学生人数的百分比所占扇形的圆心角为________°;(4)假设该校有3 000名学生,请你估计该校学生对父母生育二孩持“赞同〞与“非常赞同〞两种态度的人数之与.解:(1)50;30;(2)如下图;(3)36;(4)10+2050×100%×3 000=1 800(人).9.(2021邢台二模)如图是某地2月18日到23日PMAQI 的统计图(当AQI 不大于100时称空气质量为“优良〞),由图可得以下说法:①18日的PM 2.5浓度最低;②这六天中PM μg / m 3 ;③这六天中有4天空气质量为“优良〞;④空气质量指数AQI 及PM 2.5浓度有关.其中正确的说法是( C )A .①②③B .①②④C .①③④D .②③④10.(2021江西中考)为了了解家长关注孩子成长方面的情况,学校开展了针对学生家长的“你最关注孩子哪方面成长〞的主题调查,调查设置了“安康平安〞“日常学习〞“习惯养成〞“情感品质〞四个工程,并随机抽取甲,乙两班共100位学生家长进展调查,根据调查结果,绘制了如下不完整的条形统计图.(1)补全条形统计图;(2)假设全校共有3 600位家长,据此估计,有多少位家长最关心孩子“情感品质〞方面的成长?(3)综合以上主题调查结果,结合自身现状,你更希望得到以上四个工程中哪方面的关注与指导?解:(1)如下图;“情感品质〞方面的成长;(3)没有确定答案,说的有道理即可.11.(2021永州中考)为了保护视力,学校开展了全校性的视力保健活动. 活动前,随机抽取局部学生,检查他们的视力,结果如下图(数据包括左端点不包括右端点,准确到0.1);活动后,再次检查这局部学生的视力,结果如下图.抽取的学生活动前视力频数分布直方图抽取的学生活动后视力频数分布表分组频数2358175(1)求所抽取的学生人数;,估计活动前该校学生的视力达标率;(3)请选择适当的统计量,从两个不同的角度分析活动前后相关数据,并评价视力保健活动的效果.解:(1)所抽取的学生人数为40;(2)∵10+5=15,∴15÷40%,∴%%;活动后:视力达标率为:22÷40=55%.角度二:视力的平均数.活动前:视力的平均数为:3×+6×4.3+7×4.5+9×4.7+10×4.9+5×5.1=4.66;活动后,视力的平40均数为:2×+3×4.3+5×4.5+8×4.7+17×4.9+5×5.1=4.75.角度三:视力中位40数,活动前:视力的中位数落在4.6~4.8内;活动后:视力的中位数落在4.8~5.0内.从视力达标率,平均数,中位数可以看出,所抽取学生的视力在活动后好于活动前.总体情况好于活动前,说明该活动有效.。

扇形统计图练习题

扇形统计图练习题

扇形统计图练习题一、选择题1. 在扇形统计图中,如果一个部分的面积占整个圆的25%,那么这个部分所对应的圆心角的度数是多少?A. 45°B. 90°C. 180°D. 360°2. 下列哪一项不是扇形统计图的特点?A. 直观显示各部分所占比例B. 显示数据的绝对值C. 可以比较各部分的相对大小D. 各部分的面积之和等于整个圆的面积3. 如果扇形统计图中某部分的圆心角为120°,整个圆的圆心角总和是360°,那么这部分所占的比例是多少?A. 1/3B. 1/2C. 2/3D. 3/44. 在扇形统计图中,如果某部分的面积是其他部分面积的两倍,那么这部分所对应的圆心角的度数应该是其他部分的多少倍?A. 1倍B. 2倍C. 4倍D. 8倍二、填空题5. 扇形统计图是一种以圆形为基础,通过________来展示数据的图表。

6. 在扇形统计图中,如果某部分的圆心角为90°,那么这部分所占的比例是________。

7. 扇形统计图的每个部分的面积与其所占比例的关系是________。

8. 如果一个扇形统计图中有5个部分,每个部分的圆心角分别为72°、144°、36°、90°和120°,那么这些部分的面积之和占整个圆面积的比例是________。

三、简答题9. 简述扇形统计图与条形统计图在展示数据时的主要区别。

10. 为什么在需要比较各部分所占比例时,扇形统计图比条形统计图更为直观?四、计算题11. 一个扇形统计图展示了一家公司的年度收入来源,其中产品销售占30%,服务占40%,投资收益占20%,其他占10%。

如果整个圆的面积是100平方厘米,计算每个部分的面积。

12. 如果一家公司的年度收入来源在扇形统计图中显示,其中产品销售的圆心角为108°,服务的圆心角为144°,投资收益的圆心角为72°,其他部分的圆心角为48°。

甘肃省兰州市第五十五中学2024届数学八年级第二学期期末统考模拟试题含解析

甘肃省兰州市第五十五中学2024届数学八年级第二学期期末统考模拟试题含解析

甘肃省兰州市第五十五中学2024届数学八年级第二学期期末统考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(每小题3分,共30分)1.用配方法解一元二次方程2810x x --=时,下列变形正确的是( )A .()2417x -=B .()2415x -=C .()2415x +=D .()2417x +=2.已知a b <,则下列不等式一定成立的是( )A .22a b +<+B .22a b -<-C .c a c b -<-D .22a b <3.关于x 的一元二次方程2210x x m -+-=有两个相等的实数根,则m 的值( )A .2B .3C .1-D .524.如图,在平行四边形ABCD 中,BC =10,AC =14,BD =8,则△BOC 的周长是( )A .21B .22C .25D .325.把代数式2x 2﹣18分解因式,结果正确的是( )A .2(x 2﹣9)B .2(x ﹣3)2C .2(x +3)(x ﹣3)D .2(x +9)(x ﹣9)6.如图,一次函数y 1=k 1x +2与反比例函数y 2=2k x 的图象交点A (m ,2)和B (﹣4,﹣1)两点,若y 1>y 2,则x的取值范围是( )A .x <﹣4或0<x <2B .x >2或﹣4<x <0C .﹣4<x <2D .x <﹣4或x >27.如图所示,将一个含30角的直角三角板ABC 绕点A 逆时针旋转,点B 的对应点是点'B ,若点'B 、A 、C 在同一条直线上,则三角板ABC 旋转的度数是( )A .60B .90C .120D .1508.课间,小聪拿着老师的等腰直角三角板玩,不小心掉到两墙之间(如图),已知,∠ACB=90°,AC=BC , AB=1.如果每块砖的厚度相等,砖缝厚度忽略不计,那么砌墙砖块的厚度为( )A .26B .6C .D .5 9.关于x 的方程=0有增根,则m 的值是( ) A .2 B .﹣2 C .1 D .﹣110.如图,一次函数1y x b =+与一次函数2y 4kx =+的图象交于点P(1,3),则关于x 的不等式4x b kx ++<的解集是( )A .x >2B .x >0C .x >1D .x <1二、填空题(每小题3分,共24分)11.如图,点B 是反比例函数k y x =(0x >)图象上一点,过点B 作x 轴的平行线,交y 轴于点A ,点C 是x 轴上一点,△ABC 的面积是2,则k =______.12.化简121+=_____. 13.一次智力测验,有20道选择题.评分标准是:对1题给5分,答错或没答每1题扣2分.小明至少答对几道题,总分才不会低于60分.则小明至少答对的题数是________.14.观察下列各式113+=313+=213;124+=2414⨯+=314;135+=3515⨯+=415;146+=4616⨯+=516……请你找出其中规律,并将第n (n ≥1)个等式写出来____________。

2019年中考数学知识点《统计图表》精选考题练习(含答案解析)

2019年中考数学知识点《统计图表》精选考题练习(含答案解析)

2019年中考数学知识点《统计图表》精选考题练习(含答案解析)一、选择题20.(2019山东省德州市,20,10)《中学生体质健康标准》规定的等级标准为:90分及以上为优秀,80~89分为良好,60~79 分为及格,59 分及以下为不及格.某校为了解七、八年级学生的体质健康情况,现从两年级中各随机抽取10 名同学进行体质健康检测,并对成绩进行分析.成绩如下:(1)根据上述数据,补充完成下列表格.整理数据:优秀分析数据:(2)该校目前七年级有200 人,八年级有300 人,试估计两个年级体质健康等级达到优秀的学生共有多少人?(3)结合上述数据信息,你认为哪个年级学生的体质健康情况更好,并说明理由.【解题过程】(1)八年级及格的人数是4,平均数=,中位数=;故答案为:4;74;78;(2)计两个年级体质健康等级达到优秀的学生共有200×人;(3)根据以上数据可得:七年级学生的体质健康情况更好.1. (2019·巴中)如图所示,是巴中某校对学生到校方式的情况统计图,若该校骑自行车到校的学生有200 人,则步行到校的学生有( )A.120 人B.160 人C.125 人D.180 人【答案】B【解析】因为该校骑自行车到校的学生有200 人,占比25%,所以可得全校总人数为200÷25%=800(人),步行人数占比20%,故人数为800×20%=160(人),故选B.5.(2019·温州)对温州某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40 人,那么选择黄鱼的有()A.20 人B.40 人C.60 人D.80 人【答案】D【解析】从统计图可知选择鲳鱼的占全体统计人数的 20%,则抽取的样本容量为40÷20%=200,则根据统计图可知选择黄鱼的有200×40%=80人.故选答案 D.4.(2019·嘉兴)2019年5月26日第5届中国国际大数据产业博览会召开.某市在五届数博会上的产业签约金额的折线统计图如图.下列说法正确的是()A.签约金额逐年增加B.与上年相比,2019 年的签约金额的增长量最多C.签约金额的年增长速度最快的是 2016 年D.2018 年的签约金额比 2017 年降低了 22.98%【答案】C【解析】根据折线统计图观察可知,签约金额不是逐年增多,相对而言,增长量最多的是2016 年,增长速度最快的也是2016 年,2018 年比2017 年降低了%9.4,故选 C.6.(2019·威海)为配合全科大阅读活动,学校团委对全校学生阅读兴趣调查的数据进行整理.欲反映学生感兴趣的各类图书所占百分比,最适合的统计图是()A.条形统计图B.频数直方图C.折线统计图D.扇形统计图【答案】D【解析】依据每种统计图的特点选择,欲反映学生感兴趣的各类图书所占百分比,最适合的统计图是扇形统计图.故选 D.4.(2019·江西)根据《居民家庭亲子阅读消费调查报告)中的相关数据制成扇形统计图,由图可知,下列说法错误的是()A.扇形统计图能反映各部分在总体中所占的百分比B.每天阅读30 分钟以上的居民家庭孩子超过50%C.每天阅读1 小时以上的居民家庭孩子占20%D.每天阅读30 分钟至1 小时的居民家庭孩子对应扇形的圆心角是108°【答案】C【解析】∵每天阅读1 小时以上的居民家庭孩子占20%+10%=30%,∴C 错误.二、填空题13.(2019·泰州)根据某商场2018年四个季度的营业额绘制成如图所示的扇形统计图,其中二季度的营业额为1000万元,则该商场全年的营业额为万元.第13 题图【答案】5000【解析】二季度营业额所占百分比为1-35%-25%-20%=20%,所以该商场全年的营业额为1000÷20%=5000(万元)13.(2019·温州)某校学生“汉字听写”大赛成绩的频数直方图(每一组含前一个边界值,不含后一个边界值)如图所示,其中成绩为“优良”(80分及以上)的学生有人.【答案】90【解析】从频数直方图中读懂信息、提取信息、发现信息.知道成绩为“优良”(80分及以上)的在80~90、90~100两个小组中,其频数分别为60、30.因此,成绩为“优良”(80分及以上)的学生有90人.故填:90. 12.(2019·山西)要表示一个家庭一年用于"教育","服装","食品","其他"这四项的支出各占家庭本年总支出的百分比,从"扇形统计图","条形统计图","折线统计图"中选择一种统计图,最适合的统计图是.【答案】扇形统计图【解析】∵要表示四项支出各占家庭本年总支出的百分比,∴用扇形统计图最适合.三、解答题19.(2019年浙江省绍兴市,第19题,8分)小明、小聪参加了100m跑的5期集训,每期集训结束市进行测试,根据他们的集训时间、测试成绩绘制成如下两个统计图:根据图中信息,解答下列问题:(1)这5 期的集训共有多少天?小聪5 次测试的平均成绩是多少?(2)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,说说你的想法.【解题过程】21.(2019·嘉兴))在推进嘉兴市城乡生活垃圾分类的行动中,某社区为了了解居民掌握垃圾分类知识的情况进行调查.其中A、B两小区分别有 500 名居民参加了测试,社区从中各随机抽取 50 名居民成绩进行整理得到部分信息:【信息一】A小区50名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值):【信息二】上图中,从左往右第四组的成绩如下:75 75 79 79 79 79 80 8081 82 82 83 83 84 84 84【信息三】A、B两小区各 50 名居民成绩的平均数、中位数、众数、优秀率(80 分及以上为优秀)、方差等数据如下(部分空缺):小区平均数中位数众数优秀率方差A75.1 79 40% 277B75.1 77 76 45% 211 根据以上信息,回答下列问题:(1)求A小区 50 名居民成绩的中位数.(2)请估计A小区 500 名居民成绩能超过平均数的人数.(3)请尽量从多个角度,选择合适的统计量分析A,B两小区参加测试的居民掌握垃圾分类知识的情况.24【解题过程】(1)75 分.(2)×500=240 人.(3)从平均数、中位数、众数、方差等方面,选择合适的统计50量进行分析,例如:①从平均数看,两个小区居民对于垃圾分类知识掌握情况的平均水平相同;②从方差看,B 小区居民对垃圾分类知识的掌握情况比A 小区稳定;③从中位数看,B 小区至少有一半的居民成绩高于平均数. 分三个不同层次的评价:A 层次:能从1 个统计量进行分析B 层次:能从2 个统计量进行分析C 层次:能从3 个及以上统计量进行分析18. (2019 浙江省杭州市,18,8 分)(本题满分 8 分)称量五筐水果的质量,若每筐以 50 千克为基准,超过基准部分的千克数记为正数.不足基准部分的干克数记为负数.甲组为实际称量读数,乙组为记录数据.并把所得数据整理成如下统计表和未完成的统计图(单位:千克).实际称量读数和记录数据统计表12345序号数据甲组48 52 47 49 54乙组-2 2-3 -1 4(1)补充完整乙组数据的折线统计图.(第18 题)(2)①甲,乙两组数据的平均数分别为x¯甲,x¯乙,写出x¯甲与x¯乙之间的等量关系②甲,乙两组数据的方差分别为S2 ,S2 ,比较S2 与S2 的大小,并说明理由。

四川省成都市石室天府中学2024届八年级数学第二学期期末联考试题含解析

四川省成都市石室天府中学2024届八年级数学第二学期期末联考试题含解析

四川省成都市石室天府中学2024届八年级数学第二学期期末联考试题注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题(每题4分,共48分)1.如图,Rt △ABC 中,∠C =90°,AD 是∠BAC 的平分线,CD =3,△ABD 的面积等于18,则AB 的长为( )A .9B .12C .15D .182.某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所用的时间与原计划生产450台机器所用的时间相同.若设原计划平均每天生产x 台机器,则可列方程为( ) A .600x=45050x + B .600x=45050x - C .60050x +=450xD .60050x -=450x3.下列交通标志图案中,是中心对称图形的是( )A .B .C .D .4.若一个等腰三角形的腰长为5,底边长为6,则底边上的高为( ) A .4B .3C .5D .65.下表记录了四名运动员参加男子跳高选拔赛成绩的平均数x 与方差2s :甲 乙 丙 丁 平均数x 173175175174方差2s3.5 3.5 12.5 15如果选一名运动员参加比赛,应选择( ) A .甲B .乙C .丙D .丁6x 1-x 1+2x 1- ) A .x 1>B .x 1<-C .x 1≥D .x 1≤-7.如图,在直角三角形中,,,,点为的中点,点在上,且于,则=( )A .B .C .D .8.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是( )A .23B .16C .13D .129.如图是一张矩形纸片ABCD ,AD =10cm ,若将纸片沿DE 折叠,使DC 落在DA 上,点C 的对应点为点F ,若BE =6cm ,则CD =( )A .4cmB .6cmC .8cmD .10cm10.若a >b ,则下列各式中一定成立的是( ) A .a +2<b +2B .a -2<b -2C .2a >2b D .-2a >-2b11.下列各式中,能用公式法分解因式的是( ) ①22x y --; ②22114a b -+; ③22a ab b ++; ④222x xy y -+-; ⑤2214mn m n -+ A .2个B .3个C .4个D .5个12.下列函数中,表示y 是x 的正比例函数的是( ). A .2019y x=B .3y x =C .0.11y x =-+D .214y x +=二、填空题(每题4分,共24分)13.已知直角三角形的周长为14,斜边上的中线长为3. 则直角三角形的面积为________. 14.一组数据2,6,x ,10,8的平均数是6,则这组数据的方差是______.15.若α是锐角且sinα=32,则α的度数是 .16.计算:(﹣4ab 2)2÷(2a 2b )0=_____.17.若式子3x -在实数范围内有意义,则x 的取值范围是( ) A .3x <B .3x ≤C .3x ≥D .3x ≠18.若一组数据1,2,3,x ,0,3,2的众数是3,则这组数据的中位数是_____. 三、解答题(共78分)19.(8分)五一期间,甲、乙两人分别骑自行车和摩托车从A 地出发前往B 地郊游,并以各自的速度匀速行驶,到达目的地停止,途中乙休息了一段时间,然后又继续赶路.甲、乙两人各自行驶的路程()y km 与所用时间()min x 之间的函数图象如图所示.(1)甲骑自行车的速度是_____/min km .(2)求乙休息后所行的路程y 与x 之间的函数关系式,并写出自变量x 的取值范围.(3)为了保证及时联络,甲、乙两人在第一次相遇时约定此后两人之间的路程不超过3km .甲、乙两人是否符合约定,并说明理由.20.(8分)如图,正方形ABCD 中,E 是AD 上任意一点,CF BE ⊥于F 点,AG BE ⊥于G 点. 求证:AG BF =.21.(8分)如图,在平行四边形ABCD 中,AE BD CF BD ⊥⊥,,垂足分别为E F 、.;(1)求证:AE CF(2)求证:四边形AECF是平行四边形22.(10分)本工作,某校对八年级一班的学生所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如图所示的两幅不完整的统计图(校服型号以身高作为标准,共分为6种型号)。

冀教版八年级下册数学精品教学课件 第十八章 数据的收集与整理 第1课时 条形统计图与扇形统计图

冀教版八年级下册数学精品教学课件 第十八章 数据的收集与整理 第1课时 条形统计图与扇形统计图

海洋面 积约占 70.8%
陆地面 积约占 29.2%
地球上海洋、陆地面积的统计图
(3)扇形统计图有什么特点?
从扇形统计图中,我们可以直观地看到 我们考察的对象(总体)的组成成分、 各成分在总体中所占的百分比.
海洋面 积约占 70.8%
陆地面 积约占 29.2%
试一试
为了解某城市居民日常使用交通工具方式的情 况,进行了问卷调查,共收回602份调查问卷,结 果统计如下:
导入新课
问题引入
在一次”你喜欢的球类活动”调查中,我们得到 了如下数据:
AAAB C CAD EAE B BAC C E
ACAC DAC C E C C CAAD E C B D BABAAD B C CAD BAA 你能从这些数据中一眼看出喜欢哪项球类运动 的同学最多吗?怎样让调查的数据能够更好的反映 我们想要的信息呢?
Step1
画出表格
Step2
统计次数
Step3 算出百分率
通过调查或实验收集来的数据,经过整理, 可用统计表或统计图呈现出来. 用统计图呈现经 过整理的数据,直观清晰,并且便于进行比较.
想一想,我们学习过哪些统计图?
条形统计图 绘制条形统计图时,每个条形图的宽度要一样,并且 把每个条形图所表示的类别标注在条形图的下方.
248 ≈ 602 41.2%
275 ≈ 602 45.7%
70 ≈ 602 11.6%
9≈ 602 1.5%
使用交通 工具方式
坐公交车
骑自行车 (电动车)
开私家车
坐单位班车
占总人数 的百分比
41.2%
45.7% 11.6%
1.5%
第二步, 计算各部分扇形的圆心角.

襄阳市八年级数学下册第五单元《数据的分析》检测卷(答案解析)

襄阳市八年级数学下册第五单元《数据的分析》检测卷(答案解析)

一、选择题1.若一组数据2,3,4,5,x 的方差与另一组数据5,6,7,8,9的方差相等,则x 的值为( ). A .1 B .6 C .1或6D .5或62.下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择( ) A .甲B .乙C .丙D .丁3.如果将所给定的数据组中的每个数都减去一个非零常数,那么该数组的 ( ) A .平均数改变,方差不变 B .平均数改变,方差改变C .平均数不变,方差改变D .平均数不变,方差不变4.某校有21名同学们参加某比赛,预赛成绩各不同,要取前11名参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这21名同学成绩的( ) A .最高分B .中位数C .极差D .平均数5.某次数学趣味竞赛共有10道题目,每道题答对得10分,答错或不答得0分.全班40名同学的成绩的中位数和众数分别是( ) A .75,70 B .70,70 C .80,80 D .75,80 6.一组数据,6、4、a 、3、2的平均数是5,这组数据的方差为( ) A .8B .5C .6D .37.一组数据,,,,,,a b c d e f g 的平均数是m ,极差是k ,方差是n ,则23,23,23,23,23,23------a b d e f g 的平均数、极差、和方差分别是( )A .222、、m k nB .23232m k n --、、C .232-、、4m k nD .2323--、、4m k n8.方差计算公式()()()()()2222221476787117675s ⎡⎤=-+-+-+-+-⎣⎦中,数字5和7分别表示( )A.数据个数、平均数B.方差、偏差C.众数、中位数D.数据个数、中位数9.如图是根据我市某天七个整点时的气温绘制成的统计图,则下列说法正确的是()A.这组数据的众数是14B.这组数据的中位数是31C.这组数据的标准差是4D.这组是数据的极差是910.若a、b、c这三个数的平均数为2,方差为S2,则a+2,b+2,c+2的平均数和方差分别是()A.2,S2B.4,S2C.2,S2+2 D.4,S2+411.某校九年级模拟考试中,1班的六名学生的数学成绩如下:96,108,102,110,108,82.下列关于这组数据的描述不正确的是()A.众数是108 B.中位数是105C.平均数是101 D.方差是9312.为了解某校计算机考试情况,抽取了50名学生的计算机考试成绩进行统计,统计结果如表所示,则50名学生计算机考试成绩的众数、中位数分别为()考试分数(分)2016128人数241853A.20,16 B.l6,20 C.20,l2 D.16,l2二、填空题13.某中学篮球队12名队员的年龄情况如下:年龄(单位:1415161718岁)人数14322则这个队队员年龄的众数和中位数分别是_____岁、_____岁.14.一组数据4、5、a、6、8的平均数5x=,则方差2s=________.15.若一组数据1,2,a,3,5的平均数是3,则这组数据的标准差是______.16.已知一组数据x1,x2,x3,x4,x5的平均数是2,那么另一组数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数是_____.17.某组数据的方差计算公式为S2=18[(x1﹣2)2+(x2﹣2)2+…+(x8﹣2)2],则该组数据的样本容量是_____,该组数据的平均数是_____.18.一组数据5,8,x,10,4的平均数是2x,则这组数据的方差是___________.19.某校对开展贫困地区学生捐书活动,某班40名学生捐助数量(本)绘制了折线统计图,在这40名学生捐助数量中,中位数是_____,众数是_____.20.现有甲、乙两个合唱队队员的平均身高均为170cm,方差分别是2S甲,2S乙,且22S S甲乙,则两个队的队员的身高较整齐的是______.三、解答题21.在推进杭州市城乡生活垃圾分类的行动中,某校为了考察该校初中生掌握垃圾分类知识的情况,进行了一次测试,并随机抽取了若干名学生的测试成绩进行整理,绘制了如图所示不完整的频数直方图(每组含前一个边界值,不含后一个边界值)和扇形统计图.(1)求样本容量,并补充完整频数直方图.(2)在抽取的这些学生中,玲玲的测试成绩为85分,你认为85分一定是这些学生成绩的中位数吗?请简要说明理由.(3)若成绩在80分以上(包括80分)为优秀,请估计全校1400名学生中成绩优秀的人数.22.为了了解七年级学生零花钱的使用情况,校团委随机调查了本校七年级部分学生每人一周的零花钱数额,并绘制了如图甲、乙所示的两个统计图(部分未完成),请根据图中信息,回答下列问题:(1)校团委随机调查了多少学生?请你补全条形统计图;(2)表示“50元”的扇形的圆心角是多少度?(3)某地发生自燃灾害后,七年级800名学生每人自发地捐出一周零花钱的一半,以支援灾区恢复生产,请估算七年级学生捐款多少元?23.为了解某校九年级学生的理化实验操作情况,随机抽查了40名同学实验操作的得分.根据获取的样本数据,制作了如下的条形统计图和扇形统计图.请根据相关信息,解答下列问题:(1)扇形①的圆心角的大小是度;(2)这40个样本数据的众数是_______;中位数是_______.(3)若该校九年级共有320名学生,估计该校理化实验操作得满分的学生人数.24.在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图.(1)本次调查的样本容量是________,这组数据的众数为________元;(2)求这组数据的平均数;(3)该校共有600学生参与捐款,请你估计该校学生的捐款总数.25.某初中要调查学校学生(总数 1000 人)双休日课外阅读情况,随机调查了一部分学生,调查得到的数据分别制成频数直方图(如图 1)和扇形统计图(如图 2).(1)请补全上述统计图(直接填在图中);(2)试确定这个样本的中位数和众数;(3)请估计该学校 1000 名学生双休日课外阅读时间不少于 4 小时的人数.26.学校开展的“书香校园”活动受到同学们的广泛关注,为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计图表.学生借阅图书的次数统计表:借阅图书的次0次1次2次3次4次及以上数人数713a103请你根据统计图表中的信息,解答下列问题:(1)a=,b=;(2)该调查统计数据的中位数是,众数是;(3)若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书4次及以上的人数.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】根据数据x 1,x 2,…x n 与数据x 1+a ,x 2+a ,…x n +a 的方差相同这个结论即可解决问题. 解:∵一组数据2,2,4,5,x 的方差与另一组数据5,6,7,8,9的方差相等, ∴这组数据可能是2,3,4,5,6或1,2,3,4,5, ∴x=1或6, 故选C.“点睛”本题考查方差、平均数等知识,解题的关键领域结论:数据x 1,x 2,…x n 与数据x 1+a ,x 2+a ,…x n +a 的方差相同解决问题,属于中考常考题型.2.D解析:D 【解析】【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加. 【详解】∵==x x x x >乙丁甲丙, ∴从乙和丁中选择一人参加比赛,∵22S S >乙丁,∴选择丁参赛, 故选D .【点睛】本题考查了平均数和方差,正确理解方差与平均数的意义是解题关键.3.A解析:A 【解析】试题分析:根据平均数、方差的计算公式即可判断. 由题意得该数组的平均数改变,方差不变,故选A. 考点:本题考查的是平均数,方差点评:数学公式的计算与应用是初中数学学习中的一个基本能力,此类问题往往考查学生对数学公式的理解能力,难度不大.4.B解析:B 【解析】共有21名学生参加预赛,取前11名,小颖知道了自己的成绩,我们把所有同学的成绩按大小顺序排列,第11名的成绩是这组数据的中位数,所以小颖知道这组数据的中位数,才能知道自己是否进入决赛.故选B.5.A解析:A【分析】根据中位数和众数的定义解答即可.【详解】共40个数据中第20和第21个数分别是70、80,∴这组数据的中位数是75,这组数据中出现次数最多的是70,所以众数是70,故选:A.【点睛】此题考查了中位数和众数的定义,一组数据最中间的一个数或两个数的平均数是这组数据的中位数,出现次数最多的数是这组数据的众数,正确掌握定义是解题的关键.6.A解析:A【分析】先由平均数的公式计算出a的值,再根据方差的公式计算即可.【详解】∵数据6、4、a、3、2平均数为5,∴(6+4+2+3+a)÷5=5,解得:a=10,∴这组数据的方差是1[(6-5)2+(4-5)2+(10-5)2+(2-5)2+(3-5)2]=8.5故选:A.【点睛】此题考查平均数,方差,解题关键在于掌握它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.7.C解析:C【分析】根据平均数、极差和方差的变化规律即可得出答案.【详解】∵数据a、b、c、d、e、f、g的平均数是m,∴2a−3、2b−3、2c−3、2d−3、2e−3、2f−3、2g−3的平均数是2m−3;∵数据a、b、c、d、e、f、g的极数是k,∴2a−3、2b−3、2c−3、2d−3、2e−3、2f−3、2g−3的平均数是2k;∵数据a、b、c、d、e、f、g的方差是n,∴数据2a−3、2b−3、2c−3、2d−3、2e−3、2f−3、2g−3的方差是224n n;故选C.【点睛】此题考查方差、极差、算术平均数,解题关键在于掌握方差、极差、算术平均数变化规律即可.8.A解析:A 【分析】根据方差的计算公式可直接得出结果. 【详解】()()()()()2222221476787117675s ⎡⎤=-+-+-+-+-⎣⎦∴5是数据的个数,7是平均数, 故选:A 【点睛】本题考查方差的定义.熟记方差公式是解题的关键. 9.D解析:D 【解析】 【分析】根据中位数,众数、极差、标准差的定义即可判断. 【详解】解:七个整点时数据为:22,22,23,26,28,30,31 所以中位数为26,众数为22,平均数为:22+22+23+26+28+3032167+= ;极差是31-22=9,标准差是:故D 正确, 故选:D 【点睛】此题考查中位数,众数、极差、标准差的定义,解题关键在于看懂图中数据10.B解析:B 【分析】方差是用来衡量一组数据波动大小的量,每个数都加了2,所以波动不会变,方差不变,平均数增加2. 【详解】由题意知,原来的平均数为2,每个数据都加上2,则平均数变为4;原来的方差221=(2)(2)(2)3S a b c ⎡⎤---⎣⎦22++ 现在的方差:222222111=(24)(24)(24)=(2)(2)(2)33S a b c a b c S ⎡⎤⎡⎤+-+-+-=---=⎣⎦⎣⎦22++++ 方差不变. 故选:B. 【点睛】本题考查了方差和平均数,当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变.11.D解析:D 【分析】把六名学生的数学成绩从小到大排列为:82,96,102,108,108,110,求出众数、中位数、平均数和方差,即可得出结论. 【详解】解:把六名学生的数学成绩从小到大排列为:82,96,102,108,108,110, ∴众数是108,中位数为1021081052+=,平均数为82961021081081101016+++++=,方差为()()()()()()222222182101961011021011081011081011101016⎡⎤-+-+-+-+-+-⎣⎦ 94.393≈≠;故选D . 【点睛】考核知识点:众数、中位数、平均数和方差;理解定义,记住公式是关键.12.A解析:A 【解析】 【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个. 【详解】解:在这一组数据中20是出现次数最多的,故众数是20;将这组数据从大到小的顺序排列后,处于中间位置的数是16,16,那么这组数据的中位数16. 故选:A . 【点睛】本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.众数是一组数据中出现次数最多的数.二、填空题13.1615【分析】根据中位数和众数的定义求解【详解】解:从小到大排列此数据数据15出现了四次最多为众数16和16处在第5位和第六位它两个数的平均数为16为中位数故答案为:1615【点睛】本题属于基础题解析:16 15【分析】根据中位数和众数的定义求解.【详解】解:从小到大排列此数据,数据15出现了四次最多为众数,16和16处在第5位和第六位,它两个数的平均数为16为中位数.故答案为:16,15.【点睛】本题属于基础题,考查了确定一组数据的中位数和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.14.4【分析】首先根据其平均数为5求得a的值然后再根据方差的计算方法计算即可【详解】解:根据题意得(4+5+a+6+8)=5×5解得a=2则这组数据为45268的平均数为5所以这组数据的方差为s2=(4解析:4【分析】首先根据其平均数为5求得a的值,然后再根据方差的计算方法计算即可.【详解】解:根据题意得(4+5+a+6+8)=5×5,解得a=2,则这组数据为4,5,2,6,8的平均数为5,所以这组数据的方差为s2= 15[(4-5)2+(5-5)2+(2-5)2+(6-5)2+(8-5)2]=4.故答案为:4【点睛】本题考查方差的定义、意义、计算公式,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.15.【分析】根据题意可得×(1+3+2+5+a)=3解这个方程就可以求出a的值;根据标准差的计算公式即可求出样本标准差【详解】根据题意由平均数的定义得×(1+3+2+5+a)=3解得a=4所以方差为:S解析:2 【分析】 根据题意可得15×(1+3+2+5+a)=3,解这个方程就可以求出a 的值;根据标准差的计算公式即可求出样本标准差.【详解】 根据题意 由平均数的定义得15×(1+3+2+5+a)=3, 解得,a=4.所以方差为:S 2=()()()()()2222213-1+3-3+3-2+3-5+3-4=5⎡⎤⨯⎣⎦2, 故标准差为:2故答案为:2.【点睛】此题考查平均数的概念,解题关键在于掌握计算公式.16.4【解析】【分析】平均数的计算方法是求出所有数据的和然后除以数据的总个数先求数据x1x2x3x4x5的和然后再用平均数的定义求新数据的平均数【详解】一组数据x1x2x3x4x5的平均数是2有15(x解析:4【解析】【分析】平均数的计算方法是求出所有数据的和,然后除以数据的总个数.先求数据x 1,x 2,x 3,x 4,x 5的和,然后再用平均数的定义求新数据的平均数.【详解】一组数据x 1,x 2,x 3,x 4,x 5的平均数是2,有(x 1+x 2+x 3+x 4+x 5)=2,那么另一组数据3x 1-2,3x 2-2,3x 3-2,3x 4-2,3x 5-2的平均数是(3x 1-2+3x 2-2+3x 3-2+3x 4-2+3x 5-2)=4.故答案是:4.【点睛】考查的是样本平均数的求法及运用,解题关键是记熟公式:. 17.82【分析】样本方差S2=(x1-)2+(x2-)2+…+(xn-)2其中n 是这个样本的容量是样本的平均数利用此公式直接求解【详解】由于S2=(x1-2)2+(x2-2)2+…+(x8-2)2所以该解析:8 2【分析】样本方差S 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中n 是这个样本的容量,x 是样本的平均数.利用此公式直接求解.【详解】 由于S 2=18[(x 1-2)2+(x 2-2)2+…+(x 8-2)2], 所以该组数据的样本容量是8,该组数据的平均数是2.故答案为8,2.【点睛】此题考查方差的有关计算,解答此题的关键是熟练记住公式:S 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2]中各个字母所代表的含义.18.68【分析】本题可用求平均数的公式解出x 的值在运用方差的公式解出方差【详解】解:依题意得:5+8+x +10+4=2x×5所以x =32x =6方差s2==68【点睛】本题考查了算术平均数方差的计算方法熟解析:6.8【分析】本题可用求平均数的公式解出x 的值,在运用方差的公式解出方差.【详解】解:依题意得:5+8+x +10+4=2x×5,所以x =3,2x =6,方差s 2=15()()()()()222225-6+8-6+3-6+10-6+4-6⎡⎤⎣⎦=6.8, 【点睛】 本题考查了算术平均数、方差的计算方法,熟练掌握该知识点是本题解题的关键. 19.2323【解析】【分析】根据中位数和众数的定义求解即可【详解】解:由折线统计图可知阅读20本的有4人21本的有8人23本的有20人24本的有8人共40人∴其中位数是第2021个数据的平均数即=23众解析:23 23【解析】【分析】根据中位数和众数的定义求解即可.【详解】解:由折线统计图可知,阅读20本的有4人,21本的有8人,23本的有20人,24本的有8人,共40人,∴其中位数是第20、21个数据的平均数,即23232+=23,众数为23, 故答案为23、23.【点睛】本题考查了折线统计图及中位数、众数的知识,关键是掌握寻找中位数的方法,一定不要忘记将所有数据从小到大依此排列再计算.20.甲【解析】【分析】根据方差小的身高稳定判断即可【详解】现有甲乙两个合唱队队员的平均身高均为170cm 方差分别是且则两个队的队员的身高较整齐的是甲故答案为:甲【点睛】此题考查了方差方差是用来衡量一组数 解析:甲【解析】【分析】根据方差小的身高稳定判断即可.【详解】现有甲、乙两个合唱队队员的平均身高均为170cm ,方差分别是2S 甲,2S 乙,且22S S <甲乙,则两个队的队员的身高较整齐的是甲,故答案为:甲【点睛】此题考查了方差,方差是用来衡量一组数据波动大小的量.三、解答题21.(1)50;见解析;(2)不一定;见解析;(3)728【分析】(1)由总人数为100可得m 的值,从而补全图形;(2)根据中位数的定义判断即可得;(3)样本中成绩在80分以上(包括80分)占调查人数的161050+,因此利用样本估计总体的方法列出算式1610140050+⨯,求解可得结果. 【详解】解:(1)样本容量是:10÷20%=50.70≤a <80的频数是50−4−8−16−10=12(人),补全图形如下:(2)不一定是这些学生成绩的中位数.理由:将50名学生知识测试成绩从小到大排列,第25、26名的成绩都在分数段80≤a≤90中,他们的平均数不一定是85分,因为25、26的成绩的平均数才是整组数据的中位数.(3)全校1400名学生中成绩优秀的人数为:1610140072850+⨯=(人).【点睛】本题考查了条形统计图、用样本估计总体、统计量的选择,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.(1)40;补图见详解;(2)36°;(3)13200元.【分析】(1)用捐款40元的人数除以所占百分比即可求出调查的学生数,用调查的学生数乘以15%求出捐款20元的学生数,不去统计图即可;(2)用捐款50元的学生人数除以调查总人次再乘以360°即可求解;(3)计算出本次调查的平均数,再根据题意列式计算即可求解.【详解】解:(1)10÷25%=40(人),40×15%=6(人),∴校团委随机调查了40名学生,补全条形统计图如图:(2)表示“50元”的扇形的圆心角为4360=3640⨯︒︒; (3)206302040105041800=13200402⨯+⨯+⨯+⨯⨯⨯(元), 答:七年级学生捐款约为13200元.【点睛】本题考查了条形统计图与扇形统计图,用样本估计总体,加权平均数等知识,根据条形统计图和扇形统计图的关联量求出各组数据是解题关键.23.(1)36;(2)9; 8;(3)估计该校理化实验操作得满分的学生人数是56人.【分析】(1)用360°乘以①所占的百分比,计算即可得解;(2)众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数分别解答; (3)用九年级总人数乘以满分的人数所占的份数计算即可得解.【详解】(1)360°×(1-15%-27.5%-30%-17.5%)=360°×10%=36°;故答案为:36;(2)∵9出现了12次,次数最多,∴众数是9;∵将40个数字按从小到大排列,中间的两个数都是8,∴中位数是8882+=, 故答案为:9,8; (3)32017.5%56⨯=(人),估计该校理化实验操作得满分的学生人数是56人.【点睛】本题考查条形统计图、扇形统计图、众数与中位数的意义、用样本估计总体.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(1)30,10;(2)平均数为12元;(3)学生的捐款总数为7200元.【分析】(1)由题意得出本次调查的样本容量是6118530+++=,由众数的定义即可得出结果;(2)由加权平均数公式即可得出结果;(3)由总人数乘以平均数即可得出答案.【详解】(1)本次调查的样本容量是6118530+++=,这组数据的众数为10元;故答案为30,10;(2)这组数据的平均数为6511108155201230⨯+⨯+⨯+⨯=(元);(3)估计该校学生的捐款总数为600127200⨯=(元).【点睛】此题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.本题也考查了平均数、中位数、众数的定义以及利用样本估计总体的思想.25.(1)画图见解析;(2)中位数是3小时,众数是4小时;(3)400人.【分析】(1)根据阅读5小时以上频数为6,所占百分比为12%,求出数据的总数,再用数据总数减去其余各组频数得到阅读3小时以上频数,然后补全频数分布直方图,分别求得阅读0小时和4小时的人数所占百分比,补全扇形图;(2)利用各组频数和总数之间的关系确定中位数和众数;(3)用1000乘以每周课外阅读时间不小于4小时的学生所占百分比即可.【详解】解:(1)总人数:6÷12%= 50 (人),阅读3小时以上人数:50-4-6-8-14-6= 12 (人),阅读3小时以上人数的百分比为12÷50= 24% ,阅读0小时以上人数的百分比为4÷50= 8% .图如下:(2)中位数是3小时,众数是4小时;(3) 1000⨯(28% + 12%)= 1000⨯40%= 400(人)答:该学校1000名学生双休日课外阅读时间不少于4小时的人数为400人.【点睛】此题考查数据的收集,主要有中位数,众数,扇形图和直方图的画法及表达的意义. 26.(1)17,20a b ==;(2)中位数是2次,众数是2次;(3)120人【分析】(1)根据借阅1次的人数及百分比求出样本总人数,减去其他的人数即可得到a ,用借阅3次的人数除以总人数乘以100%即可得到3次的百分比,由此得到b ;(2)根据中位数及众数的定义解答;(3)根据样本中4次及以上的百分比乘以2000解答.【详解】(1)调查的总人数是1326%50÷=(人),∴a=50-7-13-10-3=17,10%100%20%50b =⨯=, 故答案为:17,20; (2)50个数据中中间两个数据都是2次,故中位数是2次,数据出现次数最多的是2次,故众数是2次,故答案为:2次,2次;(3)3100%200050⨯⨯=120(人), ∴该校学生在一周内借阅图书4次及以上的人数是120人.【点睛】此题考查统计数据的计算,正确掌握样本总数的计算方法,中位数的定义,众数的定义,利用样本的百分比求总体的方法是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学-条形统计图与扇形统计图练习题(含解析)
1.如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生700人,则据此估计步行的有280人.
解析:∵骑车人数所占的百分比为126°
360°
×100%=35%,
∴步行的有700×(1-10%-35%-15%)=280(人).
2.小亮一天的时间安排如图所示,请根据图中的信息计算:小亮一天中,上学、做家庭作业和体育锻炼的总时间占全天时间的37.5%.
解析:(7+1+1)÷24×100%=37.5%.
3.某校八年级数学课外兴趣小组的同学积极参加义工活动,小庆对小组全体成员参加活动次数的情况进行统计分析,绘制了如下不完整的统计表和统计图.
次数1086 5
人数3 a 2 1
(1)表中a=4;
(2)请将条形统计图补充完整.
解:补全条形统计图,如图.
4.某中学开展“阳光体育一小时”活动.根据学校实际情况,决定开设四项运动项目:A:踢毽子;B:篮球;C:跳绳;D:乒乓球.为了解学生最喜欢哪一种运动项目,随机抽取了n 名学生进行问卷调查,每位学生在问卷调查时都按要求只选择了其中一种喜欢的运动项目.收回全部问卷后,将收集到的数据整理并绘制成如下的统计图,若参与调查的学生中喜欢A方式的学生的人数占参与调查学生人数的40%.根据统计图提供的信息,解答下列问题:
(1)求n的值;
(2)求参与调查的学生中喜欢C的学生的人数;
(3)根据统计结果,估计该校1 800名学生中喜欢C方式的学生比喜欢B方式的学生多的人数.
解:(1)80÷40%=200(人).
(2)200-80-30-50=40(人).
(3)40-30
200
×1 800=90(人).
答:该校1 800名学生中喜欢C方式的学生比喜欢B方式的学生多90人.
5.某校学生会就同学们对我国改革开放30多年来所取得的辉煌成就的了解程度进行了随机抽样调查,如图①②所示是根据调查结果绘制成的统计图的一部分.
根据统计图中的信息,解答下列问题:
(1)本次抽样调查的样本容量是50,调查中“了解很少”的学生占50%.
(2)补全条形统计图.
(3)若全校共有学生1 300人,那么该校约有多少名学生“很了解”我国改革开放30多年来取得的辉煌成就?
(4)通过以上数据分析,请你从爱国教育的角度提出自己的观点和建议.
解:(2)补全条形统计图如图所示.
(3)1 300×10%=130(人).
答:该校约有130名学生“很了解”我国改革开放30多年来所取得的辉煌成就.
(4)由统计图可知,“不了解”和“了解很少”的占60%,由此可以看出同学们对国情的关注不够.建议:加强国情教育、爱国教育等.(本题答案不唯一,只要观点正确,建议合理即可)。

相关文档
最新文档