2020-2021学年冀教版数学九年级上册期中、期末测试题及答案解析(各一套)

合集下载

2020-2021学年冀教版数学九年级上册期中、期末测试题及答案解析(各一套)

2020-2021学年冀教版数学九年级上册期中、期末测试题及答案解析(各一套)

冀教版数学九年级上册期中测试题一、选择题1.下列方程是一元二次方程的是()A.2x+1=0B.C.m2+m=2D.ax2+bx+c=0 2.数学老师计算同学们的一学期的平均成绩时,将平时、期中和期末的成绩按3:3:4计算,若小红平时、期中和期末的成绩分别是90分、80分、100分,则小红一学期的数学平均成绩是()A.90分B.91分C.92分D.93分3.若,则k的值为()A.B.1C.﹣1D.4.如果∠A=30°,则sinA的值为()A.B.C.D.5.学校小组5名同学的身高(单位:cm)分别为:147,156,151,152,159,则这组数据的中位数是()A.147B.151C.152D.1566.方程x2﹣3=0的根是()A.B.﹣C.±D.37.如图,△ABC与△ADE都是等腰直角三角形,且它们的底分别是BC=5,DE=3,则△ABC与△ADE的面积比为()A.:B.25:9C.5:3D.5:38.x=2不是下列哪一个方程的解()A.3(x﹣2)=0B.2x2﹣3x=2C.(x﹣2)(x+2)=0D.x2﹣x+2=09.一个三角形的三边分别为3,4,5,另一个与它相似的三角形中有一条边长为8,则这个三角形的边长不可能是()A.B.C.9D.1010.如图,点A在线段BD上,在BD的同侧作等腰Rt△ABC和等腰Rt△ADE,其中∠ABC=∠AED=90°,CD与BE、AE分别交于点P、M.对于下列结论:①△CAM∽△DEM;②CD=2BE;③MP•MD=MA•ME;④2CB2=CP•CM.其中正确的是()A.①②B.①②③C.①③④D.①②③④11.某小组长统计组内5人一天在课堂上的发言次数分別为3,3,0,4,5.关于这组数据,下列说法错误的是()A.众数是3B.中位数是0C.平均数3D.方差是2.8 12.设m、n是一元二次方程x2+2x﹣7=0的两个根,则m2+3m+n=()A.﹣5B.9C.5D.7二.填空题13.一组数据2、8、7、8、7、9、8的众数是.14.如图,AD∥BE∥FC,它们依次交直线l1、l2于点A、B、C和点D、E、F,如果=,DF=7.5,那么DE的长为.15.四边形ABCD∽四边形A1B1C1D1,它们的面积比为9:4,四边形ABCD的周长是24,则四边形A1B1C1D1的周长为.16.如图,在△ABC中,∠A=30°,tanB=,AC=2,则AB的长。

2020-2021学年冀教版数学九年级上册期中、期末测试题及答案解析(各一套)

2020-2021学年冀教版数学九年级上册期中、期末测试题及答案解析(各一套)

冀教版数学九年级上册期中测试题一、选择题1.下列方程是一元二次方程的是()A.2x+1=0B.C.m2+m=2D.ax2+bx+c=0 2.数学老师计算同学们的一学期的平均成绩时,将平时、期中和期末的成绩按3:3:4计算,若小红平时、期中和期末的成绩分别是90分、80分、100分,则小红一学期的数学平均成绩是()A.90分B.91分C.92分D.93分3.若,则k的值为()A.B.1C.﹣1D.4.如果∠A=30°,则sinA的值为()A.B.C.D.5.学校小组5名同学的身高(单位:cm)分别为:147,156,151,152,159,则这组数据的中位数是()A.147B.151C.152D.1566.方程x2﹣3=0的根是()A.B.﹣C.±D.37.如图,△ABC与△ADE都是等腰直角三角形,且它们的底分别是BC=5,DE=3,则△ABC与△ADE的面积比为()A.:B.25:9C.5:3D.5:38.x=2不是下列哪一个方程的解()A.3(x﹣2)=0B.2x2﹣3x=2C.(x﹣2)(x+2)=0D.x2﹣x+2=09.一个三角形的三边分别为3,4,5,另一个与它相似的三角形中有一条边长为8,则这个三角形的边长不可能是()A.B.C.9D.1010.如图,点A在线段BD上,在BD的同侧作等腰Rt△ABC和等腰Rt△ADE,其中∠ABC=∠AED=90°,CD与BE、AE分别交于点P、M.对于下列结论:①△CAM∽△DEM;②CD=2BE;③MP•MD=MA•ME;④2CB2=CP•CM.其中正确的是()A.①②B.①②③C.①③④D.①②③④11.某小组长统计组内5人一天在课堂上的发言次数分別为3,3,0,4,5.关于这组数据,下列说法错误的是()A.众数是3B.中位数是0C.平均数3D.方差是2.8 12.设m、n是一元二次方程x2+2x﹣7=0的两个根,则m2+3m+n=()A.﹣5B.9C.5D.7二.填空题13.一组数据2、8、7、8、7、9、8的众数是.14.如图,AD∥BE∥FC,它们依次交直线l1、l2于点A、B、C和点D、E、F,如果=,DF=7.5,那么DE的长为.15.四边形ABCD∽四边形A1B1C1D1,它们的面积比为9:4,四边形ABCD的周长是24,则四边形A1B1C1D1的周长为.16.如图,在△ABC中,∠A=30°,tanB=,AC=2,则AB的长是.17.一个直角三角形,斜边长为4cm,两条直角边的长相差4cm,求这个直角三角形的两条直角边的长,可设较长直角边为xcm,根据题意可列方程.三.解答题18.解方程(1)(x﹣1)2=9;(2)2x2+3x﹣4=0.19.如图,D、E分别是AB、AC上的点,△ADE∽△ACB,且DE=4,BC=12,AC=8,求AD的长.20.一个不透明的口袋中有12个红球和若干个白球,在不允许将球倒出来数的前提下,小明采用如下的方法估算其中白球的个数:从口袋中随机摸出一个球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一个球,记下颜色……小明重复上述过程100次,其中60次摸到白球,请回答:(1)口袋中的白球约有多少个?(2)有一个游乐场,要按照上述红球、白球的比例配置彩球池若彩球池里共有3000个球,则需准备多少个红球?21.如图,小明在地面上放置一个平面镜E来测量铁塔AB的高度,镜子与铁塔的距离EB=20米,镜子与小明的距离ED=2米时,小明刚好从镜子中看到铁塔顶端A.已知小华的眼睛距地面的高度CD=1.6米,求铁塔AB的高度.(根据光的反射原理,∠1=∠2)22.长泰大桥是长春市“两横三纵”快速路的关键节点工程,大桥建筑类型为斜拉式高架桥,小明站在桥上测得拉索AB与水平桥面的夹角是31°,拉索AB的长AB=152米,主塔处桥面距地面CD=7.9米,试求出主塔高BD的长.(结果精确到0.1米,参考数据:sin31°=0.52,cos31°=0.86,tan31°=0.60)23.某企业设计了一款工艺品,每件成本50元,为了合理定价,现投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,若销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.销售单价为多少元时,每天的销售利润可达4000元?参考答案一.选择题1.【解答】解:A、未知数的最高次数是1,不是一元二次方程,故本选项错误;B、不是整式方程,不是一元二次方程,故本选项错误;C、符合一元二次方程的定义,故本选项正确;D、方程二次项系数可能为0,不是一元二次方程,故本选项错误.故选:C.2.【解答】解:小红一学期的数学平均成绩是=91(分),故选:B.3.【解答】解:当a+b+c=0时,a=﹣(b+c),因而k===﹣1;当a+b+c≠0时,k==.故k的值是﹣1或.故选:D.4.【解答】解:∵∠A=30°,∴sinA的值为:.故选:A.5.【解答】解:由于此数据按照从小到大的顺序排列为147,151,152,156,159,发现152处在第3位.所以这组数据的中位数是152,故选:C.6.【解答】解:x2﹣3=0,x2=3,x=±,故选:C.7.【解答】解:∵△ABC与△ADE都是等腰直角三角形,∴△ABC∽△DAF,∴=()2=.8.【解答】解:A,当x=2时,方程的左边=3×(2﹣2)=0,右边=0,则左边=右边,故x=2是A中方程的解;B,当x=2时,方程的左边=2×22﹣3×2=2,右边=2,则左边=右边,故x=2是B中方程的解;C,当x=2时,方程的左边=0,右边=0,则左边=右边,故x=2是C中方程的解;D,当x=2时,方程的左边=22﹣2+2=4,右边=0,则左边≠右边,故x=2不是D中方程的解;故选:D.9.【解答】解:当边长为8的边长与三角形的三边分别为3,4,5,中边长为3的对应成比例时,则另两条边长分别为:,;当与边长为4的对应成比例时,其另两条边长分别为:6,10;当与边长为5的对应成比例是,其另两条边长分别为:,;则这个三角形的边长不可能是9,故选:C.10.【解答】解:∵在BD的同侧作等腰Rt△ABC和等腰Rt△ADE,∠ABC=∠AED=90°,∴∠BAC=45°,∠EAD=45°,∴∠CAE=180°﹣45°﹣45°=90°,即∠CAM=∠DEM=90°,∵∠CMA=∠DME,∴△CAM∽△DEM,故①正确;由已知:AC=AB,AD=AE,∵∠BAC=∠EAD∴∠BAE=∠CAD∴△BAE∽△CAD,∴=,即=,即CD=BE,故②错误;∵△BAE∽△CAD∴∠BEA=∠CDA∵∠PME=∠AMD∴△PME∽△AMD∴=,∴MP•MD=MA•ME,故③正确;由②MP•MD=MA•ME∠PMA=∠DME∴△PMA∽△EMD∴∠APD=∠AED=90°∵∠CAE=180°﹣∠BAC﹣∠EAD=90°∴△CAP∽△CMA∴AC2=CP•CM∵AC=AB,∴2CB2=CP•CM,故④正确;即正确的为:①③④,故选:C.11.【解答】解:将数据重新排列为0,3,3,4,5,则这组数的众数为3,中位数为3,平均数为=3,方差为×[(0﹣3)2+2×(3﹣3)2+(4﹣3)2+(5﹣3)2]=2.8,故选:B.12.【解答】解:∵m、n是一元二次方程x2+2x﹣7=0的两个根,∴m+n=﹣2,m2+2m﹣7=0,即m2+2m=7,则原式=m2+2m+m+n=7﹣2=5,故选:C.二.填空题13.【解答】解:∵在数据2、8、7、8、7、9、8中数据8出现次数最多,∴这组数据的众数为8,故答案为:8.14.【解答】解:∵AD∥BE∥FC,∴=,∵=,DF=7.5,∴=,解得:DE=3,故答案为:3.15.【解答】解:设四边形A1B1C1D1的周长为x,∵四边形ABCD∽四边形A1B1C1D1,它们的面积比为9:4,∴=,∴四边形ABCD的周长:四边形A1B1C1D1的周长=3:2,∴24:x=3:2,解得,x=16,故答案为:16.16.【解答】解:如图,作CD⊥AB于D,在Rt△ACD中,∠A=30°,AC=2,∴CD=AC=,AD=CD=3,在Rt△BCD中,tanB=,∴=,∴BD=2,∴AB=AD+BD=3+2=5.故答案为:5.17.【解答】解:设较长直角边为xcm,则较短直角边为(x﹣4)cm,根据题意得:x2+(x﹣4)2=(4)2.故答案为:x2+(x﹣4)2=(4)2.三.解答题18.【解答】解:(1)(x﹣1)2=9,开方得:x﹣1=±3,解得:x1=4,x2=﹣2;(2)2x2+3x﹣4=0,∵a=2,b=3,c=﹣4,b2﹣4ac=9﹣4×2×(﹣4)=41,∴x==,∴x1=,x2=.19.【解答】解:∵△ADE∽△ACB,∴=,∴=,解得:AD=.20.【解答】解:(1)设白球的个数为x个,根据题意得:=,解得:x=18,小明可估计口袋中的白球的个数是18个.(2)3000×=1200,即需准备1200个红球.21.【解答】解:∵由光的反射可知,∠1=∠2,∠CED=∠AEB,CD⊥BD,AB⊥CB,∴∠CDE=∠ABE=90°,∴△CDE∽△ABE,∴=,∵ED=2,BE=20,CD=1.6,∴=,∴AB=16,答:AB的高为16米.22.【解答】解:在Rt△ABC中,∠ACB=90°,sinA=,∴BC=AB•sinA=152×sin31°=152×0.52=79.04,∴BD=BC+CD=79.04+7.9=86.94≈86.9(米)答:主塔BD的高约为86.9米.23.【解答】解:设销售单价降低x元/件,则每天的销售量是(50+5x)件,根据题意得:(100﹣x﹣50)(50+5x)=4000,整理得:x2﹣40x+300=0.解得:x1=10,x2=30.∴100﹣x=90或70.答:销售单价为90元/件或70元/件时,每天的销售利润可达4000元.冀教版数学九年级上册期末测试题一、单选题1.已知关于x的方程x2-kx-3=0的一个根为3,则k的值为()A. 1B. -1C. 2D. -22.下列命题中,不正确的命题是()A. 平分一条弧的直径,垂直平分这条弧所对的弦B. 平分弦的直径垂直于弦,并平分弦所对的弧C. 在⊙O中,AB、CD是弦,则AB CDD. 圆是轴对称图形,对称轴是圆的每一条直径.3.一次数学测试,某小组五名同学的成绩如下表所示(有两个数据被遮盖).组员甲乙丙丁戊方差平均成绩得分81 79 ■80 82 ■80那么被遮盖的两个数据依次是()A. 80,2 B. 80,C. 78,2 D. 78,4.上海世博会的某纪念品原价168元,连续两次降价a%后售价为128元.下列所列方程中正确的是()A. 168(1+a)2=128B. 168(1﹣a%)2=128C. 168(1﹣2a%)=128D. 168(1﹣a2%)=1285.如图,△ABC内接于⊙O,作OD⊥BC于点D,若∠A=60°,则OD:CD的值为()A. 1:2 B. 1:C. 1:D. 2:6.若反比例函数y= 的图象经过点(2,3),则它的图象也一定经过的点是()A. (﹣3,﹣2)B. (2,﹣3) C. (3,﹣2) D. (﹣2,3)7.下列四条线段中,不能成比例的是()A.a=3,b=6,c=2,d=4B.a=1,b= ,c= ,d=4C.a=4,b=5,c=8,d=10D.a=2,b=3,c=4,d=58.如图,已知⊙O的半径等于1cm,AB是直径,C,D是⊙O上的两点,且==,则四边形ABCD的周长等于()A. 4cmB. 5cmC. 6cmD. 7cm9.如图,△ADE∽△ABC,若AD=1,BD=2,则△ADE与△ABC的相似比是().A. 1:2 B. 1:3 C. 2:3 D. 3:210.如图,在△ABC中,∠A=36°,AB=AC,AB的垂直平分线OD交AB于点O,交AC于点D,连接BD,下列结论错误的是()A. ∠C=2∠AB. BD平分∠AB C C. S△BCD=S△BOD D. 点D为线段AC的黄金分割点二、填空题11.若,则的值为________.12.已知关于x的方程x2﹣2x+m=0有两个相等的实数根,则m的值是________.13.墙壁CD上D处有一盏灯(如图),小明站在A站测得他的影长与身长相等都为1.5m,他向墙壁走1m到B处时发现影子刚好落在A点,则灯泡与地面的距离CD=________m.14.三角形的每条边的长都是方程x2-6x+8=0的根,则三角形的周长是________.15.如图,已知点P(6,3),过点P作PM⊥x轴于点M,PN⊥y轴于点N,反比例函数的图象交PM于点A,交PN于点B.若四边形OAPB的面积为12,则k=________.16.若关于x的一元二次方程x2+4x﹣k=0有实数根,则k的最小值为________.17.点A(-2,5)在反比例函数(k≠0)的图象上,则k的值是________.18.在△ABC中,∠C=90°,AC=4,点G为△ABC的重心.如果GC=2,那么sin∠GCB的值是________.19.如图,点A、B、C为⊙O上的三个点,∠BOC=2∠AOB,∠BAC=40°,则∠ACB=________度.20.如图,在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE,BE分别交于点G、H,∠CBE=∠BAD.有下列结论:①FD=FE;②AH=2CD;③BC•AD= AE2;④S△ABC=2S△ADF.其中正确结论的序号是________.(把你认为正确结论的序号都填上)三、解答题21.计算:.22.如图所示,在△ABC中,CE,BD分别是AB,AC边上的高,求证:B,C,D,E四点在同一个圆上.23.如图,在Rt△ABC中,∠A=90º,AB=6,BC=10,D是AC上一点,CD=5,DE⊥BC于E.求线段DE 的长.24.如图,在⊙O中,AB为直径,点B为的中点,直径AB交弦CD于E,CD=2,AE=5.(1)求⊙O半径r的值;(2)点F在直径AB上,连接CF,当∠FCD=∠DOB时,求AF的长.25.已知:关于x的方程x2+4x+(2﹣k)=0有两个不相等的实数根.(1)求实数k的取值范围.(2)取一个k的负整数值,且求出这个一元二次方程的根.26.已知:如图, AB为⊙O的直径,CE⊥AB于E,BF∥OC,连接BC,CF.求证:∠OCF=∠ECB.27.如图,一艘轮船以18海里/时的速度由西向东方向航行,行至A处测得灯塔P在它的北偏东60°的方向上,继续向东行驶20分钟后,到达B处又测得灯塔P在它的北偏东45°方向上,求轮船与灯塔的最短距离.(精确到0.1,≈1.73)28.李明对某校九年级(2)班进行了一次社会实践活动调查,从调查的内容中抽出两项.调查一:对小聪、小亮两位同学的毕业成绩进行调查,其中毕业成绩按综合素质、考试成绩、体育测试三项进行计算,计算的方法按4:4:2进行,毕业成绩达80分以上为“优秀毕业生”,小聪、小亮的三项成绩如右表:(单位:分)综合素质考试成绩体育测试满分100 100 100小聪72 98 60小亮90 75 95调查二:对九年级(2)班50名同学某项跑步成绩进行调查,并绘制了一个不完整的扇形统计图,请你根据以上提供的信息,解答下列问题:(1)小聪和小亮谁能达到“优秀毕业生”水平?哪位同学的毕业成绩更好些?(2)升入高中后,请你对他俩今后的发展给每人提一条建议.(3)扇形统计图中“优秀率”是多少?(4)“不及格”在扇形统计图中所占的圆心角是多少度?29.如图,D在AB上,且DE∥BC交AC于E,F在AD上,且AD2=AF•AB.求证:EF∥CD.30.如图,在直角坐标系中,以x轴上一点P(1,0)为圆心的圆与x轴、y轴分别交于A、B、C、D四点,连接CP,⊙P的半径为2.(1)写出A、B、C、D四点坐标;(2)求过A、B、D三点的抛物线的函数解析式,求出它的顶点坐标.(3)若过弧CB的中点Q作⊙P的切线MN交x轴于M,交y轴于N,求直线MN的解析式参考答案一、单选题1.【答案】C∵方程x2-kx-3=0的一个根为3,∴将x=3代入方程得:9-3k-3=0,解得:k=2.故选C2.【答案】C在圆内的弦不一定平行,故C选项错误.3.【答案】C解:根据题意得:80×5﹣(81+79+80+82)=78,方差= [(81﹣80)2+(79﹣80)2+(78﹣80)2+(80﹣80)2+(82﹣80)2]=2.故答案为:C4.【答案】B解:当商品第一次降价a%时,其售价为168﹣168a%=168(1﹣a%);当商品第二次降价a%后,其售价为168(1﹣a%)﹣168(1﹣a%)a%=168(1﹣a%)2.∴168(1﹣a%)2=128.故选B.5.【答案】C解:连接OB,OC,∵∠A=60°,∴∠BOC=2∠A=120°.∵OB=OC,OD⊥BC,∴∠COD= ∠BOC=60°,∴=cot60°= ,即OD:CD=1:.故选C.6.【答案】A根据题意得k=2×3=6,所以反比例函数解析式为y= ,∵﹣3×(﹣2)=6,2×(﹣3)=﹣6,3×(﹣2)=﹣6,﹣2×3=﹣6,∴点(﹣3,﹣2)在反比例函数y= 的图象上.故答案为:A.7.【答案】DA、2×6=3×4,能成比例,不符合题意;B、4×1= ×2 ,能成比例,不符合题意;C、4×10=5×8,能成比例,不符合题意;D、2×5≠3×4,不能成比例,符合题意.故答案为:D.8. 【答案】B解:如图,连接OD、OC.∵==(已知),∴∠AOD=∠DOC=∠COB(在同圆中,等弧所对的圆心角相等);∵AB是直径,∴∠AOD+∠DOC+∠COB=180°,∴∠AOD=∠DOC=∠COB=60°;∵OA=OD(⊙O的半径),∴△AOD是等边三角形,∴AD=OD=OA;同理,得OC=OD=CD,OC=OB=BC,∴AD=CD=BC=OA,∴四边形ABCD的周长为:AD+CD+BC+AB=5OA=5×1cm=5cm;故选:B.9.【答案】B∵AD=1,BD=2,∴AB=AD+BD=3.∵△ADE∽△ABC,∴AD:AB=1:3.∴△ADE与△ABC的相似比是1:3.故选B.10. 【答案】CA、∵∠A=36°,AB=AC,∴∠C=∠ABC=72°,∴∠C=2∠A,正确,故本选项错误。

2021年冀教版九年级数学上册期中试卷及答案【1套】

2021年冀教版九年级数学上册期中试卷及答案【1套】

2021年冀教版九年级数学上册期中试卷及答案【1套】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.对某市某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有( )A .20人B .40人C .60人D .80人3.某钢铁厂一月份生产钢铁560吨,从二月份起,由于改进操作技术,使得第一季度共生产钢铁1850吨,问二、三月份平均每月的增长率是多少?若设二、三月份平均每月的增长率为x ,则可得方程( )A .2560(1)1850x +=B .2560560(1)1850x ++=C .()25601560(1)1850x x +++=D .()25605601560(1)1850x x ++++=4.下列各数:-2,0,13,0.020020002…,π9( )A .4B .3C .2D .15.若α,β是方程2x 2x 20180+-=的两个实数根,则2α3αβ++的值为( )A .2015B .2016-C .2016D .20196.要反映台州市某一周每天的最高气温的变化趋势,宜采用( )A .条形统计图B .扇形统计图C .折线统计图D .频数分布统计图7.如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y=kx(k≠0,x>0)的图象同时经过顶点C,D.若点C的横坐标为5,BE=3DE,则k的值为()A.52B.154C.3 D.58.如图,⊙O中,半径OC⊥弦AB于点D,点E在⊙O上,∠E=22.5°,AB=4,则半径OB等于()A.2B.2 C.22D.39.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米。

2021年冀教版九年级数学上册期中测试卷及答案【各版本】

2021年冀教版九年级数学上册期中测试卷及答案【各版本】

2021年冀教版九年级数学上册期中测试卷及答案【各版本】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.﹣3的绝对值是( )A .﹣3B .3C .-13D .132.在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4-3.下列结论成立的是( )A .若|a|=a ,则a >0B .若|a|=|b|,则a =±bC .若|a|>a ,则a ≤0D .若|a|>|b|,则a >b .4.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm )的平均数与方差为:x 甲=x 丙=13,x 乙=x 丁=15:s 甲2=s 丁2=3.6,s 乙2=s 丙2=6.3.则麦苗又高又整齐的是( )A .甲B .乙C .丙D .丁 5.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( )A .有两个不相等实数根B .有两个相等实数根C .有且只有一个实数根D .没有实数根6.小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是( )A .12B .13C .23D .167.如图,等边三角形ABC 中,AD ⊥BC ,垂足为D ,点E 在线段AD 上,∠EBC=45°,则∠ACE 等于( )A .15°B .30°C .45°D .60°8.如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是()A.x>﹣2 B.x>0 C.x>1 D.x<19.如图,将正方形OABC放在平面直角坐标系中,O是原点,点A的坐标为(1,3),则点C的坐标为()A.(-3,1) B.(-1,3) C.(3,1) D.(-3,-1) 10.如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连结OE.若ABC60∠=,BAC80∠=,则1∠的度数为()A.50B.40C.30D.20二、填空题(本大题共6小题,每小题3分,共18分)1.27-的立方根是____________.2.因式分解:(x+2)x﹣x﹣2=_______.33x- x 的取值范围是__________.4.如图,在矩形ABCD中,AD=3,将矩形ABCD绕点A逆时针旋转,得到矩形AEFG,点B的对应点E落在CD上,且DE=EF,则AB的长为__________.5.如图,已知正方形DEFG 的顶点D 、E 在△ABC 的边BC 上,顶点G 、F 分别在边AB 、AC 上.如果BC=4,△ABC 的面积是6,那么这个正方形的边长是__________.6.已知抛物线()20y ax bx c a =++≠的对称轴是直线1x =,其部分图象如图所示,下列说法中:①0abc <;②0a b c -+<;③30a c +=;④当13x 时,0y >,正确的是__________(填写序号).三、解答题(本大题共6小题,共72分)1.解分式方程:214111x x x ++=--2.关于x 的一元二次方程x 2+(2k+1)x+k 2+1=0有两个不等实根12,x x .(1)求实数k 的取值范围.(2)若方程两实根12,x x 满足|x 1|+|x 2|=x 1·x 2,求k 的值.3.如图,点E 、F 在BC 上,BE =CF ,AB =DC ,∠B =∠C .求证:∠A =∠D .4.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.5.益马高速通车后,将桃江马迹塘的农产品运往益阳的运输成本大大降低.马迹塘一农户需要将A,B两种农产品定期运往益阳某加工厂,每次运输A,B产品的件数不变,原来每运一次的运费是1200元,现在每运一次的运费比原来减少了300元,A,B两种产品原来的运费和现在的运费(单位:元∕件)如下表所示:品种 A B原来的运45 25费现在的运30 20费(1)求每次运输的农产品中A,B产品各有多少件;(2)由于该农户诚实守信,产品质量好,加工厂决定提高该农户的供货量,每次运送的总件数增加8件,但总件数中B产品的件数不得超过A产品件数的2倍,问产品件数增加后,每次运费最少需要多少元.6.随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、D5、A6、B7、A8、C9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、-3.2、(x+2)(x﹣1)3、x≥34、5、12 76、①③④.三、解答题(本大题共6小题,共72分)1、3x=-2、(1)k﹥34;(2)k=2.3、答案略4、(1)略;(2)4.95、(1)每次运输的农产品中A产品有10件,每次运输的农产品中B产品有30件,(2)产品件数增加后,每次运费最少需要1120元.6、(1)打折前甲品牌粽子每盒40元,乙品牌粽子每盒120元.(2)打折后购买这批粽子比不打折节省了3640元.。

2021年冀教版九年级数学上册期中考试(参考答案)

2021年冀教版九年级数学上册期中考试(参考答案)

2021年冀教版九年级数学上册期中考试(参考答案)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.比较2 )A .2<B .2<<C 2<<D 2<2.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .24y x =-B .24y x =+C .22y x =+D .22y x =-3.下列结论中,矩形具有而菱形不一定具有的性质是( )A .内角和为360°B .对角线互相平分C .对角线相等D .对角线互相垂直4.已知1x 、2x 是一元二次方程220x x -=的两个实数根,下列结论错误..的是( )A .12x x ≠B .21120x x -=C .122x x +=D .122x x ⋅=5.已知函数2(3)21y k x x =-++的图象与x 轴有交点.则k 的取值范围是( )A .k<4B .k ≤4C .k<4且k ≠3D .k ≤4且k ≠36.已知:等腰直角三角形ABC 的腰长为4,点M 在斜边AB 上,点P 为该平面内一动点,且满足PC =2,则PM 的最小值为( )A .2B . 2C .D .7.如图,抛物线2144y x =-与x 轴交于A 、B 两点,P 是以点C (0,3)为圆心,2为半径的圆上的动点,Q 是线段PA 的中点,连结OQ .则线段OQ 的最大值是( )A .3B .412C .72D .48.如图,一次函数y 1=x +b 与一次函数y 2=kx +4的图象交于点P (1,3),则关于x 的不等式x +b >kx +4的解集是( )A .x >﹣2B .x >0C .x >1D .x <19.如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A .75°B .80°C .85°D .90°10.已知0ab <,一次函数y ax b =-与反比例函数a y x =在同一直角坐标系中的图象可能( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.9的平方根是__________.2.因式分解:3269a a a-+=_________.3.不等式组34012412xx+≥⎧⎪⎨-≤⎪⎩的所有整数解的积为__________.4.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E ,AD与BE相交于点F,若BF =AC,则∠ABC=__________度.5.如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c的解为__________.6.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是__________.三、解答题(本大题共6小题,共72分)1.解分式方程:24 1x-+1=11xx-+2.已知二次函数y=﹣316x2+bx+c的图象经过A(0,3),B(﹣4,﹣92)两点.(1)求b,c的值.(2)二次函数y=﹣316x2+bx+c的图象与x轴是否有公共点,求公共点的坐标;若没有,请说明情况.3.如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.(1)求证:ΔABC≌△DEF;(2)若∠A=55°,∠B=88°,求∠F的度数.4.如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.(1)求证:AE=ED;(2)若AB=10,∠CBD=36°,求AC的长.5.共享经济已经进入人们的生活.小沈收集了自己感兴趣的4个共享经济领域的图标,共享出行、共享服务、共享物品、共享知识,制成编号为A、B、C、D 的四张卡片(除字母和内容外,其余完全相同).现将这四张卡片背面朝上,洗匀放好.(1)小沈从中随机抽取一张卡片是“共享服务”的概率是;(2)小沈从中随机抽取一张卡片(不放回),再从余下的卡片中随机抽取一张,请你用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率.(这四张卡片分别用它们的编号A、B、C、D表示)5.某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.(1)求出y与x的函数关系式;(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、C4、D5、B6、B7、C8、C9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、±32、2(3)a a -3、04、455、x ≤1.6、12三、解答题(本大题共6小题,共72分)1、无解.2、(1)983b c ⎧=⎪⎨⎪=⎩;(2)公共点的坐标是(﹣2,0)或(8,0)3、(1)略;(2)37°4、(1)略;(2)2AC π=5、(1)14;(2)166、(1)y=﹣2x+80(20≤x≤28);(2)每本纪念册的销售单价是25元;(3)该纪念册销售单价定为28元时,才能使文具店销售该纪念册所获利润最大,最大利润是192元.。

2021年冀教版九年级数学上册期中测试卷(及参考答案)

2021年冀教版九年级数学上册期中测试卷(及参考答案)

2021年冀教版九年级数学上册期中测试卷(及参考答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.12-的倒数是( ) A . B . C .12- D .12 2.一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( )A .47B .37C .34D .133.下列计算正确的是( )A .a 2+a 3=a 5B .3221=C .(x 2)3=x 5D .m 5÷m 3=m 24.已知关于x 的一元二次方程(a+1)x 2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是( )A .1一定不是关于x 的方程x 2+bx+a=0的根B .0一定不是关于x 的方程x 2+bx+a=0的根C .1和﹣1都是关于x 的方程x 2+bx+a=0的根D .1和﹣1不都是关于x 的方程x 2+bx+a=0的根5.将抛物线23y x =-平移,得到抛物线23(1)2y x =---,下列平移方式中,正确的是( )A .先向左平移1个单位,再向上平移2个单位B .先向左平移1个单位,再向下平移2个单位C .先向右平移1个单位,再向上平移2个单位D .先向右平移1个单位,再向下平移2个单位6.已知直线y 1=kx+1(k <0)与直线y 2=mx (m >0)的交点坐标为(12,12m ),则不等式组mx ﹣2<kx+1<mx 的解集为( )A .x>12B .12<x<32C .x<32D .0<x<327.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE ,且D 点落在对角线D ′处.若AB=3,AD=4,则ED 的长为( )A .32B .3C .1D .43 8.如图是二次函数2y=ax +bx+c 的部分图象,由图象可知不等式2ax +bx+c<0的解集是( )A .1<x<5-B .x>5C .x<1-且x>5D .x <-1或x >59.已知,a b 是非零实数,a b >,在同一平面直角坐标系中,二次函数21y ax bx =+与一次函数2y ax b =+的大致图象不可能是( )A .B .C .D .10.如图,ABC 中,ACB 90∠=,A 30∠=,AB 16=,点P 是斜边AB 上任意一点,过点P 作PQ AB ⊥,垂足为P ,交边AC(或边CB)于点Q ,设AP x =,APQ 的面积为y ,则y 与x 之间的函数图象大致是( )A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.计算:27﹣12=__________.2.因式分解:2()4()a a b a b ---=_______.3.已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m=_____.4.如图,在正五边形ABCDE 中,AC 与BE 相交于点F ,则∠AFE 的度数为__________.5.如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是__________.6.现有下列长度的五根木棒:3,5,8,10,13,从中任取三根,可以组成三角形的概率为________.三、解答题(本大题共6小题,共72分)1.解方程:311(1)(2)x x x x -=--+2.先化简,再求值:2(3)(1)(1)2(24)a a a a +-+--+,其中12a =-.3.如图,某大楼的顶部树有一块广告牌CD ,小李在山坡的坡脚A 处测得广告牌底部D 的仰角为60°.沿坡面AB 向上走到B 处测得广告牌顶部C 的仰角为45°,已知山坡AB 的坡度i=1:3,AB=10米,AE=15米.(i=1:3是指坡面的铅直高度BH 与水平宽度AH 的比)(1)求点B 距水平面AE 的高度BH ;(2)求广告牌CD 的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:2≈1.414,1.732)4.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x (h )之间的函数关系,其中线段AB 、BC 表示恒温系统开启阶段,双曲线的一部分CD 表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?5.为了了解居民的环保意识,社区工作人员在光明小区随机抽取了若干名居民开展主题为“打赢蓝天保卫战”的环保知识有奖问答活动,并用得到的数据绘制了如图条形统计图:请根据图中信息,解答下列问题:(1)本次调查一共抽取了名居民;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)社区决定对该小区500名居民开展这项有奖问答活动,得10分者设为“一等奖”,请你根据调查结果,帮社区工作人员估计需准备多少份“一等奖”奖品.6.李明准备进行如下操作实验,把一根长40 cm的铁丝剪成两段,并把每段首尾相连各围成一个正方形.(1)要使这两个正方形的面积之和等于58 cm2,李明应该怎么剪这根铁丝?(2)李明认为这两个正方形的面积之和不可能等于48 cm2,你认为他的说法正确吗?请说明理由.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、D4、D5、D6、B7、A8、D9、D10、D二、填空题(本大题共6小题,每小题3分,共18分)12、()()()22 a b a a-+-3、24、72°5、40°6、2 5三、解答题(本大题共6小题,共72分)1、原方程无解.2、13、(1)点B距水平面AE的高度BH为5米. (2)宣传牌CD高约2.7米.4、(1)y关于x的函数解析式为210(05)20(510)200(1024)x xy xxx⎧⎪+≤<⎪=≤<⎨⎪⎪≤≤⎩;(2)恒温系统设定恒温为20°C;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害.5、(1)50;(2)平均数是8.26;众数为8;中位数为8;(3)需要一等奖奖品100份.6、 (1) 李明应该把铁丝剪成12 cm和28 cm的两段;(2) 李明的说法正确,理由见解析.。

2021年冀教版九年级数学上册期中考试及答案【完整版】

2021年冀教版九年级数学上册期中考试及答案【完整版】

2021年冀教版九年级数学上册期中考试及答案【完整版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是( ) A .2020B .2020-C .12020D .12020-2.若关于x 的不等式组324x a x a <+⎧⎨>-⎩无解,则a 的取值范围是( )A .a ≤﹣3B .a <﹣3C .a >3D .a ≥33.已知⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB=8cm ,且AB ⊥CD ,垂足为M ,则AC 的长为( ) A .25cmB .45 cmC .25cm 或45cmD .23cm 或43cm4.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25-的点P 应落在( )A .线段AB 上B .线段BO 上C .线段OC 上D .线段CD 上5.预计到2025年,中国5G 用户将超过460 000 000,将460 000 000用科学计数法表示为( ) A .94.610⨯B .74610⨯C .84.610⨯D .90.4610⨯6.若221m m +=,则2483m m +-的值是( ) A .4B .3C .2D .17.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A .30°B .25°C .20°D .15°8.按如图所示的运算程序,能使输出y 值为1的是( )A .11m n ==,B .10m n ==,C .12m n ==,D .21m n ==,9.根据圆规作图的痕迹,可用直尺成功找到三角形外心的是( )A .B .C .D .10.在同一坐标系中,一次函数2y mx n =-+与二次函数2y x m =+的图象可能是( ).A .B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)1.计算: 225-()=__________.2.因式分解:_____________.3.设m ,n 是一元二次方程x 2+2x -7=0的两个根,则m 2+3m +n =_______.4.如图,点A 在双曲线1y=x上,点B 在双曲线3y=x上,且AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为__________.5.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=__________度.6.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同.从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是__________.三、解答题(本大题共6小题,共72分)1.解方程:2142242x x x x +-+--=12.先化简,再求值:222221412()x x x x x x x x-+-+÷-+,且x 为满足﹣3<x <2的整数.3.如图,以D 为顶点的抛物线y=﹣x 2+bx+c 交x 轴于A 、B 两点,交y 轴于点C ,直线BC 的表达式为y=﹣x+3. (1)求抛物线的表达式;(2)在直线BC 上有一点P ,使PO+PA 的值最小,求点P 的坐标; (3)在x 轴上是否存在一点Q ,使得以A 、C 、Q 为顶点的三角形与△BCD 相似?若存在,请求出点Q 的坐标;若不存在,请说明理由.4.如图,BD 是菱形ABCD 的对角线,75CBD ∠=︒,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF ,求DBF ∠的度数.5.某学校为了增强学生体质,决定开设以下体育课外活动项目:A :篮球 B :乒乓球C :羽毛球 D :足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)甲乙丙丁甲﹣﹣﹣(乙,甲)(丙,甲)(丁,甲)乙(甲,乙)﹣﹣﹣(丙,乙)(丁,乙)丙(甲,丙)(乙,丙)﹣﹣﹣(丁,丙)丁(甲,丁)(乙,丁)(丙,丁)﹣﹣﹣6.某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.(1)2014年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、C4、B5、C6、D7、B8、D9、C10、D二、填空题(本大题共6小题,每小题3分,共18分)1、522、3、54、25、360°.6、4 9三、解答题(本大题共6小题,共72分)1、x=12、-53、(1)y=﹣x2+2x+3;(2)P (97,127);(3)当Q的坐标为(0,0)或(9,0)时,以A、C、Q为顶点的三角形与△BCD相似.4、(1)答案略;(2)45°.5、解:(1)200.(2)补全图形,如图所示:(3)列表如下:∵所有等可能的结果为12种,其中符合要求的只有2种,∴恰好选中甲、乙两位同学的概率为21P126==.6、(1)35元/盒;(2)20%.。

2021年冀教版九年级数学上册期中考试【参考答案】

2021年冀教版九年级数学上册期中考试【参考答案】

2021年冀教版九年级数学上册期中考试【参考答案】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.估计)A.5和6之间B.6和7之间C.7和8之间D.8和9之间2.用配方法将二次函数y=x2﹣8x﹣9化为y=a(x﹣h)2+k的形式为()A.y=(x﹣4)2+7 B.y=(x+4)2+7C.y=(x﹣4)2﹣25 D.y=(x+4)2﹣253.已知⊙O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是()A.30°B.60°C.30°或150°D.60°或120°4.已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是()A.1一定不是关于x的方程x2+bx+a=0的根B.0一定不是关于x的方程x2+bx+a=0的根C.1和﹣1都是关于x的方程x2+bx+a=0的根D.1和﹣1不都是关于x的方程x2+bx+a=0的根5.某排球队6名场上队员的身高(单位:cm)是:180,184,188,190,192,194.现用一名身高为186cm的队员换下场上身高为192cm的队员,与换人前相比,场上队员的身高()A.平均数变小,方差变小B.平均数变小,方差变大C.平均数变大,方差变小D.平均数变大,方差变大6.若一个凸多边形的内角和为720°,则这个多边形的边数为()A.4 B.5 C.6 D.77.如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y=kx(k≠0,x>0)的图象同时经过顶点C,D.若点C的横坐标为5,BE=3DE,则k的值为()A .52B .154C .3D .58.下列图形中,是中心对称图形的是( )A .B .C .D .9.如图,AB ∥CD ,∠1=58°,FG 平分∠EFD ,则∠FGB 的度数等于( )A .122°B .151°C .116°D .97°10.如图,将正方形OEFG 放在平面直角坐标系中,O 是坐标原点,点()2,3E ,则点F 的坐标为( )A .()1,5-B .()2,3-C .()5,1-D .()3,2-二、填空题(本大题共6小题,每小题3分,共18分)164__________.2.分解因式:4ax 2-ay 2=____________.3.若函数y =(a -1)x 2-4x +2a 的图象与x 轴有且只有一个交点,则a 的值为_____.4.如图,已知△ABC 的周长是21,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =4,△ABC 的面积是__________.5.如图,C 为半圆内一点,O 为圆心,直径AB 长为2 cm ,∠BOC=60°,∠BCO=90°,将△BOC 绕圆心O 逆时针旋转至△B ′OC ′,点C ′在OA 上,则边BC 扫过区域(图中阴影部分)的面积为_________cm 2.6.如图,点A 是反比例函数y=4x(x >0)图象上一点,直线y=kx+b 过点A 并且与两坐标轴分别交于点B ,C ,过点A 作AD ⊥x 轴,垂足为D ,连接DC ,若△BOC 的面积是4,则△DOC 的面积是__________.三、解答题(本大题共6小题,共72分)1.解分式方程:(1)214111x x x +-=-- (2)1132422x x +=--2.已知关于x 的一元二次方程220x x k +-=有两个不相等的实数根.(1)求k 的取值范围;(2)若方程的两个不相等实数根是a ,b ,求111a a b -++的值.3.如图,在四边形ABCD 中,AB DC ,AB AD =,对角线AC ,BD 交于点O ,AC 平分BAD ∠,过点C 作CE AB ⊥交AB 的延长线于点E ,连接OE .(1)求证:四边形ABCD 是菱形;(2)若5BD=,求OE的长.AB=,24.如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点F为BC的中点,连接EF和AD.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为2,∠EAC=60°,求AD的长.5.甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日搅件数超过40,超过部分每件多提成2元.如图是今年四月份甲公司揽件员人均揽件数和乙公司搅件员人均揽件数的条形统计图:(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由.6.某地2015年为做好“精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1600万元.(1)从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?(2)在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、D4、D5、A6、C7、B8、D9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、2、a(2x+y)(2x-y)3、-1或2或14、425、4π6、2.三、解答题(本大题共6小题,共72分)1、(1)无解.(2)5x=-2、(1)k>-1;(2)13、(1)略;(2)2.4、(1)略;(2)AD=5、(1)215;(2)39件;仅从工资收入的角度考虑,小明应到乙公司应聘.6、(1)50%;(2)今年该地至少有1900户享受到优先搬迁租房奖励.。

2021年冀教版九年级数学上册期中考试题含答案

2021年冀教版九年级数学上册期中考试题含答案

2021年冀教版九年级数学上册期中考试题含答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( )A .﹣3B .﹣5C .1或﹣3D .1或﹣53.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为( )A .9人B .10人C .11人D .12人4.若一个直角三角形的两直角边的长为12和5,则第三边的长为( )A .13或119B .13或15C .13D .155.如图,数轴上两点A,B 表示的数互为相反数,则点B 表示的( )A .-6B .6C .0D .无法确定6.用配方法解方程2x 2x 10--=时,配方后所得的方程为( )A .2x 10+=()B .2x 10-=()C .2x 12+=()D .2x 12-=()7.如图,将含30°角的直角三角板ABC 的直角顶点C 放在直尺的一边上,已知∠A =30°,∠1=40°,则∠2的度数为( )A .55°B .60°C .65°D .70°8.如图,点P 是边长为1的菱形ABCD 对角线AC 上的一个动点,点M ,N 分别是AB ,BC 边上的中点,则MP+PN 的最小值是( )A .12B .1C .2D .29.如图,点P 是∠AOB 内任意一点,且∠AOB =40°,点M 和点N 分别是射线OA 和射线OB 上的动点,当△PMN 周长取最小值时,则∠MPN 的度数为( )A .140°B .100°C .50°D .40°10.如图,在平面直角坐标系中,ABCD 的三个顶点坐标分别为()()()1,04,22,3A B C ,,,第四个顶点D 在反比例函数()0k y x x=<的图像上,则k 的值为( )A .1-B .2-C .3-D .4-二、填空题(本大题共6小题,每小题3分,共18分)164____________.2.因式分解2242x x -+=_______.3.已知关于x 的分式方程233x k x x -=--有一个正数解,则k 的取值范围为________.4.如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为_____________.5.如图,在矩形ABCD中,AB=4,AD=3,矩形内部有一动点P满足S△PAB =13S矩形ABCD,则点P到A、B两点的距离之和PA+PB的最小值为__________.6.如图,在边长为4的正方形ABCD中,以点B为圆心,以AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是__________(结果保留π)三、解答题(本大题共6小题,共72分)1.解方程:113 22xx x-=---2.先化简,再求值:822224x xxx x+⎛⎫-+÷⎪--⎝⎭,其中12x=-.3.如图,已知二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y轴于点C.(1)求这个二次函数的表达式;(2)点P是直线BC下方抛物线上的一动点,求△BCP面积的最大值;(3)直线x=m分别交直线BC和抛物线于点M,N,当△BMN是等腰三角形时,直接写出m的值.4.如图,抛物线y=a(x﹣1)(x﹣3)(a>0)与x轴交于A、B两点,抛物线上另有一点C在x轴下方,且使△OCA∽△OBC(1)求线段OC的长度;(2)设直线BC与y轴交于点M,点C是BM的中点时,求直线BM和抛物线的解析式;(3)在(2)的条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.5.某校为了解学生对中国民族乐器的喜爱情况,随机抽取了本校的部分学生进行调查(每名学生选择并且只能选择一种喜爱乐器),现将收集到的数据绘制如下的两幅不完整的统计图.(1)这次共抽取学生进行调查,扇形统计图中的x .(2)请补全统计图;(3)在扇形统计图中“扬琴”所对扇形的圆心角是度;(4)若该校有3000名学生,请你估计该校喜爱“二胡”的学生约有名.6.我区“绿色科技公司”研发了一种新产品,该产品的成本为每件3000元.在试销期间,营销部门建议:①购买不超过10件时,每件销售价为3600元;②购买超过10件时,每多购买一件,所购产品的销售单价均降低5元,但最低销售单价为3200元.根据以上信息解决下列问题:(1)直接写出:购买这种产品件时,销售单价恰好为3200元;(2)设购买这种产品x件(其中x>10,且x为整数),该公司所获利润为y 元,求y与x之间的函数表达式;(3)在试销期间销售人员发现:当购买产品的件数超过10件时,会出现随着数量的增多,公司所获利润反而减少这一情况.为使销售数量越多,公司所获利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、C4、C5、B6、D7、D8、B9、B10、A二、填空题(本大题共6小题,每小题3分,共18分) 1、22、22(1)x .3、k<6且k ≠34、10.5、6、8﹣2π三、解答题(本大题共6小题,共72分)1、无解2、3.3、(1)这个二次函数的表达式是y=x 2﹣4x+3;(2)S △BCP 最大=278;(3)当△BMN 是等腰三角形时,m 1,2.4、(1)2)y=3x y=3x 2﹣3)点P 存在,坐标为(94). 5、(1)200,15%;(2)统计图如图所示见解析;(3)36;(4)900.6、(1)90;(2)2200(90)5650(1090)≥⎧=⎨-+<<⎩x x y x x x ;(3)3325元.。

2021年冀教版九年级数学上册期中测试卷【及参考答案】

2021年冀教版九年级数学上册期中测试卷【及参考答案】

2021年冀教版九年级数学上册期中测试卷【及参考答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣8的相反数是( )A .8B .18C .18-D .-82.在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4-3.已知⊙O 的半径为10,圆心O 到弦AB 的距离为5,则弦AB 所对的圆周角的度数是( )A .30°B .60°C .30°或150°D .60°或120°4.一组数据:1、2、2、3,若添加一个数据2,则发生变化的统计量是( )A .平均数B .中位数C .众数D .方差5.下列关于一次函数()0,0y kx b k b =+<>的说法,错误的是( )A .图象经过第一、二、四象限B .y 随x 的增大而减小C .图象与y 轴交于点()0,bD .当b x k>-时,0y > 6.若3x >﹣3y ,则下列不等式中一定成立的是( )A .0x y +>B .0x y ->C .0x y +<D .0x y -<7.如图,直线AD ,BE 被直线BF 和AC 所截,则∠1的同位角和∠5的内错角分别是( )A .∠4,∠2B .∠2,∠6C .∠5,∠4D .∠2,∠48.如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC ∆∆≌的是( )A .CB CD = B .BAC DAC ∠=∠C .BCA DCA ∠=∠D .90B D ∠=∠=︒9.如图,函数 y 1=﹣2x 与 y 2=ax +3 的图象相交于点 A (m ,2),则关于 x 的不等式﹣2x >ax +3 的解集是( )A .x >2B .x <2C .x >﹣1D .x <﹣110.如图,在矩形ABCD 中,AB =10,4=AD ,点E 从点D 向C 以每秒1个单位长度的速度运动,以AE 为一边在AE 的左上方作正方形AEFG ,同时垂直于CD 的直线MN 也从点C 向点D 以每秒2个单位长度的速度运动,当点F 落在直线MN 上,设运动的时间为t ,则t 的值为( )A .103B .4C .143D .163二、填空题(本大题共6小题,每小题3分,共18分)13816-=_____.2.分解因式:2218x -=______.3.式子3x -在实数范围内有意义,则 x 的取值范围是__________.4.如图,∠MAN=90°,点C 在边AM 上,AC=4,点B 为边AN 上一动点,连接BC ,△A ′BC 与△ABC 关于BC 所在直线对称,点D ,E 分别为AC ,BC 的中点,连接DE 并延长交A ′B 所在直线于点F ,连接A ′E .当△A ′EF 为直角三角形时,AB 的长为__________.5.如图,在△ABC 中,AB=AC=5,BC=45,D 为边AB 上一动点(B 点除外),以CD 为一边作正方形CDEF ,连接BE ,则△BDE 面积的最大值为__________.6.如图,正方形ABCD 中,ABC ∆绕点A 逆时针旋转到AB C ''∆,AB ',AC '分别交对角线BD 于点,E F ,若4AE =,则EF ED ⋅的值为___________.三、解答题(本大题共6小题,共72分)1.解分式方程:3213x x x --=-2.已知二次函数的图象以A (﹣1,4)为顶点,且过点B (2,﹣5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.3.如图,在平面直角坐标系xOy中,一次函数152y x=+和2y x=-的图象相交于点A,反比例函数kyx=的图象经过点A.(1)求反比例函数的表达式;(2)设一次函数152y x=+的图象与反比例函数kyx=的图象的另一个交点为B,连接OB,求ABO∆的面积.4.如图,AD是△ABC的外接圆⊙O的直径,点P在BC延长线上,且满足∠PAC=∠B.(1)求证:PA是⊙O的切线;(2)弦CE⊥AD交AB于点F,若AF•AB=12 ,求AC的长.5.某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:kg),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)图①中m的值为;(2)求统计的这组数据的平均数、众数和中位数;(3)根据样本数据,估计这2500只鸡中,质量为2.0kg的约有多少只?6.小刚去超市购买画笔,第一次花60元买了若干支A型画笔,第二次超市推荐了B型画笔,但B型画笔比A型画笔的单价贵2元,他又花100元买了相同支数的B型画笔.(1)超市B型画笔单价多少元?(2)小刚使用两种画笔后,决定以后使用B型画笔,但感觉其价格稍贵,和超市沟通后,超市给出以下优惠方案:一次购买不超过20支,则每支B型画笔打九折;若一次购买超过20支,则前20支打九折,超过的部分打八折.设小刚购买的B型画笔x支,购买费用为y元,请写出y关于x的函数关系式.(3)在(2)的优惠方案下,若小刚计划用270元购买B型画笔,则能购买多少支B型画笔?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、D4、D5、D6、A7、B8、C9、D10、C二、填空题(本大题共6小题,每小题3分,共18分)1、22、2(3)(3)x x +-3、x ≥34、 45、86、16三、解答题(本大题共6小题,共72分)1、95x = 2、(1)y=﹣x 2﹣2x+3;(2)抛物线与y 轴的交点为:(0,3);与x 轴的交点为:(﹣3,0),(1,0);(3)15.3、(1)反比例函数的表达式为8y x-=;(2)ABO ∆的面积为15.4、(1)略;(2)5、(1)28. (2)平均数是1.52. 众数为1.8. 中位数为1.5. (3)200只.6、(1)超市B 型画笔单价为5元;(2)4.5,120410,20x x y x x ⎧=⎨+>⎩,其中x 是正整数;(3)小刚能购买65支B型画笔.。

2021年冀教版九年级数学上册期中试卷及答案【全面】

2021年冀教版九年级数学上册期中试卷及答案【全面】

2021年冀教版九年级数学上册期中试卷及答案【全面】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.比较2,5,37的大小,正确的是( )A .3257<<B .3275<<C .3725<<D .3752<<2.一个不透明的布袋里装有7个只有颜色不同的球,其中3个红球,4个白球,从布袋中随机摸出一个球,摸出的球是红球的概率是( )A .47B .37C .34D .133.已知5x =3,5y =2,则52x ﹣3y =( )A .34B .1C .23D .984.已知32x y =⎧⎨=-⎩是方程组23ax by bx ay +=⎧⎨+=-⎩的解,则+a b 的值是( ) A .﹣1 B .1 C .﹣5 D .55.若关于x 的不等式mx - n >0的解集是15x <,则关于x 的不等式()m n x n m >-+的解集是( )A .23x >-B .23x <-C .23x <D .23x > 6.若2x y +=-,则222x y xy ++的值为( )A .2-B .2C .4-D .47.下面四个手机应用图标中是轴对称图形的是( )A .B .C .D .8.如图所示,圆柱的高AB=3,底面直径BC=3,现在有一只蚂蚁想要从A 处沿圆柱表面爬到对角C 处捕食,则它爬行的最短距离是( )A .31π+B .32C .2342π+ D .231π+9.如图,AB ∥CD ,点E 在线段BC 上,CD=CE,若∠ABC=30°,则∠D 为( )A .85°B .75°C .60°D .30° 10.如图,将正方形OEFG 放在平面直角坐标系中,O 是坐标原点,点()2,3E ,则点F 的坐标为( )A .()1,5-B .()2,3-C .()5,1-D .()3,2-二、填空题(本大题共6小题,每小题3分,共18分)1205=__________.2.分解因式:22a 4a 2-+=_______.3.将二次函数245y x x =-+化成2()y a x h k =-+的形式为__________.4.如图,点A 在双曲线1y=x 上,点B 在双曲线3y=x上,且AB ∥x 轴,C 、D 在x 轴上,若四边形ABCD 为矩形,则它的面积为__________.5.如图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC ,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为_________m .6.如图,小军、小珠之间的距离为2.7 m ,他们在同一盏路灯下的影长分别为1.8 m ,1.5 m ,已知小军、小珠的身高分别为1.8 m ,1.5 m ,则路灯的高为__________m.三、解答题(本大题共6小题,共72分)1.解方程:24111x x x =+--2.先化简,再求值(32m ++m ﹣2)÷2212m m m -++;其中m 2+1.3.如图,一次函数1y k x b =+的图象与反比例函数2k y x=的图象相交于A 、B 两点,其中点A 的坐标为()1,4-,点B 的坐标为()4,n .(1)根据图象,直接写出满足21k k x b x+>的x 的取值范围; (2)求这两个函数的表达式; (3)点P 在线段AB 上,且:1:2AOP BOP S S ∆∆=,求点P 的坐标.4.如图,已知P 是⊙O 外一点,PO 交圆O 于点C ,OC=CP=2,弦AB ⊥OC ,劣弧AB 的度数为120°,连接PB .(1)求BC 的长;(2)求证:PB 是⊙O 的切线.5.某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向A 区域时,所购买物品享受9折优惠、指针指向其它区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受8折优惠,其它情况无优惠.在每个转盘中,指针指向每个区城的可能性相同(若指针指向分界线,则重新转动转盘)(1)若顾客选择方式一,则享受9折优惠的概率为多少;(2)若顾客选择方式二,请用树状图或列表法列出所有可能,并求顾客享受8折优惠的概率.6.随着中国传统节日“端午节”的临近,东方红商场决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折,已知打折前,买6盒甲品牌粽子和3盒乙品牌粽子需600元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、D4、A5、B6、D7、D8、C9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)12、()2 2a1-3、22()1 y x=-+4、25、1 36、3三、解答题(本大题共6小题,共72分)1、3x=2、11m m +-,原式=.3、(1)1x <-或04x <<;(2)4y x =-,3y x =-+;(3)27,33P ⎛⎫ ⎪⎝⎭ 4、(1)2(2)略5、(1)享受9折优惠的概率为14;(2)顾客享受8折优惠的概率为16. 6、(1)打折前甲品牌粽子每盒40元,乙品牌粽子每盒120元.(2)打折后购买这批粽子比不打折节省了3640元.。

2021年冀教版九年级数学上册期中考试及参考答案

2021年冀教版九年级数学上册期中考试及参考答案

2021年冀教版九年级数学上册期中考试及参考答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±13.下列计算正确的是( )A .a 2+a 3=a 5B .3221-=C .(x 2)3=x 5D .m 5÷m 3=m 24.若x 取整数,则使分式6321x x +-的值为整数的x 值有( ) A .3个 B .4个 C .6个 D .8个5.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( )A .有两个不相等实数根B .有两个相等实数根C .有且只有一个实数根D .没有实数根6.若三点()1,4,()2,7,(),10a 在同一直线上,则a 的值等于( )A .-1B .0C .3D .47.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是( )A .只有乙B .甲和丁C .乙和丙D .乙和丁8.如图,⊙O中,半径OC⊥弦AB于点D,点E在⊙O上,∠E=22.5°,AB=4,则半径OB等于()A.2B.2 C.22D.39.如图,数轴上的点A,B,O,C,D分别表示数-2,-1,0,1,2,则表示数-的点P应落在()25A.线段AB上B.线段BO上C.线段OC上D.线段CD上10.如图在正方形网格中,若A(1,1),B(2,0),则C点的坐标为()A.(-3,-2) B.(3,-2) C.(-2,-3) D.(2,-3)二、填空题(本大题共6小题,每小题3分,共18分)1.8-的立方根是__________.2.分解因式:32-+=__________.44a a aa b=________.3.已知a、b为两个连续的整数,且28<<,则+a b4.如图,在正五边形ABCDE中,AC与BE相交于点F,则∠AFE的度数为__________.5.如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是__________.6.如图,菱形ABCD顶点A在例函数y=3x(x>0)的图象上,函数y=kx(k>3,x>0)的图象关于直线AC对称,且经过点B、D两点,若AB=2,∠DAB=30°,则k 的值为______.三、解答题(本大题共6小题,共72分)1.计算:(1)sin30°﹣(π﹣3.14)0+(﹣12)﹣2(2)解方程;13223 x x=--2.先化简,再求值:2221111x x xx x++⎛⎫-÷⎪--⎝⎭,其中2x=.3.如图,在口ABCD中,分别以边BC,CD作等腰△BCF,△CDE,使BC=BF,CD=DE,∠CBF=∠CDE,连接AF,AE.(1)求证:△ABF≌△EDA;(2)延长AB与CF相交于G,若AF⊥AE,求证BF⊥BC.4.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?5.“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.6.去年在我县创建“国家文明县城”行动中,某社区计划将面积为23600m的一块空地进行绿化,经投标由甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的1.8倍,如果两队各自独立完成面积为2450m区域的绿化时,甲队比乙队少用4天.甲队每天绿化费用是1.05万元,乙队每天绿化费用为0.5万元.(1)求甲、乙两工程队每天各能完成多少面积(单位:2m)的绿化;(2)由于场地原因,两个工程队不能同时进场绿化施工,现在先由甲工程队绿化若干天,剩下的绿化工程由乙工程队完成,要求总工期不超过48天,问应如何安排甲、乙两个工程队的绿化天数才能使总绿化费用最少,最少费用是多少万元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、B5、A6、C7、D8、C9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、-22、2(2)a a -;3、114、72°5、.6、3三、解答题(本大题共6小题,共72分)1、(1)72;(2)x =32、11x +,13. 3、(1)略;(2)略.4、(1)y 关于x 的函数解析式为210(05)20(510)200(1024)x x y x x x ⎧⎪+≤<⎪=≤<⎨⎪⎪≤≤⎩;(2)恒温系统设定恒温为20°C ;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害.5、(1)600(2)见解析(3)3200(4)6、(1)甲、乙两工程队每天各完成绿化的面积分别是90m2、50m2;(2)甲队先做30天,乙队再做18天,总绿化费用最少,最少费用是40.5万元.。

2021年冀教版九年级数学上册期中测试卷及答案【精品】

2021年冀教版九年级数学上册期中测试卷及答案【精品】

2021年冀教版九年级数学上册期中测试卷及答案【精品】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣2的绝对值是( ) A .2B .12C .12-D .2-2.如果y =2x -+2x -+3,那么y x 的算术平方根是( ) A .2B .3C .9D .±33.实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是( )A .||4a >B .0c b ->C .0ac >D .0a c +>4.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:”一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( )A .()31003xx +-=100B .10033xx -+=100 C .()31001003xx --=D .10031003xx --= 5.已知正多边形的一个外角为36°,则该正多边形的边数为( ). A .12 B .10C .8D .66.函数123y x x =+--的自变量x 的取值范围是( ) A .2x ≥,且3x ≠ B .2x ≥C .3x ≠D .2x >,且3x ≠7.如图所示,阴影是两个相同菱形的重合部分,假设可以随机在图中取点,那么这个点取在阴影部分的概率是( )A .15B .16C .17D .188.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,5,8OC cm CD cm ==,则AE =( )A .8cmB .5cmC .3cmD .2cm9.如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A .75°B .80°C .85°D .90°10.如图在正方形网格中,若A (1,1),B (2,0),则C 点的坐标为( )A .(-3,-2)B .(3,-2)C .(-2,-3)D .(2,-3)二、填空题(本大题共6小题,每小题3分,共18分)1.计算22111m m m ---的结果是__________. 2.分解因式(xy ﹣1)2﹣(x+y ﹣2xy )(2﹣x ﹣y )=_______.3.若函数y =(a -1)x 2-4x +2a 的图象与x 轴有且只有一个交点,则a 的值为_____.4.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径2r cm =,扇形的圆心角120θ=,则该圆锥的母线长l 为_________cm .5.如图,M 、N 是正方形ABCD 的边CD 上的两个动点,满足AM BN =,连接AC 交BN 于点E ,连接DE 交AM 于点F ,连接CF ,若正方形的边长为6,则线段CF的最小值是__________.6.如图,小军、小珠之间的距离为2.7 m ,他们在同一盏路灯下的影长分别为1.8 m ,1.5 m ,已知小军、小珠的身高分别为1.8 m ,1.5 m ,则路灯的高为__________m.三、解答题(本大题共6小题,共72分)1.解方程:15102x x x x-+--=22.已知关于x 的一元二次方程(a+c )x 2+2bx+(a ﹣c )=0,其中a 、b 、c 分别为△ABC 三边的长.(1)如果x=﹣1是方程的根,试判断△ABC 的形状,并说明理由; (2)如果方程有两个相等的实数根,试判断△ABC 的形状,并说明理由;(3)如果△ABC 是等边三角形,试求这个一元二次方程的根.3.如图,在Rt △ABC 中,90C ∠=︒,AD 平分∠BAC ,交BC 于点D ,点O 在AB 上,⊙O 经过A 、D 两点,交AC 于点E ,交AB 于点F . (1)求证:BC 是⊙O 的切线;(2)若⊙O 的半径是2cm ,E 是弧AD 的中点,求阴影部分的面积(结果保留π和根号)4.如图,已知二次函数y=ax 2+bx+c (a ≠0)的图象经过A (-1,0)、B (4,0)、C (0,2)三点. (1)求该二次函数的解析式;(2)点D 是该二次函数图象上的一点,且满足∠DBA=∠CAO (O 是坐标原点),求点D 的坐标;(3)点P 是该二次函数图象上位于一象限上的一动点,连接PA 分别交BC ,y 轴与点E 、F ,若△PEB 、△CEF 的面积分别为S 1、S 2,求S 1-S 2的最大值.5.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)图1中a的值为;(2)求统计的这组初赛成绩数据的平均数、众数和中位数;(3)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.6.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为________件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、B4、B5、B6、A7、C8、A9、A 10、B二、填空题(本大题共6小题,每小题3分,共18分)1、11m -2、(y ﹣1)2(x ﹣1)2.3、-1或2或14、6.5、36、3三、解答题(本大题共6小题,共72分)1、x =7.2、(1) △ABC 是等腰三角形;(2)△ABC 是直角三角形;(3) x 1=0,x 2=﹣1.3、(1)略 (2)23π-4、(1)抛物线解析式为213222y x x =-++;(2)点D 的坐标为(3,2)或(-5,-18);(3)当t=85时,有S 1-S 2有最大值,最大值为165.5、(1) 25 ; (2) 这组初赛成绩数据的平均数是 1.61.;众数是 1.65;中位数是1.60;(3)初赛成绩为1.65 m 的运动员能进入复赛.6、(1)26;(2)每件商品降价10元时,该商店每天销售利润为1200元.。

2021年冀教版九年级数学上册期中试卷含答案

2021年冀教版九年级数学上册期中试卷含答案

2021年冀教版九年级数学上册期中试卷含答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.下列实数中的无理数是( )A . 1.21B .38-C .332-D .2272.下列说法中正确的是 ( )A .若0a <,则20a <B .x 是实数,且2x a =,则0a >C .x -有意义时,0x ≤D .0.1的平方根是0.01± 3.若关于x 的方程333x m m x x ++--=3的解为正数,则m 的取值范围是( ) A .m <92 B .m <92且m ≠32 C .m >﹣94 D .m >﹣94且m ≠﹣344.把函数y x =向上平移3个单位,下列在该平移后的直线上的点是( )A .()2,2B .()2,3C .()2,4D .(2,5)5.已知2,1=⎧⎨=⎩x y 是二元一次方程组7,{1ax by ax by +=-=的解,则a b -的值为( ) A .-1 B .1 C .2 D .36.已知二次函数y=x 2﹣x+14m ﹣1的图象与x 轴有交点,则m 的取值范围是( )A .m ≤5B .m ≥2C .m <5D .m >27.如图,直线AB ∥CD ,则下列结论正确的是( )A .∠1=∠2B .∠3=∠4C .∠1+∠3=180°D .∠3+∠4=180°8.下列图形具有稳定性的是( )A .B .C .D .9.如图,已知⊙O 的直径AE =10cm ,∠B =∠EAC ,则AC 的长为( )A .5cmB .52cmC .53cmD .6cm10.如图,在平行四边形ABCD 中,E 是DC 上的点,DE :EC=3:2,连接AE 交BD 于点F ,则△DEF 与△BAF 的面积之比为( )A .2:5B .3:5C .9:25D .4:25二、填空题(本大题共6小题,每小题3分,共18分)1.化简:4=____________.2.因式分解:34a a -=____________.3.若代数式1x x -有意义,则x 的取值范围为__________. 4.如图,已知菱形ABCD 的周长为16,面积为83,E 为AB 的中点,若P 为对角线BD 上一动点,则EP +AP 的最小值为__________.5.为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排21场比赛,应邀请多少个球队参赛?设邀请x 个球队参赛,根据题意,可列方程为_______.6.如图所示,在四边形ABCD 中,90B ∠=︒,2AB =,8CD =.连接AC ,AC CD ⊥,若1sin 3ACB ∠=,则AD 长度是_________.三、解答题(本大题共6小题,共72分)1.计算:(1)sin30°﹣(π﹣3.14)0+(﹣12)﹣2 (2)解方程;13223x x =--2.已知关于x 的一元二次方程()22x 2k 1x k k 0-+++= (1)求证:方程有两个不相等的实数根;(2)若△ABC 的两边AB 、AC 的长是方程的两个实数根,第三边BC 的长为5.当△ABC 是等腰三角形时,求k 的值3.如图,已知点A (﹣1,0),B (3,0),C (0,1)在抛物线y=ax 2+bx+c 上.(1)求抛物线解析式;(2)在直线BC 上方的抛物线上求一点P ,使△PBC 面积为1;(3)在x 轴下方且在抛物线对称轴上,是否存在一点Q ,使∠BQC=∠BAC ?若存在,求出Q 点坐标;若不存在,说明理由.4.在平面直角坐标系中,直线1y 22x =-与x 轴交于点B ,与y 轴交于点C ,二次函数21y bx 2x c =++的图象经过点B,C 两点,且与x 轴的负半轴交于点A ,动点D 在直线BC 下方的二次函数图象上.(1)求二次函数的表达式;(2)如图1,连接DC,DB,设△BCD 的面积为S,求S 的最大值;(3)如图2,过点D 作DM ⊥BC 于点M ,是否存在点D ,使得△CDM 中的某个角恰好等于∠ABC 的2倍?若存在,直接写出点D 的横坐标;若不存在,请说明理由.5.在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y (千克)与该天的售价x (元/千克)满足如下表所示的一次函数关系. 销售量y (千克) … 34.8 32 29.6 28 …(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?6.去年在我县创建“国家文明县城”行动中,某社区计划将面积为23600m的一块空地进行绿化,经投标由甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的1.8倍,如果两队各自独立完成面积为2450m区域的绿化时,甲队比乙队少用4天.甲队每天绿化费用是1.05万元,乙队每天绿化费用为0.5万元.(1)求甲、乙两工程队每天各能完成多少面积(单位:2m)的绿化;(2)由于场地原因,两个工程队不能同时进场绿化施工,现在先由甲工程队绿化若干天,剩下的绿化工程由乙工程队完成,要求总工期不超过48天,问应如何安排甲、乙两个工程队的绿化天数才能使总绿化费用最少,最少费用是多少万元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、B4、D5、A6、A7、D8、A9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、22、(2)(2)a a a +-3、0x ≥且1x ≠.4、5、12x (x ﹣1)=216、10三、解答题(本大题共6小题,共72分)1、(1)72;(2)x =32、(1)详见解析(2)k 4=或k 5=3、(1)抛物线的解析式为y=﹣13x 2+23x+1;(2)点P 的坐标为(1,43)或(2,1);(3)存在,理由略.4、(1)二次函数的表达式为:213222y x x =--;(2)4;(3)2或2911. 5、(1)当天该水果的销售量为33千克;(2)如果某天销售这种水果获利150元,该天水果的售价为25元.6、(1)甲、乙两工程队每天各完成绿化的面积分别是90m2、50m2;(2)甲队先做30天,乙队再做18天,总绿化费用最少,最少费用是40.5万元.。

2021年冀教版九年级数学上册期中测试卷及答案【一套】

2021年冀教版九年级数学上册期中测试卷及答案【一套】

2021年冀教版九年级数学上册期中测试卷及答案【一套】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2的倒数是()A.2 B.12C.12-D.-22.如果y=2x-+2x-+3,那么y x的算术平方根是()A.2 B.3 C.9 D.±33.已知⊙O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是()A.30°B.60°C.30°或150°D.60°或120°4.为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm)的平均数与方差为:x甲=x丙=13,x乙=x丁=15:s甲2=s丁2=3.6,s乙2=s丙2=6.3.则麦苗又高又整齐的是()A.甲B.乙C.丙D.丁5.如图,数轴上两点A,B表示的数互为相反数,则点B表示的()A.-6 B.6 C.0 D.无法确定6.要反映台州市某一周每天的最高气温的变化趋势,宜采用()A.条形统计图B.扇形统计图C.折线统计图D.频数分布统计图7.下列图形中,既是轴对称图形又是中心对称图形的是() A.B.C.D.8.如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为()A .12B .1C .33D .39.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25-的点P 应落在( )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上10.如图,有一块直角三角形纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2cmB .3cmC .4cmD .5cm二、填空题(本大题共6小题,每小题3分,共18分)1.8的立方根为___________.2.因式分解:22ab ab a -+=__________.3.已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m=_____.4.如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需__________米.5.如图,在ABCD 中,点E 是CD 的中点,AE ,BC 的延长线交于点F .若ECF △的面积为1,则四边形ABCE 的面积为________.6.在平面直角坐标系中,四边形AOBC 为矩形,且点C 坐标为(8,6),M 为BC 中点,反比例函数k y x=(k 是常数,k ≠0) 的图象经过点M ,交AC 于点N ,则MN 的长度是__________.三、解答题(本大题共6小题,共72分)1.解分式方程:2311x x x x +=--2.在平面直角坐标系中,已知点()()()1,2.2,3.2,1A B C ,直线y x m =+经过点A .抛物线21y ax bx =++恰好经过,,ABC 三点中的两点.(1)判断点B 是否在直线y x m =+上.并说明理由;(2)求,a b 的值;(3)平移抛物线21y ax bx =++,使其顶点仍在直线y x m =+上,求平移后所得抛物线与y 轴交点纵坐标的最大值.3.如图,△ABC 中,AB =AC =1,∠BAC =45°,△AEF 是由△ABC 绕点A 按顺时针方向旋转得到的,连接BE ,CF 相交于点D,(1)求证:BE =CF ;(2)当四边形ACDE 为菱形时,求BD 的长.4.如图,△ABC中,AB=AC,AD是△ABC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE,(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.5.在一次中学生田径运动会上,根据参加男子跳高初赛的运动员的成绩(单位:m),绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)图1中a的值为;(2)求统计的这组初赛成绩数据的平均数、众数和中位数;(3)根据这组初赛成绩,由高到低确定9人进入复赛,请直接写出初赛成绩为1.65m的运动员能否进入复赛.6.某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、D5、B6、C7、D8、B9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2.2、()21a b -3、24、5、36、5三、解答题(本大题共6小题,共72分)1、x=32、(1)点B 在直线y x m =+上,理由见详解;(2)a=-1,b=2;(3)543、(1)略(24、解:(1)证明:∵点O 为AB 的中点,连接DO 并延长到点E ,使OE=OD , ∴四边形AEBD 是平行四边形.∵AB=AC ,AD 是△ABC 的角平分线,∴AD ⊥BC .∴∠ADB=90°.∴平行四边形AEBD 是矩形.(2)当∠BAC=90°时,矩形AEBD 是正方形.理由如下:∵∠BAC=90°,AB=AC,AD是△ABC的角平分线,∴AD=BD=CD.∵由(1)得四边形AEBD是矩形,∴矩形AEBD是正方形.5、(1) 25 ; (2) 这组初赛成绩数据的平均数是 1.61.;众数是 1.65;中位数是1.60;(3)初赛成绩为1.65 m的运动员能进入复赛.6、(1) =﹣100x+50000;(2) 该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)见解析.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档