有限长线性卷积和圆周卷积的计算(新)

合集下载

圆周卷积的积分算法

圆周卷积的积分算法
由于yi(n)的长度为N,而xi(n)的长度为N2,因此相邻两yi(n)序列必然有N-N2=N1-1点发生重叠,这个重叠部分应该相加起来才能构成最后的输出序列。
计算步骤:
a.事先准备好滤波器参数H(k)=DFT[h(n)],N点
b.用N点FFT计算Xi(k)=DFT[xi(n)]
c.Yi(k)=Xi(k)H(k)
程序:
function y = overlap_add(x1,x2,N)
%重叠相加法实现
%将高点数DFT转化为低点数DFT
M = length(x2);%获得x2(n)的长度
if N<M
N = M+1;
end
L = M+N-1;
Lx = length(x1);
T = ceil(Lx/N);%确定分段数
其次,我要感谢帮助过我的同学,同时也感谢学院为我提供良好的做课程设计的环境。
最后再一次感谢所有在设计中曾经帮助过我的良师益友和同学!
参考文献
[1]刘泉,阙大顺,郭志强.数字信号处理.北京:电子工业出版社,2009
[2]唐昌建.Matlab编程基础与应用.四川:四川大学网络教育学院,2003
[3]陈怀琛.数字信号处理教程-Matlab释疑与实现.北京:电子工业出版社,2004
2.2圆周卷积计算过程
具体步骤如下:
(1)在二元坐标上做出 与 ;
(2)把 沿着纵坐标翻转,得到 ;
(3)对 做圆周移位,得到 ;
(4) 与 对应相同的m的值进行相乘,并把结果相加,得到对应于自变量n的一个 ;
(5)换另一个n,重复以上两步,直到n取遍0到N-1所有的值,得到完整的 。
3重叠相加法原理
这次课程设计主要用到了matlab软件,这款软件在对数字信号处理的建模、编程、分析、实现等方面功能非常强大,由于之前在实验课中我们曾经接触过matlab,因此这次做起来相对轻松一些。我选做的题目是基于重叠相加法的圆周卷积,在开始进行程序设计之前,我先对理论知识进行了回顾,在熟悉了圆周卷积以及重叠相加法的原理以及matlab的应用环境后,我开始了软件的设计,虽说之前对matlab有所了解,但对软件里面的程序包并不了解,所以编程的过程中也遇到过很多问题,比如找不到需要用的函数,但通过查看软件自带的帮助信息我很快能够找到自己想要的东西,在熟悉了原理后,程序设计并不复杂,但程序的调试却花了很长时间,其中也遇到了一些莫名其妙的问题,调试成功后第二次再打开就不行了,经过了长时间的调试,并且在老师和Leabharlann 学的帮助下,我换了个软件终于解决了。

线性卷积与圆周卷积的计算

线性卷积与圆周卷积的计算
周三晚上
数字信号处理实验报告
实验名称:线性卷积与圆周卷积的计算(实验四)
专业班 级: 学生姓名: 学 号: 指导教师:
二○一 年 月 日
1
一、 实验原理 1.线性卷积
当系统输入序列为 x(n),系统的单位冲激响应为 h(n),输出序列为 y(n),则线性时不变系统 y(n) = x(n)*h(n). 2.圆周卷积
圆周移位代替线性移位的好处: 时域圆周卷积在频域上相当于两序列的 DFT 的相乘,而计算 DFT 可 以采用它的快速算法——快速傅立叶变换(FFT),因此圆周卷积和线 性卷积相比,计算速度可以大大加快。
7
调试中所遇到的问题: 图形输出与算得的不符,经过结果逆推回去,发现计算圆周卷积的一 个矩阵没有转置。 圆周卷积与线性卷积的关系: 根据实验结果,可以发现,当 N>=L+P-1 时,圆周卷积等于线性卷积; 而当 N<L+P-1 时,圆周卷积等于两个序列的线性卷积加上时间的混 叠。
6
线性卷积的运算步骤: 求 x1(n)与 x2(n) 的线性卷积:对 x1(m)或 x2(m)先进行镜像移 位 x1(-m),对移位后的序列再进行从左至右的依次平移 x(n-m),当 n=0,1,2.…N-1 时,分别将 x(n-m)与 x2(m)相乘,并在 m=0,1,2.… N-1 的区间求和,便得到 y(n)。
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
圆周卷积通用程序
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function yc = circonv(x1,x2,N) % 定义函数 if length(x1)>N

线性卷积和圆周卷积的关系-email-0

线性卷积和圆周卷积的关系-email-0

1、离散傅里叶级数变换推导(参考书P102)dsp31:ppt251、DFS 反变换的推导:连续周期信号的傅立叶级数为∑∑∑∞-∞=∞-∞=∞-∞=ΩΩ=Ω====Ω===ΩΩ=k nkN jk nT NT jk p p p k tjk e k X e k X nT x n x NT T NT T nT t T ek X t x πππππ2020000)(~)(~)(~)(~/2/2,,,/2)()(~0则令其中频域的周期和采样间隔:0)//(2/22Ω====ΩN N T T f p s s πππ)(~nT x 时域周期、离散序列,周期为N ,采样间隔T ;)(~0Ωk X 频域周期、离散序列,周期为N ,采样间隔0Ω;反变换推导初步结果:+∞-∞==∑∞-∞=~,)(~)(~2n e k X n x k nk N j π进一步化简。

由于knN j n rN k N j e e ππ2)(2=+离散傅立叶级数只能取k=0~N-1的N 个独立谐波分量。

因此有+∞-∞==∑-=~,)(~)(~102n e k X n x N k nk N j π2、DFS 正变换的推导:下式实际上是等比级数公式⎩⎨⎧==--=∑-=r m m N r N e e e r N j rNN j N n rn N j 其他,为任意整数0,,1122102πππ有)(~)(~)(~])(~[)(~1010)(21010)(2101022102r X N e k X e k X e e k X e n x N k N n n r k N j N n N k n r k N j N n N k rn N j kn N j N n rn N j ====∑∑∑∑∑∑∑-=-=--=-=--=-=--=-πππππ因此∑-=-=102)(~1)(~N n knN j e n x N k X π3、正、反变换最终形式推导:为与其他变换的书写形式统一,常写成∑-=-=102)(~)(~N n knN j e n x k X π,+∞-∞=~k∑-==102)(~1)(~N k nkN j e k X N n x π,+∞-∞=~n以上就是离散傅立叶级数(DFS )变换对。

数字信号处理实验线性卷积圆周卷积

数字信号处理实验线性卷积圆周卷积

数字信号处理实验线性卷积圆周卷积⼤连理⼯⼤学实验报告学院(系):电信专业:⽣物医学⼯程班级:**1101姓名:**** 学号:201181*** 组:___实验时间:实验室:实验台:指导教师签字:成绩:实验⼀线性卷积和圆周卷积⼀、实验程序1.给出序列x=[3,11,7,0,-1,4,2],h=[2,3,0,-5,2,1];⽤两种⽅法求两者的线性卷积y,对⽐结果。

a)直接调⽤matlab内部函数conv来计算。

b)根据线性卷积的步骤计算。

clear;clc;x=[3 11 7 0 -1 4 2];n1=0:1:length(x)-1;h=[2 3 0 -5 2 1];n2=0:1:length(h)-1;y=conv(x,h);n3=0:1:length(x)+length(h)-2;figure(1);subplot(121);stem(n1,x,'.');axis([0 6 -15 15]);title('x(n)序列');grid;subplot(122);stem(n2,h,'.');axis([0 5 -10 10]);title('h(n)序列');grid;figure(2);subplot(121);stem(n3,y,'.');axis([0 12 -60 60]);title('调⽤conv函数的线性卷积后序列');grid;N=length(x);M=length(h);L=N+M-1;for(n=1:L)y1(n)=0;for(m=1:M)k=n-m+1; if(k>=1&k<=N)y1(n)=y1(n)+h(m)*x(k); end; end; end;subplot(122);stem(n3,y1,'*');axis([0 12 -60 60]);title('按步骤计算的线性卷积后序列');grid; 结果2.卷积后结果y=[ 6 , 31 , 47 , 6 , -51 , -5 , 41 , 18 , -22 , -3 , 8 , 2]。

圆周卷积计算方法

圆周卷积计算方法

圆周卷积计算方法圆周卷积是数字信号处理中的重要概念,它在图像处理、语音识别、通信系统等领域都有着广泛的应用。

在实际应用中,我们经常需要对信号进行圆周卷积运算,因此了解圆周卷积的计算方法对于数字信号处理工程师来说是非常重要的。

本文将介绍圆周卷积的基本概念和计算方法,希望能够对读者有所帮助。

圆周卷积的基本概念。

圆周卷积是指两个周期信号进行卷积运算后得到的周期信号。

在时域上,两个周期信号的卷积结果是它们的卷积和在一个周期内的重复。

在频域上,圆周卷积可以通过傅里叶变换来进行计算,即将两个信号分别进行傅里叶变换,然后相乘得到卷积结果的傅里叶变换,最后再进行逆变换得到圆周卷积结果。

圆周卷积的计算方法。

圆周卷积的计算方法可以分为时域计算和频域计算两种。

下面将分别介绍这两种计算方法。

时域计算方法。

时域计算方法是直接利用卷积的定义进行计算。

假设有两个周期信号x(n)和h(n),它们的周期分别为N1和N2,那么它们的圆周卷积y(n)可以通过以下公式进行计算:y(n) = Σx(k)h(n-k) mod N。

其中,k的取值范围为0到N-1,mod N表示取模运算。

这种计算方法的复杂度较高,适用于信号长度较短的情况。

频域计算方法。

频域计算方法是利用傅里叶变换将卷积运算转化为乘法运算。

假设有两个周期信号x(n)和h(n),它们的傅里叶变换分别为X(k)和H(k),那么它们的圆周卷积y(n)可以通过以下公式进行计算:y(n) = IDFT{DFT(x(n)) DFT(h(n))}。

其中,表示乘法运算,DFT表示离散傅里叶变换,IDFT表示离散傅里叶逆变换。

这种计算方法的复杂度较低,适用于信号长度较长的情况。

圆周卷积的应用。

圆周卷积在数字信号处理中有着广泛的应用。

在图像处理中,圆周卷积常常用于图像的模糊处理和边缘检测;在语音识别中,圆周卷积常常用于语音信号的特征提取和语音识别;在通信系统中,圆周卷积常常用于信道均衡和信号恢复。

卷积的计算公式和步骤

卷积的计算公式和步骤

卷积的计算公式和步骤
卷积是一种基本的数学运算,常用于信号处理和图像处理中。

其计算公式和步骤如下:
1. 定义输入信号:将输入信号表示为一个数字序列或矩阵。

2. 定义卷积核:选择一个卷积核(也称为滤波器或特征检测器),该卷积核是一个数字序列或矩阵。

3. 反转卷积核:对卷积核进行水平翻转和垂直翻转操作。

4. 平移卷积核:将反转后的卷积核从输入信号的左上角开始按照固定的步长进行平移。

5. 点乘求和操作:将卷积核和输入信号在重叠区域内进行点乘操作,并将结果求和。

6. 重复步骤4和步骤5:重复平移卷积核和点乘求和操作,直到卷积核覆盖完整个输入信号。

7. 输出结果:将点乘求和的结果按照平移的顺序组合在一起,得到输出信号。

卷积的计算可以用以下公式表示:
输出信号矩阵 = 输入信号矩阵 * 卷积核矩阵
其中,* 表示卷积操作。

线性卷积与圆周卷积的计算(杭电)

线性卷积与圆周卷积的计算(杭电)

信号、系统与信号处理实验Ⅱ实验报告实验名称:线性卷积与圆周卷积的计算一、实验目的1、通过编程,上机调试程序,进一步增强使用计算机解决问题的能力。

2、掌握线性卷积与圆周卷积软件实现的方法,并验证两者之间的关系。

二、实验内容与要求已知两个有限长序列:x(n)= δ(n)+2δ(n-1)+3δ(n-2)+4δ(n-3)+5δ(n-4);h(n)= δ(n)+2δ(n-1)+δ(n-2)+2δ(n-3)1.编制一个计算两个线性卷积的通用程序,计算x(n)*h(n)。

2.编制一个计算圆周卷积的通用程序,计算上述4种情况下两个序列x(n)与h(n)的圆周卷积。

3.上机调试并打印或记录实验结果。

4.将实验结果与预先笔算的结果比较,验证真确性。

三、实验程序与结果1、计算两个线性卷积的通用程序,计算x(n)*h(n)。

xn=[1 2 3 4 5]hn=[1 2 1 2]N=length(xn);M=length(hn);L=N+M-1;for(n=1:L)y(n)=0;for(m=1:M)k=n-m+1;if(k>=1&k<=N)y(n)=y(n)+hn(m)*xn(k);endendendy=conv(xn,hn);ny=0:L-1;stem(ny,y) ;xlabel('n ');ylabel('y(n) ');figurestem(ny,yn) ;xlabel('n ');ylabel('y ');根据定义编写循环实现线性卷积结果:01234567n y (n )Conv 函数实现线性卷积结果:01234567n y2. 计算圆周卷积的通用程序,计算上述4种情况下两个序列x(n)与h(n)的圆周卷积。

主程序:clear allN=[5 6 9 10];xn=[1 2 3 4 5];hn=[1 2 1 2];yc1=circonv(xn,hn,N(1))yc2=circonv(xn,hn,N(2))yc3=circonv(xn,hn,N(3))yc4=circonv(xn,hn,N(4))figurestem(0:N(1)-1,yc1);xlabel('时间序号n');ylabel('信号幅度');title('5点圆周卷积');figurestem(0:N(2)-1,yc2);xlabel('时间序号n');ylabel('信号幅度');title('6点圆周卷积');figurestem(0:N(3)-1,yc3);xlabel('时间序号n');ylabel('信号幅度');title('9点圆周卷积');figurestem(0:N(4)-1,yc4);xlabel('时间序号n');ylabel('信号幅度');title('10点圆周卷积');定义函数:function yc=circonv(x1,x2,N)if length(x1)>Nerror('N必须大于等于x1的长度'); endif length(x2)>Nerror('N必须大于等于x2的长度'); endx1=[x1,zeros(1,N-length(x1))];x2=[x2,zeros(1,N-length(x2))];n=[0:N-1];x2=x2(mod(-n,N)+1);H=zeros(N,N);for n=1:1:NH(n,:)=cirshiftd(x2,n-1,N);yc=x1*H';function y=cirshiftd(x,m,N)if length(x)>Nerror('x 的长度必须小于N');endx=[x,zeros(1,N-length(x))];n=[0:1:N-1];y=x(mod(n-m,N)+1);时间序号n 信号幅度5点圆周卷积00.51 1.52 2.533.54 4.55时间序号n 信号幅度时间序号n 信号幅度时间序号n 信号幅度四、仿真结果分析编写的线性卷积程序和conv 函数的结果相同,也与笔算结果相同。

关于线性卷积及圆周卷积的简便竖式法计算

关于线性卷积及圆周卷积的简便竖式法计算

关于线性卷积及圆周卷积的简便竖式法计算
线性卷积和圆周卷积是数字信号处理中常见的两种卷积操作。

简单来说,线性卷积可以把两个信号之间的关系映射到输出上,而圆周卷积是一种更为复杂的运算,它可以寻找两个旋转的信号之间的关系。

下面就描述一下这两种卷积的简便竖式法计算。

线性卷积:
输入:
f(n)=x(n)*h(n)
f:输入信号;
x:样本函数;
h:滤波器。

步骤:
(1)将输入信号f分段;
(2)用滤波器在f的每一段输入取值上乘以x;
(3)对f的每一段结果求和,最终得到f的线性卷积输出。

圆周卷积:
输入:
F(n)=X(n)*H(n)
F:输入信号;
X:变换函数;
H:滤波器。

步骤:
(1)将输入信号F分段,每一段变换为正弦、余弦等函数;
(2)对每一段变换后的函数,用滤波器H乘以X;
(3)对每一段变换后函数结果求叠加和,以得到F的圆周卷积输出。

总结:
上述简便竖式法计算描述了两种卷积的计算步骤,即线性卷积和圆周卷积,在结果求叠加和时,用来表示信号实际上与自身的旋转有关的圆周卷积结果是不同的。

因此,这两种卷积的计算采用的步骤也有所不同。

以上就是线性卷积及圆周卷积的简便竖式法计算的长文描述。

圆周卷积

圆周卷积
The Discrete Fourier Transform ( DFT )
五. 圆周卷积定理 ( Circular convolution )
1. 圆周卷积和的定义:
两个长度为 N 的序列 的如下计算称为圆周卷积和,用 符号 N 表示: (N表示圆周卷积的点数)
x1(n)
N
x2
(n)
N 1 m0
将 Y (k) 周期延拓: Y~(k) X~1(k)X~2(k)
则有: ~y (n) IDFS Y~(k)
N 1
~x1 (m)
~x2
(n
m)
m0
N 1
x1((m))N x2 n mN m0
在主值区间 0 m N 1, x1((m)) N x1(m) ,所以:
y(n) ~y(n)RN (n)
其中
k e j
k
z
z e j
1 zN
N (1WNk z 1) ze j
1 N
1 e jN
j k 2
1 e N
k e j
1 N
1 e jN e j 2k
j k 2
1 e N
1 1 e j (N 2k ) j k 2
N 1e N
j N 2k
N
1
W (mn N
)
k
k 0
x(n rN ) r
利用性质
N 1 j 2 pk N ,p rN
eN
k 0
0
,其他
p
由 ~xN (n) x(n rN ) 可知: r ~xN (n) 是 x(n) 以 N 为周期的周期延拓; 也就是说: 频域抽样造成时域周期延拓。
3. 频域抽样定理:
x1

11圆周卷积

11圆周卷积

11圆周卷积圆周卷积圆周运算其实圆周运算是针对周期序列⽽⾔的,由于周期序列在每⼀个周期内的取值都相同,所以我们只关注它的主值区间,⽐如,如果⼀个序列的长度为N的话,那么它的主值区间就是0\leq n\leq N-1。

虽然圆周运算是源⾃于对周期信号的处理,但是经过⼀般化的扩展之后,对有限长序列也可以进⾏圆周运算。

具体就是,你可以把有限长序列以它的长度为周期,进⾏周期延拓成⼀个周期序列,然后进⾏运算,然后取其主值区间进⾏观察得到的结果。

圆周反褶圆周反褶就是⼀个周期序列进⾏反褶之后,取其主值区间序列。

因为⼀个周期序列反褶之后还是周期序列,所以这么做是合理的。

假设⼀周期信号在其主值区间的取值为x[n]={x[0],x[1],x[2],x[3],x[4]}即该序列的周期为5,那么反褶后的信号为(只关注主值区间)\begin{aligned} y[0]&=x[0]=x[0] \\ y[1]&=x[-1]=x[5-1]=x[4] \\ y[2]&=x[-2]=x[5-2]=x[3] \\ y[3]&=x[-3]=x[5-3]=x[2] \\ y[4]&=x[-4]=x[5-4]=x[1] \end{aligned}为了⽅便⽤数学的语⾔描述这种运算,⾸先看⼀种数学上的模运算运算,⾸先看⼏个模运算的例⼦:\begin{aligned} 2 \,mod \, 5 =2 \\ 6 \, mod \, 5 = 1 \\ -3 \, mod \, 5 = 2 \end{aligned}不知道⼤家看出来没有,模运算其实就是求余,2对5的余数就是2,6对于5的余数是1,⽽-3对5的余数应该为(-3+5)\, mod\, 5=2(加上5之后不影响余数的⼤⼩,因为5⼀直能整除5,5对5的余数⼀直是0)我们把2 \, mod\, 5记作<2>_5,所以我们定义圆周反褶为y[n]=x[<-n>_N]其中N为序列x[n]的长度。

圆周卷积与周期卷积、线性卷积的关系与计算

圆周卷积与周期卷积、线性卷积的关系与计算

圆周卷积与周期卷积、线性卷积的关系及计算一、三者关系设:1122()01()01x n n N x n n N ≤≤-≤≤-N :圆周卷积的点数⏹ 圆周卷积是周期卷积的主值序列。

周期卷积:1120()()()N m y n x m x n m -==-∑ (1)圆周卷积:1120()()()[()(())]()N c N N N m y n y n R n x m x n m R n -===-∑1210[()(())]()N N N m x m x n m R n -==-∑ (2)注意:(2)式直接使用的前提是圆周卷积的点数N 应满足:12max[,]N N N ≥(一般题目均符合此种情况)⏹ 周期卷积是线性卷积的周期延拓。

线性卷积:1112120()()*()()()N l m y n x n x n x m x n m -===-∑212121()()()*()N m x m x n m x n x n -==-=∑ (4)圆周卷积与线性卷积的关系:()[()]()c l N r y n y n rN R n ∞=-∞=+∑ (5)注意:上述关系式对任意长度的圆周卷积均适合。

二、举例说明1、对于12max[,]N N N ≥的情况,各教材例题很多,不再举例。

2、12N N N N <<或的情况。

习题8.已知序列()()2(1)(4)3(5)x n n n n n δδδδ=+-+-+-,4()()y n R n =,求:(1)()()*()z n x n y n =(2)()()f n x n =○5()y n (5点圆周卷积)。

解:(){1,2,0,0,4,3},(){1,1,1,1}x n y n ==(1)()()(){1,3,3,3,3,4,4,4,3}z n x n y n =*=(过程略) (2)()()f n x n =○5()y n (5点圆周卷积),N =5。

线性卷积与圆周卷积演示程序的设计

线性卷积与圆周卷积演示程序的设计

1.设计基本原理1.1课题研究的背景卷积运算广泛的应用于通讯、电子、自动化等领域的线性系统的仿真、分析及数字信号处理等方面。

在MATLAB中可以使用线性卷积和圆周卷积实现离散卷积。

线性卷积是工程应用的基础,但圆周卷积实现线性离散卷积具有速度快等优势。

圆周卷积采用循环移位,在MATLAB中没有专用函数,需要根据圆周卷积的运算过程编制程序代码。

本实验主要围绕线性卷积和圆周卷积的演示程序设计来展开,给出了线性卷积和圆周卷积演示的程序及动态实现。

在线性时不变连续系统中,利用系统的冲激响应和叠加原理来求系统对任意激励信号作用时的零状态响应,这就是卷积方法的原理。

因此,在时域内,卷积运算是求解线性非时变系统零状态响应的重要方法,特别是激励信号为时限信号时尤其如此。

卷积运算的计算比较复杂,是信号与系统分析中的重点和难点,特别适合用于计算机来计算。

以往的卷积积分多用fortran、c、VB等语言编程,不仅编程繁琐,而且可视性差。

用MATLAB来计算卷积积分问题要比用C、FORTRAN 等语言完成相同的事情简洁的多。

在MATLAB中,有很多现成的函数可以直接调用,而且在计算机方面,可以直接用相应的计算机符号即可。

在编写程序语言方面,它与其他语言相比更为简单。

正因为上述原因,使他深受工程技术人员及科学专家的欢迎,并很快成为应用学科计算机辅助分析、设计、仿真、教学等领域不仅可缺少的基础软件。

1.2课题研究意义本课程为电子信息工程专业的独立实践课,是建立在信号与系统、数字信号处理等课程的基础上,加强实践环节而开设的。

其目的在于通过本课程设计使学生进一步巩固数字信号处理的基本概念、理论、分析方法和实现方法;使学生能有效地将理论和实际紧密结合;增强学生软件编程实现能力和解决实际问题的能力。

通过课程设计,主要达到以下的目的:(1)使学生增进对MATLAB的认识,加深对信号处理理论的理解。

(2)使学生掌握数字信号处理中频谱分析的概念和方法。

实验一 有限长序列的线性卷积的计算

实验一  有限长序列的线性卷积的计算

实验一 有限长序列的线性卷积的计算一、实验目的1、掌握Matlab 中离散时间信号的生成及表示方法;1、掌握有限长序列线性卷积的编程计算原理,并能利用C 语言或Matlab 编写算法程序进行实现;2、学会线性卷积函数的使用方法,并能利用其计算有限长序列的线性卷积。

二、实验内容及步骤1、复习有限长序列线性卷积的算法原理,并掌握其编程实现方法。

2、用Matlab 生成两个有限长序列()()x n y n 、,其中:15()(sin 0.4)(1)x n n R n =⋅+, 20()(0.9)(1)n y n R n =+分别显示序列()()x n y n 、的图形。

3、编写有限长序列线性卷积算法程序计算()x n 与()y n 的卷积,结果令为1()c n ,即1()()*()c n x n y n =,绘制1()c n 的图形。

(注:有限长序列线性卷积算法原理参看教材12—13面)。

4、利用matlab 的conv 函数计算()x n 与()y n 的卷积,结果令为2()c n 即2()()*()c n x n y n =,绘制2()c n 的图形。

5、将1()2()c n c n 、绘制在一幅图上,将步骤2、3、4所得到的结果进行对比分析,并检验算法程序的正确性。

6、写出程序核心部分的注释。

三、实验基本原理与方法若序列)(n x 和序列)(n h 均是有限长序列,其中)(n x 的有限区间为[1N ,1M ],)(n h 的有限区间为[2N ,2M ],两者之间的卷积)(n y 可按如下的方法进行计算: 第一步:确定)(n y 的有限区间为[21N N +,21M M +],这一步的工作是为了决定)(n y 中的哪些序列值要计算,因为区间外的序列值都是0,无须计算。

第二步:把)(n x 和)(n h 的有限区间都变为0开始。

第三步:利用∑-=-=110)()()(N M k k n h k x n y 计算序列值。

有限长序列线性卷积快速计算方法

有限长序列线性卷积快速计算方法

目录1. 概述 (2)2. 有限长序列线性卷积原理 (2)2.1. 序列卷积的定义 (2)2.2. 序列卷积的性质 (3)2.3. DFT (3)2.4. FFT算法 (3)3. 在Mathematica中实现有限长序列线性卷积快速计算 (4)4. 结束语 (6)有限长序列线性卷积快速计算方法白亮亮(陕理工物理系电信072班级)指导教师:龙姝明1. 概述在数字信号处理领域,离散时间系统的输出响应,可以直接由输入信号与系统单位冲激响应的离散卷积得到。

离散卷积在电子通信领域应用广泛,是工程应用的基础。

如何快速有效地计算出离散序列的卷积,一直是人们所关心的问题。

如果直接在时域进行卷积,卷积过程中所必须的大量乘法和加法运算,一定程度地限制了数据处理的实时性,不能满足时效性强的工程应用。

探讨卷积的快速软件实现方法。

许多文献讨论了卷积的计算方法麻烦。

随着计算机技术的发展,越来越多的计算问题交由计算机处理。

Mathematica 作为优秀的科学计算软件,在工程计算、信号处理与通讯、图像处理等领域均得到广泛的应用。

本文从实际应用出发,使用Mathematica 从卷积定义、傅里叶变换DFT 、快速傅里叶变换(FFT)技术方面来实现有限长序列线性卷积的快速计算。

2. 有限长序列线性卷积原理2.1. 序列卷积的定义设给定两个有限长序列()k f 1、()k f 2,则称()()()()()i k f i f k f k f k f ki -=*=∑=20121 (1)为两个有限长序列的线性卷积2.2. 序列卷积的性质交换律: ()()()()k f k f k f k f 1221*=* (2) 分配律: ()()()[]()()()()k f k f k f k f k f k f k f 3121321*+*=+* (3) 结合律: ()[()()]()()[]()k f k f k f k f k f k f 321321**=**(4)()k f 与单位序列的卷积是它本身:()()()()()k f k f k k k f =*=*δδ (5)2.3. DFT设有限长序列的长度为M ,它的DFT 为()()[]()Nnk jN n N en x n x DFT k X π21--=∑== k=0,1, N-1 (6)傅里叶变换的逆变换如下:()()[]()Nn k j N k Ne k X N k X IDFT n x π211∑-=== k=0,1 N-1 (7)2.4. FFT 算法序列()n x 的)2(MN N =点DFT 为()()knN N n W n x k X ∑-==10 1,1,0-=N k (8)由于kl Nkl N W W 22=,将上式按n 的奇偶性可以分解为 ()()()klN M l k Nkl N N l Wl x WWl x k X 2022120112∑∑-=-=+=1,1,0-=N k其中 ()()l x l x 21= , ()()122+=l x l x (9) 这样N 点DFT 经过分解变成两个2N点的DFT 变换 复数加法和复数乘法运算次数由原来的2N 降到22N当1》N 时 N 点DFT 的运算量减少到近原来的一半 经过多次这样的抽样分解来实现快速傅里叶变换的根据时域循环卷积定理,x(n)与y(n)的线性卷积可以用循环卷积来代替。

卷积计算方法

卷积计算方法

卷积计算方法
卷积计算方法是一种数字信号处理技术,通常用于图像处理、语音识别、人工智能等领域。

以下是常见的卷积计算方法:
1. 离散卷积计算:
- 线性卷积:使用滑动窗口将输入信号与卷积核进行逐点相乘,然后将结果求和得到输出的对应点。

- 快速卷积:利用卷积的因果性质和快速傅里叶变换 (FFT)
的性质,通过将输入信号和卷积核进行傅里叶变换、逐点相乘、逆傅里叶变换等步骤来实现。

2. 卷积神经网络计算:
- 前向传播:将输入图像通过一系列的卷积层、激活函数层、池化层、全连接层等操作,最终得到预测结果。

- 反向传播:通过损失函数计算预测结果与真实标签之间的
误差,然后利用链式法则逆向计算各层的梯度,并利用梯度下降法来更新网络的参数。

3. 转换矩阵计算:
- 利用矩阵的乘法运算,将输入信号和卷积核转换成矩阵形式,然后进行矩阵乘法运算,最后再将结果转换回信号形式。

4. 快速卷积计算方法:
- 基于频域:将输入信号和卷积核进行傅里叶变换,然后进
行频域的乘法运算,最后再进行逆傅里叶变换,得到输出信号。

- 基于时域:通过输入信号的循环移位和卷积核的翻转操作,实现快速的卷积计算。

以上方法各有优缺点,适用于不同的应用场景和计算需求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档