2.6 一次函数、二次函数与幂函数

合集下载

初等基本函数知识点总结

初等基本函数知识点总结

初等基本函数知识点总结函数是数学中最基本的概念之一,它在数学的各个分支中都有着重要的应用。

初等基本函数是指在初等数学范围内常见的基本函数,包括常数函数、一次函数、二次函数、指数函数、对数函数、幂函数、三角函数等。

本文将对这些初等基本函数的概念、性质等进行总结和介绍。

一、常数函数常数函数的定义是f(x) = c (c为常数)。

这里的c就是常数函数的函数值,它是一个常数,和x的取值无关。

在坐标系中,常数函数的图象是一条水平的直线,它的斜率为0。

常数函数的性质有:1. 常数函数的图象是一条水平的直线。

2. 常数函数的定义域是全体实数集R,值域为{c}。

3. 常数函数的导数为0,即f'(x) = 0。

4. 常数函数是一个一一对应的函数。

5. 常数函数是奇函数,偶函数,周期函数,增函数,减函数等的特殊情况。

二、一次函数一次函数的定义是f(x) = kx + b (k和b为常数,k≠0)。

在坐标系中,一次函数的图象是一条通过点P(k,b)的直线,它的斜率为k,截距为b。

一次函数的性质有:1. 一次函数的图象是一条直线,斜率k决定了直线的倾斜程度,截距b决定了直线与y轴的交点位置。

2. 一次函数的定义域是全体实数集R,值域是一切实数集R。

3. 一次函数的导数为k,即f'(x) = k。

4. 当k>0时,一次函数是增函数;当k<0时,一次函数是减函数;当k=0时,一次函数是常数函数。

5. 一次函数是一个奇函数,因为f(-x) = -kx + b = -f(x)。

三、二次函数二次函数的定义是f(x) = ax^2 + bx + c (a、b和c为常数,a≠0)。

二次函数的图象是一个开口向上或者向下的抛物线,它的开口方向由a的正负决定。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

二次函数的性质有:1. 二次函数的图象是一个抛物线,它关于y轴对称,对称轴方程为x = -b/2a。

二次函数与幂函数指数函数的比较与性质

二次函数与幂函数指数函数的比较与性质

二次函数与幂函数指数函数的比较与性质二次函数与幂函数、指数函数是高中数学中常见的函数类型。

本文将比较二次函数与幂函数、指数函数的特点与性质,从多个角度分析它们之间的差异和联系。

一、函数表达式与图像形态比较二次函数的一般形式为f(x) = ax^2 + bx + c,其中a、b、c为实数且a ≠ 0。

它的图像是一条抛物线,圆顶方向和开口方向取决于a的正负。

幂函数的一般形式为f(x) = ax^m,其中a为实数,m为常数且m ≠ 0。

它的图像形态根据m的值而定,当m > 1时为上升函数,m < 1时为下降函数。

指数函数的一般形式为f(x) = a^x,其中a > 0且a ≠ 1。

它的图像是一条递增或递减的曲线,斜率随x的增大而不断增大或减小。

通过比较函数表达式和图像形态,可以看出二次函数的图像是一条抛物线,幂函数的图像可以是直线、上升或下降的曲线,指数函数的图像是递增或递减的曲线。

二、增长速度与渐近性质比较二次函数的增长速度由a的值决定,当a > 0时随着x的增大,函数值快速增大;当a < 0时,随着x的增大,函数值快速减小。

二次函数没有水平渐近线,但存在一条对称轴。

幂函数的增长速度由m的值决定,当m > 1时,随着x的增大,函数值快速增大;当0 < m < 1时,随着x的增大,函数值快速减小。

幂函数没有水平渐近线。

指数函数的增长速度由底数a的值决定,当a > 1时,随着x的增大,函数值快速增大;当0 < a < 1时,随着x的增大,函数值快速减小。

指数函数存在一条水平渐近线,即x轴。

综合比较三种函数的增长速度和渐近性质,可以得出二次函数的增长速度相对较慢,幂函数的增长速度介于二次函数和指数函数之间,而指数函数的增长速度最快。

三、最值与极值比较对于二次函数,如果a > 0,则函数的最小值为c - b^2 / (4a),无最大值;如果a < 0,则函数的最大值为c - b^2 / (4a),无最小值。

二次函数与幂函数的关系

二次函数与幂函数的关系

二次函数与幂函数的关系二次函数和幂函数是数学中常见的两种函数,它们之间存在一定关系。

这篇文章将介绍二次函数和幂函数的定义、图像、特点以及它们之间的关系。

首先,我们来回顾一下二次函数和幂函数的定义。

二次函数是指函数的最高次项为二次的多项式函数。

它的一般形式可以表示为:f(x) = ax^2 + bx + c其中,a、b、c是实数且a不等于0。

在这个函数中,x是自变量,f(x)是因变量。

幂函数是指函数的自变量和因变量之间的关系式为 y = x^a,其中a 是实数。

幂函数的图像通常是一个曲线,并且根据a的不同取值,可以得到不同的曲线形状。

接下来,我们来分析二次函数和幂函数的图像。

对于二次函数,它的图像通常是一个抛物线。

根据二次函数的系数a 的正负和大小,可以得到不同类型的抛物线。

当 a 大于0时,抛物线开口向上;当 a 小于0时,抛物线开口向下。

我们可以根据开口方向和顶点的位置来确定抛物线的图像。

例如,当 a 大于0且顶点位于y轴上方时,抛物线开口向上且顶点为最低点;当 a 小于0且顶点位于y轴下方时,抛物线开口向下且顶点为最高点。

而幂函数的图像则由指数 a 的大小来决定。

当 a 大于1时,函数的图像呈现出上升的斜线;当 a 等于1时,函数的图像是一条直线;当 0 小于 a 小于 1 时,函数的图像呈现出下降的斜线。

与二次函数不同的是,幂函数的图像没有顶点或拐点。

然而,二次函数和幂函数并不是完全独立的。

实际上,我们可以将二次函数视为一种特殊的幂函数。

具体来说,二次函数 f(x) = ax^2 + bx + c 可以写成 f(x) = a(x - h)^2 + k 的形式,其中 h 和 k 是实数,代表了二次函数图像的平移。

这种表达方式可以让我们更好地理解二次函数和幂函数之间的关系。

当平移的值 h 和 k 分别等于0时,即 h = 0 且 k = 0 时,二次函数变为f(x) = ax^2,这就是一个幂函数。

理科数学学霸笔记06 二次函数与幂函数

理科数学学霸笔记06 二次函数与幂函数

选择规律如下:
(1)已知三个点的坐标,选用一般式;
(2)已知顶点坐标、对称轴、最大(小)值,选用顶点式;
(3)已知与x轴两交点的坐标,选用零点式。

2.求幂函数解析式的方法
幂函数的解析式是一个幂的形式,且需满足:
(1)指数为常数;
(2)底数为自变量;
(3)系数为 1.
3.幂函数y=xα的图象与性质,由于α值的不同而比较复杂,一般从两个方面考查:
①α的正负:当α>0时,图象过原点,在第一象限的
图象上升;当α<0时,图象不过原点,在第一象限的图象下降,反之也成立.
②幂函数的指数与图象特征的关系
(1)幂函数的形式是y=xα(α∈R),其中只有一个参数α,因此只需一个条件即可确定其解析式.
(2)判断幂函数y=xα(α∈R)的奇偶性时,当α是分数时,一般将其先化为根式,再判断.
(3)若幂函数y=xα在(0,+∞)上单调递增,则α>0,若在(0,+∞)上单调递减,则α<0.
4.二次函数的图象及性质的应用
(1)图象识别问题。

第二章 第六节 一次函数、二次函数与幂函数

第二章  第六节 一次函数、二次函数与幂函数
α
解析:设幂函数的解析式为y=x 2.∴y=x-2.
,则3=
3 α ,∴α=- 3
答案:B
返回
1 -1,1, ,3,则使函数y= 3.(教材习题改编)设α∈ 2
xα的定义域为R且为奇函数的所有α值为 ( ) A.1,3 B.-1,1 C.-1,3 D.-1,1,3 1 -1 解析:在函数y=x ,y=x,y=x ,y=x3中,只有函 2
答案:C
返回
4.(2011· 北京西城模拟)已知函数f(x)=4x2-mx+5在区 间[-2,+∞)上是增函数,则m的范围是________.
解析:f(x)=4x2-mx+5在[-2,+∞)上是增函数, m ∴ ≤-2,m≤-16. 8
答案:(-∞,-16]
返回
5.(2011· 泰安调研)已知函数f(x)=-x2+2ax+1-a在 x∈[0,1]时有最大值2,则a的值为________.
答案:C
返回
7.(2012· 无锡联考)设函数f(x)=mx2-mx-1,若f(x)<0 的解集为R,则实数m的取值范围是__________.
解析:若m=0;显然-1<0恒成立,若m≠0,
m<0, 则 Δ<0.
∴-4<m<0.
故所求范围为-4<m≤0.
答案:(-4,0]
返回
[冲关锦囊]
[答案] D
返回
若将本例中“abc>0”改为“abc<0”二次函数f(x)=ax2+bx+c的图像 不可能是哪一个? 解:由abc<0知
b 当a>0,有c<0,b>0,对称轴x=-2a<0,图像可能为C. b 当a<0时,可有c<0,b<0,对称轴x=-2a<0,此时图像可能为A. b 当a<0时,c>0,b>0时对称轴x=-2a>0,此时图像可能为B. ∴题目改为abc<0时,函数图像不可能是D.

一次函数、二次函数与幂函数

一次函数、二次函数与幂函数
性质
二次函数的图像是一个抛物线,其开口方向由系数$a$决定, 当$a>0$时,开口向上;当$a<0$
顶点
二次函数的图像有一个顶
点,其坐标为$(-
frac{b}{2a},
f(-
frac{b}{2a}))$。
对称轴
二次函数的图像关于直线 $x = -frac{b}{2a}$对称。
工程设计
在工程设计中,幂函数可以用于描 述材料强度、电阻等物理量随尺寸 变化的关系。
数据分析
在数据分析中,幂函数可以用于拟 合某些特定的数据集,例如网络流 量、销售数据等。
04 三种函数的比较
定义域与值域
一次函数
定义域为全体实数,值域也为全 体实数。
二次函数
定义域为全体实数,值域取决于 开口方向和顶点位置。
凹凸性
当n>0时,幂函数的图像是凹的;当n<0时,幂函数的图 像是凸的。
渐近线
当x趋向于正无穷或负无穷时,幂函数的图像会趋近于y轴 。
顶点
当n为偶数时,幂函数的图像有一个对称轴;当n为奇数 时,幂函数的图像有一个对称中心。
应用实例
科学计算
幂函数在科学计算中有着广泛的 应用,例如计算复利、人口增长
等。
幂函数
定义域为除零外的全体实数,值 域也为全体实数。
单调性
一次函数
单调递增或递减,取决于斜率。
二次函数
开口向上时,在对称轴左侧单调递减,右侧单调递增;开口向下时, 在对称轴左侧单调递增,右侧单调递减。
幂函数
当指数大于0时,单调递增;当指数小于0时,单调递减。
最值问题
一次函数:无最值。
幂函数:当指数为偶 数时,存在最小值; 当指数为奇数时,无 最值。

一次函数、二次函数、幂函数模型的应用举例 课件

一次函数、二次函数、幂函数模型的应用举例   课件

480-40(x-1)=520-40x(桶)
分析表格,
找出规律,
由于x>0,且520-40x>0,即0<x<13,于是可得 设出变量,
y=(520-40x)x-200 =-40x2+520x-200, 0<x<13. 二次函数求
建立关系 式
易知,当x=6.5时,y有最大值. 最值
所以,只需将销售单价定为11.5元,就可获得最大的 利润.
函数模型的应用举例
一次函数、二次函数、 幂函数模型的应用举例
到目前为止,我们已经学习了哪些常用函数?
一次函数 y ax b(a 0) 现实中经常遇到一
二次函数 y ax2 bx c (a≠0) 次函数、二次函数、
指数函数 y ax (a 0,且a 1)
对数函数 y loga x(a 0,且a 1)
的读数为2 004 km,试建立行驶这段路程时汽车里
程表读数s km与时间t h的函数解析式,并作出相应
的图象.
五个矩形
解:(1)阴影部分的面积为
的面积和
50 1 80 1 90 1 751 651 360
阴影部分的面积表示汽车在这5小时内行驶的路程 为360km.
(2)根据图示,可以得到如下函数解析式
50t 2 004,
0 t 1,
s
8900((tt
1) 2 2) 2
054, 134,
1 t 2, 2 t 3,
分段
75(t 3) 2 224, 3 t 4,
函数
65(t 4) 2 299, 4 t 5.
这个函数的图象如图所示.
sபைடு நூலகம்
2 400 2 300

2020年高考数学专题复习二次函数与幂函数

2020年高考数学专题复习二次函数与幂函数

二次函数与幂函数1.幂函数(1)定义:形如y =x α(α∈R )的函数称为幂函数,其中底数x 是自变量,α为常数.常见的五类幂函数为y =x ,y =x 2,y =x 3,y =x 12,y =x -1.(2)图象(3)性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增; ③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减. 2.二次函数(1)二次函数解析式的三种形式 ①一般式:f (x )=ax 2+bx +c (a ≠0). ②顶点式:f (x )=a (x -m )2+n (a ≠0). ③零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0). (2)二次函数的图象和性质判断正误(正确的打“√”,错误的打“×”)(1)函数y =2x 12是幂函数.( )(2)如果幂函数的图象与坐标轴相交,则交点一定是原点.( ) (3)当n <0时,幂函数y =x n是定义域上的减函数.( )(4)二次函数y =ax 2+bx +c ,x ∈[a ,b ]的最值一定是4ac -b24a.( )(5)二次函数y =ax 2+bx +c ,x ∈R 不可能是偶函数.( )(6)在y =ax 2+bx +c (a ≠0)中,a 决定了图象的开口方向和在同一直角坐标系中的开口大小.( )答案:(1)× (2)√ (3)× (4)× (5)× (6)√(教材习题改编)如图是①y =x a;②y =x b;③y =x c在第一象限的图象,则a ,b ,c的大小关系为( )A .c <b <aB .a <b <cC .b <c <aD .a <c <b解析:选D.根据幂函数的性质,可知选D.已知函数f (x )=ax 2+x +5的图象在x 轴上方,则a 的取值范围是( )A .⎝ ⎛⎭⎪⎫0,120 B .⎝⎛⎭⎪⎫-∞,-120 C .⎝ ⎛⎭⎪⎫120,+∞D .⎝ ⎛⎭⎪⎫-120,0解析:选C.由题意知⎩⎪⎨⎪⎧a >0,Δ<0,即⎩⎪⎨⎪⎧a >0,1-20a <0,得a >120.(教材习题改编)已知幂函数y =f (x )的图象过点⎝ ⎛⎭⎪⎫2,22,则此函数的解析式为________;在区间________上递减.答案:y =x -12 (0,+∞)(教材习题改编)函数g (x )=x 2-2x (x ∈[0,3])的值域是________.解析:由g (x )=x 2-2x =(x -1)2-1,x ∈[0,3],得g (x )在[0,1]上是减函数,在[1,3]上是增函数.所以g (x )min =g (1)=-1,而g (0)=0,g (3)=3. 所以g (x )的值域为[-1,3]. 答案:[-1,3]幂函数的图象及性质(1)幂函数y =f (x )的图象过点(4,2),则幂函数y =f (x )的图象是( )(2)若(a +1)12<(3-2a )12,则实数a 的取值范围是________. 【解析】 (1)设幂函数的解析式为y =x α, 因为幂函数y =f (x )的图象过点(4,2), 所以2=4α,解得α=12.所以y =x ,其定义域为[0,+∞),且是增函数,当0<x <1时,其图象在直线y =x 的上方,对照选项,故选C.(2)易知函数y =x 12的定义域为[0,+∞),在定义域内为增函数,所以⎩⎪⎨⎪⎧a +1≥0,3-2a ≥0,a +1<3-2a ,解得-1≤a <23.【答案】 (1)C (2)⎣⎢⎡⎭⎪⎫-1,23幂函数的性质与图象特征的关系(1)幂函数的形式是y =x α(α∈R ),其中只有一个参数α,因此只需一个条件即可确定其解析式.(2)判断幂函数y =x α(α∈R )的奇偶性时,当α是分数时,一般将其先化为根式,再判断.(3)若幂函数y =x α在(0,+∞)上单调递增,则α>0,若在(0,+∞)上单调递减,则α<0.1.已知幂函数f (x )=x m 2-2m -3 (m ∈Z )的图象关于y 轴对称,并且f (x )在第一象限是单调递减函数,则m =________.解析:因为幂函数f (x )=xm 2-2m -3(m ∈Z )的图象关于y 轴对称,所以函数f (x )是偶函数,所以m 2-2m -3为偶数,所以m 2-2m 为奇数,又m 2-2m <0,故m =1.答案:12.当0<x <1时,f (x )=x 1.1,g (x )=x 0.9,h (x )=x -2的大小关系是________.解析:如图所示为函数f (x ),g (x ),h (x )在(0,1)上的图象,由此可知h (x )>g (x )>f (x ).答案:h (x )>g (x )>f (x )求二次函数的解析式已知二次函数f (x )满足f (2)=-1,f (-1)=-1,且f (x )的最大值是8,试确定此二次函数的解析式.【解】 法一:(利用一般式)设f (x )=ax 2+bx +c (a ≠0).由题意得⎩⎪⎨⎪⎧4a +2b +c =-1,a -b +c =-1,4ac -b 24a =8,解得⎩⎪⎨⎪⎧a =-4,b =4,c =7.所以所求二次函数的解析式为f (x )=-4x 2+4x +7.法二:(利用顶点式)设f (x )=a (x -m )2+n (a ≠0). 因为f (2)=f (-1), 所以抛物线的对称轴为x =2+(-1)2=12. 所以m =12.又根据题意函数有最大值8,所以n =8,所以f (x )=a ⎝ ⎛⎭⎪⎫x -122+8.因为f (2)=-1,所以a ⎝ ⎛⎭⎪⎫2-122+8=-1,解得a =-4,所以f (x )=-4⎝ ⎛⎭⎪⎫x -122+8=-4x 2+4x +7.法三:(利用零点式)由已知f (x )+1=0的两根为x 1=2,x 2=-1, 故可设f (x )+1=a (x -2)(x +1), 即f (x )=ax 2-ax -2a -1.又函数有最大值8,即4a (-2a -1)-a24a =8.解得a =-4或a =0(舍去),所以所求函数的解析式为f (x )=-4x 2+4x +7.求二次函数解析式的方法根据已知条件确定二次函数的解析式,一般用待定系数法,但所给条件不同选取的求解方法也不同,选择规律如下:1.若函数f (x )=(x +a )(bx +2a )(常数a ,b ∈R )是偶函数,且它的值域为(-∞,4],则该函数的解析式f (x )=________.解析:由f (x )是偶函数知f (x )的图象关于y 轴对称,所以-a =-⎝⎛⎭⎪⎫-2a b ,即b =-2,所以f (x )=-2x 2+2a 2,又f (x )的值域为(-∞,4],所以2a 2=4,故f (x )=-2x 2+4.答案:-2x 2+42.已知二次函数f (x )的图象经过点(4,3),它在x 轴上截得的线段长为2,并且对任意x ∈R ,都有f (2-x )=f (2+x ),求f (x )的解析式.解:因为f (2+x )=f (2-x )对任意x ∈R 恒成立, 所以f (x )的对称轴为x =2.又因为f (x )的图象被x 轴截得的线段长为2, 所以f (x )=0的两根为1和3. 设f (x )的解析式为f (x )=a (x -1)(x -3)(a ≠0),又f (x )的图象过点(4,3), 所以3a =3,a =1, 所以所求f (x )的解析式为f (x )=(x -1)(x -3),即f (x )=x 2-4x +3.二次函数的图象与性质(高频考点)高考对二次函数图象与性质进行考查,多与其他知识结合,且常以选择题形式出现,属中高档题.主要命题角度有:(1)二次函数图象的识别问题; (2)二次函数的单调性问题; (3)二次函数的最值问题.角度一 二次函数图象的识别问题已知abc >0,则二次函数f (x )=ax 2+bx +c 的图象可能是( )【解析】 A 项,因为a <0,-b2a <0,所以b <0.又因为abc >0,所以c >0,而f (0)=c <0,故A 错. B 项,因为a <0,-b2a>0,所以b >0.又因为abc >0,所以c <0,而f (0)=c >0,故B 错. C 项,因为a >0,-b2a <0,所以b >0.又因为abc >0,所以c >0,而f (0)=c <0,故C 错.D 项,因为a >0,-b2a >0,所以b <0,因为abc >0,所以c <0,而f (0)=c <0,故选D. 【答案】 D角度二 二次函数的单调性问题函数f (x )=ax 2+(a -3)x +1在区间[-1,+∞)上是递减的,则实数a 的取值范围是________.【解析】 当a =0时,f (x )=-3x +1在[-1,+∞)上递减,满足条件.当a ≠0时,f (x )的对称轴为x =3-a2a,由f (x )在[-1,+∞)上递减知⎩⎪⎨⎪⎧a <03-a 2a≤-1,解得-3≤a <0.综上,a 的取值范围为[-3,0]. 【答案】 [-3,0]若函数f (x )=ax 2+(a -3)x +1的单调减区间是[-1,+∞),则a 为何值?解:因为函数f (x )=ax 2+(a -3)x +1的单调减区间为[-1,+∞),所以⎩⎪⎨⎪⎧a <0,a -3-2a=-1,解得a =-3.角度三 二次函数的最值问题已知函数f (x )=x 2-2ax +1,x ∈[-1,2]. (1)若a =1,求f (x )的最大值与最小值;(2)f (x )的最小值记为g (a ),求g (a )的解析式以及g (a )的最大值. 【解】 (1)当a =1时,f (x )=x 2-2x +1=(x -1)2,x ∈[-1,2], 则当x =1时,f (x )的最小值为0,x =-1时,f (x )的最大值为4. (2)f (x )=(x -a )2+1-a 2,x ∈[-1,2], 当a <-1时,f (x )的最小值为f (-1)=2+2a , 当-1≤a ≤2时,f (x )的最小值为f (a )=1-a 2, 当a >2时,f (x )的最小值为f (2)=5-4a , 则g (a )=⎩⎪⎨⎪⎧2+2a ,a <-1,1-a 2,-1≤a ≤2,5-4a ,a >2,可知,g (a )在(-∞,0)上单调递增,在(0,+∞)上单调递减,g (a )的最大值为g (0)=1.(1)确定二次函数图象应关注的三个要点一是看二次项系数的符号,它确定二次函数图象的开口方向; 二是看对称轴和最值,它确定二次函数图象的具体位置;三是看函数图象上的一些特殊点,如函数图象与y 轴的交点、与x 轴的交点,函数图象的最高点或最低点等.从这三个方面入手,能准确地判断出二次函数的图象.反之,也可以从图象中得到如上信息.(2)二次函数最值的求法二次函数的区间最值问题一般有三种情况:①对称轴和区间都是给定的;②对称轴动,区间固定;③对称轴定,区间变动.解决这类问题的思路是抓住“三点一轴”进行数形结合,三点指的是区间两个端点和中点,一轴指的是对称轴.具体方法是利用函数的单调性及分类讨论的思想求解.对于②、③,通常要分对称轴在区间内、区间外两大类情况进行讨论.1.(2017·高考浙江卷)若函数f (x )=x 2+ ax +b 在区间[0, 1]上的最大值是M ,最小值是m ,则M -m ( )A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关解析:选B.f (x )=⎝ ⎛⎭⎪⎫x +a 22-a 24+b ,①当0≤-a 2≤1时,f (x )min =m =f ⎝ ⎛⎭⎪⎫-a 2=-a 24+b ,f (x )max =M =max{f (0),f (1)}=max{b ,1+a +b },所以M -m =max ⎩⎨⎧⎭⎬⎫a 24,1+a +a 24与a 有关,与b 无关;②当-a2<0时,f (x )在[0,1]上单调递增,所以M -m =f (1)-f (0)=1+a 与a有关,与b 无关;③当-a2>1时,f (x )在[0,1]上单调递减,所以M -m =f (0)-f (1)=-1-a 与a 有关,与b 无关.综上所述,M -m 与a 有关,但与b 无关,故选B.2.已知函数f (x )=-x 2+2ax +1-a 在x ∈[0,1]时有最大值2,则实数a 的值为________.解析:f (x )=-(x -a )2+a 2-a +1, 当a ≥1时,y max =a ;当0<a <1时,y max =a 2-a +1; 当a ≤0时,y max =1-a .根据已知条件得,⎩⎪⎨⎪⎧a ≥1a =2或⎩⎪⎨⎪⎧0<a <1a 2-a +1=2或⎩⎪⎨⎪⎧a ≤01-a =2, 解得a =2或a =-1. 答案:-1或23.若函数f (x )=ax 2+20x +14(a >0)对任意实数t ,在闭区间[t -1,t +1]上总存在两实数x 1,x 2,使得|f (x 1)-f (x 2)|≥8成立,则实数a 的最小值为________.解析:因为a >0,所以二次函数f (x )=ax 2+20x +14的图象开口向上.在闭区间[t -1,t +1]上总存在两实数x 1,x 2, 使得|f (x 1)-f (x 2)|≥8成立, 只需t =-10a时f (t +1)-f (t )≥8,即a (t +1)2+20(t +1)+14-(at 2+20t +14)≥8, 即2at +a +20≥8,将t =-10a代入得a ≥8.所以a 的最小值为8. 故答案为8. 答案:8三个“二次”间的转化(2019·金华市东阳二中高三调研)已知二次函数f (x )=x 2+ax +b (a ,b ∈R ). (1)当a =-6时,函数f (x )的定义域和值域都是⎣⎢⎡⎦⎥⎤1,b 2,求b 的值;(2)当a =-1时在区间[-1,1]上,y =f (x )的图象恒在y =2x +2b -1的图象上方,试确定实数b 的范围.【解】 (1)当a =-6时,函数f (x )=x 2-6x +b ,函数对称轴为x =3,故函数f (x )在区间[1,3]上单调递减,在区间(3,+∞)上单调递增.①当2<b ≤6时,f (x )在区间⎣⎢⎡⎦⎥⎤1,b 2上单调递减;故有⎩⎪⎨⎪⎧f (1)=b2f ⎝ ⎛⎭⎪⎫b 2=1,无解;②当6<b ≤10时,f (x )在区间[1,3]上单调递减,在区间⎝ ⎛⎦⎥⎤3,b 2上单调递增,且f (1)≥f ⎝ ⎛⎭⎪⎫b 2,故⎩⎪⎨⎪⎧f (1)=b 2f (3)=1,解得b =10; ③当b >10时,f (x )在区间[1,3]上单调递减,在区间⎝ ⎛⎦⎥⎤3,b 2上单调递增,且f (1)<f (b2),故⎩⎪⎨⎪⎧f ⎝ ⎛⎭⎪⎫b 2=b 2f (3)=1,无解.所以b 的值为10. (2)当a =-1时,f (x )=x 2-x +b ,由题意可知x 2-x +b >2x +2b -1对x ∈[-1,1]恒成立, 化简得b <x 2-3x +1,令g (x )=x 2-3x +1,x ∈[-1,1],图象开口向上,对称轴为x =32,在区间[-1,1]上单调递减,则g (x )min =-1,故b <-1.(1)二次函数、二次方程与二次不等式统称三个“二次”,它们常结合在一起,而二次函数又是三个“二次”的核心,通过二次函数的图象贯穿为一体.因此,解决此类问题首先采用转化思想,把方程、不等式问题转化为函数问题.借助于函数思想研究方程、不等式(尤其是恒成立)问题是高考命题的热点.(2)由不等式恒成立求参数取值范围的思路及关键①一般有两个解题思路:一是分离参数;二是不分离参数.②两种思路都是将问题归结为求函数的最值,至于用哪种方法,关键是看参数是否已分离.这两个思路的依据是:a ≥f (x )恒成立⇔a ≥f (x )max ,a ≤f (x )恒成立⇔a ≤f (x )min .[提醒] 当二次项系数a 是否为0不明确时,要分类讨论.1.(2019·宁波市余姚中学期中检测)设a <0,(3x 2+a )(2x +b )≥0在(a ,b )上恒成立,则b -a 的最大值为( )A .13B .12C .33D .22解析:选A.因为(3x 2+a )(2x +b )≥0在(a ,b )上恒成立, 所以3x 2+a ≥0,2x +b ≥0或3x 2+a ≤0,2x +b ≤0,①若2x +b ≥0在(a ,b )上恒成立,则2a +b ≥0,即b ≥-2a >0,此时当x =0时,3x 2+a =a ≥0不成立,②若2x +b ≤0在(a ,b )上恒成立,则2b +b ≤0,即b ≤0,若3x 2+a ≤0在(a ,b )上恒成立,则3a 2+a ≤0,即-13≤a ≤0,故b -a 的最大值为13.2.已知函数f (x )=x 2-x +1,在区间[-1,1]上不等式f (x )>2x +m 恒成立,则实数m 的取值范围是________.解析:f (x )>2x +m 等价于x 2-x +1>2x +m ,即x 2-3x +1-m >0, 令g (x )=x 2-3x +1-m ,要使g (x )=x 2-3x +1-m >0在[-1,1]上恒成立,只需使函数g (x )=x 2-3x +1-m 在[-1,1]上的最小值大于0即可. 因为g (x )=x 2-3x +1-m 在[-1,1]上单调递减, 所以g (x )min =g (1)=-m -1. 由-m -1>0,得m <-1 .因此满足条件的实数m 的取值范围是(-∞,-1). 答案:(-∞,-1)幂函数y =x α(α∈R )的图象的特征当α>0时,图象过原点和点(1,1),在第一象限图象从左往右是逐渐上升; 当α<0时,图象过点(1,1),但不过原点,在第一象限图象从左往右是逐渐下降.求解二次函数最值的关键点求二次函数的最值,应抓住“三点一轴”数形结合,三点是指区间两个端点和中点,一轴指的是对称轴,结合配方法,根据函数的单调性及分类讨论的思想即可完成.二次函数中的恒成立问题与二次函数有关的不等式恒成立的条件(1)ax 2+bx +c >0(a ≠0)恒成立的充要条件是⎩⎪⎨⎪⎧a >0,b 2-4ac <0;(2)ax 2+bx +c <0(a ≠0)恒成立的充要条件是⎩⎪⎨⎪⎧a <0,b 2-4ac <0;(3)a ≥f (x )恒成立⇔a ≥f (x )max ,a ≤f (x )恒成立⇔a ≤f (x )min .易错防范(1)对于函数y =ax 2+bx +c ,要认为它是二次函数,就必须满足a ≠0,当题目条件中未说明a ≠0时,就要讨论a =0和a ≠0两种情况.(2)幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限内,至于是否出现在第二、三象限内,要看函数的奇偶性;幂函数的图象最多只能同时出现在两个象限内;如果幂函数图象与坐标轴相交,则交点一定是原点.(3)数形结合思想是研究二次函数问题的基本方法.特别是涉及二次方程、二次不等式的时候常常要结合图形寻找思路.(4)含字母系数的二次函数问题经常使用的方法是分类讨论.比如讨论二次函数的对称轴与给定区间的位置关系,讨论二次方程根的大小等.[基础达标]1.已知幂函数f (x )=k ·x α的图象过点⎝ ⎛⎭⎪⎫12,22,则k +α=( )A .12B .1C .32D .2解析:选C.因为函数f (x )=k ·x α是幂函数,所以k =1,又函数f (x )的图象过点⎝ ⎛⎭⎪⎫12,22,所以⎝ ⎛⎭⎪⎫12α=22,解得α=12,则k +α=32. 2.若幂函数f (x )=x mn (m ,n ∈N *,m ,n 互质)的图象如图所示,则( )A .m ,n 是奇数,且mn<1 B .m 是偶数,n 是奇数,且m n >1 C .m 是偶数,n 是奇数,且m n <1 D .m 是奇数,n 是偶数,且m n>1解析:选C.由图知幂函数f (x )为偶函数,且m n<1,排除B ,D ;当m ,n 是奇数时,幂函数f (x )非偶函数,排除A ;选C.3.若函数f (x )=x 2+bx +c 对任意的x ∈R 都有f (x -1)=f (3-x ),则以下结论中正确的是( )A .f (0)<f (-2)<f (5)B .f (-2)<f (5)<f (0)C .f (-2)<f (0)<f (5)D .f (0)<f (5)<f (-2)解析:选A.若函数f (x )=x 2+bx +c 对任意的x ∈R 都有f (x -1)=f (3-x ),则f (x )=x 2+bx +c 的图象的对称轴为x =1且函数f (x )的图象的开口方向向上,则函数f (x )在(1,+∞)上为增函数,所以f (2)<f (4)<f (5),又f (0)=f (2),f (-2)=f (4),所以f (0)<f (-2)<f (5).4.(2019·瑞安四校联考)定义域为R 的函数f (x )满足f (x +1)=2f (x ),且当x ∈[0,1]时,f (x )=x 2-x ,则当x ∈[-2,-1]时,f (x )的最小值为( )A .-116B .-18C .-14D .0解析:选A.当x ∈[-2,-1]时,x +2∈[0,1],则f (x +2)=(x +2)2-(x +2)=x2+3x +2,又f (x +2)=f [(x +1)+1]=2f (x +1)=4f (x ),所以当x ∈[-2,-1]时,f (x )=14(x 2+3x +2)=14⎝ ⎛⎭⎪⎫x +322-116,所以当x =-32时,f (x )取得最小值,且最小值为-116,故选A.5.若函数f (x )=x 2-2x +1在区间[a ,a +2]上的最小值为4,则a 的取值集合为( ) A .[-3,3] B .[-1,3] C .{-3,3}D .{-1,-3,3}解析:选C.因为函数f (x )=x 2-2x +1=(x -1)2,对称轴x =1,因为在区间[a ,a +2]上的最小值为4,所以当1≤a 时,y min =f (a )=(a -1)2=4,a =-1(舍去)或a =3,当a +2≤1时,即a ≤-1,y min =f (a +2)=(a +1)2=4,a =1(舍去)或a =-3,当a <1<a +2,即-1<a <1时,y min =f (1)=0≠4,故a 的取值集合为{-3,3}.6.(2019·温州高三月考)已知f (x )=ax 2+bx +c (a >0),g (x )=f (f (x )),若g (x )的值域为[2,+∞),f (x )的值域为[k ,+∞),则实数k 的最大值为( )A .0B .1C .2D .4解析:选C.设t =f (x ),由题意可得g (x )=f (t )=at 2+bt +c ,t ≥k ,函数y =at 2+bt +c ,t ≥k 的图象为y =f (x )的图象的部分,即有g (x )的值域为f (x )的值域的子集,即[2,+∞)⊆[k ,+∞), 可得k ≤2,即有k 的最大值为2. 故选C.7.已知幂函数f (x )=x -12,若f (a +1)<f (10-2a ),则实数a 的取值范围是________.解析:因为f (x )=x -12=1x(x >0),易知x ∈(0,+∞)时为减函数,又f (a +1)<f (10-2a ),所以⎩⎪⎨⎪⎧a +1>0,10-2a >0,a +1>10-2a ,解得⎩⎪⎨⎪⎧a >-1,a <5,a >3,所以3<a <5.答案:(3,5)8.已知函数f (x )=x 2-2ax +2a +4的定义域为R ,值域为[1,+∞),则a 的值为________.解析:由于函数f (x )的值域为[1,+∞),所以f (x )min =1.又f (x )=(x -a )2-a 2+2a +4,当x ∈R 时,f (x )min =f (a )=-a 2+2a +4=1,即a 2-2a -3=0,解得a =3或a =-1.答案:-1或39.(2019·杭州四中第一次月考)已知函数f (x )=x 2+ax +1,若存在x 0使|f (x 0)|≤14,|f (x 0+1)|≤14同时成立,则实数a 的取值范围为________.解析:由f (x )=⎝ ⎛⎭⎪⎫x +a 22+4-a 24,考察g (x )=x 2+h ,当h =0时,有⎪⎪⎪⎪⎪⎪g ⎝ ⎛⎭⎪⎫-12≤14,⎪⎪⎪⎪⎪⎪g ⎝ ⎛⎭⎪⎫-12+1≤14同时成立;当h =-12时,有⎪⎪⎪⎪⎪⎪g ⎝ ⎛⎭⎪⎫-12≤14,|g (-12+1)|≤14同时成立.所以-12≤h ≤0,即-12≤4-a24≤0,解得-6≤a ≤-2或2≤a ≤ 6. 答案:[-6,-2]∪[2,6]10.设函数f (x )=x 2-1,对任意x ∈⎣⎢⎡⎭⎪⎫32,+∞,f ⎝ ⎛⎭⎪⎫x m -4m 2f (x )≤f (x -1)+4f (m )恒成立,则实数m 的取值范围是________.解析:依据题意,得x 2m 2-1-4m 2(x 2-1)≤(x -1)2-1+4(m 2-1)在x ∈⎣⎢⎡⎭⎪⎫32,+∞上恒成立,即1m 2-4m 2≤-3x 2-2x +1在x ∈⎣⎢⎡⎭⎪⎫32,+∞上恒成立.当x =32时,函数y =-3x 2-2x +1取得最小值-53,所以1m 2-4m 2≤-53,即(3m 2+1)(4m 2-3)≥0,解得m ≤-32或m ≥32. 答案:⎝⎛⎦⎥⎤-∞,-32∪⎣⎢⎡⎭⎪⎫32,+∞ 11.已知幂函数f (x )=(m 2-5m +7)x m -1为偶函数.(1)求f (x )的解析式;(2)若g (x )=f (x )-ax -3在[1,3]上不是单调函数,求实数a 的取值范围. 解:(1)由题意m 2-5m +7=1,解得m =2或m =3, 若m =2,与f (x )是偶函数矛盾,舍去, 所以m =3,所以f (x )=x 2.(2)g (x )=f (x )-ax -3=x 2-ax -3,g (x )的对称轴是x =a2,若g (x )在[1,3]上不是单调函数, 则1<a2<3,解得2<a <6.12.(2019·台州市教学质量调研)已知函数f (x )=x 2+bx +c 的图象过点(-1,3),且关于直线x =1对称.(1)求f (x )的解析式;(2)若m <3,求函数f (x )在区间[m ,3]上的值域.解:(1)因为函数f (x )=x 2+bx +c 的图象过点(-1,3),且关于直线x =1对称,所以⎩⎪⎨⎪⎧f (-1)=1-b +c =3-b 2=1,解得b =-2,c =0,所以f (x )=x 2-2x .(2)当1≤m <3时,f (x )min =f (m )=m 2-2m ,f (x )max =f (3)=9-6=3,所以f (x )的值域为[m 2-2m ,3];当-1≤m <1时,f (x )min =f (1)=1-2=-1,f (x )max =f (-1)=1+2=3,所以f (x )的值域为[-1,3].当m <-1时,f (x )min =f (1)=1-2=-1,f (x )max =f (m )=m 2-2m ,所以f (x )的值域为[-1,m 2-2m ]. [能力提升]1.(2019·台州质检) 如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为x =-1.给出下面四个结论:①b 2>4ac ;②2a -b =1;③a -b +c =0;④5a <b .其中正确的结论是( )A .②④B .①④C .②③D .①③解析:选B.因为二次函数的图象与x 轴交于两点,所以b 2-4ac >0,即b 2>4ac ,①正确;对称轴为x =-1,即-b2a =-1,2a -b =0,②错误;结合图象,当x =-1时,y >0,即a-b +c >0,③错误;由对称轴为x =-1知,b =2a ,又函数图象开口向下,所以a <0,所以5a <2a ,即5a <b ,④正确.故选B.2.(2019·温州市十校联考)已知函数f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=12(|x -a 2|+|x -2a 2|-3a 2).若任取∀x ∈R ,f (x -1)≤f (x ),则实数a 的取值范围为( ) A .⎣⎢⎡⎦⎥⎤-16,16 B .⎣⎢⎡⎦⎥⎤-66,66 C .⎣⎢⎡⎦⎥⎤-13,13 D .⎣⎢⎡⎦⎥⎤-33,33 解析:选B.因为当x ≥0时,f (x )=12(|x -a 2|+|x -2a 2|-3a 2),所以当0≤x ≤a 2时,f (x )=12(a 2-x +2a 2-x -3a 2)=-x ;当a 2<x <2a 2时,f (x )=12(x -a 2+2a 2-x -3a 2)=-a 2;当x ≥2a 2时,f (x )=12(x -a 2+x -2a 2-3a 2)=x -3a 2.综上,函数f (x )=12(|x -a 2|+|x -2a 2|-3a 2)在x ≥0时的解析式等价于f (x )=⎩⎪⎨⎪⎧-x ,0≤x ≤a 2,-a 2,a 2<x <2a 2,x -3a 2,x ≥2a 2.因此,根据奇函数的图象关于原点对称作出函数f (x )在R 上的大致图象如下,观察图象可知,要使∀x ∈R ,f (x -1)≤f (x ),则需满足2a 2-(-4a 2)≤1,解得-66≤a ≤66. 3.已知函数f (x )=|x 2+ax +b |在区间[0,c ]内的最大值为M (a ,b ∈R ,c >0为常数)且存在实数a ,b ,使得M 取最小值2,则a +b +c =________.解析:函数y =x 2+ax +b 是二次函数,所以函数f (x )=|x 2+ax +b |在区间[0,c ]内的最大值M 在端点处或x =-a2处取得.若在x =0处取得,则b =±2, 若在x =-a 2处取得,则|b -a 24|=2,若在x =c 处取得,则|c 2+ac +b |=2. 若b =2,则|b -a 24|≤2,|c 2+ac +b |≤2,解得a =0,c =0,符合要求,若b =-2,则顶点处的函数值的绝对值大于2,不成立. 可得a +b +c =2.故答案为2. 答案:24.(2019·宁波市余姚中学高三期中)已知f (x )=34x 2-3x +4,若f (x )的定义域和值域都是[a ,b ],则a +b =________.解析:因为f (x )=34x 2-3x +4=34(x -2)2+1,所以x =2是函数的对称轴,根据对称轴进行分类讨论:①当b <2时,函数在区间[a ,b ]上递减,又因为值域也是[a ,b ],所以得方程组⎩⎪⎨⎪⎧f (a )=bf (b )=a , 即⎩⎪⎨⎪⎧34a 2-3a +4=b 34b 2-3b +4=a ,两式相减得34(a +b )(a -b )-3(a -b )=b -a ,又因为a ≠b ,所以a +b =83,由34a 2-3a +4=83-a ,得3a 2-8a +163=0,所以a =43,所以b =43,故舍去. ②当a <2≤b 时,得f (2)=1=a ,又因为f (1)=74<2,所以f (b )=b ,得34b 2-3b +4=b ,所以b =43(舍),或b =4,所以a +b =5.③当a ≥2时,函数在区间[a ,b ]上递增,又因为值域是[a ,b ],所以得方程组⎩⎪⎨⎪⎧f (a )=af (b )=b ,即a ,b 是方程34x 2-3x +4=x 的两根,即a ,b 是方程3x 2-16x +16=0的两根,所以⎩⎪⎨⎪⎧a =43b =4,但a ≥2,故应舍去.综上得a +b =5.答案:55.已知函数f (x )=ax 2+bx +c (a >0,b ∈R ,c ∈R ). (1)若函数f (x )的最小值是f (-1)=0,且c =1,F (x )=⎩⎪⎨⎪⎧f (x ),x >0,-f (x ),x <0,求F (2)+F (-2)的值;(2)若a =1,c =0,且|f (x )|≤1在区间(0,1]上恒成立,试求b 的取值范围. 解:(1)由已知c =1,a -b +c =0,且-b2a =-1,解得a =1,b =2,所以f (x )=(x +1)2.所以F (x )=⎩⎪⎨⎪⎧(x +1)2,x >0,-(x +1)2,x <0. 所以F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8.(2)由题意知f (x )=x 2+bx ,原命题等价于-1≤x 2+bx ≤1在(0,1]上恒成立, 即b ≤1x -x 且b ≥-1x -x 在(0,1]上恒成立.又当x ∈(0,1]时,1x-x 的最小值为0,-1x-x 的最大值为-2.所以-2≤b ≤0.故b的取值范围是[-2,0].6.(2019·宁波市余姚中学期中检测)已知函数f (x )=-x 2+2bx +c ,设函数g (x )=|f (x )|在区间[-1,1]上的最大值为M .(1)若b =2,试求出M ;(2)若M ≥k 对任意的b 、c 恒成立,试求k 的最大值.解:(1)当b =2时,f (x )=-x 2+4x +c 在区间[-1,1]上是增函数, 则M 是g (-1)和g (1)中较大的一个, 又g (-1)=|-5+c |,g (1)=|3+c |,则M =⎩⎪⎨⎪⎧|-5+c |,c ≤1|3+c |,c >1.(2)g (x )=|f (x )|=|-(x -b )2+b 2+c |,(ⅰ)当|b |>1时,y =g (x )在区间[-1,1]上是单调函数, 则M =max{g (-1),g (1)},而g (-1)=|-1-2b +c |,g (1)=|-1+2b +c |,则2M ≥g (-1)+g (1)≥|f (-1)-f (1)|=4|b |>4,可知M >2.(ⅱ)当|b |≤1时,函数y =g (x )的对称轴x =b 位于区间[-1,1]之内, 此时M =max{g (-1),g (1),g (b )}, 又g (b )=|b 2+c |,①当-1≤b ≤0时,有f (1)≤f (-1)≤f (b ),则M =max{g (b ),g (1)}≥12(g (b )+g (1))≥12|f (b )-f (1)|=12(b -1)2≥12;②当0<b ≤1时,有f (-1)≤f (1)≤f (b ).则M =max{g (b ),g (-1)}≥12(g (b )+g (-1))≥12|f (b )-f (-1)|=12(b +1)2>12.综上可知,对任意的b 、c 都有M ≥12.而当b =0,c =12时,g (x )=⎪⎪⎪⎪⎪⎪-x 2+12在区间[-1,1]上的最大值M =12,故M ≥k 对任意的b 、c 恒成立的k 的最大值为12.。

2.6 一次函数、二次函数与幂函数

2.6  一次函数、二次函数与幂函数

§2.6 一次函数、二次函数与幂函数(时间:45分钟 满分:100分)一、选择题(每小题7分,共35分)1.若函数y =(x +1)(x -a )为偶函数,则a 等于( )A .-2B .-1C .1D .2 2.“a <0”是“方程ax 2+1=0有一个负数根”的( )A .必要不充分条件B .充分必要条件C .充分不必要条件D .既不充分也不必要条件3.一次函数y =ax +b 与二次函数y =ax 2+bx +c 在同一坐标系中的图象大致是( )4.幂函数y =f (x )的图象过点⎝⎛⎭⎫4,12,那么f (8)的值为 ( ) A .2 6B .64C.24D.1645.已知幂函数f (x )=(t 3-t +1)·27325t t x+-(t ∈N )是偶函数,则实数t 的值为( ) A .0 B .-1或1 C .1D .0或1二、填空题(每小题6分,共24分)6.方程x 2-mx +1=0的两根为α,β,且α>0,1<β<2,则实数m 的取值范围是 . 7.对于函数y =x 2,y =12x 有下列说法:①两个函数都是幂函数;②两个函数在第一象限内 都单调递增;③它们的图象关于直线y =x 对称;④两个函数都是偶函数;⑤两个函数都经过点(0,0)、(1,1);⑥两个函数的图象都是抛物线型. 其中正确的有__________.8.已知函数f (x )=ax +b x -b ,其图象关于点(-3,2)对称,则f (2)的值是________.9.设二次函数f (x )=ax 2+2ax +1在[-3,2]上有最大值4,则实数a 的值为________.三、解答题(共41分) 10.(13分)如果幂函数f (x )=21322p p x-++(p ∈Z )是偶函数,且在(0,+∞)上是增函数.求p 的值,并写出相应的函数f (x )的解析式.11.(14分)是否存在实数a ,使函数f (x )=x 2-2ax +a 的定义域为[-1,1]时,值域为[-2,2]? 若存在,求a 的值;若不存在,说明理由. 12.(14分)已知函数f (x )=x 2,g (x )=x -1.(1)若存在x ∈R 使f (x )<b ·g (x ),求实数b 的取值范围;(2)设F (x )=f (x )-mg (x )+1-m -m 2,且|F (x )|在[0,1]上单调递增,求实数m 的取值范围. 答案1.C 2.B 3.C 4.C 5.B 6.⎝⎛⎭⎫2,52 7.①②⑤⑥ 8.15 9.38或-3 10.解 ∵f (x )在(0,+∞)上是增函数,∴-12p 2+p +32>0,即p 2-2p -3<0.∴-1<p <3,又∵f (x )是偶函数且p ∈Z . ∴p =1,故f (x )=x 2. 11.解 f (x )=(x -a )2+a -a 2.当a <-1时,f (x )在[-1,1]上为增函数,∴⎩⎪⎨⎪⎧f (-1)=1+3a =-2,f (1)=1-a =2⇒a =-1(舍去); 当-1≤a ≤0时,⎩⎪⎨⎪⎧f (a )=a -a 2=-2,f (1)=1-a =2⇒a =-1;当0<a ≤1时,⎩⎪⎨⎪⎧f (a )=a -a 2=-2,f (-1)=1+3a =2⇒a 不存在;当a >1时,f (x )在[-1,1]上为减函数,∴⎩⎪⎨⎪⎧f (-1)=1+3a =2,f (1)=1-a =-2⇒a 不存在. 综上可得a =-1.12.解 (1)∃x ∈R ,f (x )<bg (x )⇒∃x ∈R ,x 2-bx +b <0⇒(-b )2-4b >0⇒b <0或b >4. (2)F (x )=x 2-mx +1-m 2, Δ=m 2-4(1-m 2)=5m 2-4.①当Δ≤0,即-255≤m ≤255时,则必需⎩⎨⎧m 2≤0-255≤m ≤255⇒-255≤m ≤0.②当Δ>0,即m <-255或m >255时,设方程F (x )=0的根为x 1,x 2(x 1<x 2).若m 2≥1,则x 1≤0,即⎩⎪⎨⎪⎧ m 2≥1F (0)=1-m 2≤0⇒m ≥2;若m2≤0,则x 2≤0,即⎩⎪⎨⎪⎧m 2≤0F (0)=1-m 2≥0⇒-1≤m <-255;综上所述:-1≤m ≤0或m ≥2.。

幂函数,一次,二次,指数,对数函数

幂函数,一次,二次,指数,对数函数

课 题 函数教学目标1基本初等函数的图像和性质(幂函数,一次,二次,指数,对数函数) 2二次函数求最值教学内容一、幂函数定义及其图象一般地,形如αx y =)(R a ∈的函数称为幂函数,其中α为常数. 下面我们举例学习这类函数的一些性质. 作出下列函数的图象:(1)x y =;(2)21x y =;(3)2x y =;(4)1-=x y ;(5)3x y =.[解] ○1列表(略) ○2图象二:幂函数性质归纳(1)所有的幂函数在(0,+∞)都有定义,并且图象都过点(1,1);(2)0>α时,幂函数的图象通过原点,并且在区间),0[+∞上是增函数.特别地,当1>α时,幂函数的图象下凸;当10<<α时,幂函数的图象上凸;(3)0<α时,幂函数的图象在区间),0(+∞上是减函数.在第一象限内,当x 从右边趋向原点时,图象在y 轴右方无限地逼近y 轴正半轴,当x 趋于∞+时,图象在x 轴上方无限地逼近x 轴正半轴三、观察图象,总结填写下表:x y =2x y = 3x y =21xy =1-=x y定义域 值域 奇偶性 单调性 定点[例1]比较下列两个代数值的大小: (1)5.1)1(+a ,5.1a(2)322)2(-+a ,322-[例2] 讨论函数32x y =的定义域、奇偶性,作出它的图象,并根据图象说明函数的单调性.课堂练习:1.利用幂函数的性质,比较下列各题中两个幂的值的大小:(1)433.2,434.2; (2)5631.0,5635.0; (3)23)2(-,23)3(-; (4)211.1-,219.0-.2.作出函数2-=x y 和函数2)3(--=x y 的图象,求这两个函数的定义域和单调区间.3.用图象法解方程:(1)1-=x x ; (2)323-=x x .思考:如图所示,曲线是幂函数αx y =在第一象限内的图象,已知α分别取2,21,1,1-四个值,则相应图象依次为: . 练习:1.在函数1,,2,1222=+===y x x y x y xy 中,幂函数的个数为: A .0 B .1 C .2 D .32.已知幂函数)(x f y =的图象过点)2,2(,试求出这个函数的解析式.训练:一、选择题:1.下列函数中既是偶函数又是(,)-∞0上是增函数的是( )A .y x =43B .y x =32C .y x =-2D .y x =-142.函数2-=x y 在区间]2,21[上的最大值是( )A .41 B .1-C .4D .4- 3.下列所给出的函数中,是幂函数的是( )A .3x y -=B .3-=xyC .32x y = D .13-=x y 4.函数34x y =的图象是( )A .B .C .D .5.下列命题中正确的是( )A .当0=α时函数αx y =的图象是一条直线 B .幂函数的图象都经过(0,0)和(1,1)点C .若幂函数αx y =是奇函数,则αx y =是定义域上的增函数 D .幂函数的图象不可能出现在第四象限6.函数3x y =和31x y =图象满足( )A .关于原点对称B .关于x 轴对称C .关于y 轴对称D .关于直线x y =对称 7. 函数R x x x y ∈=|,|,满足( )A .是奇函数又是减函数B .是偶函数又是增函数C .是奇函数又是增函数D .是偶函数又是减函数 8.函数2422-+=x x y 的单调递减区间是( )A .]6,(--∞B .),6[+∞-C .]1,(--∞D .),1[+∞-9. 如图1—9所示,幂函数αx y =在第一象限的图象,比较1,,,,,04321αααα的大小( )A .102431<<<<<ααααB .104321<<<<<ααααC .134210αααα<<<<<D .142310αααα<<<<< 二、填空题:请把答案填在题中横线上(每小题6分,共24分). 1.函数y x=-32的定义域是 .2.幂函数的图象过点(,则f x f x (),)()32741-的解析式是.3.942--=a a xy 是偶函数,且在),0(+∞是减函数,则整数a 的值是 .4.幂函数),*,,,()1(互质n m N k n m x y mn k∈=-图象在一、二象限,不过原点,则n m k ,,的奇偶性为 .三、解答题:解答应写出文字说明.证明过程或演算步骤(共76分) . 1.(12分)比较下列各组中两个值大小(1)060720880896116115353..(.)(.).与;()与--1α3α4α2α2.(12分)已知幂函数f x x m Z x y y mm ()()=∈--223的图象与轴,轴都无交点,且关于 轴对称,试确定f x ()的解析式.3.(12分)求证:函数3x y =在R 上为奇函数且为增函数.4.(12分)下面六个幂函数的图象如图所示,试建立函数与图象之间的对应关系..6543212132323123---======x y x y x y x y x y x y );();()(;);();()((A ) (B ) (C ) (D ) (E ) (F )四.二次函数一元二次函数的区间最值问题,核心是对函数对称轴与给定区间的相对位置关系的讨论。

二次函数、一次函数、幂函数

二次函数、一次函数、幂函数

一次函数、二次函数、幂函数一、一次函数1、 定义:2、 图像:3、 性质:二、题型题型一、一次函数的定义例1.已知函数y =(2m -1)x +1-3m ,m 为何值时,(1)这个函数为正比例函数;(2)这个函数为一次函数;(3)函数值y 随x 的增大而减小;(4)这个函数图象与直线y =x +1的交点在x 轴上.针对练习1.已知y =(α+1)x α-1+2是一次函数,则α=________.题型二、一次函数的图像例2.画出函数y =3x +12的图象,利用图象求:(1)方程3x +12=0的解;(2)不等式3x +12>0的解集;(3)当y ≤12时,x 的取值范围.针对练习2.已知一次函数的图象经过点A (-3,4),B (-1,2).(1)求这个一次函数的解析式,并画出图;(2)求△AOB 的面积(O 为坐标原点).题型三、一次函数单调性的应用例3.对于满足0≤p ≤4的一切实数,不等式px +3>3px 恒成立,试求x 的取值范围. 针对练习3.已知f (x )为一次函数且满足4f (1-x )-2f (x -1)=3x +18,求函数f (x )在[-1,1]上的最大值,并比较f (2 012)和f (2 013)的大小15.对于每个实数x ,设f (x )是y 1=4x +1,y 2=x +3,y 3=-2x +4三个函数值的最小值,则f (x )的最大值为________.三、次函数的图像与性质1、二次函数的定义:2、二次函数的解析式的求法例1.已知二次函数y =x 2-2(m -1)x +m 2-2m -3,其中m 为实数.(1)求证:不论m 取何实数,这个二次函数的图像与x 轴必有两个交点;(2)设这个二次函数的图像与x 轴交于点A (x 1,0),B (x 2,0),且x 1,x 2的倒数和为23,求这个二次函数的解析式. 针对练习1.已知二次函数f (x )同时满足条件:①f (1+x )=f (1-x );②f (x )的最大值为15;③f (x )=0的两根的立方和等于17.求f (x )的解析式.4、 二次函数图像的画法5、二次函数的值域的求法例2.已知函数y =x 2-2x -3,求x 在下列范围内函数的值域.(1)x ∈R (2)0≤x ≤3 (3)-2≤x ≤0 (4)3≤x ≤4针对练习2.求函数 y = x 2 -2x + 3 (-1 ≤ x ≤ 2 )的值域6、含参数的二次函数的值域的求法例3. 函数f(x)=2x 2-2ax +3在区间[-1,1]上最小值记为g(a).(1) 求g(a)的函数表达式;(2) 求g(a)的最大值.7、三个“二次”之间的关系例4.已知关于x 的不等式20x mx n -+≤的解集是{|51}x x -≤≤,求实数,m n 之值.8、一元二次不等式恒成立问题例5.已知2()2(2)4f x x a x =+-+,(1)如果对一切x R ∈,()0f x >恒成立,求实数a 的取值范围;针对练习5.若函数y =中自变量x 的取值范围是一切实数,求k 的取值范围.9、幂函数的定义10、幂函数的图像与性质11、幂函数性质与图像的应用例 3. 已知函数f (x )=322--m m x (m ∈N *)的图象关于y 轴对称,且在(0,+∞)上是减函数,求满足3)1(ma -+<3)23(ma --的a 的范围.9.右图是函数y =n mx (m ,n ∈N *,m 、n 互质)的图象,则()A .m ,n 是奇数,且m n <1B .m 是偶数,n 是奇数,且m n >1C .m 是偶数,n 是奇数,且m n <1D .m 是奇数,n 是偶数,且m n >1 1121321321212312112132A.y x ,y x ,y x ,y x B.y x ,y x ,y x ,y x C.y x ,y x ,y x ,y x D.y x ,y x ,y x ,y x ----================①②③④①②③④①②③④①②③④。

2025年新人教版高考数学一轮复习讲义 第二章 §2.6 二次函数与幂函数

2025年新人教版高考数学一轮复习讲义  第二章 §2.6 二次函数与幂函数

2025年新人教版高考数学一轮复习讲义第二章§2.6 二次函数与幂函数1.通过具体实例,了解幂函数及其图象的变化规律.2.掌握二次函数的图象与性质(单调性、对称性、顶点、最值等).第一部分 落实主干知识第二部分 探究核心题型课时精练第一部分落实主干知识1.幂函数(1)幂函数的定义一般地,函数 叫做幂函数,其中x 是自变量,α是常数.(2)常见的五种幂函数的图象y =x α(3)幂函数的性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点 和 ,且在(0,+∞)上单调递增;③当α<0时,幂函数的图象都过点 ,且在(0,+∞)上单调递减;④当α为奇数时,y =x α为 ;当α为偶数时,y =x α为 .(1,1)(0,0)(1,1)奇函数偶函数2.二次函数(1)二次函数解析式的三种形式一般式:f (x )= .顶点式:f (x )=a (x -m )2+n (a ≠0),顶点坐标为 .零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0),x 1,x 2为f (x )的 .ax 2+bx +c (a ≠0)(m ,n )零点(2)二次函数的图象和性质函数y=ax2+bx+c(a>0)y=ax2+bx+c(a<0)图象(抛物线)函数y=ax2+bx+c(a>0)y=ax2+bx+c(a<0)R定义域___值域______________________________对称轴x=______顶点坐标_______________函数y =ax 2+bx +c (a >0)y =ax 2+bx +c (a <0)奇偶性当b =0时是 函数,当b ≠0时是非奇非偶函数单调性偶减增增减1.判断下列结论是否正确.(请在括号中打“√”或“×”)(1)函数y = 是幂函数.( )(2)若二次函数y =ax 2+bx +c 的图象恒在x 轴下方,则a <0且Δ<0.( )(3)二次函数y =a (x -1)2+2的单调递增区间是[1,+∞).( )(4)若幂函数y =x α是偶函数,则α为偶数.( )××√×1212x√1x23.(2023·南京模拟)已知函数f(x)=x2-2x+2,x∈(-2,2),则函数f(x)的值域为A.(2,10)B.[1,2)√C.[2,10]D.[1,10)当x∈(-2,2)时,-3<x-1<1,则f(x)=x2-2x+2=(x-1)2+1∈[1,10).4.已知函数f(x)=x2+2(a-1)x+2在区间(-∞,-3]上单调递减,则实数(-∞,4]a的取值范围是___________.由函数f(x)=x2+2(a-1)x+2在区间(-∞,-3]上单调递减,即a≤4,故实数a的取值范围是(-∞,4].返回第二部分探究核心题型题型一 幂函数的图象与性质例1 (1)(2023·合肥模拟)如图所示,图中的曲线是幂函数y=x n在第一象限的图象,已知n取±2,±四个值,则相对应曲线C1,C2,C3,C4的n 依次为√根据幂函数y=x n的性质,在第一象限内的图象:(2)(2023·无锡模拟)“n=1”是“幂函数f(x)=(n2-3n+3)x2n-3在(0,+∞)上单调递减”的A.充分不必要条件B.必要不充分条件√C.充要条件D.既不充分也不必要条件因为f(x)=(n2-3n+3)x2n-3是幂函数,所以n2-3n+3=1,即n2-3n+2=0,解得n=1或n=2,所以“n=1”是“幂函数f(x)=(n2-3n+3)x2n-3在(0,+∞)上单调递减”的充要条件.思维升华(1)对于幂函数图象的掌握只要抓住在第一象限内三条线分第一象限为六个区域,即x=1,y=1,y=x所分区域.根据α<0,0<α<1,α=1,α>1的取值确定位置后,其余象限部分由奇偶性决定.(2)在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较.跟踪训练1 (1)幂函数y = (0≤m ≤3,m ∈Z )的图象关于y 轴对称,且在(0,+∞)上单调递增,则m 的值为A.0 B.2 C.3 D.2或3√22m m x+-当m=0时,y=x-2,由幂函数性质得,y=x-2在(0,+∞)上单调递减;当m=1时,y=x0,由幂函数性质得,y=x0在(0,+∞)上是常函数;当m=2时,y=x4,由幂函数性质得,图象关于y轴对称,y=x4在(0,+∞)上单调递增;当m=3时,y=x10,由幂函数性质得,图象关于y轴对称,在(0,+∞)上单调递增.(2)(2023·临沂模拟)如图所示是函数y = (m ,n 均为正整数且m ,n 互质)的图象,则√mn x由幂函数性质可知,y =与y =x 的图象恒过定点(1,1),即在第一象限内的交点坐标为(1,1),m n x mn x又y = 的图象关于y 轴对称,mnx ∴y = 为偶函数,mn x ()mn x mnx 又m ,n 互质,∴m 为偶数,n 为奇数.题型二 二次函数的解析式例2 已知二次函数f(x)满足f(2)=-1,f(-1)=-1,且f(x)的最大值是8,试确定该二次函数的解析式.方法一 (利用“一般式”解题)设f(x)=ax2+bx+c(a≠0).所以所求二次函数的解析式为f(x)=-4x2+4x+7.方法二 (利用“顶点式”解题)设f(x)=a(x-m)2+n(a≠0).因为f(2)=f(-1),又根据题意,函数有最大值8,所以n=8,解得a=-4,方法三 (利用“零点式”解题)由已知得f(x)+1=0的两根为x1=2,x2=-1,故可设f(x)+1=a(x-2)(x+1)(a≠0),即f(x)=ax2-ax-2a-1.解得a=-4.故所求函数的解析式为f(x)=-4x2+4x+7.思维升华求二次函数解析式的三个策略(1)已知三个点的坐标,宜选用一般式.(2)已知顶点坐标、对称轴、最大(小)值等,宜选用顶点式.(3)已知图象与x轴的两交点的坐标,宜选用零点式.跟踪训练2 已知二次函数f(x)的图象过点(0,3),对称轴为直线x=2,且f(x)=x2-4x+3方程f(x)=0的两个根的平方和为10,则f(x)的解析式为________________.依题意,设函数f(x)=a(x-2)2+h(a≠0),由二次函数f(x)的图象过点(0,3),得f(0)=3,所以4a+h=3,即h=3-4a,所以f(x)=a(x-2)2+3-4a,令f(x)=0,即a(x-2)2+3-4a=0,所以ax2-4ax+3=0,设方程的两根为x1,x2,所以f(x)=x2-4x+3.题型三 二次函数的图象与性质命题点1 二次函数的图象例3 (多选)(2023·银川模拟)已知二次函数f (x )=ax 2+bx +c 的图象如图所示,则下列说法正确的是A.2a +b =0 B.4a +2b +c <0C.9a +3b +c <0D.abc <0√√√又因为f (0)=c >0,所以abc <0.f (2)=f (0)=4a +2b +c >0,f (3)=f (-1)=9a +3b +c <0.命题点2 二次函数的单调性与最值例4 (2024·福州模拟)已知二次函数f(x)=ax2-x+2a-1.(1)若f(x)在区间[1,2]上单调递减,求a的取值范围;由题意知a≠0.所以f(x)在区间[1,2]上单调递减恒成立.(2)若a>0,设函数f(x)在区间[1,2]上的最小值为g(a),求g(a)的表达式.f(x)在区间[1,2]上单调递增,此时g(a)=f(1)=3a-2.f(x)在区间[1,2]上单调递减,此时g(a)=f(2)=6a-3.微拓展二次函数定轴动区间和动轴定区间问题在含参的二次函数中,常常出现两种情况的讨论:(1)二次函数是确定的,但它的定义域区间是随参数而变化的,我们称这种情况是“定二次函数在动区间上的最值”.(2)二次函数随着参数的变化而变化,即其图象是运动的,但定义域区间是固定的,我们称这种情况是“动二次函数在定区间上的最值”.√所以f(x)在区间[a,b]上单调递增,(2)若函数f(x)=x2-2bx+3a在区间[0,1]上的最大值为M,最小值为m,则M-m的值√A.与a无关,与b有关B.与a有关,与b无关C.与a有关,且与b有关D.与a无关,且与b无关函数f(x)=x2-2bx+3a的图象开口向上,且对称轴为直线x=b,①当b>1时,f(x)在[0,1]上单调递减,则M=f(0)=3a,m=f(1)=1-2b+3a,此时M-m=2b-1,故M-m的值与a无关,与b有关;②当b<0时,f(x)在[0,1]上单调递增,则M=f(1)=1-2b+3a,m=f(0)=3a,此时M-m=1-2b,故M-m的值与a无关,与b有关;③当0≤b≤1时,m=f(b)=3a-b2,∴M-m=b2-2b+1,故M-m的值与a无关,与b有关,∴M-m=b2,故M-m的值与a无关,与b有关,综上,M-m的值与a无关,与b有关.思维升华二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解题的关键都是对称轴与区间的位置关系,当含有参数时,要依据对称轴与区间的位置关系进行分类讨论.跟踪训练3 (1)(2024·宣城模拟)已知y=(x-m)(x-n)+2 023(m<n),且α,β(α<β)是方程y=0的两根,则α,β,m,n的大小关系是A.α<m<n<βB.m<α<n<β√C.m<α<β<nD.α<m<β<n。

高中数学归纳《一次函数、二次函数和幂函数》

高中数学归纳《一次函数、二次函数和幂函数》

【知识要点】一、在现实生活中有许多问题,往往隐含着量与量之间的关系,可通过建立变量之间的函数关系和对所得函数的研究,使问题得到解决.数学模型方法是把实际问题加以抽象概括,建立相应的数学模型,利用这些模型来研究实际问题的一般数学方法;数学模型则是把实际问题用数学语言抽象概括,再从数学角度来反映或近似地反映实际问题时所得出的关于实际问题的数学描述.数学模型来源于实际,它是对实际问题抽象概括加以数学描述后的产物,它又要回到实际中去检验,因此对实际问题有深刻的理解是运用数学模型方法的前提.二、函数是描述客观世界变化规律的基本数学模型,不同的变化现象需要用不同的函数模型来描述,数学应用题的建模过程就是信息的获取、存储、处理、综合、输出的过程,熟悉一些基本的数学模型,有助于提高我们解决实际问题的能力.三、一次函数、二次函数和幂函数的图像和性质1、一次函数的一般形式为,y kx b =+当0k >时,函数单调递增,当0k <时,函数单调递减,当0k =时,函数是常数函数.2、二次函数的一般形式是2(0)y ax bx c a =++≠,当0a >时,函数的图像抛物线开口向上,顶点坐标为24(,)24b ac b a a --,函数在(,)2b a -∞-单调递减,在(,)2b a -+∞单调递增.当2bx a =-时,函数有最小值244ac b a -.当0a <时,函数的图像抛物线开口向下,顶点坐标为24(,)24b ac b a a --,函数在(,)2ba-∞-单调递增,在(,)2b a -+∞单调递减.当2bx a=-时,函数有最大值244ac b a -. 3、 幂函数的一般形式为(,ay xa R a x =∈是常数,是自变量),其特征是以幂的底为自变量,指数为常数,其定义域随着常数a 取值的不同而不同. 所有幂函数都在(0,)+∞有定义,并且图像都过点(1,1);0,a >幂函数在(0,)+∞是增函数,0a <,幂函数在(0,)+∞是减函数. 四、解决实际问题的解题过程1、对实际问题进行抽象概括:研究实际问题中量与量之间的关系,确定变量之间的主、被动关系,并用x、y分别表示问题中的变量;2、建立函数模型:将变量y表示为x的函数,在中学数学内,我们建立的函数模型一般都是函数的解析式;3、求解函数模型:根据实际问题所需要解决的目标及函数式的结构特点正确选择函数知识求得函数模型的解,并还原为实际问题的解.这些步骤用框图表示:五、解应用题的一般程序1读:阅读理解文字表达的题意,分清条件和结论,理顺数量关系,这一关是基础;2建:将文字语言转化为数学语言,利用数学知识,建立相应的数学模型.熟悉基本数学模型,正确进行建“模”是关键的一关;3解:求解数学模型,得到数学结论.一要充分注意数学模型中元素的实际意义,更要注意巧思妙作,优化过程;4答:将数学结论还原给实际问题的结果.六、常见的函数模型有一次函数模型、二次函数模型、指数函数模型、对数函数模型、幂函数模型、分段函数模型、三角函数模型、数列函数、线性目标函数模型和综合函数模型等. 学科@网【方法讲评】【例1】某地区1995年底沙漠面积为95万公顷,为了解该地区沙漠面积的变化情况,进行了连续5年的观测,并将每年年底的观测结果记录如下表.根据此表所给的信息进行预测:(1)如果不采取任何措施,那么到2010年底,该地区的沙漠面积将大约变为多少万公顷;(2)如果从2000年底后采取植树造林等措施,每年改造0.6万公顷沙漠,那么到哪一年年底该地区沙漠面积减少到90万公顷?(2)设从1996年算起,第x年年底该地区沙漠面积能减少到90万公顷,由题意得+--=,x x950.20.6(5)90x=(年)解得20故到2015年年底,该地区沙漠面积减少到90万公顷.=+【点评】(1)由表观察知,沙漠面积增加数y与年份数x之间的关系图象近似地为一次函数y kx b 的图象,这是解题的切入点和关键点.(2)求一次函数的解析式一般利用待定系数法.【反馈检测1】某工厂在甲、乙两地的两个分厂各生产某种机器12台和6台,现销售给A地10台,B 地8台,已知从甲地调运1台至A地、B地的运费分别为400元和800元,从乙地调运1台至A地、B地的运费分别为300元和500元.(1)设从乙地调运x台至A地,求总运费y关于x的函数关系式;(2)若总运费不超过9000元,问共有几种调动方案?(3)求出总运费最低的调运方案及最低的费用.【例2】某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.(1)当每辆车的月租金定为3600元时,能租出多少辆车?(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?【点评】(1)在实际问题背景下,建立收益、利润的函数模型,一般是利润=收入-各项支出.(2)按照公司的月收益为:租出车辆⨯(月租金-维护费)-未租出车辆⨯维护费,将月收益视为月租金的函数,构造函数模型求解问题.【反馈检测2】某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y(万元)与年产量x(吨)之间的函数关系式可以近似地表示为24880005xy x=-+,已知此生产线年产量最大为210吨.(1)求年产量为多少吨时,生产每吨产品平均成本最低,并求最低成本.(2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?【例3】有一片树林现有木材储蓄量为7100c m3,要力争使木材储蓄量20年后翻两番,即达到28400 c m3.(1)求平均每年木材储蓄量的增长率;(2)如果平均每年增长率为8%,几年可以翻两番?【点评】(1)增长率(降低率)的问题一般是指数或幂函数模型,如果已知时间求增长率(降低率),多是幂函数模型.(2)“翻两番”指现在是原来的4倍,“翻n番”指的是现在是原来的2n倍.【反馈检测3】(1)在1975年某市每公斤猪肉的平均价格是1.4元,而到了2005年,该市每公斤猪肉的平均价格是15元,假定这30年来价格年平均增长率相同,求猪肉价格的年平均增长率.(2)另一方面,1975年时该市职工月平均工资是40元,而到了2005年,该市职工月平均工资是860元,通过猪肉价格的增长和工资增长的对比,试说明人们的生活水平是日益提高,并计算若按这种速度,到2020年,估计该市职工月平均工资是多少元?高中数学常见题型解法归纳及反馈检测第09讲:函数(一次函数、二次函数和幂函数)模型及其应用参考答案【反馈检测1答案】(1)2008600(06,)y x x x z =+≤≤∈;(2)共有3种调运方案;(3)乙分厂的6 台机器全部调往B 地,从甲分厂调往A 地10 台,调往B 地2台,最小值是8600元.【反馈检测2答案】(1)年产量为200吨时,每吨平均成本最低为32万元;(2)年产量为210吨时,可获得最大利润1660万元.8000485x x-∴年产量为200吨时,每吨平均成本最低为32万元.680(0≤x ≤210),∵()R x 在[0,210]上是增函数, ∴210x =时,()R x 有最大值为-(210-220)2+1 680=1660,∴年产量为210吨时,可获得最大利润1 660万元. 【反馈检测3答案】(1)8.2%;(2)4000元.【反馈检测3详细解析】(1)设猪肉价格的年平均增长率是%x ,则有3015 1.4(1%)x =+.利用计算器可得8.2x =.(2)该市职工月工资和年平均增长率是%x ,则有3084040(1%)x =+,利用计算器可得10.8x =.因为10.88.2>,因此人们的生活水平是日益提高.照这样的速度到2020年,职工月平均工资是15860(110.8%)4000+≈元.。

二次函数与幂函数的关系与性质

二次函数与幂函数的关系与性质

二次函数与幂函数的关系与性质二次函数和幂函数是高中数学中重要的概念,它们在数学中有着广泛的应用。

本文将重点讨论二次函数与幂函数之间的关系与性质。

一、二次函数的定义和性质二次函数是指形如f(x) = ax^2 + bx + c的函数,其中a、b、c为实数且a ≠ 0。

二次函数的图像通常是一条U形曲线,被称为抛物线。

1. 零点和解析式二次函数的零点是指使函数值等于零的x值,即f(x) = 0的解。

二次函数的求解可以使用配方法、因式分解或求根公式来进行。

2. 对称轴和顶点二次函数的对称轴是指抛物线的对称轴线,它与抛物线的顶点重合。

二次函数的对称轴的方程为x = -b/2a,顶点的坐标为(-b/2a, f(-b/2a))。

3. 函数的增减性当a > 0时,二次函数是开口向上的,即函数的图像在对称轴的两侧递增;当a < 0时,二次函数是开口向下的,即函数的图像在对称轴的两侧递减。

4. 函数的最值当a > 0时,二次函数的最小值为f(-b/2a);当a < 0时,二次函数的最大值为f(-b/2a)。

二、幂函数的定义和性质幂函数是指形如f(x) = ax^b的函数,其中a为非零实数,b为实数。

幂函数的特点是具有不同的增长速度和变化趋势。

1. 底数和指数幂函数中的x称为底数,b称为指数。

不同的底数和指数会导致幂函数的图像形状和性质的差异。

2. 增减性与奇偶性当b > 0时,幂函数是递增的;当b < 0时,幂函数是递减的。

当b为偶数时,幂函数的图像关于y轴对称;当b为奇数时,幂函数的图像不对称。

3. 渐近线和极限当b > 1时,幂函数的图像会趋近于x轴正半轴;当b < 1时,幂函数的图像会趋近于x轴负半轴。

幂函数在x = 0处的极限取决于指数b的正负性。

三、二次函数与幂函数的关系二次函数其实可以看作是幂函数的一种特殊情况,即当指数b为2时。

因此,二次函数可以被视为幂函数的一种扩展形式,二次函数的性质也可以通过幂函数的性质进行类比和推导。

二次函数与幂函数

二次函数与幂函数

二次函数与幂函数一、二次函数1. 定义二次函数是指形如f(x)=ax2+bx+c的函数,其中a eq0,a、b和c为常数,x为自变量。

2. 基本性质•二次函数的图像是一个抛物线,开口方向由二次项的系数a决定:当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

•二次函数的对称轴是一个直线,其方程为 $x = -\\frac{b}{2a}$。

•二次函数的顶点是对称轴上的点,坐标为 $\\left(-\\frac{b}{2a}, f\\left(-\\frac{b}{2a}\\right)\\right)$。

•当a>0时,二次函数的最小值为 $f\\left(-\\frac{b}{2a}\\right)$;当a<0时,二次函数的最大值为 $f\\left(-\\frac{b}{2a}\\right)$。

3. 图像变换对二次函数进行平移、伸缩和翻转等操作,可以得到不同形状的图像。

•平移:设二次函数为f(x)=x2,当向右平移ℎ个单位,得到f(x−ℎ)=(x−ℎ)2;当向上平移k个单位,得到f(x)+k=x2+k。

•伸缩:设二次函数为f(x)=x2,当横坐标伸缩为原来的m倍,纵坐标伸缩为原来的n倍,得到 $f\\left(\\frac{x}{m}\\right) \\cdot n =\\left(\\frac{x}{m}\\right)^2 \\cdot n = \\frac{n}{m^2}x^2$。

•翻转:设二次函数为f(x)=x2,当横坐标翻转,得到f(−x)= (−x)2=x2;当纵坐标翻转,得到−f(x)=−x2。

二、幂函数1. 定义幂函数是指形如f(x)=ax b的函数,其中a eq0,a和b为常数,x为自变量。

2. 基本性质•幂函数的图像形状取决于指数b的正负和大小。

当b>0且a>0时,幂函数图像在第一象限上递增;当b>0且a<0时,幂函数图像在第一象限上递减;当b<0时,幂函数图像在第一象限上有一个水平渐近线y=0。

高考数学 2.6 一次函数 二次函数与幂函数复习课件

高考数学 2.6 一次函数 二次函数与幂函数复习课件
且 f(x)的最大值是 8,试确定此二次函数. 思维启迪 确定二次函数采用待定系数法,有三种形式, 可根据条件灵活运用.
解 方法一 设 f(x)=ax2+bx+c (a≠0),
4a+2b+c=-1, 依题意有a4-ac4-ba+b2c==8-,1,
解之,得ba==4-,4, c=7,
∴所求二次函数为 y=-4x2+4x+7.
内有一个最大值-5,求 a 的值.
思维启迪 二次函数在给定区间上的最值问题,要讨论
对称轴与给定区间的关系.
解 f(x)=-4x-a22-4a,对称轴为 x=a2,顶点为
a2,-4a. (1)当a2≥1,即 a≥2 时,f(x)在区间[0,1]上递增.
∴ymax=f(1)=-4-a2.令-4-a2=-5,
学生解答展示

当a 0时, f (x) a(x 1)2 2 1
a
a
1a f
1 (1)
a
2
2
或1
1 a
0
f
(4)
4 2
1 a
0
或1a4 f (4)16a820
a
a
1 0

1
4
a
a
1 2
1

a
a
1 4 3 8
a 1或 1 a 1或 .即 a 1
2
2

a
0时
,
§2.6 一次函数、二次函数与幂函数
基础知识 自主学习
要点梳理 1.一次函数、二次函数的图象及性质
(1)一次函数 y=kx+b,当 k>0 时,在实数集 R 上是 增函数,当 k<0 时在实数集 R 上是减函数.b 叫纵截 距,当 b=0 时图象过原点,且此时函数是奇函数; 当 b≠0 时函数为非奇非偶函数.

初等函数的性质总结

初等函数的性质总结

初等函数的性质总结初等函数是数学中常见的一类函数,具有一些共同的性质。

在本文中,我们将总结初等函数的主要性质,包括定义域、值域、奇偶性、单调性和周期性等方面。

一、定义域和值域初等函数的定义域是指函数的输入值所构成的集合。

不同类型的初等函数具有不同的定义域。

1. 一次函数一次函数是形如 y = kx + b 的函数,其中 k 和 b 是常数。

它的定义域为全体实数,即 (-∞, +∞)。

2. 二次函数二次函数是形如 y = ax^2 + bx + c 的函数,其中 a、b 和 c 是常数且a ≠ 0。

它的定义域为全体实数,即 (-∞, +∞)。

3. 幂函数幂函数是形如 y = x^a 的函数,其中 a 是常数。

它的定义域由 a 的奇偶性决定:- 当 a 为正偶数时,定义域为全体非负实数,即[0, +∞)。

- 当 a 为负偶数时,定义域为全体正实数,即(0, +∞)。

- 当 a 为正奇数或负奇数时,定义域为全体实数,即 (-∞, +∞)。

4. 指数函数指数函数是形如 y = a^x 的函数,其中 a 是正实数且a ≠ 1。

它的定义域为全体实数,即 (-∞, +∞)。

5. 对数函数对数函数是形如 y = log_a(x) 的函数,其中 a 是正实数且a ≠ 1。

它的定义域由函数值的正负性决定:- 当 a > 1 时,定义域为全体正实数,即(0, +∞)。

- 当 0 < a < 1 时,定义域为全体正实数,即(0, +∞)。

初等函数的值域是指函数的输出值所构成的集合。

根据函数类型的不同,值域也会有所差异。

二、奇偶性函数的奇偶性指的是函数图像的对称性。

初等函数的奇偶性可根据函数表达式中的具体参数和指数来确定。

1. 一次函数和二次函数一次函数和二次函数都是偶函数,即关于 y 轴对称。

2. 幂函数幂函数的奇偶性由指数 a 的奇偶性决定。

当 a 为偶数时,幂函数是偶函数;当 a 为奇数时,幂函数是奇函数。

一次函数、二次函数、幂函数模型的应用举例 课件

一次函数、二次函数、幂函数模型的应用举例 课件

x2
300x
20
000 0
x
400,
60 000 100x x 400.
(2)当0≤x≤400时,f(x)=- 1(x-300)2+25 000,
【典例训练】
1.某企业生产一种机器的固定成本(即固定投入)为0.6万元,
但每生产100台时,又需可变成本(即另增加投入)0.25万元,
市场对该机器的需求量为1 000台,销售收入(单位:万元)函 数为:R(x)=5x- 1 x2(0≤x≤10),其中x是产品的数量(单位:
2
百台),则利润f(x)表示为产量的函数为________.
【解析】1.由已知投入广告费用为3万元时,药品利润为27万
元,代入y=xα中,即3α=27,解得α=3,故函数关系式为
y=x3.所以当x=5时,y=125.
答案:125
2.(1)由题意可得R=kr4(k>0);
(2)由r=3,R=400,可得krR=4
400,则流量速率R的表达式为
81R=400ຫໍສະໝຸດ .r42.某电脑公司在甲、乙两地各有一个分公司,甲分公司现有电 脑6台,乙分公司有同一型号的电脑12台.现A地某单位向该公 司购买该型号的电脑10台,B地某单位向该公司购买该型号的 电脑8台.已知甲地运往A、B两地每台电脑的运费分别是40元和 30元,乙地运往A、B两地每台电脑的运费分别是80元和50元. (1)设甲地调运x台至B地,该公司运往A地和B地两地的总运费 为y元,求y关于x的函数关系式; (2)若总运费不超过1 000元,问能有几种调运方案? (3)求总运费最低的调运方案及最低运费.
(2)若使y≤1 000,即20x+960≤1 000,得x≤2. 又0≤x≤6,x∈N,∴0≤x≤2,x∈N. ∴x=0,1,2,即有3种调运方案. (3)∵y=20x+960是R上的增函数,又0≤x≤6且x∈N, ∴当x=0时,y有最小值,为960. ∴总运费最低的调运方案为从甲地调运6台到A地,从乙地调运 8台至B地,调运4台到A地,运费最低为960元.

九年级各种函数知识点

九年级各种函数知识点

九年级各种函数知识点一、一次函数一次函数也称为线性函数,是数学中最简单的一种函数。

它的图像为一条直线,表达式通常为y = kx + b,其中k和b都是常数。

1. 定义一次函数的定义可以表述为:对于任意实数x,函数f(x)的取值等于k乘以x再加上常数b,即f(x) = kx + b。

2. 斜率一次函数的斜率k表示了直线的倾斜程度。

当k为正数时,直线上升;当k为负数时,直线下降;当k为零时,直线为水平线。

3. 截距一次函数的截距b表示了直线与y轴的交点在y轴上的纵坐标。

当x为0时,f(x)的值为b。

4. 图像性质一次函数的图像是一条直线,具有以下特点:- 当斜率k为正数时,直线向右上方倾斜;- 当斜率k为负数时,直线向右下方倾斜;- 当斜率k为零时,直线为水平线;- 直线的截距决定了直线与y轴的交点位置;- 不同的斜率和截距会使得直线的位置和角度不同。

二、二次函数二次函数是一种具有抛物线图像的函数,形式为y = ax² + bx + c,其中a、b、c都是常数,a不等于零。

1. 定义二次函数的定义可以表述为:对于任意实数x,函数f(x)的取值等于a乘以x的平方再加上b乘以x再加上常数c,即f(x) = ax²+ bx + c。

2. 抛物线二次函数的图像为抛物线,具有以下特点:- 当a大于零时,抛物线开口向上;- 当a小于零时,抛物线开口向下;- 抛物线的顶点是最高点(或最低点),在坐标系中为(x₀, y₀);- 抛物线在顶点处对称分布,左右两侧的形状相同。

3. 判别式二次函数的判别式Δ(delta)用于判断抛物线与x轴的交点情况。

当Δ大于零时,抛物线与x轴有两个交点;当Δ等于零时,抛物线与x轴有一个交点;当Δ小于零时,抛物线与x轴没有交点。

三、指数函数指数函数是以一个正常数为底的自然指数幂函数,形式为y =aⁿ,其中a为底数,n为指数。

1. 定义指数函数的定义可以表述为:对于任意正实数x,函数f(x)的取值等于以底数a为底、指数为x的次幂,即f(x) = aⁿ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2.6 一次函数、二次函数与幂函数
(时间:45分钟 满分:100分)
一、选择题(每小题7分,共35分)
1.若函数y =(x +1)(x -a )为偶函数,则a 等于
( )
A .-2
B .-1
C .1
D .2 2.“a <0”是“方程ax 2+1=0有一个负数根”的
( )
A .必要不充分条件
B .充分必要条件
C .充分不必要条件
D .既不充分也不必要条件
3.一次函数y =ax +b 与二次函数y =ax 2+bx +c 在同一坐标系中的图象大致是( )
4.幂函数y =f (x )的图象过点⎝⎛⎭
⎫4,1
2,那么f (8)的值为 ( ) A .2 6
B .64
C.
2
4
D.164
5.已知幂函数f (x )=(t 3-t +1)·2
7325
t t x
+-(t ∈N)是偶函数,则实数t 的值为( ) A .0 B .-1或1 C .1
D .0或1
二、填空题(每小题6分,共24分)
6.方程x 2-mx +1=0的两根为α,β,且α>0,1<β<2,则实数m 的取值范围是 . 7.对于函数y =x 2
,y =12
x 有下列说法:①两个函数都是幂函数;②两个函数在第一象限内 都单调递增;③它们的图象关于直线y =x 对称;④两个函数都是偶函数;⑤两个函数都经过点(0,0)、(1,1);⑥两个函数的图象都是抛物线型. 其中正确的有__________. 8.已知函数f (x )=
ax +b
x -b
,其图象关于点(-3,2)对称,则f (2)的值是________. 9.设二次函数f (x )=ax 2+2ax +1在[-3,2]上有最大值4,则实数a 的值为________.
三、解答题(共41分)
10.(13分)如果幂函数f(x)=
2
13
22
p p
x-++(p∈Z)是偶函数,且在(0,+∞)上是增函数.求
p的值,并写出相应的函数f(x)的解析式.
11.(14分)是否存在实数a,使函数f(x)=x2-2ax+a的定义域为[-1,1]时,值域为[-2,2]?
若存在,求a的值;若不存在,说明理由.
12.(14分)已知函数f(x)=x2,g(x)=x-1.
(1)若存在x∈R使f(x)<b·g(x),求实数b的取值范围;
(2)设F(x)=f(x)-mg(x)+1-m-m2,且|F(x)|在[0,1]上单调递增,求实数m的取值范围.
答案
1.C 2.B 3.C 4.C 5.B 6.⎝⎛⎭⎫2,52 7.①②⑤⑥ 8.15 9.3
8或-3 10.解 ∵f (x )在(0,+∞)上是增函数,
∴-12p 2+p +3
2>0,即p 2-2p -3<0.
∴-1<p <3,又∵f (x )是偶函数且p ∈Z. ∴p =1,故f (x )=x 2. 11.解 f (x )=(x -a )2+a -a 2.
当a <-1时,f (x )在[-1,1]上为增函数,
∴⎩
⎪⎨⎪⎧
f (-1)=1+3a =-2,f (1)=1-a =2⇒a =-1(舍去); 当-1≤a ≤0时,⎩⎪⎨⎪⎧
f (a )=a -a 2
=-2,
f (1)=1-a =2⇒a =-1;
当0<a ≤1时,⎩
⎪⎨⎪⎧
f (a )=a -a 2=-2,
f (-1)=1+3a =2⇒a 不存在;
当a >1时,f (x )在[-1,1]上为减函数,
∴⎩
⎪⎨⎪

f (-1)=1+3a =2,f (1)=1-a =-2⇒a 不存在. 综上可得a =-1.
12.解 (1)∃x ∈R ,f (x )<bg (x )⇒∃x ∈R ,x 2-bx +b <0
⇒(-b )2-4b >0⇒b <0或b >4. (2)F (x )=x 2-mx +1-m 2, Δ=m 2-4(1-m 2)=5m 2-4. ①当Δ≤0,即-255≤m ≤25
5
时,则必需 ⎩⎨⎧
m 2
≤0-25
5≤m ≤25
5
⇒-
25
5
≤m ≤0. ②当Δ>0,即m <-
255或m >25
5
时,设方程F (x )=0的根为x 1,x 2(x 1<x 2). 若m
2
≥1,则x 1≤0,即⎩⎪⎨⎪⎧
m 2≥1F (0)=1-m 2≤0
⇒m ≥2;
若m
2≤0,则x2≤0,即
⎩⎪

⎪⎧m
2≤0
F(0)=1-m2≥0
⇒-1≤m<-25 5;
综上所述:-1≤m≤0或m≥2.。

相关文档
最新文档