【2020】浙江省中考数学模拟试卷(含答案)
2020年浙江中考数学模拟卷(一)

15.如图,在以 O 为原点的直角坐标系中,点 A、C 分别在 x
轴、y 轴的正半轴上,四边形 OABC 是矩形,反比例函数 y=ax
的图象与 CB 相交于点 D,与 BA 相交于点 E,且 BE=3AE.反比
例函数 80
y=bx的图象经过
B,若△BDE
的面积是
6,则
a+b=
__3__.
16.如图,有一直角三角形纸片 ACB,∠ACB=90°,BC=2, AB=6,点 D 是 AC 边上一动点.过点 D 沿 直线 DE 方向折叠三角形纸片,使点 A 落在 射线 AB 上的点 F 处,当以点 F、B、C 为顶 点 的 三 角 形 为 等 腰 三 角 形 时 , AD 的 长
入立交桥,均以 10m/s 的速度行驶,从不同出口驶出,其间两车到点 O 的距离 y(m)与时间 x(s)的对应关系如图 2 所示,请观察题目与图
表提供的信息,判断下列四个叙述错误的是( C )
A.甲车在立交桥上共行驶 8s B.从 F 口出比从 G 口出多行驶 40m C.甲车从 F 口出,乙车从 G 口出 D.立交桥总长为 150m
的长为 6mm,则内径 DE 的长为 2mm .
14.小东同学对图形世界充满兴趣,他先把一个面积为247 3
cm2 的正三角形绕着它的中心旋转 60°,旋转前后的两个正三
角形构成如图 1 的一个六角星;然后将该六角星按图 2 分割 后拼成矩形 ABCD.请你思考小东的问题:若将该矩形围成圆 柱,则圆柱的高为 3cm 或 3 3cm .
【答案】2
x2
x
(2)化简:x-1+1-x.
【答案】x
18.“五一节”期间,申老师一家自驾游去了离家 170 千米的 某地,下面是他们离家的距离 y(千米)与汽车行驶时间 x(小 时)之间的函数图象. (1)求出 OA 段、AB 段图象的函数表达式; (2)他们出发 2 小时时,离家有多少千米?
2020年浙江省杭州市中考数学一模试卷及答案解析

2020年浙江省杭州市中考数学一模试卷一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. 1.(3分)﹣2的绝对值是( ) A .﹣2 B .2C .12D .−122.(3分)下列计算正确的是( )A .m 4+m 3=m 7B .(m 4) 3=m 7C .2m 5÷m 3=m 2D .m (m ﹣1)=m 2﹣m3.(3分)如图,P 为⊙O 外一点,PC 切⊙O 于C ,PB 与⊙O 交于A 、B 两点.若P A =1,PB =5,则PC =( )A .3B .√5C .4D .无法确定 4.(3分)为了解某班学生每天使用零花钱的情况,小敏随机调查了15名同学,结果如表:每天用零花钱(单位:元) 12345人数2 4 53 1则这15名同学每天使用零花钱的众数和中位数分别是( )A .3,3B .5,2C .3,2D .3,55.(3分)某工程甲单独完成要30天,乙单独完成要25天.若乙先单独干15天,剩下的由甲单独完成,设甲、乙一共用x 天完成,则可列方程为( )A .x+1525+1530=1 B .x+1530+1525=1 C .1530+x−1525=1D .x−1530+1525=16.(3分)如图,已知一组平行线a ∥b ∥c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且AB =3,BC =4,EF =4.8,则DE =( )A .7.2B .6.4C .3.6D .2.47.(3分)如图,BD 是△ABC 的角平分线,AE ⊥BD ,垂足为F .若∠ABC =36°,∠C =44°,则∠EAC 的度数为( )A .18°B .28°C .36°D .38°8.(3分)直线l 1:y =kx +b 与直线l 2:y =bx +k 在同一坐标系中的大致位置是( )A .B .C .D .9.(3分)关于x 的二次函数y =x 2+2kx +k ﹣1,下列说法正确的是( ) A .对任意实数k ,函数图象与x 轴都没有交点B .对任意实数k ,函数图象没有唯一的定点C .对任意实数k ,函数图象的顶点在抛物线y =﹣x 2﹣x ﹣1上运动D .对任意实数k ,当x ≥﹣k ﹣1时,函数y 的值都随x 的增大而增大10.(3分)如图,在△ABC 中,∠C =90°,D 是BC 边上一点,∠ADC =3∠BAD ,BD =4,DC =3.则AB 的值为( )A .5+3√2B .2+2√15C .7√2D .√113二、填空题:本题有6个小题,每小题4分,共24分 11.(4分)分解因式:3x 2+6xy +3y 2= .12.(4分)一个袋子中有1个红球,2个黄球,每个球除颜色外都相同,从中摸出2个球,2个球颜色不同的概率为 . 13.(4分)分式方程2x−1=1x的解是 . 14.(4分)已知一个扇形的面积为12πcm 2,圆心角的度数为108°,则它的弧长为 .15.(4分)已知关于x 的不等式组{5x −a >3(x −1)2x −1≤7的所有整数解的和为7,则a 的取值范围是 .16.(4分)一张直角三角形纸片ABC ,∠ACB =90°,AB =13,AC =5,点D 为BC 边上的任一点,沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的点E 处,当△BDE 是直角三角形时,则CD 的长为 . 三、解答题:本大题有7个小题,共66分解答应写出文字说明、证明过程或演算步骤. 17.(6分)先化简再求值:(ab−b a)•aba+b,其中a =1,b =2. 18.(8分)光明中学欲举办“校园吉尼斯挑战赛”,为此学校随机抽取男女学生各50名进行一次“你喜欢的挑战项目”的问卷调查,每名学生都选了一项.根据收集到的数据,绘制成统计图(不完整).根据统计图表中的信息,解答下列问题:(1)在本次随机调查中,女生最喜欢“踢毽子”项目的有人,男生最喜欢“乒乓球“项目的有人.(2)请将条形统计图补充完整;(3)若该校有男生450人,女生400人,请估计该校喜欢“羽毛球”项目的学生总人数.19.(8分)如图,D、E是以AB为直径的⊙O上两点,且∠AED=45°.(1)过点D作DC∥AB,求证:直线CD与⊙O相切;(2)若⊙O的半径为12,sin∠ADE=3,求AE的长.420.(10分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6√2,AF=4√2,求AE的长.21.(10分)已知Rt△ABC的斜边AB在平面直角坐标系的x轴上,点C(2,6)在反比例函数y1=k x的图象上,且sin∠BAC= 35(1)求k的值和边AC的长;(2)求点B的坐标;交于M与N点,求出x为何值时,y2≥y1.(3)有一直线y2=kx+10与y1=kx22.(12分)已知一次函数y1=2x+b的图象与二次函数y2=a(x2+bx+1)(a≠0,a、b为常数)的图象交于A、B两点,且A 的坐标为(0,1).(1)求出a、b的值,并写出y1,y2的表达式;(2)验证点B的坐标为(1,3),并写出当y1≥y2时,x的取值范围;(3)设u=y1+y2,v=y1﹣y2,若m≤x≤n时,u随着x的增大而增大,且v也随着x的增大而增大,求m的最小值和n的最大值.23.(12分)在△ABC 和△DBE 中,CA =CB ,EB =ED ,点D 在AC 上.(1)如图1,若∠ABC =∠DBE =60°,求证:∠ECB =∠A ;(2)如图2,设BC 与DE 交于点F .当∠ABC =∠DBE =45°时,求证:CE ∥AB ; (3)在(2)的条件下,若tan ∠DEC =12时,求EFDF的值.2020年浙江省杭州市中考数学一模试卷参考答案与试题解析一、选择题:本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的. 1.(3分)﹣2的绝对值是( ) A .﹣2B .2C .12D .−12【分析】根据绝对值的定义,可直接得出﹣2的绝对值.【解答】解:|﹣2|=2, 故选:B .【点评】本题考查了绝对值的定义,是中考的常见题型,比较简单,熟记绝对值的定义是本题的关键. 2.(3分)下列计算正确的是( ) A .m 4+m 3=m 7 B .(m 4) 3=m 7 C .2m 5÷m 3=m 2D .m (m ﹣1)=m 2﹣m【分析】直接利用整式的混合运算法则分别计算判断即可. 【解答】解:A 、m 4与m 3,无法合并,故此选项错误; B 、(m 4) 3=m 12,故此选项错误; C 、2m 5÷m 3=2m 2,故此选项错误; D 、m (m ﹣1)=m 2﹣m ,正确. 故选:D .【点评】此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.3.(3分)如图,P 为⊙O 外一点,PC 切⊙O 于C ,PB 与⊙O 交于A 、B 两点.若P A =1,PB =5,则PC =( )A .3B .√5C .4D .无法确定【分析】求出半径的长,求出PO 长,根据切线的性质求出∠PCO =90°,再根据勾股定理求出即可. 【解答】解:∵P A =1,PB =5, ∴AB =PB ﹣P A =4, ∴OC =OA =OB =2, ∴PO =1+2=3, ∵PC 切⊙O 于C , ∴∠PCO =90°,在Rt △PCO 中,由勾股定理得:PC =√PO 2−OC 2=√32−22=√5, 故选:B .【点评】本题考查了勾股定理和切线的性质,能熟记切线的性质的内容是解此题的关键,注意:圆的切线垂直于过切点的半径.4.(3分)为了解某班学生每天使用零花钱的情况,小敏随机调查了15名同学,结果如表:每天用零花钱(单位:元) 12345人数24531则这15名同学每天使用零花钱的众数和中位数分别是( )A .3,3B .5,2C .3,2D .3,5【分析】根据众数和中位数的定义分别进行解答即可.【解答】解:这15名同学每天使用零花钱的众数为3元,中位数为3元,故选:A.【点评】此题考查了众数和中位数,众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.5.(3分)某工程甲单独完成要30天,乙单独完成要25天.若乙先单独干15天,剩下的由甲单独完成,设甲、乙一共用x 天完成,则可列方程为()A.x+1525+1530=1 B.x+1530+1525=1C.1530+x−1525=1 D.x−1530+1525=1【分析】根据题意列出方程求出答案.【解答】解:设甲、乙一共用x天完成,则可列方程为:x−15 30+1525=1.故选:D.【点评】本题考查由实际问题抽象出一元一次方程,解题的关键是找出等量关系,本题属于基础题型.6.(3分)如图,已知一组平行线a∥b∥c,被直线m、n所截,交点分别为A、B、C和D、E、F,且AB=3,BC=4,EF =4.8,则DE=()A.7.2 B.6.4 C.3.6 D.2.4【分析】根据平行线分线段成比例定理列出比例式,代入计算得到答案.【解答】解:∵a∥b∥c,∴DEEF=ABBC,即DE4.8=34,解得,DE=3.6,故选:C.【点评】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.7.(3分)如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=36°,∠C=44°,则∠EAC的度数为()A.18°B.28°C.36°D.38°【分析】根据∠EAC=∠BAC﹣∠BAF,求出∠BAC,∠BAF即可解决问题.【解答】解:∵∠ABC=36°,∠C=44°,∴∠BAC=180°﹣36°﹣44°=100°,∵BD平分∠ABC,∴∠ABD=12∠ABC=18°,∵AE⊥BD,∴∠BF A=90°,∴∠BAF=90°﹣18°=72°,∴∠EAC =∠BAC ﹣∠BAF =100°﹣72°=28°, 故选:B .【点评】本题考查三角形内角和定理,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 8.(3分)直线l 1:y =kx +b 与直线l 2:y =bx +k 在同一坐标系中的大致位置是( )A .B .C .D .【分析】根据一次函数的系数与图象的关系依次分析选项,找k 、b 取值范围相同的即得答案. 【解答】解:根据一次函数的系数与图象的关系依次分析选项可得:A 、由图可得,y 1=kx +b 中,k <0,b <0,y 2=bx +k 中,b >0,k <0,b 、k 的取值矛盾,故本选项错误;B 、由图可得,y 1=kx +b 中,k >0,b <0,y 2=bx +k 中,b >0,k >0,b 的取值相矛盾,故本选项错误;C 、由图可得,y 1=kx +b 中,k >0,b <0,y 2=bx +k 中,b <0,k >0,k 的取值相一致,故本选项正确;D 、由图可得,y 1=kx +b 中,k >0,b <0,y 2=bx +k 中,b <0,k <0,k 的取值相矛盾,故本选项错误; 故选:C .【点评】本题主要考查了一次函数的图象性质,要掌握它们的性质才能灵活解题.解答本题注意理解:直线y =kx +b 所在的位置与k 、b 的符号有直接的关系.9.(3分)关于x 的二次函数y =x 2+2kx +k ﹣1,下列说法正确的是( ) A .对任意实数k ,函数图象与x 轴都没有交点B .对任意实数k ,函数图象没有唯一的定点C .对任意实数k ,函数图象的顶点在抛物线y =﹣x 2﹣x ﹣1上运动D .对任意实数k ,当x ≥﹣k ﹣1时,函数y 的值都随x 的增大而增大【分析】利用△=(2k ﹣1)2+3>0可对A 进行判断;利用点(−12,−34)满足抛物线解析式可对B 进行判断;先求出抛物线顶点坐标为(﹣k ,﹣k 2+k ﹣1),则根据二次函数图象上点的坐标特征可对C 进行判断;先表示出抛物线的对称轴方程,然后利用二次函数的性质可对D 进行判断.【解答】解:A 、△=4k 2﹣4(k ﹣1)=(2k ﹣1)2+3>0,抛物线与x 轴有两个交点,所以A 选项错误;B 、k (2x +1)=y +1﹣x 2,k 为任意实数,则2x +1=0,y +1﹣x 2=0,所以抛物线经过定点(−12,−34),所以B 选项错误; C 、y =(x +k )2﹣k 2+k ﹣1,抛物线的顶点坐标为(﹣k ,﹣k 2+k ﹣1),则抛物线的顶点在抛物线y =﹣x 2﹣x ﹣1上运动,所以C 选项正确;D 、抛物线的对称轴为直线x =−2k2=−k ,抛物线开口向上,则x >﹣k 时,函数y 的值都随x 的增大而增大,所以D 选项错误. 故选:C .【点评】本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质.10.(3分)如图,在△ABC 中,∠C =90°,D 是BC 边上一点,∠ADC =3∠BAD ,BD =4,DC =3.则AB 的值为( )A.5+3√2B.2+2√15C.7√2D.√113【分析】延长CB到E,使得BE=BA.设BE=AB=a.利用相似三角形的性质,勾股定理构建方程即可解决问题.【解答】解:如图,延长CB到E,使得BE=BA.设BE=AB=a.∵BE=BA,∴∠E=∠BAE,∵∠ADC=∠ABD+∠BAD=2∠E+∠BAD=3∠BAD,∴∠BAD=∠E,∵∠ADB=∠EDA,∴△ADB∽△EDA,∴ADED=DBAD,∴AD2=4(4+a)=16+4a,∵AC2=AD2﹣CD2=AB2﹣BC2,∴16+4a﹣32=a2﹣72,解得a=2+2√15或2﹣2√15(舍弃).∴AB=2+2√15,故选:B.【点评】本题考查相似三角形的判定和性质,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.二、填空题:本题有6个小题,每小题4分,共24分11.(4分)分解因式:3x2+6xy+3y2=3(x+y)2.【分析】先利用提取公因式法提取数字3,再利用完全平方公式继续进行分解.【解答】解:3x2+6xy+3y2,=3(x2+2xy+y2),=3(x+y)2【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.(4分)一个袋子中有1个红球,2个黄球,每个球除颜色外都相同,从中摸出2个球,2个球颜色不同的概率为23.【分析】画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【解答】解:画树状图如下:由树状图知,共有6种等可能结果,其中2个球颜色不同的有4种结果, ∴2个球颜色不同的概率为46=23, 故答案为:23.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.13.(4分)分式方程2x−1=1x的解是 x =﹣1 . 【分析】观察分式方程得最简公分母为x (x ﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解. 【解答】解:方程的两边同乘x (x ﹣1),得 2x =x ﹣1, 解得x =﹣1.检验:把x =﹣1代入x (x ﹣1)=2≠0. ∴原方程的解为:x =﹣1. 故答案为:x =﹣1.【点评】本题考查了解分式方程.(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.14.(4分)已知一个扇形的面积为12πcm 2,圆心角的度数为108°,则它的弧长为6√105πcm . 【分析】先根据扇形的面积公式求出扇形的半径,再根据弧长公式求出弧长即可.【解答】解:设扇形的半径为Rcm ,∵扇形的面积为12πcm 2,圆心角的度数为108°, ∴108π×R 2360=12π,解得:R =2√10,∴弧长为108π×2√10180=6√105π(cm ),故答案为:6√105πcm .【点评】本题考查了扇形面积的计算和弧长的计算,能熟记公式是解此题的关键.15.(4分)已知关于x 的不等式组{5x −a >3(x −1)2x −1≤7的所有整数解的和为7,则a 的取值范围是 7≤a <9或﹣3≤a <﹣1 .【分析】先求出求出不等式组的解集,再根据已知得出关于a 的不等式组,求出不等式组的解集即可.【解答】解:{5x −a >3(x −1)①2x −1≤7②,∵解不等式①得:x >a−32, 解不等式②得:x ≤4, ∴不等式组的解集为a−32<x ≤4, ∵关于x 的不等式组{5x −a >3(x −1)2x −1≤7的所有整数解的和为7,∴当a−32>0时,这两个整数解一定是3和4,∴2≤a−32<3, ∴7≤a <9,当a−32<0时,﹣3≤a−32<−2, ∴﹣3≤a <﹣1,∴a 的取值范围是7≤a <9或﹣3≤a <﹣1. 故答案为:7≤a <9或﹣3≤a <﹣1.【点评】本题考查了解一元一次不等式组和不等式组的整数解,能得出关于a 的不等式组是解此题的关键.16.(4分)一张直角三角形纸片ABC ,∠ACB =90°,AB =13,AC =5,点D 为BC 边上的任一点,沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的点E 处,当△BDE 是直角三角形时,则CD 的长为103或6017. 【分析】根据沿过点D 的直线折叠,使直角顶点C 落在斜边AB 上的点E 处,当△BDE 是直角三角形时,分两种情况讨论:∠DEB =90°或∠BDE =90°,分别依据勾股定理或者相似三角形的性质,即可得到CD 的长. 【解答】解:∵∠ACB =90°,AB =13,AC =5, ∴BC =√AB 2−AC 2=12, 根据题意,分两种情况: ①如图,若∠DEB =90°,则∠AED =90°=∠C , CD =ED ,连接AD ,则Rt △ACD ≌Rt △AED (HL ), ∴AE =AC =5,BE =AB ﹣AE =13﹣5=8, 设CD =DE =x ,则BD =BC ﹣CD =12﹣x , 在Rt △BDE 中,DE 2+BE 2=BD 2, ∴x 2+82=(12﹣x )2解得x =103, ∴CD =103;②如图,若∠EDB =90°,则∠CDE =∠DEF =∠C =90°,CD =DE , ∴四边形CDEF 是正方形, ∴∠AFE =∠EDB =90°, ∠AEF =∠B , ∴△AEF ∽△EBD , ∴AF ED =EF BD ,6017设CD =x ,则EF =CF =x ,AF =5﹣x ,BD =12﹣x ,∴5−x x =x 12−x , 解得x =6017. ∴CD =6017. 综上所述,CD 的长为103或6017. 【点评】本题考查了翻折变换,综合运用勾股定理、相似三角形的判定与性质、正方形的判定与性质解答,解题关键是根据题意分两种情况讨论.三、解答题:本大题有7个小题,共66分解答应写出文字说明、证明过程或演算步骤.17.(6分)先化简再求值:(a b −b a )•ab a+b ,其中a =1,b =2. 【分析】先把分式化简后,再把a 、b 的值代入求出分式的值. 【解答】解:原式=a 2−b 2ab •ab a+b =(a+b)(a−b)ab ⋅ab a+b=a ﹣b ,当a =1,b =2时,原式=1﹣2=﹣1.【点评】本题考查了分式的化简求值,熟练化简分式是解题的关键.18.(8分)光明中学欲举办“校园吉尼斯挑战赛”,为此学校随机抽取男女学生各50名进行一次“你喜欢的挑战项目”的问卷调查,每名学生都选了一项.根据收集到的数据,绘制成统计图(不完整).根据统计图表中的信息,解答下列问题:(1)在本次随机调查中,女生最喜欢“踢毽子”项目的有 10 人,男生最喜欢“乒乓球“项目的有 20 人.(2)请将条形统计图补充完整;(3)若该校有男生450人,女生400人,请估计该校喜欢“羽毛球”项目的学生总人数.【分析】(1)根据题目中的数据和条形统计图中的数据,可以计算出女生最喜欢“踢毽子”项目的人数,然后根据扇形统计图中的数据,可以计算出男生最喜欢“乒乓球“项目的人数;(2)根据(1)中的结果,可以得到女生最喜欢“踢毽子”项目的有10人,从而可以将条形统计图补充完整;(3)根据统计图中的数据和该校有男生450人,女生400人,可以计算出该校喜欢“羽毛球”项目的学生总人数.【解答】解:(1)在本次随机调查中,女生最喜欢“踢毽子”项目的有:50﹣15﹣9﹣9﹣7=10(人),男生最喜欢“乒乓球“项目的有:50×(1﹣8%﹣10%﹣14%﹣28%)=50×40%=20(人),故答案为:10,20;(2)由(1)知,女生最喜欢“踢毽子”项目的有10人,补全完整的条形统计图如右图所示;(3)450×28%+400×950=126+72198(人),答:该校喜欢“羽毛球”项目的学生一共有198人.【点评】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.19.(8分)如图,D、E是以AB为直径的⊙O上两点,且∠AED=45°.(1)过点D作DC∥AB,求证:直线CD与⊙O相切;,求AE的长.(2)若⊙O的半径为12,sin∠ADE=34【分析】(1)连接OD,根据圆周角定理求出∠AOD,根据平行线的性质求出∠ODC=90°,根据切线的判定得出即可;(2)连接BE,根据圆周角定理求出∠B=∠ADE,解直角三角形求出即可.【解答】(1)证明:连接OD,∵∠AED=45°,∴由圆周角定理得:∠AOD=2∠AED=90°,∵CD∥AB,∴∠CDO=∠AOD=90°,即OD⊥CD,∵OD过O,∴直线CD与⊙O相切;(2)解:连接BE,∵AB为⊙O的直径,∴∠AEB=90°,∵由圆周角定理得:∠B=∠ADE,sin∠ADE=3 4,∴sin∠ADE=sin B,∵sin B=AE AB ,∵⊙O的半径为12,∴AE24=34,解得:AE=18.【点评】本题考查了解直角三角形,圆周角定理,切线的判定,平行线的性质等知识点,能综合运用知识点进行推理是解此题的关键.20.(10分)如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6√2,AF=4√2,求AE的长.【分析】(1)由平行四边形的性质和平行线的性质得出∠ADF=∠CED,∠B+∠C=180°;由∠AFE+∠AFD=180°,∠AFE =∠B,得出∠AFD=∠C,即可得出结论;(2)根据平行四边形的性质可得出CD=AB=8,根据相似三角形的性质可得出ADDE =AFDC,求出DE=12.证出AE⊥AD,由勾股定理即可得出答案.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠ADF=∠CED,∠B+∠C=180°;∵∠AFE+∠AFD=180°,∠AFE=∠B,∴∠AFD=∠C,∴△ADF∽△DEC;(2)解:∵四边形ABCD是平行四边形,∴DC=AB=8.∵△ADF∽△DEC,∴ADDE=AFDC,即6√2DE=4√28,∴DE=12.∵AD∥BC,AE⊥BC,∴AE⊥AD.在Rt△ADE中,∠EAD=90°,DE=12,AD=6√2,∴AE =√DE 2−AD 2=√122−(6√2)2=6√2.【点评】此题主要考查的是平行四边形的性质、相似三角形的判定和性质以及勾股定理的运用,解题的关键判定三角形相似.21.(10分)已知Rt △ABC 的斜边AB 在平面直角坐标系的x 轴上,点C (2,6)在反比例函数y 1=k x的图象上,且sin ∠BAC =35 (1)求k 的值和边AC 的长;(2)求点B 的坐标;(3)有一直线y 2=kx +10与y 1=k x 交于M 与N 点,求出x 为何值时,y 2≥y 1.【分析】(1)本题需先根据C 点的坐标在反比例函数y 1=k x 的图象上,从而得出k 的值,再根据且sin ∠BAC =35,得出AC 的长;(2)本题需先根据已知条件,得出∠DAC =∠DCB ,从而得出CD 的长,根据点B 的位置即可求出正确答案;(3)解方程组即可得到结论.【解答】解:(1)∵点C (2,6)在反比例函数y =k x 的图象上,∴6=k 2,解得k =12,∵sin ∠BAC =35∴sin ∠BAC =6AC =35, ∴AC =10;∴k 的值和边AC 的长分别是:12,10;(2)①当点B 在点A 右边时,如图,作CD ⊥x 轴于D .∵△ABC 是直角三角形,∴∠DAC =∠DCB ,又∵sin ∠BAC =35,∴tan ∠DAC =34,∴BD CD =34, 又∵CD =6, ∴BD =92,∴OB =2+92=132, ∴B (132,0); ②当点B 在点A 左边时,如图,作CD ⊥x 轴于D .∵△ABC 是直角三角形, ∴∠B +∠A =90°,∠B +∠BCD =90°,∴∠DAC =∠DCB ,又∵sin ∠BAC =35,∴tan ∠DAC =34,∴BD CD =34, 又∵CD =6,∴BD =92,BO =BD ﹣2=52, ∴B (−52,0) ∴点B 的坐标是(−52,0),(132,0); (3)∵k =12,∴y 2=12x +10与y 1=12x , 解{y =12x +10y =12x得,{x =23y =18,{x =−32y =−8, ∴M (23,18),N 点(−32,﹣8),∴−32<x <0或x >23时,y 2≥y 1.【点评】本题考查了反比例函数与一次函数的交点问题,解直角三角形,正确的理解题意是解题的关键.22.(12分)已知一次函数y 1=2x +b 的图象与二次函数y 2=a (x 2+bx +1)(a ≠0,a 、b 为常数)的图象交于A 、B 两点,且A 的坐标为(0,1).(1)求出a 、b 的值,并写出y 1,y 2的表达式;(2)验证点B 的坐标为(1,3),并写出当y 1≥y 2时,x 的取值范围;(3)设u =y 1+y 2,v =y 1﹣y 2,若m ≤x ≤n 时,u 随着x 的增大而增大,且v 也随着x 的增大而增大,求m 的最小值和n 的最大值.【分析】(1)把A 点的坐标分别代入两个函数的解析式,便可求得a 与b 的值;(2)画出函数图象,根据函数图象作答;(3)求出出个函数的对称轴,根据函数的性质得出“u 随着x 的增大而增大,且v 也随着x 的增大而增大”时x 的取值范围,进而得m 的最小值和n 的最大值.【解答】解:(1)把A (0,1)代入y 1=2x +b 得b =1,把A (0,1)代入y 2=a (x 2+bx +1)得,a =1,∴y 1=2x +1,y 2=x 2+x +1;(2)作y 1=2x +1,y 2=x 2+x +1的图象如下:由函数图象可知,y 1=2x +1不在y 2=x 2+x +1下方时,0≤x ≤3,∴当y 1≥y 2时,x 的取值范围为0≤x ≤3;(3)∵u =y 1+y 2=2x +1+x 2+x +1=x 2+3x +2=(x +1.5)2﹣0.25,∴当x ≥﹣1.5时,u 随x 的增大而增大;v =y 1﹣y 2=(2x +1)﹣(x 2+x +1)=﹣x 2+x =﹣(x ﹣0.5)2+0.25,∴当x ≤0.5时,v 随x 的增大而增大,∴当﹣15≤x ≤0.5时,u 随着x 的增大而增大,且v 也随着x 的增大而增大,∵若m ≤x ≤n 时,u 随着x 的增大而增大,且v 也随着x 的增大而增大,∴m 的最小值为﹣1.5,n 的最大值为0.5.【点评】本题是二次函数的综合题,主要考查了函数的图象与性质,利用函数图象求不等式的解集,待定系数法,关键是熟练掌握二次函数的性质,灵活运用性质解题.23.(12分)在△ABC 和△DBE 中,CA =CB ,EB =ED ,点D 在AC 上.(1)如图1,若∠ABC =∠DBE =60°,求证:∠ECB =∠A ;(2)如图2,设BC 与DE 交于点F .当∠ABC =∠DBE =45°时,求证:CE ∥AB ;(3)在(2)的条件下,若tan ∠DEC =12时,求EF DF的值. 【分析】(1)根据SAS 可证明△ABD ≌△CBE .得出∠A =∠ECB ;(2)得出△ABC 和△DBE 都是等腰直角三角形,证明△ABD ∽△CBE ,则∠BAD =∠BCE =45°,可得出结论;(3)过点D 作DM ⊥CE 于点M ,过点D 作DN ∥AB 交CB 于点N ,设DM =MC =a ,得出DN =2a ,CE =a ,证明△CEF ∽△DNF ,可得出答案.【解答】(1)证明:∵CA =CB ,EB =ED ,∠ABC =∠DBE =60°,∴△ABC 和△DBE 都是等边三角形,∴AB =BC ,DB =BE ,∠A =60°.∵∠ABC =∠DBE =60°,∴∠ABD =∠CBE ,∴△ABD ≌△CBE (SAS ).∴∠A =∠ECB ;(2)证明:∵∠ABC=∠DBE=45°,CA=CB,EB=ED,∴△ABC和△DBE都是等腰直角三角形,∴∠CAB=45°,∴ABBC=√2,DB BE=√2,∴ABBC=DBBE,∵∠ABC=∠DBE,∴∠ABD=∠CBE,∴△ABD∽△CBE,∴∠BAD=∠BCE=45°,∵∠ABC=45°,∴∠ABC=∠BCE,∴CE∥AB;(3)解:过点D作DM⊥CE于点M,过点D作DN∥AB交CB于点N,∵∠ACB=90°,∠BCE=45°,∴∠DCM=45°,∴∠MDC=∠DCM=45°,∴DM=MC,设DM=MC=a,∴DC=√2a,∵DN∥AB,∴△DCN为等腰直角三角形,∴DN=√2DC=2a,∵tan∠DEC=DMME=12,∴ME=2DM,∴CE=a,∴CEDN=a2a=12,∵CE∥DN,∴△CEF∽△DNF,∴EFDF=CEDN=12.【点评】本题是三角形综合题,考查了等边三角形的判定与性质,等腰直角三角形的判定与性质,全等三角形的判定与性质,相似三角形的判定与性质,锐角三角函数等知识,正确作出辅助线,熟练掌握基本图形的性质是解题的关键.。
浙江省杭州2020年中考模拟试卷数学试题(含答案)

2020年浙江杭州中考模拟试卷数学考试题号一二三总分评分1.-23等于( )A. -6B. 6C. -8D. 82.在平面直角坐标系中,点关于原点对称的点的坐标是A. B. C. D.3.如图,已知以直角梯形ABCD的腰CD为直径的半圆O与梯形的上底AD、下底BC以及腰AB均相切,切点分别是D、C、E.若半圆O的半径为2,梯形的腰AB为5,则该梯形的周长是().A. 9B. 10C. 12D. 144.A种饮料比B种饮料单价少1元,小峰买了2瓶A种饮料和3瓶B种饮料,一共花了13元,如果设B 种饮料单价为x元/瓶,那么下面所列方程正确的是( )A. 2(x-1)+3x=13B. 2(x+1)+3x=13C. 2x+3(x+1)=13D. 2x+3(x-1)=135.如图,这是根据某班40名同学一周的体育锻炼情况绘制的条形统计图,根据统计图提供的信息,可得到该班40名同学一周参加体育锻炼时间的众数、中位数分别是()A. 8,9B. 8,8.5C. 16,8.5D. 16,10.56.如图,AB和CD表示两根直立于地面的柱子,AC和BD表示起固定作用的两根钢筋,AC与BD相交于点M,已知AB=8m,CD=12m,则点M离地面的高度MH为( )A. 4 mB. mC. 5mD. m7.若等腰三角形中有一个角等于110°,则其它两个角的度数为().A. 70°B. 110°和70°C. 35°和35°D. 30°和70°8.已知点A,点B在一次函数y=kx+b(k,b为常数,且k≠0)的图象上,点A在第三象限,点B在第四象限,则下列判断一定正确的是()A. b<0B. b>0C. k<0D. k>09.身高相等的四名同学甲、乙、丙、丁参加风筝比赛,四人放出风筝的线长、线与地面的夹角如下表(假设风筝线是拉直的),则四名同学所放的风筝中最高的是()同学甲乙丙丁放出风筝线长140m 100m 95m 90m线与地面夹角30°45°45°60°A. 甲B. 乙C. 丙D. 丁10.已知抛物线与轴交于点A、B,与轴交于点C,则能使△ABC为等腰三角形抛物线的条数是()A. 5B. 4C. 3D. 2二、填空题:本大题有6个小题,每小题4分,共24分11.把多项式2x2y﹣4xy2+2y3分解因式的结果是________12.一组数据7,x,8,y,10,z,6的平均数为4,则x,y,z的平均数是________.13.若圆锥的地面半径为,侧面积为,则圆锥的母线是________ .14.如图,和分别是的直径和弦,且,,交于点,若,则的长是________.15.一次函数y = kx + b ,当- 3 £x £ 1时,对应的y 值为1 £y £ 9 ,则k + b =________;16.已知等腰中,,,,在线段上,是线段上的动点,的最小值是________.三、解答题:本大题有7个小题,共66分17.化简:18.市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如表:(1)把表中所空各项数据填写完整;选手选拔成绩/环中位数平均数甲 10 9 8 8 10 9 ________ ________乙 10 10 8 10 7 ________ ________ 9(2(3)根据(1)、(2)计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.19.如图,已知:,,,点,分别在,上,连接,且,是上一点,的延长线交的延长线于点.(1)求证:;(2)求证:.20.大学生小张利用暑假50天在一超市勤工俭学,被安排销售一款成本为40元/件的新型商品,此类新型商品在第x天的销售量p件与销售的天数x的关系如下表:x(天) 1 2 3 (50)p(件)118 116 114 (20)销售单价q(元/件)与x满足:当1≤x<25时q=x+60;当25≤x≤50时q=40+ .(1)请分析表格中销售量p与x的关系,求出销售量p与x的函数关系.(2)求该超市销售该新商品第x天获得的利润y元关于x的函数关系式.(3)这50天中,该超市第几天获得利润最大?最大利润为多少?21.某校数学兴趣小组开展了一次课外活动,过程如下:如图①,正方形ABCD中,AB=4,将三角板放在正方形ABCD上,使三角板的直角顶点与D点重合.三角板的一边交AB于点P,另一边交BC的延长线于点Q.(1)求证:AP=CQ;(2)如图②,小明在图1的基础上作∠PDQ的平分线DE交BC于点E,连接PE,他发现PE和QE存在一定的数量关系,请猜测他的结论并予以证明;(3)在(2)的条件下,若AP=1,求PE的长.22.已知直角梯形纸片OABC在平面直角坐标系中的位置如图所示,四个顶点的坐标分别为O(0,0),A (10,0),B(8,2 ),C(0,2 ),点T在线段OA上(不与线段端点重合),将纸片折叠,使点A落在射线AB上(记为点A′),折痕经过点T,折痕TP与射线AB交于点P,设点T的横坐标为t,折叠后纸片重叠部分(图中的阴影部分)的面积为S.(1)求∠OAB的度数,并求当点A′在线段AB上时,S关于t的函数关系式;(2)当纸片重叠部分的图形是四边形时,求t的取值范围;(3)S存在最大值吗?若存在,求出这个最大值,并求此时t的值;若不存在,请说明理由.23.如图,在⊙中,弦,相交于点,且.(1)求证:;(2)若,,当时,求:①图中阴影部分面积.②弧的长.答案解析部分一、选择题1.C2.C3.D4.A5.A6.B7.C8.A9.D10.B二、填空题11.2y(x﹣y)2【解答】解:原式=2y(x2﹣2xy+y2)=2y(x﹣y)2.故答案为:2y(x﹣y)2.12.-1【解答】解:∵一组数据7,x,8,y,10,z,6的平均数为4,∴=4,解得,x+y+z=﹣3,∴=﹣1,故答案为:﹣1.13.13【解答】设母线长为R,则:解得:故答案为13.14.5【解答】连接CD;Rt△AOB中,∠A=30°,OB=5,则AB=10,OA=5 ;在Rt△ACD中,∠A=30°,AD=2OA=10 ,∴AC=cos30°×10 =15,∴BC=AC-AB=15-10=5.故答案为515.9或1【解答】解:①当x=-3时,y=1;当x=1时,y=9,则解得:所以k + b =2+7=9;②当x=-3时,y=9;当x=1时,y=1,则解得:,所以k + b=-2+3=1.故答案为9或1.16.【解答】解:∵AC=BC,OC⊥AB,∴AB=2OB=6,∵OC=4,∴BC=5,∴A,B关于y轴对称,过A作AM⊥BC于M,交y轴于P,∵∠AMB=∠COB=90°,∠ABM=∠CBO,∴△ABM∽△CBO,∴,即,∴AM=,∴PM+PB的最小值是,故答案为:.三、解答题:本大题有7个小题,共66分.17. 解:===1【分析】根据同分母分式的减法法则计算,再根据完全平方公式展开,合并同类项后约分计算即可求解.18. (1)9,9,9,9.5(2)解:s2甲= [2×(8﹣9)2+2×(9﹣9)2+2×(10﹣9)2]=;s2乙= [(7﹣9)2+(8﹣9)2+(9﹣9)2+3×(10﹣9)2]=(3)解:我认为推荐甲参加全国比赛更合适,理由如下:两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适【解答】解:(1)甲:将六次测试成绩按从小到大的顺序排列为:8,8,9,9,10,10,中位数为(9+9)÷2=9,平均数为(10+9+8+8+10+9)÷6=9;乙:第6次成绩为9×6﹣(10+10+8+10+7)=9,将六次测试成绩按从小到大的顺序排列为:7,8,9,10,10,10,中位数为(9+10)÷2=9.5;填表如下:选手选拔成绩/环中位数平均数甲10 9 8 8 10 9 9 9乙10 10 8 10 7 9 9.5 919. (1)证明:∵,,∴,,又∵,∴(2)证明:∵在△BGF中,∴∠HGF>∠GBF,∵,∴∠ADE=∠GBF,∴20. (1)解:设销售量p件与销售的天数x的函数解析式为p=kx+b,代入(1,118),(2,116)得解得因此销售量p件与销售的天数x的函数解析式为p=﹣2x+120(2)解:当1≤x<25时,y=(60+x﹣40)(﹣2x+120)=﹣2x2+80x+2400,当25≤x≤50时,y=(40+ ﹣40)(﹣2x+120)= ﹣2250(3)解:当1≤x<25时,y=﹣2x2+80x+2400,=﹣2(x﹣20)2+3200,∵﹣2<0,∴当x=20时,y有最大值y1,且y1=3200;当25≤x≤50时,y= ﹣2250;∵135000>0,∴随x的增大而减小,当x=25时,最大,∵y1>y2∴这50天中第20天时该超市获得利润最大,最大利润为3200元21. (1)证明:∵四边形ABCD是正方形,∴∠ADC=∠A=∠B=∠BCD=∠DCQ=90°,AD=BC=CD=AB=4,∵∠PDQ=90°,∴∠ADP=∠CDQ,在△APD和△CQD中,,∴△APD≌△CQD(ASA),∴AP=CQ(2)解;PE=QE,理由如下:由(1)得:△APD≌△CQD,∴PD=QD,∵DE平分∠PDQ,∴∠PDE=∠QDE,在△PDE和△QDE中,,∴△PDE≌△QDE(SAS),∴PE=QE(3)解:由(2)得:PE=QE,由(1)得:CQ=AP=1,∴BQ=BC+CQ=5,BP=AB﹣AP=3,设PE=QE=x,则BE=5﹣x,在Rt△BPE中,由勾股定理得:32+(5﹣x)2=x2,解得:x=3.4,即PE的长为3.422. (1)解:∵A,B两点的坐标分别是A(10,0)和B(8,2 ),∴tan∠OAB= = ,∴∠OAB=60°,当点A′在线段AB上时,∵∠OAB=60°,TA=TA′,∴△A′TA是等边三角形,且TP⊥AA′,∴TP=(10﹣t)sin60°= (10﹣t),A′P=AP= AT= (10﹣t),∴S=S△ATP= A′P•TP= (10﹣t)2,当A´与B重合时,AT=AB==4,所以此时6≤t<10(2)解:当点A′在线段AB的延长线上,且点P在线段AB(不与B重合)上时,纸片重叠部分的图形是四边形(如图①,其中E是TA′与CB的交点),假设点P与B重合时,AT=2AB=8,点T的坐标是(2,0),由(1)中求得当A´与B重合时,T的坐标是(6,0),则当纸片重叠部分的图形是四边形时,2<t<6(3)解:S存在最大值.①当6≤t<10时,S= (10﹣t)2,在对称轴t=10的左边,S的值随着t的增大而减小,∴当t=6时,S的值最大是2 ;②当2≤t<6时,由图①,重叠部分的面积S=S△A′TP﹣S△A′EB,∵△A′EB的高是A′B•sin60°,∴S= (10﹣t)2﹣(10﹣t﹣4)2×+ (﹣4)2×= (﹣t2+2t+30)=﹣(t﹣2)2+4 ,当t=2时,S的值最大是4 ;③当0<t≤2,即当点A′和点P都在线段AB的延长线上是(如图②,其中E是TA´与CB的交点,F是TP 与CB的交点),∵∠EFT=∠ETF,四边形ETAB是等腰梯形,∴EF=ET=AB=4,∴S= EF•OC= ×4×2 =4 .综上所述,S的最大值是4 ,此时t的值是t=2.23. (1)证明:连接,,∵,∴,∵,∴,∵,∴,∵,∴≌,∴.(2)解:作于,于,由()可知,∴,∵,,,,∴四边形是正方形,∴,∵,∴≌,∴,∵,,∴,,,∵,∴.①.②,∴,∴.。
浙江省宁波2020年中考数学模拟卷(含答案)

2020年浙江宁波中考模拟卷数学考试题号一二三总分评分1.中国人最早使用负数,可追溯到两千多年前的秦汉时期,﹣0.5的相反数是()A. 0.5B. ±0.5C. ﹣0.5D. 52.2013年12月2日,“嫦娥三号”从西昌卫星发射中心发射升空,并于12月14日在月球上成功实施软着陆.月球距离地球平均为38万公里,将数38万用科学记数法表示,其结果()A. 3.8×104B. 38×104C. 3.8×105D. 3.8×1063.下列运算正确的是()A. B. C. D.4.已知,如图所示的几何体,则从左面看到的平面图形是( )A. B. C. D.5.一个不透明的口袋中有4个完全相同的小球,分别将它们标上1,2,3,4,随机摸出标号为3的小球的概率是()A. B. C. D.6.甲,乙两班举行电脑汉字输入速度比赛,参加学生每分钟输入汉字的个数经统计计算后填人下表:班级人数中位数方差平均字数甲 55 149 191 135乙 55 151 110 135优秀的人数(每分钟输入汉字数≥150个为优秀);③甲班的成绩的波动情况比乙班的成绩的波动大.上述结论正确的是()A. ①②③B. ①②C. ①③D. ②③7.如图,已知直线a⊥c,直线b⊥c,若∠1=65°,则∠2的度数为()A. 20°B. 25°C. 50°D. 65°8.如图1,E为矩形ABCD边AD上的一点,点P从点B沿折线BE﹣ED﹣DC运动到点C时停止,点Q 从点B沿BC运动到点C时停止,它们运动的速度都是2cm/s.若P、Q同时开始运动,设运动时间为t (s),△BPQ的面积为y(cm2),已知y与t的函数关系图象如图2,则下列结论错误的是()A. AE=12cmB. sin∠EBC=C. 当0<t≤8时,y=t2D. 当t=9s时,△PBQ是等腰三角形9.一直角三角形的两直角边长为12和16,则斜边上中线长为( )A. 8B. 10C. 15D. 2510.如图,M是双曲线上一点,过点M作轴、y轴的垂线,分别交直线于点D,C,若直线与轴交于点A,与轴交于点B,则的值为()A. B. C. D.二、填空题(每小题5分,共30分)11.一元二次方程x2﹣4=0的解x=________.12.P是反比例函数图象上的一点,且点P到x轴的距离为2,到y轴的距离为3,则反比例函数的解析式为________,点P关于原点的对称点在此反比例函数图象上吗?________.(填在或不在)13.小华为参加毕业晚会演出,准备制一顶圆锥形彩色纸帽,如图所示,如果纸帽的底面半径为8cm,母线长为25cm,那么制作这顶纸帽至少需要彩色纸板的面积为________cm2.(结果保留π)14.如图.一-艘渔船正以60海里/小时的速度向正东方向航行,在处测得岛礁在东北方向上,继续航行1.5小时后到达处此时测得岛礁在北偏东方向,同时测得岛礁正东方向上的避风港在北偏东方向为了在台风到来之前用最短时间到达处,渔船立刻加速以75海里/小时的速度继续航行________小时即可到达(结果保留根号)15.如图,正方形ABCD的边长为1,以AB为直径作半圆,点P是CD中点,BP与半圆交于点Q,连结DQ,给出如下结论:①DQ=1;②=;③S△PDQ=;④cos∠ADQ=,其中正确结论是________ (填写序号).16.二次函数y=x2的图象如图,点A0位于坐标原点,点A1,A2,A3…A n在y轴的正半轴上,点B1,B2,B3…B n在二次函数位于第一象限的图象上,点C1,C2,C3…C n在二次函数位于第二象限的图象上,四边形A0B1A1C1,四边形A1B2A2C2,四边形A2B3A3C3…四边形A n﹣1B n A n C n都是菱形,∠A0B1A1=∠A1B2A2=∠A2B3A3…=∠A n﹣1B n A n=60°,菱形A n﹣1B n A n C n的周长为________三、解答题(本大题共8小题,共80分)17.先化简,再求值:(x+y)(x﹣y)+2y2,其中x=,y=1.18.最短路径问题:例:如图所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短.解:只有A、C、B在一直线上时,才能使AC+BC最小.作点A关于直线“街道”的对称点A′,然后连接A′B,交“街道”于点C,则点C就是所求的点.应用:已知:如图A是锐角∠MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.(1)借助直角三角板在下图中找出符合条件的点B和C.(2)若∠MON=30°,OA=10,求三角形的最小周长。
【2020年】浙江省中考数学模拟试卷(含答案)

2020年浙江省中考数学模拟试卷含答案一、选择题(本大题有10小题,每小题3分,共30分) 1.|-2|=( )A. 2B. 2-C. 2±D. 122.下列计算正确的是()A. 325()a a =B.632aa a ÷= C.()222ab a b =D.222()a b a b +=+ 3.支付宝与“滴滴打车”联合推出优惠,“滴滴打车”一夜之间红遍大江南北.据统计,2016年“的的打车”账户流水总金额达到4730000000元,用科学记数法表示数为( ) A.84.7310⨯ B.94.7310⨯ C.104.7310⨯ D.114.7310⨯ 4.如图,△ABC ,∠B=90°,AB=3,BC=4,则cosA 等于() A. 43B. 34C. 45D. 355. 不等式组⎩⎨⎧<-≥-05.0101x x 的最小整数解是( ) A.1 B.2 C.3 D.46. 如图,已知直线AB ∥CD ,∠GEB 的平分线EF 交CD 于点F ,∠1=60°,则∠2等于( )A. 130°B. 140°C. 150°D. 160°7. 如图所示的支架是由两个长方体构成的组合体,则它的主视图是( )8. 在某次体育测试中,九年级一班女同学的一分钟仰卧起坐成绩(单位:个)如下表:成 绩 45 46 47 48 49 50 人 数124251主视方向 A . B . C . D .这此测试成绩的中位数和众数分别为( )A. 47, 49B. 48, 49C. 47.5, 49D. 48, 509. 如图,矩形ABCD 中,AB =3,BC =5,点P 是BC 边上的一个动点(点P 不与点B 、C 重合),现将△PCD 沿直线PD 折叠,使点C 落到点C’处;作∠BPC’的角平分线交AB 于点E .设BP =x ,BE =y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A .B .C .D . 10. 如图所示,△OAC 和△BAD 都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数ky x =在第一象限的图像经过点B ,与OA 交于点P ,若OA 2-AB 2=18,则点P 的横坐标为( )A .9 B.6 C.3 D.32二、填空题(本大题有6小题,每小题4分,共24分)11.分解因式:x x 43-=_________.12. 二次根式12x -中,x 的取值范围是 . 13. 已知实数x ,y 满足,则以x ,y 的值为两边长的等腰三角形的周长是14.如图,在⊙O 中,CD 是直径,弦AB ⊥CD ,垂足为E ,若∠C=22.5°,AB =6 cm ,则阴影部分面积为__________cm 2。
浙教版2020年中考数学模拟试题及答案(含详解) (3)

中考数学模拟试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2.00分)下列几何体中,是圆柱的为()A.B. C.D.2.(2.00分)实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>4 B.c﹣b>0 C.ac>0 D.a+c>03.(2.00分)方程组的解为()A.B.C.D.4.(2.00分)被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7140m2,则FAST的反射面总面积约为()A.7.14×103m2 B.7.14×104m2 C.2.5×105m2D.2.5×106m25.(2.00分)若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720° D.900°6.(2.00分)如果a﹣b=2,那么代数式(﹣b)•的值为()A.B.2 C.3 D.47.(2.00分)跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()A.10m B.15m C.20m D.22.5m8.(2.00分)如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣11,﹣5)时,表示左安门的点的坐标为(11,﹣11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5).上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④D.①②③④二、填空题(本题共16分,每小题2分)9.(2.00分)如图所示的网格是正方形网格,∠BAC∠DAE.(填“>”,“=”或“<”)10.(2.00分)若在实数范围内有意义,则实数x的取值范围是.11.(2.00分)用一组a,b,c的值说明命题“若a<b,则ac<bc”是错误的,这组值可以是a=,b=,c=.12.(2.00分)如图,点A,B,C,D在⊙O上,=,∠CAD=30°,∠ACD=50°,则∠ADB=.13.(2.00分)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC 于点F,若AB=4,AD=3,则CF的长为.14.(2.00分)从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时公交车用时的频数30≤t≤3535<t≤4040<t≤4545<t≤50合计线路A59151166124500 B5050122278500 C4526516723500早高峰期间,乘坐(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.15.(2.00分)某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90100130150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为元.16.(2.00分)2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.(5.00分)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线l上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=,CB=,∴PQ∥l()(填推理的依据).18.(5.00分)计算4sin45°+(π﹣2)0﹣+|﹣1|19.(5.00分)解不等式组:20.(5.00分)关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.21.(5.00分)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.22.(5.00分)如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.23.(6.00分)在平面直角坐标系xOy中,函数y=(x>0)的图象G经过点A (4,1),直线l:y=+b与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为w.①当b=﹣1时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.24.(6.00分)如图,Q是与弦AB所围成的图形的内部的一定点,P是弦AB 上一动点,连接PQ并延长交于点C,连接AC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值;x/cm0123456y1/cm 5.62 4.67 3.76 2.65 3.18 4.37y2/cm 5.62 5.59 5.53 5.42 5.19 4.73 4.11(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当△APC为等腰三角形时,AP的长度约为cm.25.(6.00分)某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A课程成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):b.A课程成绩在70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5c.A,B两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数A75.8m84.5B72.27083根据以上信息,回答下列问题:(1)写出表中m的值;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是(填“A“或“B“),理由是,(3)假设该年级学生都参加此次测试,估计A课程成绩跑过75.8分的人数.26.(6.00分)在平面直角坐标系xOy中,直线y=4x+4与x轴,y轴分别交于点A,B,抛物线y=ax2+bx﹣3a经过点A,将点B向右平移5个单位长度,得到点C.(1)求点C的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.27.(7.00分)如图,在正方形ABCD中,E是边AB上的一动点(不与点A、B 重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.28.(7.00分)对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N).已知点A(﹣2,6),B(﹣2,﹣2),C(6,﹣2).(1)求d(点O,△ABC);(2)记函数y=kx(﹣1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围;(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t的取值范围.中考数学试卷参考答案与试题解析一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.(2.00分)下列几何体中,是圆柱的为()A.B. C.D.【分析】根据立体图形的定义及其命名规则逐一判断即可.【解答】解:A、此几何体是圆柱体;B、此几何体是圆锥体;C、此几何体是正方体;D、此几何体是四棱锥;故选:A.【点评】本题主要考查立体图形,解题的关键是认识常见的立体图形,如:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等.能区分立体图形与平面图形,立体图形占有一定空间,各部分不都在同一平面内.2.(2.00分)实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>4 B.c﹣b>0 C.ac>0 D.a+c>0【分析】本题由图可知,a、b、c绝对值之间的大小关系,从而判断四个选项的对错.【解答】解:∵﹣4<a<﹣3∴|a|<4∴A不正确;又∵a<0 c>0∴ac<0∴C不正确;又∵a<﹣3 c<3∴a+c<0∴D不正确;又∵c>0 b<0∴c﹣b>0∴B正确;故选:B.【点评】本题主要考查了实数的绝对值及加减计算之间的关系,关键是判断正负.3.(2.00分)方程组的解为()A.B.C.D.【分析】方程组利用加减消元法求出解即可;【解答】解:,①×3﹣②得:5y=﹣5,即y=﹣1,将y=﹣1代入①得:x=2,则方程组的解为;故选:D.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.4.(2.00分)被誉为“中国天眼”的世界上最大的单口径球面射电望远镜FAST的反射面总面积相当于35个标准足球场的总面积.已知每个标准足球场的面积为7140m2,则FAST的反射面总面积约为()A.7.14×103m2 B.7.14×104m2 C.2.5×105m2D.2.5×106m2【分析】先计算FAST的反射面总面积,再根据科学记数法表示出来,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数.确定n的值是易错点,由于249900≈250000有6位,所以可以确定n=6﹣1=5.【解答】解:根据题意得:7140×35=249900≈2.5×105(m2)故选:C.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.5.(2.00分)若正多边形的一个外角是60°,则该正多边形的内角和为()A.360°B.540°C.720° D.900°【分析】根据多边形的边数与多边形的外角的个数相等,可求出该正多边形的边数,再由多边形的内角和公式求出其内角和.【解答】解:该正多边形的边数为:360°÷60°=6,该正多边形的内角和为:(6﹣2)×180°=720°.故选:C.【点评】本题考查了多边形的内角与外角,熟练掌握多边形的外角和与内角和公式是解答本题的关键.6.(2.00分)如果a﹣b=2,那么代数式(﹣b)•的值为()A.B.2 C.3 D.4【分析】先将括号内通分,再计算括号内的减法、同时将分子因式分解,最后计算乘法,继而代入计算可得.【解答】解:原式=(﹣)•=•=,当a﹣b=2时,原式==,故选:A.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则.7.(2.00分)跳台滑雪是冬季奥运会比赛项目之一,运动员起跳后的飞行路线可以看作是抛物线的一部分,运动员起跳后的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某运动员起跳后的x与y的三组数据,根据上述函数模型和数据,可推断出该运动员起跳后飞行到最高点时,水平距离为()A.10m B.15m C.20m D.22.5m【分析】将点(0,54.0)、(40,46.2)、(20,57.9)分半代入函数解析式,求得系数的值;然后由抛物线的对称轴公式可以得到答案.【解答】解:根据题意知,抛物线y=ax2+bx+c(a≠0)经过点(0,54.0)、(40,46.2)、(20,57.9),则解得,所以x=﹣==15(m).故选:B.【点评】考查了二次函数的应用,此题也可以将所求得的抛物线解析式利用配方法求得顶点式方程,然后直接得到抛物线顶点坐标,由顶点坐标推知该运动员起跳后飞行到最高点时,水平距离.8.(2.00分)如图是老北京城一些地点的分布示意图.在图中,分别以正东、正北方向为x轴、y轴的正方向建立平面直角坐标系,有如下四个结论:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6);②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12);③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣11,﹣5)时,表示左安门的点的坐标为(11,﹣11);④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5).上述结论中,所有正确结论的序号是()A.①②③B.②③④C.①④D.①②③④【分析】由天安门和广安门的坐标确定出每格表示的长度,再进一步得出左安门的坐标即可判断.【解答】解:①当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣6,﹣3)时,表示左安门的点的坐标为(5,﹣6),此结论正确;②当表示天安门的点的坐标为(0,0),表示广安门的点的坐标为(﹣12,﹣6)时,表示左安门的点的坐标为(10,﹣12),此结论正确;③当表示天安门的点的坐标为(1,1),表示广安门的点的坐标为(﹣5,﹣2)时,表示左安门的点的坐标为(11,﹣11),此结论正确;④当表示天安门的点的坐标为(1.5,1.5),表示广安门的点的坐标为(﹣16.5,﹣7.5)时,表示左安门的点的坐标为(16.5,﹣16.5),此结论正确.故选:C.【点评】本题主要考查坐标确定位置,解题的关键是确定原点位置及各点的横纵坐标.二、填空题(本题共16分,每小题2分)9.(2.00分)如图所示的网格是正方形网格,∠BAC>∠DAE.(填“>”,“=”或“<”)【分析】作辅助线,构建三角形及高线NP,先利用面积法求高线PN=,再分别求∠BAC、∠DAE的正弦,根据正弦值随着角度的增大而增大,作判断.【解答】解:连接NH,BC,过N作NP⊥AD于P,S△ANH=2×2﹣﹣×1×1=AH•NP,=PN,PN=,Rt△ANP中,sin∠NAP====0.6,Rt△ABC中,sin∠BAC===>0.6,∵正弦值随着角度的增大而增大,∴∠BAC>∠DAE,故答案为:>.【点评】本题考查了锐角三角函数的增减性,构建直角三角形求角的三角函数值进行判断,熟练掌握锐角三角函数的增减性是关键.10.(2.00分)若在实数范围内有意义,则实数x的取值范围是x≥0.【分析】根据二次根式有意义的条件可求出x的取值范围.【解答】解:由题意可知:x≥0.故答案为:x≥0.【点评】本题考查二次根式有意义,解题的关键正确理解二次根式有意义的条件,本题属于基础题型.11.(2.00分)用一组a,b,c的值说明命题“若a<b,则ac<bc”是错误的,这组值可以是a=1,b=2,c=﹣1.【分析】根据题意选择a、b、c的值即可.【解答】解:当a=1,b=2,c=﹣2时,1<2,而1×(﹣1)>2×(﹣1),∴命题“若a<b,则ac<bc”是错误的,故答案为:1;2;﹣1.【点评】本题考查了命题与定理,要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.12.(2.00分)如图,点A,B,C,D在⊙O上,=,∠CAD=30°,∠ACD=50°,则∠ADB=70°.【分析】直接利用圆周角定理以及结合三角形内角和定理得出∠ACB=∠ADB=180°﹣∠CAB﹣∠ABC,进而得出答案.【解答】解:∵=,∠CAD=30°,∴∠CAD=∠CAB=30°,∴∠DBC=∠DAC=30°,∵∠ACD=50°,∴∠ABD=50°,∴∠ACB=∠ADB=180°﹣∠CAB﹣∠ABC=180°﹣50°﹣30°﹣30°=70°.故答案为:70°.【点评】此题主要考查了圆周角定理以及三角形内角和定理,正确得出∠ABD度数是解题关键.13.(2.00分)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC 于点F,若AB=4,AD=3,则CF的长为.【分析】根据矩形的性质可得出AB∥CD,进而可得出∠FAE=∠FCD,结合∠AFE=∠CFD(对顶角相等)可得出△AFE∽△CFD,利用相似三角形的性质可得出==2,利用勾股定理可求出AC的长度,再结合CF=•AC,即可求出CF的长.【解答】解:∵四边形ABCD为矩形,∴AB=CD,AD=BC,AB∥CD,∴∠FAE=∠FCD,又∵∠AFE=∠CFD,∴△AFE∽△CFD,∴==2.∵AC==5,∴CF=•AC=×5=.故答案为:.【点评】本题考查了相似三角形的判定与性质、矩形的性质以及勾股定理,利用相似三角形的性质找出CF=2AF是解题的关键.14.(2.00分)从甲地到乙地有A,B,C三条不同的公交线路.为了解早高峰期间这三条线路上的公交车从甲地到乙地的用时情况,在每条线路上随机选取了500个班次的公交车,收集了这些班次的公交车用时(单位:分钟)的数据,统计如下:公交车用时公交车用时的频数线路30≤t≤3535<t≤4040<t≤4545<t≤50合计A59151166124500B5050122278500C4526516723500早高峰期间,乘坐C(填“A”,“B”或“C”)线路上的公交车,从甲地到乙地“用时不超过45分钟”的可能性最大.【分析】分别计算出用时不超过45分钟的可能性大小即可得.【解答】解:∵A线路公交车用时不超过45分钟的可能性为=0.752,B线路公交车用时不超过45分钟的可能性为=0.444,C线路公交车用时不超过45分钟的可能性为=0.954,∴C线路上公交车用时不超过45分钟的可能性最大,故答案为:C.【点评】本题主要考查可能性的大小,解题的关键是掌握频数估计概率思想的运用.15.(2.00分)某公园划船项目收费标准如下:船型两人船(限乘两人)四人船(限乘四人)六人船(限乘六人)八人船(限乘八人)每船租金(元/小时)90100130150某班18名同学一起去该公园划船,若每人划船的时间均为1小时,则租船的总费用最低为380元.【分析】分四类情况,分别计算即可得出结论.【解答】解:∵共有18人,当租两人船时,∴18÷2=9(艘),∵每小时90元,∴租船费用为90×9=810元,当租四人船时,∵18÷4=4余2人,∴要租4艘四人船和1艘两人船,∵四人船每小时100元,∴租船费用为100×4+90=490元,当租六人船时,∵18÷6=3(艘),∵每小时130元,∴租船费用为130×3=390元,当租八人船时,∵18÷8=2余2人,∴要租2艘八人船和1艘两人船,∵8人船每小时150元,当租1艘四人船,1艘6人船,1一艘8人船,100+130+150=380元∴租船费用为150×2+90=390元,而810>490>390>380,∴租3艘六人船或2艘八人船1艘两人船费用最低是380元,故答案为:380.【点评】此题主要考查了有理数的运算,用分类讨论的思想解决问题是解本题的关键.16.(2.00分)2017年,部分国家及经济体在全球的创新综合排名、创新产出排名和创新效率排名情况如图所示,中国创新综合排名全球第22,创新效率排名全球第3.【分析】两个排名表相互结合即可得到答案.【解答】解:根据中国创新综合排名全球第22,在坐标系中找到对应的中国创新产出排名为第11,再根据中国创新产出排名为第11在另一排名中找到创新效率排名为第3故答案为:3【点评】本题考查平面直角坐标系中点的坐标确定问题,解答时注意根据具体题意确定点的位置和坐标.三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题5分,第27,28题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.(5.00分)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:直线l及直线l外一点P.求作:直线PQ,使得PQ∥l.作法:如图,①在直线l上取一点A,作射线PA,以点A为圆心,AP长为半径画弧,交PA的延长线于点B;②在直线l上取一点C(不与点A重合),作射线BC,以点C为圆心,CB长为半径画弧,交BC的延长线于点Q;③作直线PQ.所以直线PQ就是所求作的直线.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:∵AB=AP,CB=CQ,∴PQ∥l(三角形中位线定理)(填推理的依据).【分析】(1)根据题目要求作出图形即可;(2)利用三角形中位线定理证明即可;【解答】(1)解:直线PQ如图所示;(2)证明:∵AB=AP,CB=CQ,∴PQ∥l(三角形中位线定理).故答案为:AP,CQ,三角形中位线定理;【点评】本题考查作图﹣复杂作图,平行线的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.18.(5.00分)计算4sin45°+(π﹣2)0﹣+|﹣1|【分析】直接利用特殊角的三角函数值以及零指数幂的性质和二次根式的性质分别化简得出答案.【解答】解:原式=4×+1﹣3+1=﹣+2.【点评】此题主要考查了实数运算,正确化简各数是解题关键.19.(5.00分)解不等式组:【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x>﹣2,解不等式②得:x<3,∴不等式组的解集为﹣2<x<3.【点评】本题考查了解一元一次不等式组,能根据不等式的解集得出不等式组的解集是解此题的关键.20.(5.00分)关于x的一元二次方程ax2+bx+1=0.(1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a,b的值,并求此时方程的根.【分析】(1)计算判别式的值得到△=a2+4,则可判断△>0,然后根据判别式的意义判断方程根的情况;(2)利用方程有两个相等的实数根得到△=b2﹣4a=0,设b=2,a=1,方程变形为x2+2x+1=0,然后解方程即可.【解答】解:(1)a≠0,△=b2﹣4a=(a+2)2﹣4a=a2+4a+4﹣4a=a2+4,∵a2>0,∴△>0,∴方程有两个不相等的实数根;(2)∵方程有两个相等的实数根,∴△=b2﹣4a=0,若b=2,a=1,则方程变形为x2+2x+1=0,解得x1=x2=﹣1.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.21.(5.00分)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.【分析】(1)先判断出∠OAB=∠DCA,进而判断出∠DAC=∠DAC,得出CD=AD=AB,即可得出结论;(2)先判断出OE=OA=OC,再求出OB=1,利用勾股定理求出OA,即可得出结论.【解答】解:(1)∵AB∥CD,∴∠OAB=∠DCA,∵AC为∠DAB的平分线,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴▱ABCD是菱形;(2)∵四边形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,∴OE=OA=OC,∵BD=2,∴OB=BD=1,在Rt△AOB中,AB=,OB=1,∴OA==2,∴OE=OA=2.【点评】此题主要考查了菱形的判定和性质,平行四边形的判定和性质,角平分线的定义,勾股定理,判断出CD=AD=AB是解本题的关键.22.(5.00分)如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.【分析】(1)先判断出Rt△ODP≌Rt△OCP,得出∠DOP=∠COP,即可得出结论;(2)先求出∠COD=60°,得出△OCD是等边三角形,最后用锐角三角函数即可得出结论.【解答】解:(1)连接OC,OD,∴OC=OD,∵PD,PC是⊙O的切线,∵∠ODP=∠OCP=90°,在Rt△ODP和Rt△OCP中,,∴Rt△ODP≌Rt△OCP,∴∠DOP=∠COP,∵OD=OC,∴OP⊥CD;(2)如图,连接OD,OC,∴OA=OD=OC=OB=2,∴∠ADO=∠DAO=50°,∠BCO=∠CBO=70°,∴∠AOD=80°,∠BOC=40°,∴∠COD=60°,∵OD=OC,∴△COD是等边三角形,由(1)知,∠DOP=∠COP=30°,在Rt△ODP中,OP==.【点评】此题主要考查了等腰三角形的性质,切线的性质,全等三角形的判定和性质,锐角三角函数,正确作出辅助线是解本题的关键.23.(6.00分)在平面直角坐标系xOy中,函数y=(x>0)的图象G经过点A (4,1),直线l:y=+b与图象G交于点B,与y轴交于点C.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为w.①当b=﹣1时,直接写出区域W内的整点个数;②若区域W内恰有4个整点,结合函数图象,求b的取值范围.【分析】(1)把A(4,1)代入y=中可得k的值;(2)直线OA的解析式为:y=x,可知直线l与OA平行,①将b=﹣1时代入可得:直线解析式为y=x﹣1,画图可得整点的个数;②分两种情况:直线l在OA的下方和上方,画图计算边界时点b的值,可得b的取值.【解答】解:(1)把A(4,1)代入y=得k=4×1=4;(2)①当b=﹣1时,直线解析式为y=x﹣1,解方程=x﹣1得x1=2﹣2(舍去),x2=2+2,则B(2+2,),而C(0,﹣1),如图1所示,区域W内的整点有(1,0),(2,0),(3,0),有3个;②如图2,直线l在OA的下方时,当直线l:y=+b过(1,﹣1)时,b=﹣,且经过(5,0),∴区域W内恰有4个整点,b的取值范围是﹣≤b<﹣1.如图3,直线l在OA的上方时,∵点(2,2)在函数y=(x>0)的图象G,当直线l:y=+b过(1,2)时,b=,当直线l:y=+b过(1,3)时,b=,∴区域W内恰有4个整点,b的取值范围是<b≤.综上所述,区域W内恰有4个整点,b的取值范围是﹣≤b<﹣1或<b≤.【点评】本题考查了新定义和反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,本题理解整点的定义是关键,并利用数形结合的思想.24.(6.00分)如图,Q是与弦AB所围成的图形的内部的一定点,P是弦AB上一动点,连接PQ并延长交于点C,连接AC.已知AB=6cm,设A,P两点间的距离为xcm,P,C两点间的距离为y1cm,A,C两点间的距离为y2cm.小腾根据学习函数的经验,分别对函数y1,y2随自变量x的变化而变化的规律进行了探究.下面是小腾的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x 的几组对应值;x/cm0123456y1/cm 5.62 4.67 3.763 2.65 3.18 4.37y2/cm 5.62 5.59 5.53 5.42 5.19 4.73 4.11(2)在同一平面直角坐标系xOy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象,解决问题:当△APC为等腰三角形时,AP的长度约为3或4.91或5.77cm.【分析】(1)利用圆的半径相等即可解决问题;(2)利用描点法画出图象即可.(3)图中寻找直线y=x与两个函数的交点的横坐标以及y1与y2的交点的横坐标即可;【解答】解:(1)当x=3时,PA=PB=PC=3,∴y1=3,故答案为3.(2)函数图象如图所示:(3)观察图象可知:当x=y,即当PA=PC或PA=AC时,x=3或4.91,当y1=y2时,即PC=AC时,x=5.77,综上所述,满足条件的x的值为3或4.91或5.77.故答案为3或4.91或5.77.【点评】本题考查动点问题函数图象、圆的有关知识,解题的关键是学会利用图象法解决问题,属于中考常考题型.25.(6.00分)某年级共有300名学生.为了解该年级学生A,B两门课程的学习情况,从中随机抽取60名学生进行测试,获得了他们的成绩(百分制),并对数据(成绩)进行整理、描述和分析.下面给出了部分信息.a.A课程成绩的频数分布直方图如下(数据分成6组:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):b.A课程成绩在70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5c.A,B两门课程成绩的平均数、中位数、众数如下:课程平均数中位数众数A75.8m84.5B72.27083根据以上信息,回答下列问题:(1)写出表中m的值;(2)在此次测试中,某学生的A课程成绩为76分,B课程成绩为71分,这名学生成绩排名更靠前的课程是B(填“A“或“B“),理由是该学生的成绩小于A课程的中位数,而大于B课程的中位数,(3)假设该年级学生都参加此次测试,估计A课程成绩跑过75.8分的人数.【分析】(1)先确定A课程的中位数落在第4小组,再由此分组具体数据得出第30、31个数据的平均数即可;(2)根据两个课程的中位数定义解答可得;(3)用总人数乘以样本中超过75.8分的人数所占比例可得.【解答】解:(1)∵A课程总人数为2+6+12+14+18+8=60,∴中位数为第30、31个数据的平均数,而第30、31个数据均在70≤x<80这一组,∴中位数在70≤x<80这一组,∵70≤x<80这一组的是:70 71 71 71 76 76 77 78 78.5 78.5 79 79 79 79.5,∴A课程的中位数为=78.75,即m=78.75;(2)∵该学生的成绩小于A课程的中位数,而大于B课程的中位数,∴这名学生成绩排名更靠前的课程是B,故答案为:B、该学生的成绩小于A课程的中位数,而大于B课程的中位数.。
2020年浙江省杭州市中考数学全真模拟考试试卷A卷附解析

2020年浙江省杭州市中考数学全真模拟考试试卷A卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.若2m-5m+5(2)y m x=-是反比例函数,则m的值是()A.4 B.1或4 C.3 D.2或-32.点P(x,y)的坐标x,y满足0xy=,则P点在()A.x轴上B.y轴上C.x轴或y轴上D.原点3.有四个三角形,分别满足下列条件:(1)一个内角的的度等于另两个内角的度数之和;(2)三个内角的度数之比为 3:4:5;(3)三边长之比为3:4:5;(4)三边长分别为 7、24、25. 其中直角三角形有()A. 1个B.2个C.3个D.4个4.在一个暗箱里放有a个除颜色外其他完全相同的球,这a个球中只有3个红球. 每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱. 通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a大约是()A. 12 B. 9 C. 4 D. 35.用代入法解方程组342(1)25(2)x yx y+=⎧⎨-=⎩使得代入后化简比较容易的变形是()A.由①得243yx-=B.由①得234xy-=C.由②得52yx+=D.由②得25y x=-6.将某图形先向左平移3个单位,再向右平移4个单位,则相当于()A.原图形向左平移l个单位B.把原图形向左平移7个单位C.把原图形向右平移l个单位D.把原图形向右平移7个单位7.小明自从学了有理数的运算法则后, 非常得意,编了一个计算程序, 当他输入任何一个有理数时, 显示屏上出现的结果总等于所输入的有理数的平方与1的差, 他第一次输入2-,然后又将所得的结果再次输入,你猜此时显示屏上出现的结果为()A.6 B.4 C.19 D. 88.如图所示扇形统计图中,有问题的是()A .B .C .D . 二、填空题9.若锐角 ∠A 满足02sin(15)3A -=,则∠A= .10.二次函数y=-x 2-2x 的对称轴是_____________.直线x=-111.某花木场有一块如等腰梯形ABCD 的空地(如图),各边的中点分别是E 、F 、G 、H ,用篱笆围成的四边形EFGH 场地的周长为40cm ,则对角线AC= cm.12.如图,将矩形纸片ABCD 的一角沿EF 折叠,使点C 落在矩形ABCD 的内部C '处,若35EFC ∠=°,则DEC '∠= 度.13.如图,菱形ABCD 的对角线AC =24,BD =10,则菱形的周长L=________.14.某青年棒球队14名队员的年龄如下表: 1年龄(岁) 1920 21 22 1人数(人) 37 2 2 则出现次数最多的年龄是 . 15.若221<<x ,则化简()1222-+-x x = .16.△ABC 平移到△DEF ,若AD = 5,则CF 为_____________.17.计算结果用度表示:59°17′+18°28′= .18.写出代数式223a b c -与32x c 的两个相同点:(1) ;(2) .19.近似数4.80所表示的准确数n 的范围是 .三、解答题20.已知:如图,⊙O 与⊙C 内切于点A ,⊙O 的弦AB 交⊙C 于D 点,DE ⊥OB ,E 为垂足. 求证:(1)AD=DB ;(2)DE 为⊙O 的切线.21.如图,在△ABC 中,AD 平分∠BAC ,且AB+BD=AC 求证:∠B=2∠C .O E DC BA22.设a ,b 是有理数,举例说明下列说法是错误的. (1)a a -=; 2()a b a b -=-;(3)若ax b >,则b x a>.23.已知王明同学将父母给的钱按每月相等的数额存在储蓄盒内,准备捐给希望工程,盒内原有55元钱,两个月后盒内有85元钱.(1)求盒内钱数y(元)与存钱月数x(个)之间的函数解析式;(2)按上述方法,王明同学6个月后存到多少钱?几个月后能够存到235元钱?24.如图,O 为∠PAQ 的角平分线上的一点,OB ⊥AP 于点B ,以O 为圆心OB 为半径作⊙O ,求证:AQ 与⊙O 相切.25.在如图的网格上,找出4个格点(小方格的顶点),使每一个格点与A 、B 两点构造等腰三O QP B A角形,并画出这4个等腰三角形.26.某公司现有甲、乙两种品牌的计算器,甲品牌计算器有 A.B、C三种不同的型号,乙品牌计算器有 D.E两种不同的型号,某中学要从甲、乙两种品牌的计算器中各选购一种型号的计算器.(1)写出所有的选购方案(利用树状图或列表方法表示);(2)如果(1)中各种选购方案被选中的可能性相同,那么A型号计算器被选中的概率是多少?(3)现知该中学购买甲、乙两种品牌计算器共40个(价格如图所示),恰好用了1000元人民币,其中甲品牌计算器为 A型号计算器,求购买的A型号计算器有多少个?27.如图请用三种方法,在已知图案上再添上一个小正方形后,使其成为轴对称图形,并画出对称轴.方法方法方法28.将一个圆柱体的面包切3刀,能将面包分成6块吗?能将面包分成7块吗?能将面包分成8块吗?如果能,请画图说明.29.画一条数轴,在数轴上分别标出绝对值是4,0,122的各数.30.某商店将进货每个10元的商品按每个18元售出,每天可卖出60个,商店经理到市场上做了一翻调查发现,若将这种商品的售价(在每个18元的基础上)每个提高1元,则日销售量就减少5个;若将这种商品的售价(在每个18元的基础上)每个降低1元,则日销售就增加10个.为获得每日最大利润,此商品售价应定为多少元?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.C3.C4.A5.D6.C7.D8.A二、填空题9.75°10.11.2012.7013.5214.20岁15.1+x 16.517.78.25°18.答案不唯一. (1)它们都是单项式 (2)它们的次数都是 5 次19.4.795 4.805n ≤<三、解答题20.(1)连结OD ,证OD ⊥AB ;(2)连结CD ,利用三角形的中位线证明CD ∥OB . 21.在AC 上截取AP=AB ,证△ABD ≌△APD22.(1)当0a <时,a a =-;(2)当a b <b a =-;(3) 0a <时,结论错误 23.(1)y=15x+55;(2)145元,l2个月24.画OD ⊥AQ ,垂足为D ,证明△OBA ≌△ODA 得OD=OB .25.略26.(1)树状图表示如下:列表表示如下:A B C D(A, D) (B, D) (C, D) E (A, E) (B, E) (C, E)有 6 种可能的结果:(A ,D),(A ,E),(B ,D),(B ,E) , ( C, D) , (C, E).(2)因为选中 A 型号计算器有 2种方案, 即(A ,D),(A ,E),所以 A 型号计算器被选中的概率是2163= (3)由(2)可知,当选用方案(A ,D)时,设购买A 型号计算器x 个,则购买 D 型号计算器(40)x -个. 根据题意,得6050(40)1000x x +-=,解得100x =-(不合题意,舍去). 当选用方案(A ,E)时,设购买A 型号计算器x 个,则购买E 号计算器(40x -)个,根据题意,得6020(40)1000x x +-=,解得5x =,所以4035x -=,所以新华中学购买了5个A 型号计算器.27.略.28.29.略30.设此商品每一个售价为x元,每日利润S 最大.当x>18时,S =[60-5(x-18)](x-10)=-5(x-20)2+500;即商品提价,当x=20时,每日最大利润为500元.当x<18时,S =[60+10(18-x)](x-10)=-10(x-17)2+490;即商品降价,当x=17时,每日最大利润为490元.综上所述:此售价应定为每个20元,每日利润最大. 甲乙。
2020年浙江省嘉兴市中考数学模拟试卷附解析

2020年浙江省嘉兴市中考数学模拟试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.王英同学从A 地沿北偏西60方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,这时王英同学离A 地的距离是( )A .150mB .503mC .100mD .1003m2.下列命题中正确的是 ( )A .垂直于直径的直线是圆的切线B .经过切点的直线是圆的切线C .经过直径的一端的直线是圆的切线D .圆心到直线的距离等于半径,则该直线与圆相切3.如图,若A 、B 、C 、P 、Q 、甲、乙、丙、丁都是方格纸中的格点,为使△ABC ∽△PQR ,则点R 应是甲、乙、丙、丁四点中的( )A . 甲B . 乙C .丙D . 丁4.如图,有一张矩形纸片ABCD ,AB=2.5,AD=1.5,将纸片折叠,使AD 边落在AB 边上,折痕为AE ,再将△AED 以DE 为折痕向右折叠,AE 与BC 交于点F ,则CF 的长为( )A .0.5B .0.75C .1D .1.25 5.抛物线2255y x x =++与坐标轴...的交点个数是( ) A .O 个B .1个C . 2个D .3 个 6.如图,在□ABCD 中,∠B=100°,延长AD 至点F ,延长CD 至点E ,连结EF ,则∠E+∠F 等于( )A .100°B .80°C .50°D .40 °7.方程①2290x -=;②2110x x-=;③29xy x +=;④276x x +=中,是一元二次方程的个数有( )A .1个B .2个C .3个D .4个 8.不等式组111x x -<⎧⎨≥-⎩的解集在数轴上表示正确的是( )A.B.C.D.9.要比较两位同学在上次数学测验中谁的成绩比较稳定,应选用的统计量是()A.平均数B.中位数C.众数D.方差10.甲、乙、丙三个同学排成一排拍照,则甲排在中间的概率是()A.16B.14C.13D.1211.如果线段AB=5 cm,BC=4 cm ,那么A、C 两点之间的距离是()A.9 cm B.1 cm C.9 cm或l cm D.无法确定二、填空题12.圆锥的底面半径是3 cm,高是 4 cm,则它的侧面积是 cm2.13.如图,∠DCE是平行四边形ABCD的一个外角,且∠DCE=500,则∠A的度数是.14.一块正方形钢板上截去3cm宽的长方形钢条,剩下的面积是254cm,则原来这块钢板的面积是2cm.15.有一边长为3的等腰三角形,它的两边长是方程x2-4x+k=0的两根,则k的值为.16.等腰三角形的对称轴最多有条.17.如图的方格纸中,左边图形到右边图形的变换是 .18.如图是由 8块相同的等腰直角三角形黑白瓷砖拼成的正方形地面示意图,一只蚂蚁在上面自由爬动,并随机停留某块瓷砖上,则停留在黑色瓷砖上的概率为 .19.从8:55到9:15,钟表的分针转动的角度是_____,时针转动的角度是.20.△ABC平移到△DEF,若AD = 5,则CF为_____________.21.已知AD是△ABC的中线,如果△ABC的面积是18cm2,则△ADC的面积是 cm2. 22.某城市按以下规定收取每月的煤气费:用气不超过 60 米3,按每立方米 0. 8 元收费;如果超过 60 米3,超过部分每立方米按 1. 2元收费,已知某户用煤气 x(米3)(x>60),则该户应交煤气费元.三、解答题23.某一电影院有1000个座位,门票每张 3元,可达客满,根据市场统计,若每张门票提高F D EAB C A D CB DC B A E M N M Q P ED CB A x 元,将有 200x 张门票不能售出.(1)求提价后每场电影的票房收入 y(元)与票价提高量 x(元)之间的函数关系式及自变量x 的取值范围;(2)为增加收入,电影院应做怎样的决策(提价还是降价?若提价,提价多少为宜?)24.如图,在梯形ABCD 中,AD//BC ,∠A=90°,AB=7,AD=2,BC=3,试在边AB 上确定点P 的位置,使得以P 、A 、D 为顶点的三角形与以P 、B 、C 为顶点的三角形相似.25.在△ABC 中,AD 是高,矩形PQMN 的顶点P 、N 分别在AB 、AC 上,QM 在边BC 上.若BC=8cm ,AD=6cm ,且PN=2PQ ,求矩形PQMN 的周长.26.如图所示,在正方形ABCD 中,P 是对角线BD 上一点,PE ⊥BC 于E ,PF ⊥CD 于F ,•连结AP ,EF ,求证:AP=EF .27.如图所示,□ABCD中,以BC,CD为边分别向外作两个正三角形BCE和CDF.求证:△AFF是等边三角形.28.“一方有难,八方支援”.四川汶川大地震牵动着全国人民的心,我市某医院准备从甲、乙、丙三位医生和A、B两名护士中选取一位医生和一名护士支援汶川.(1)若随机选一位医生和一名护士,用树状图(或列表法)表示所有可能出现的结果;(2)求恰好选中医生甲和护士A的概率.29.解方程组278ax bycx y+=⎧⎨-=⎩时,小明正确地解出32xy=⎧⎨=-⎩,小红把c看错了,解得22xy=-⎧⎨=⎩,试求a,b,c的值.30.利用计算器,按如图流程操作:(1)若首次输入的正奇数为ll,则按流程图操作的变化过程,可表示为:ll→17→13→5→1.请用类似的方法分别表示首次输入的正奇数为9、19时,按流程图操作的变化过程;(2)自己选几个正奇数按流程图操作,并写出变化过程,看看是否有同样的结果;(3)根据你的操作结果,给出一个猜想,并清楚地叙述你的猜想.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.D3.C4.C5.B6.B7.B8.B9.D10.C11.D二、填空题12.15π13.130°14.8115.4,316.317.以AB 为对称轴作轴对称图形,再向右平移8格18.1219. 120°,10°20.521.922.1.224x -三、解答题23.(1)y=(3+x)(1000-200x),化简得22004003000y x x =-++, x 的取值范围是 0≤x ≤5.(2)22004003000y x x =-++2200(-2)3000x x =-+2200(1)3200x =--+ ∴当 x=1 时,票房收入最大.即提价 1 元为宜. 24.514,1,6.25.14.4 cm..26.思路:连结PC ,证明ΔABP ≌ΔCBP .27.只要证△ABE ≌△FDA ≌△FCE 得AE=AF=EF 即可 28.解:(1)用列表法或树状图表示所有可能结果如下: ① 列表法 ②树状图(2)P (恰好选中医生甲和护士A )=16 29. 4a =,5b =,2c =-30.(1) 9→7→11→17→13→5→1 19→29→11→17 →13→5→1(2)略 (3)猜想:任何正奇数按流程图操作,最终变成 1. A B 甲(甲,A) (甲,B) 乙(乙,A) (乙,B) 丙 (丙,A) (丙,B) 护 士 医 生。
浙江省杭州市萧山区2020年中考数学模拟试卷(含答案解析)

2020年浙江省杭州市萧山区中学中考数学模拟试卷选择题(共10小题,满分30分,每小题3分)一.1.函数y=(x+1)°-2的最小值是()A.1B.-1C.2D.-22.从1978年12月18日党的^一届三中全会决定改革开放到如今已经40周年了,我国GDP(国内生产总值)从1978年的1495亿美元到2017年已经达到了122400亿美元,全球排名第二,将122400用科学记数法表示为(A.12.24X104B. 1.224X105C.0.1224X106D. 1.224X1063.若2'〃=5,4"=3,则4in m的值是()A•会C.2D.44.“龟兔赛跑”是同学们熟悉的寓言故事.如图所示,表7K了寓言中的龟、兔的路程S和时间,的关系(其中直线段表示乌龟,折线段表示兔子).下列叙述正确的是()B.乌龟在这次比赛中的平均速度是0.1米/分钟C.兔子比乌龟早到达终点10分钟D.乌龟追上兔子用了20分钟5.一组数据:201、200、199、202、200,分别减去200,得到另一组数据:1、0、-1、2、0,其中判断错误的是()A.前一组数据的中位数是200B.前一组数据的众数是200C.后一组数据的平均数等于前一组数据的平均数减去200D.后一组数据的方差等于前一组数据的方差减去2006.如图,己知直线AB、CD被直线AC所截,AB//CD,E是平面内任意一点(点E不在直线AB、CD、AC_b),设/BAE=a,ZDCE=^.下列各式:①a+8,②a",③&-a,④360。
-a-p, ZAEC 的度数可能是( )A.①②③B.①②④C.①③④D.①②③④7.把抛物线y= - 2x 向上平移1个单位,再向右平移1个单位,得到的抛物线是()A. y= - 2 (x+1) ?+1B. y= -2 (x- 1) 2+1C. y= - 2 (x- 1) 2 - 1D. y= - 2 (x+1) 2 - 18.现在把一张正方形纸片按如图方式剪去一个半径为40柄厘米的圆面后得到如图纸片,且该纸片所能剪出的最大圆形纸片刚好能与前面所剪的扇形纸片围成一圆锥表面,则该正方形纸片的边长约为( )厘米.(不计损耗、重叠,结果精确到1厘米,插F.41,寸*1.73)A. 6470 D. 739.如图,^ABCD 的对角线AC 、BD 交于点O, DE 平分ZAD C 交AB 于点E, ZBCD=60° , AD =*43,连接 OE.下列结论:①S°abcd =AD・BD ;②DB 平分ZCDE ; @AO=DE ; @S a ADE =5S m )fe ,其中正确的个数有()A. 9AB. 10 人C. 3个D. 4个如果一共碰杯55次,则参加酒会的人数为(c. II A D. 12 A二.填空题(共6小题,满分24分,每小题4分)11.若二次函数y=2 (x+1) 2+3的图象上有三个不同的点A (xi ,4)、B (羽+电,n )、C (电,4),则〃的值为.12,某次数学测试,某班一个学习小组的六位同学的成绩如下:84、75、75、92、86、99,则这六位同学成绩的中位数是13.如图,已知函数y=x+2的图象与函数尸直•(切0)的图象交于A、B两点,连接80并延长交X函数y=—Ck^O)的图象于点C,连接AC,若△ABC的面积为8.则k的值为.x14.如图1为两个边长为1的正方形组成的2X1格点图,点A,B,C,£>都在格点上,AB,CD交于点P,则tanZBPD=,如果是"个边长为1的正方形组成的“X1格点图,如图2,那15.如图,动点。
2020年浙江省金华市中考数学模拟试卷(一)(含答案解析)

2020年浙江省金华市中考数学模拟试卷(一)一、选择题(本大题共10小题,共30.0分)1.点P(3,−2)关于原点的对称点坐标是()A. (−3,2)B. (3,2)C. (−3,−2)D. (3,−2)2.下列事件中是随机事件的是()A. 打开电视机正在播放欧洲杯B. 深圳的夏天会下雨C. 掷一枚质地均匀的骰子,掷出的点数为8D. 平行于同一条直线的两条直线平行3.下列运算中结果正确的是()A. a3⋅a2=a6B. 3x2+2x2=5x4C. (2x2)3=6x6D. a10÷a9=a4.分别从正面、左面和上面看下列立体图形,得到的平面图形都一样的是()A. B. C. D.5.甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛,则恰好选中甲、乙两位同学打第一场比赛的概率是()A. 16B. 14C. 13D. 126.为了早日实现“绿色江阴”的目标,江阴对4000米长的西横河进行了绿化改造.为了尽快完成工期,施工队每天比原计划多绿化10米,结果提前2天完成.若原计划每天绿化x米,则所列方程正确的是()A. 4000x −4000x+10=2 B. 4000x+10−4000x=2C. 4000x−10−4000x=2 D. 4000x−4000x−10=27.如图,圆柱底面半径为2πcm,高为9cm,点A、B分别是圆柱两底面圆周上的点,且A、B在同一母线上,用一根棉线从A点顺着圆柱侧面绕3圈到B点,则这根棉线的长度最短为()A. 12cmB. 15cmC. 18cmD. 21cm8.如图,在4×5的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,那么sin∠ACB的值为()A. 3√55B. √175C. 35D. 459.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于(−1,0),(3,0)两点,则下列说法:①abc<0;②a−b+c=0;③2a+b=0;④2a+c>0;⑤若A(x1,y1),B(x2,y2),C(x3,y3)为抛物线上三点,且−1<x1<x2<1,x3>3,则y2<y1<y3,其中正确的结论是()A. ①⑤B. ②④C. ②③④D. ②③⑤10.已知点A(−1,−4),B(−1,4),则()A. A、B关于x轴对称B. A、B关于y轴对称C. 直线AB平行于x轴D. 直线AB垂直于y轴二、填空题(本大题共6小题,共24.0分)11.因式分解:4m2−n2=.12.比较大小:−821______−37(填“>”“<”或“=”).13.如图,已知△ABC,D、E分别是边BA、CA延长线上的点,且DE//BC.如果DEBC =35,CE=4,那么AE的长为______.14.如图,函数y=−2x和y=ax+4的图象相交于A(m,3),则关于x的不等式0<ax+4<−2x的解集是______.(x>0)的15.如图,在Rt△ABC中,AB=AC=2√5,顶点A在y轴上,顶点C在反比例函数y=12x 图象上,已知点C的纵坐标是3,则经过点B的反比例函数的解析式为.x2−3与x轴交于A,B两点,与y轴交于16.如图所示,抛物线y=13点C,M为第一象限抛物线上一点,且∠MCB=15°,则S△MCB=______.三、解答题(本大题共8小题,共66.0分)17.计算:√27−|1−√3|−sin30°+2−1.18.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,−1).①以O为位似中心在第二象限作位似比为1:2变换,得到对应的△A1B1C1,画出△A1B1C1,并写出C1的坐标;②以原点O为旋转中心,画出把△ABC顺时针旋转90°的图形△A2B2C2,并写出C2的坐标.19.如图,在▱ABCD中,对角线AC、BD相交于点O,过点O的直线分别交BC、AD于点E、F,G、H分别是OB、OD的中点.求证:(1)OE=OF;(2)四边形GEHF是平行四边形.20.对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分4个等级,将调查结果绘制成如下条形统计图和扇形统计图.(1)成绩记为2分的学生共有______名,这些学生成绩的中位数是______;(2)这些学生的平均分数是多少?21.已知:AB为⊙O的直径,延长AB到点P,过点P作圆O的切线,切点为C,连接AC,且AC=CP.(1)求∠P的度数;(2)若点D是弧AB的中点,连接CD交AB于点E,且DE⋅DC=20,求⊙O的面积.(π取3.14)22.百货商场服装柜在销售中发现:某品牌童装平均每天可售出20件,每件盈利40元.为了迎接“六一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出2件.(1)假设每件童装降价x元,商场每天销售这种童装的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种童装销售中每天盈利1200元,同时又要使顾客得到实惠,每件童装应降价多少元?(3)每件童装降价多少元时,商场每天销售这种童装的利润最高?最高利润是多少?23.如图,△ABC为等边三角形,过点B作BD⊥AC于点D,过D作DE//BC,且DE=CD,连接CE,(1)求证:△CDE为等边三角形;(2)请连接BE,若AB=4,求BE的长.24.如图,已知抛物线y=√33x2−2√33x与x轴相交于O、A两点,B为顶点,C是第二象限内抛物线上一点,且∠AOC=120°.(1)求点C的坐标;(2)向下平移该抛物线得到一条新抛物线,设新抛物线与x轴相交于点O′、A′(点A′在点O′的右侧).问:是否存在以点A′、A、B为顶点且与△OBC相似的三角形?若存在,求出新抛物线对应的函数表达式;若不存在,请说明理由.【答案与解析】1.答案:A解析:解:根据关于原点对称的点的坐标的特点,∴点A(3,−2)关于原点过对称的点的坐标是(−3,2).故答案为(−3,2).故选:A.根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(−x,−y),即关于原点的对称点,横纵坐标都变成相反数”解答.本题主要考查了关于原点对称的点的坐标的特点,此题比较简单,易于掌握.2.答案:A解析:随机事件就是可能发生也可能不发生的事件,根据定义即可判断.本题考查了随机事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.解:A、打开电视机正在播放欧洲杯是随机事件,选项正确;B、深圳的夏天会下雨,是必然事件,选项错误;C、掷一枚质地均匀的骰子,掷出的点数为8,是不可能事件,选项错误;D、平行于同一条直线的两条直线平行,是必然事件,选项错误.故选A.3.答案:D解析:解:A、原式=a5,错误;B、原式=5x2,错误;C、原式=8x6,错误;D、原式=a,正确,故选D.利用同底数幂的乘除法,幂的乘方以及合并同类项法则计算得到结果,即可作出判断.此题考查了同底数幂的乘除法,幂的乘方、合并同类项,熟练掌握运算法则是解本题的关键.4.答案:A解析:此题主要考查了简单几何体的三视图,关键是掌握三视图所看的位置.分别判断出四个立体图形的三视图,即可得到答案.解:A.球从正面、左面和上面看都是圆,故此选项正确;B.圆锥从上面看是有圆心的圆、从左面和正面看都是三角形,故此选项错误;C.长方体从正面、左面、上面看都是长方形,但是长方形的形状不同,故此选项错误;D.圆柱体从正面、左面看都是长方形,从上面看是圆形,故此选项错误;故选A.5.答案:A解析:解:列表得:∴所有等可能性的结果有12种,其中恰好选中甲、乙两位同学的结果有2种,∴恰好选中甲、乙两位同学的概率为:212=16,故选:A.此题需要两步完成,所以采用树状图法或者采用列表法都比较简单,求得全部情况的总数与符合条件的情况数目;二者的比值就是其发生的概率.本题考查的是用列表法或画树状图法求概率与古典概率的求解方法.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比6.答案:A解析:本题考查了由实际问题抽象出分式方程,列方程解应用题的关键步骤在于找等量关系.本题用到的关系为:工作时间=工作总量÷工作效率.关键描述语是:“提前2天完成绿化改造任务”.等量关系为:原计划的工作时间−实际的工作时间=2.解:若设原计划每天绿化x米,则实际每天绿化(x+10)米,原计划的工作时间为:4000x ,实际的工作时间为:4000x+10,根据题意得:4000x −4000x+10=2.故选A.7.答案:B解析:本题主要考查了圆柱的计算、平面展开--路径最短问题,勾股定理,线段的性质:两点之间线段最短,圆柱的侧面展开图是一个长方形,此长方形的宽等于圆柱底面周长,长方形的长等于圆柱的高.本题就是把圆柱的侧面展开成长方形,“化曲面为平面”,用勾股定理解决.求圆柱体上两点之间的最短路径,最直接的作法,就是将圆柱体展开,然后利用两点之间线段最短解答.解:如图圆柱体的展开图如图所示:用一棉线从A顺着圆柱侧面绕3圈到B的运动最短路线是:AC→CD→DB;即在圆柱体的展开图长方形中,将长方形平均分成3个小长方形,A沿着3个长方形的对角线运动到B的路线最短;∵圆柱底面半径为2πcm,∴长方形的宽即是圆柱体的底面周长:2π×2π=4cm,又∵圆柱高为9cm,∴小长方形的一条边长是3cm;根据勾股定理求得AC=CD=DB=5cm;∴AC+CD+DB=15cm.故选B.8.答案:D解析:解:如图,过点A作AH⊥BC于H.在Rt△ACH中,∵AH=4,CH=3,∴AC=√AH2+CH2=√42+32=5,∴sin∠ACH=AHAC =45,故选:D.如图,过点A作AH⊥BC于H.利用勾股定理求出AC即可解决问题.本题考查解直角三角形,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.9.答案:D解析:解:①abc<0,由图象知c<0,a、b异号,所以,①错误;②a−b+c=0,当x=−1时,y=a−b+c=0,正确;=1,故正确;③2a+b=0,函数对称轴x=−b2a④2a+c>0,由②、③知:3a+c=0,而−a<0,∴2a+c<0,故错误;⑤若A(x1,y1),B(x2,y2),C(x3,y3)为抛物线上三点,且−1<x1<x2<1,x3>3,则y2<y1<y3,把A、B、C坐标大致在图上标出,可知正确;故选:D.根据二次函数的性质,图像上的点坐标特征对选项一一分析求解即可.主要考查图象与二次函数系数之间的关系,会求对称轴、x=±1等特殊点y的值.10.答案:A解析:本题主要考查的是关于x轴对称的点的坐标的有关知识,根据A(−1,−4),B(−1,4)横坐标不变,纵坐标互为相反数进行求解即可.解:∵A(−1,−4),B(−1,4)中横坐标都为−1,纵坐标−4和4互为相反数,∴A、B关于x轴对称.故选A.11.答案:(2m+n)(2m−n)解析:此题考查了平方差公式进行因式分解,熟练掌握平方差公式是解本题的关键.原式利用平方差公式分解即可.解:原式=(2m+n)(2m−n).故答案为:(2m+n)(2m−n).12.答案:>解析:本题是对有理数的大小比较的考查,先通分,比较二者绝对值的大小,然后比较大小.本题主要考查了有理数的大小比较,属于基础题.解:−37= −921,|−821|=821<|−921|=921,所以−821> −37.故答案为:>.13.答案:32解析:解:∵DE//BC ∴△ADE∽△ABC∴DE=AE=3∴设AE=3k,AC=5k(k≠0)),∴CE=3k+5k=4,∴k=1∴AE=3k=3 2故答案为:32根据相似三角形的性质可得DEBC =AEAC=35,即可求AE的长.本题考查了相似三角形的判定和性质,熟练运用相似三角形的性质是本题的关键.14.答案:−6<x<−32解析:本题考查了一次函数与一元一次不等式:一次函数与一元一次不等式的关系从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.先把A(m,3)代入y=−2x得到A(−32,3),再把A点坐标代入y=ax+4求出a,接着计算出直线y= ax+4与x轴的交点坐标,然后找出直线y=ax+4在x轴上方且在直线y=−2x的下方所对应的自变量的范围即可.解:当y =3时,−2x =3,解得x =−32,则两直线的交点A 坐标为(−32,3),把(−32,3)代入y =ax +4得−32a +4=3,解得a =23,当y =0时,23x +4=0,解得x =−6,则直线y =ax +4与x 轴的交点坐标为(−6,0),所以当−6<x <−32时,0<ax +4<−2x .故答案为−6<x <−32. 15.答案:y =−2x解析:本题主要考查了待定系数法求反比例函数解析式以及反比例函数图象上点的坐标特征,解题时注意:反比例函数图象上的点(x,y)的横纵坐标的积是定值k ,即xy =k.过C 作CD ⊥y 轴于D ,过B 作BE ⊥y 轴于E ,即可得到△ABE≌△CAD ,依据全等三角形的性质以及点C 的坐标,即可得到点B 的坐标,进而得出经过点B 的反比例函数的解析式.解:如图所示,过C 作CD ⊥y 轴于D ,过B 作BE ⊥y 轴于E ,则∠CDA =∠AEB =90°,又∵∠BAC =90°,∴∠BAE +∠CAD =∠ACD +∠CAD =90°,∴∠BAE =∠ACD ,又∵AB =CA ,∴△ABE≌△CAD(AAS),(x>0)的图象上,点C的纵坐标为3,又∵顶点C在反比例函数y=12x∴点C的横坐标为4,∴CD=4=AE,OD=3,∴Rt△ACD中,AD=√AC2−CD2=√(2√5)2−42=2,∴BE=AD=2,AO=AD+DO=2+3=5,∴OE=AO−AE=5−4=1,∴B(−2,1),∴经过点B的反比例函数的解析式为y=−2.x.故答案为y=−2x16.答案:27−9√32x2−3,解析:解:∵抛物线y=13∴当x=0时,y=−3,当y=0时,x=±3,∴点A(−3,0),点B(3,0),点C(0,−3),∴OC=OB=3,∵∠COB=90°,∴∠OCB=∠OBC=45°,∵∠MCB=15°,OC=3,∴∠COM=30°,设CM与x轴的交点为N,∴ON =3×tan30°=√3, ∴点N 的坐标为(√3,0),BN =3−√3, 设过点C(0,−3),N(√3,0)直线解析式为y =kx +b ,{b =−3√3k +b =0,得{k =√3b =−3, ∴y =√3x −3,由{y =13x 2−3y =√3x −3得,{x =0y =−3或{x =3√3y =6, ∴点M 的坐标为(3√3,6),∴S △MCB =S △NCB +S △NBM =(3−√3)×32+(3−√3)×62=27−9√32, 故答案为:27−9√32.根据题意可以求得点A 、点B 、点C 、点M 的坐标,从而可以求得△MCB 的面积,本题得以解决. 本题考查抛物线与x 轴的交点坐标、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.17.答案:2√3+1解析:[分析]原式利用二次根式性质,绝对值的意义,特殊角的三角函数值,以及负整数指数幂法则计算即可求出值.[详解]解:原式=3√3−√3+1−12+12=2√3+1.[点睛]本题考查实数的混合运算,掌握二次根式性质,绝对值的意义,特殊角的三角函数值,以及负整数指数幂法则是解题的关键.18.答案:解:①如图所示:△A 1B 1C 1,即为所求,C1的坐标为:(−8,2);②如图所示:△A2B2C2,即为所求,C2的坐标为:(−1,−4).解析:①直接利用位似图形的性质得出对应点位置进而得出答案;②直接利用旋转的性质得出对应点位置,进而得出答案.此题主要考查了位似变换以及旋转变换,正确得出对应点位置是解题关键.19.答案:证明:(1)∵四边形ABCD是平行四边形∴AD//BC,OA=OC,OB=OD∴∠DAC=∠BCA,且OA=OC,∠AOE=∠COF∴△AOE≌△COF(ASA)∴OE=OF(2)∵OB=OD,G、H分别是OB、OD的中点∴GO=OH,且OE=OF∴四边形GEHF是平行四边形.解析:(1)由“AAS”证明△AOE≌△COF,可得OE=OF;(2)由对角线互相平分的四边形是平行四边形可证四边形GEHF是平行四边形.本题考查了平行四边形的判定与性质,全等三角形的判定和性质,灵活运用平行四边形的判定和性质是本题的关键.20.答案:解:(1)8;3;(2)平均分是:(3×1+8×2+17×3+12×4)÷40=2.95(分).答:这些学生的平均分数是2.95分.解析:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.(1)根据分数是4分的有12人,占30%,据此即可求得总人数,然后根据百分比的定义求得成绩是3分的人数,进而用总数减去其它各组的人数求得成绩是2分的人数,根据中位数的定义求解可得;(2)利用加权平均数公式求解.解:(1)参加体育测试的人数是:12÷30%=40(人),成绩是3分的人数是:40×42.5%=17(人),成绩是2分的人数是:40−3−17−12=8(人),∴这些学生成绩的中位数是3分,故答案为:8;3;(2)见答案.21.答案:解:(1)连接OC,∵PC为⊙O的切线,∴∠OCP=90°,即∠2+∠P=90°,∵AC=PC,∴∠P=∠CAO,又∵∠2=2∠CAO,∴∠2=2∠CAO=2∠P,∴2∠P+∠P=90°,∴∠P=30°;(2)连接AD,∵D为AB⏜的中点,∴∠ACD=∠DAE,又∵∠ADE=∠CDA,∴△ACD∽△EAD,∴ADDE =DCAD,即AD2=DC⋅DE,∵DC⋅DE=20,∴AD=2√5,∵AD⏜=BD⏜,∴AD=BD,∵AB是⊙O的直径,∴∠ADB=90°,∴Rt△ADB为等腰直角三角形,∴AB=2√10,∴OA=1AB=√10,2∴S⊙O=π⋅OA2=10π=31.4.解析:此题考查了相似三角形的判定与性质,圆心角、弧,弦的关系定理和圆周角定理,以及切线的性质,熟练掌握相似三角形的判定与性质是解本题的关键.(1)连接OC,由PC为圆的切线,利用切线的性质得到∠OCP为直角,利用等边对等角及圆周角定理求出所求即可;(2)连接AD,由D为弧AB的中点,利用等弧所对的圆周角相等,再由公共角相等,得到△ACD与△EAD 相似,由相似得比例求出AD的长,进而求出AB的长,求出OA的长,求出面积即可.22.答案:解:(1)∵每件童装降价1元,那么平均每天就可多售出2件,∴每件童装降价x元,那么平均每天就可多售出:2x件,那么平均每天就可售出:20+2x(件),每天销售这种童装的利润是(40−x)(20+2x)元,∴y与x之间的函数表达式y=(20+2x)(40−x),即y=−2x2+60x+800;(2)设降价x元的盈利为w,则w=(20+2x)(40−x)=−2x2+60x+800,当w=1200时,−2x2+60x+800=1200,解得:x=10或20,∵要使顾客得到实惠,∴当降价20元时,平均每天销售这种童装上盈利1200元;(3)w=−2x2+60x+800=−2(x−15)2+1250当x=15时,w取最大值,最大值为1250,即当降阶15元时,商场盈利最多为1250元.答:当降阶15元时,商场盈利最多,最多盈利为1250元.解析:本题考查了二次函数的应用,解答本题需要得出降价与盈利之间的函数关系式,要求熟练运用配方法求函数解析式,难度一般.(1)先求出降价x元后的销售量,然后得出每件的利润,继而可求出每天的盈利y,得出y与x之间的函数表达式;(2)设降价x元的盈利为w则可得出w关于x的函数关系式,令w=1200,即可解出x的值.(3)根据(2)的函数关系式,运用配方法求函数最值即可.23.答案:解:(1)∵△ABC为等边三角形,∴∠ACB=60°,∵DE//BC,∴∠EDC=∠ACB=60°,又∵DE=DC,∴△CDE为等边三角形;(2)过点E作EH⊥BC于H,∵BD⊥AC,∴CD=12AC=12AB=2,又∵△CDE为等边三角形,∴CE=CD=2,∵∠ECH=60°,∴EH=EC⋅sin60°=2×√32=√3,CH=EC⋅cos60°=1,∴BE=√BH2+EH2=√52+(√3)2=√28=2√7.解析:(1)根据∠EDC=60°,DE=DC,运用有一个角是60°的等腰三角形是等边三角形进行判断即可.(2)过点E作EH⊥BC于H,构造直角三角形,先求得EH=EC⋅sin60°=2×√32=√3,CH=EC⋅cos60°=1,进而得到BE=√BH2+EH2=√52+(√3)2=√28=2√7.本题主要考查了等边三角形的判定与性质,解直角三角形以及勾股定理的运用,解决问题的关键是作辅助线构造直角三角形.解题时注意:有一个角是60°的等腰三角形是等边三角形. 24.答案:解:(1)令y =0,则x =2,则函数对称轴为x =1,故点A(2,0)、B(1,−√33), ∠AOC =120°,则直线OC 的倾斜角为60°,则直线OC 的表达式为:y =−√3x ,将直线OC 的表达式与二次函数表达式联立并解得:x =−1,即点C(−1,√3);(2)存在,理由:如图所示,△ABA′只可能∠BAA′为钝角,OB 2=12+(−√33)2=43,同理CO 2=4,AB 2=43, ①当△A′AB∽△COB 时,AA′AB =OCOB ,解得:AA′=2, ②当△BAA′∽△COB 时,同理可得:AA′=23,故点A′的坐标为(4,0)或(83,0);设抛物线向下平移n 个单位,则平移后的表达式为:y =√33x 2−2√33x +n , 将点A′的坐标代入上式并解得:n =−8√33或−16√327, 则新抛物线对应的函数表达式:y =√33x 2−2√33x −8√33或y =√33x 2−2√33x −16√327.解析:本题考查的是二次函数综合运用,涉及到函数平移、三角形相似等知识,难度不大,但要避免遗漏.(1)求出点A(2,0)、B(1,−√3),∠AOC=120°,则直线OC的倾斜角为60°,则直线OC的表达式为:3y=−√3x,即可求解;(2)分△A′AB∽△COB、△BAA′∽△COB,两种情况讨论求解.。
2020年浙江省杭州市上城区中考数学模拟试卷

中考数学模拟试卷题号一二三总分得分一、选择题(本大题共10小题,共40.0分)1.某种鲸鱼的体重约为1.36×105千克,关于这个近似数,下列说法正确的是()A. 精确到百分位B. 精确到十分位C. 精确到个位D. 精确到千位2.下列语句写成数学式子正确的是()A. 9是81的算术平方根:±=9B. 5是(-5)2的算术平方根:±=5C. ±6是36的平方根:=±6D. -2是4的负的平方根:-=-23.下列定理中,逆命题是假命题的是()A. 在一个三角形中,等角对等边B. 全等三角形对应角相等C. 有一个角是60度的等腰三角形是等边三角形D. 等腰三角形两个底角相等4.某商贩去菜摊买黄瓜,他上午买了30斤,价格为每斤x元;下午,他又买了20斤,价格为每斤y元.后来他以每斤元的价格卖完后,结果发现自己赔了钱,其原因是()A. x<yB. x>yC. x≤yD. x≥y5.已知一个函数图象经过(1,-4),(2,-2)两点,在自变量x的某个取值范围内,都有函数值y随x的增大而减小,则符合上述条件的函数可能是()A. 正比例函数B. 一次函数C. 反比例函数D. 二次函数6.在平面直角坐标系中,过点(-2,3)的直线l经过一、二、三象限,若点(0,a),(-1,b),(c,-1)都在直线l上,则下列判断正确的是()A. a<bB. a<3C. b<3D. c<-27.在同一直角坐标系中,函数y=kx+1与y=(k≠0)的图象大致是()A. B.C. D.8.我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”.如图是由弦图变化得到,它是用八个全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3.若S1+S2+S3=12,则下列关于S1、S2、S3的说法正确的是()A. S1=2B. S2=3C. S3=6D. S1+S3=89.已知△A1B1C1,△A2B2C2的周长相等,现有两个判断:①若A1B1=A2B2,A1C1=A2C2,则△A1B1C1≌△A2B2C2;②若∠A1=∠A2,∠B1=∠B2,则△A1B1C1≌△A2B2C2,对于上述的两个判断,下列说法正确的是()A. ①正确,②错误B. ①错误,②正确C. ①,②都错误D. ①,②都正确10.已知:如图△ABC中,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④BA+BC=2BF.其中正确的是()A. ①②③B. ①③④C. ①②④D. ①②③④二、填空题(本大题共6小题,共30.0分)11.分解因式:m4-81m2=______.12.等腰三角形一腰上的高与另一腰的夹角是28°,则顶角是______.13.设直线y=-x+2k+7与直线y=x+4k-3的交点为M,若点M在第一象限或第二象限,则k的取值范围是______ .14.如图,在锐角△ABC中,AB=5,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD,AB上的动点,则BM+MN的最小值是______.15.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是______(用a、b的代数式表示).16.如图,在△ABC中,∠C=90°,点D、E、F分别在边BC、AB、AC上,且四边形CDEF为正方形,若AE=3,BE=5,则S△AEF+S△EDB=______.三、解答题(本大题共3小题,共30.0分)17.(1)先化简÷(1+),再从0,-1,1这三个数中选一个你喜欢的数代入求值.(2)解不等式组18.如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm的速度沿折线A-C-B-A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足PA=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值;(3)在运动过程中,直接写出当t为何值时,△BCP为等腰三角形.19.已知函数y=-x2+bx+c(其中b,c是常数)(1)四位同学在研究此函数时,甲发现当x=0时,y=5;乙发现函数的最大值为9;丙发现函数图象的对称轴是直线x=2;丁发现4是方程-x2+bx+c=0的一个根.已知这四位同学中只有一位发现的结论是错误的,请直接写出错误的那个人是谁,并求出此函数表达式;(2)在(1)的条件下,函数y=-x2+bx+c的图象顶点为A,与x轴正半轴交点为B,与y轴的交点为C,若将该图象向下平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包括△ABC的边界),求m的取值范围;(3)若c=b2,当-2≤x≤0时,函数y=-x2+bx+c的最大值为5,求b的值.答案和解析1.【答案】D【解析】解:近似数1.36×105精确到千位.故选D.根据近似数的精确度求解.本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.2.【答案】D【解析】解:A、9是81的算术平方根记作=9,故本选项错误;B、5是(-5)2的算术平方根记作=5,故本选项错误;C、±6是36的平方根:±=±6,故本选项错误;D、-2是4的负平方根记作:-=-2,故本选项正确.故选D.根据算术平方根和平方根的定义确定正确的答案即可.本题考查了算术平方根及平方根的定义,解题的关键是正确的了解其性质.3.【答案】B【解析】解:A、逆命题为:在一个三角形中等角对等边,正确,是真命题;逆命题为两直线平行,同位角相等,正确,为真命题;B、全等三角形的对应角相等的逆命题是对应角相等的三角形是全等三角形,是假命题;C、逆命题为:三条边对应相等的三角形全等,正确,是真命题;D、逆命题为:两个角相等的三角形是等腰三角形,正确,是真命题;故选:B.分别写出原命题的逆命题,然后判断真假即可.本题考查了命题与定理的知识,解题的关键是能够正确的写出原命题的逆命题,难度不大.4.【答案】B【解析】解:根据题意得,他买黄瓜每斤平均价是以每斤元的价格卖完后,结果发现自己赔了钱则>解之得,x>y.所以赔钱的原因是x>y.故选:B.题目中的不等关系是:买黄瓜每斤平均价>卖黄瓜每斤平均价.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.5.【答案】D【解析】解:设一次函数解析式为:y=kx+b,由题意得,,解得,,∵k>0,∴y随x的增大而增大,∴A、B错误,设反比例函数解析式为:y=,由题意得,k=-4,k<0,∴在每个象限,y随x的增大而增大,∴C错误,当抛物线开口向上,x>1时,y随x的增大而减小.故选:D.求出一次函数和反比例函数的解析式,根据其性质进行判断.本题考查的是正比例函数、一次函数、反比例函数和二次函数的性质,掌握各个函数的增减性是解题的关键.6.【答案】D【解析】解:设一次函数的解析式为y=kx+t(k≠0),∵直线l过点(-2,3).点(0,a),(-1,b),(c,-1),∴斜率k===,即k==b-3=,∵直线l经过一、二、三象限,∴k>0,∴a>3,b>3,c<-2.故选D.设一次函数的解析式为y=kx+b(k≠0),根据直线l过点(-2,3).点(0,a),(-1,b),(c,-1)得出斜率k的表达式,再根据经过一、二、三象限判断出k的符号,由此即可得出结论.本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.7.【答案】A【解析】解:k>0时,一次函数y=kx+1的图象经过第一、二、三象限,反比例函数的两个分支分别位于第二、四象限,无符合选项;k<0时,一次函数y=kx+1的图象经过第一、二、四象限,反比例函数的两个分支分别位于第一、三象限,A选项符合.故选:A.比例系数相同,两个函数必有交点,然后根据比例系数的符号确定正确选项即可.本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.8.【答案】D【解析】解:∵八个直角三角形全等,四边形ABCD,EFGH,MNKT是正方形,∴CG=NG,CF=DG=NF,∴S1=(CG+DG)2,=CG2+DG2+2CG•DG,=GF2+2CG•DG,S2=GF2,S3=(NG-NF)2=NG2+NF2-2NG•NF,∴S1+S2+S3=GF2+2CG•DG+GF2+NG2+NF2-2NG•NF=3GF2=12,∴GF2=4,∴S2=4,∵S1+S2+S3=12,∴S1+S3=8,故选:D.根据八个直角三角形全等,四边形ABCD,EFGH,MNKT是正方形,得出CG=NG,CF=DG=NF,再根据三个正方形面积公式列式相加:S1+S2+S3=12,求出GF2的值,从而可以计算结论即可.此题主要考查了勾股定理的应用,用到的知识点是勾股定理和正方形、全等三角形的性质,根据已知得出3GF2=12是解决问题的关键.9.【答案】D【解析】解:∵△A1B1C1,△A2B2C2的周长相等,A1B1=A2B2,A1C1=A2C2,∴B1C1=B2C2,∴△A1B1C1≌△A2B2C2(SSS),∴①正确;∵∠A1=∠A2,∠B1=∠B2,∴△A1B1C1∽△A2B2C2∵△A1B1C1,△A2B2C2的周长相等,∴△A1B1C1≌△A2B2C2∴②正确;故选:D.根据SSS即可推出△A1B1C1≌△A2B2C2,判断①正确;根据“两角法”推知两个三角形相似,然后结合两个三角形的周长相等推出两三角形全等,即可判断②.本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,而AAA和SSA不能判断两三角形全等.10.【答案】D【解析】【分析】本题考查了全等三角形的判定,考查了全等三角形的对应边、对应角相等的性质,本题中熟练求证三角形全等和熟练运用全等三角形对应角、对应边相等性质是解题的关键.易证△ABD≌△EBC,可得∠BCE=∠BDA,AD=EC可得①②正确,再根据角平分线的性质可求得∠DAE=∠DCE,即③正确,根据③可求得④正确.【解答】解:①∵BD为△ABC的角平分线,∴∠ABD=∠CBD,∴在△ABD和△EBC中,,∴△ABD≌△EBC(SAS),①正确;②∵BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC=∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,…②正确;③∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,∴∠DCE=∠DAE,∴△ACE为等腰三角形,∴AE=EC,∵△ABD≌△EBC,∴AD=EC,∴AD=AE=EC.…③正确;④过E作EG⊥BC于G点,∵E是∠ABC的角平分线BD上的点,且EF⊥AB,∴EF=EG(角平分线上的点到角的两边的距离相等),∵在Rt△BEG和Rt△BEF中,,∴Rt△BEG≌Rt△BEF(HL),∴BG=BF,∵在Rt△CEG和Rt△AFE中,,∴Rt△CEG≌Rt△AFE(HL),∴AF=CG,∴BA+BC=BF+FA+BG-CG=BF+BG=2BF.…④正确.故选D.11.【答案】m2(m-9)(m+9)【解析】解:原式=m2(m2-81),=m2(m-9)(m+9).故答案为:m2(m-9)(m+9).首先提公因式m2,再利用平方差进行二次分解即可.此题主要考查了提公因式法与公式法分解因式,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.12.【答案】62°或118°【解析】解:分两种情况:①当高在三角形内部时(如图1),∵∠ABD=28°,∴顶角∠A=90°-28°=62°;②当高在三角形外部时(如图2),∵∠ABD=28°,∴顶角∠CAB=90°+28°=118°.故答案为:62°或118°.等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成立,因而可分两种情况进行讨论.此题主要考查等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出62°一种情况,把三角形简单的认为是锐角三角形.因此此题属于易错题.13.【答案】k>-且k≠5【解析】解:联立,解得,∵交点M在第一象限或第二象限,∴3k+2>0且5-k≠0,解得k>-且k≠5.故答案为:k>-且k≠5.把k看作常数,联立两函数解析式求出交点坐标,再根据交点在第一象限或第二象限,横坐标不等于0,纵坐标大于0列出不等式组求解即可.本题考查了两直线相交的问题,联立两函数解析式求交点坐标的方法是常用的方法,要注意象限内的交点的横坐标不能为零.14.【答案】5【解析】解:如图,作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN为所求的最小值.∵AD是∠BAC的平分线,∴M′H=MN,∴BH是点B到直线AC的最短距离(垂线段最短),∵AB=5,∠BAC=45°,∴BH=AB•sin45°=5×=5.∵BM+MN的最小值是BM+MN=BM+MH=BH=5.故答案为:5.作BH⊥AC,垂足为H,交AD于M点,过M点作MN⊥AB,垂足为N,则BM+MN为所求的最小值,再根据AD是∠BAC的平分线可知MH=MN,再由锐角三角函数的定义即可得出结论.本题考查的是轴对称-最短路线问题,解答此类问题时要从已知条件结合图形认真思考,通过角平分线性质,垂线段最短,确定线段和的最小值.15.【答案】ab【解析】【分析】本题考查了平方差公式的几何背景,正确求出大小正方形的边长列代数式,以及整式的化简,正确对整式进行化简是关键.利用大正方形的面积减去4个小正方形的面积即可求解.【解答】解:设大正方形的边长为x1,小正方形的边长为x2,由图①和②列出方程组得,解得,②的大正方形中未被小正方形覆盖部分的面积=()2-4×()2=ab.故答案为:ab.16.【答案】【解析】解:设正方形CDEF的边长为x,则RF=DE=x,∵EF∥BC,∴∠AEF=∠B,∵∠AFE=∠EDB=90°,∴△AEF∽△EBD,∴==,即==,∴AF=x,BD=x,在Rt△BDE中,x2+(x)2=52,∴x2=,∴S△AEF+S△EDB=•x•x+•x•x=x2=×=.故答案为.设正方形CDEF的边长为x,则RF=DE=x,证明△AEF∽△EBD,利用相似比得到AF=x,BD=x,在Rt△BDE中利用勾股定理得到x2+(x)2=52,则x2=,然后根据三角形面积公式计算S△AEF+S△EDB.本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形,灵活运用相似三角形的性质表示线段之间的关系;也考查了正方形的性质.17.【答案】解:(1)原式=÷,=•,=,∵a-1≠0,a+1≠0,∴a≠±1,∴a取0,当a=0时,原式=-1;(2),由①得:m≥3,由②得:m<6,∴不等式组的解集为3≤m<6.【解析】(1)首先计算括号里面的加法,然后再算括号外的除法,化简后,根据分式有意义的条件确定a的取值,再代入a的值即可;(2)首先分别计算出两个不等式的解集,再根据解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到确定不等式组的解集.此题主要考查了分式的化简求值以及一元一次不等式组的解法,关键是掌握计算顺序,正确把分式进行化简.18.【答案】解:在Rt△ABC中,∵AB=5cm,BC=3cm,∴AC=4cm,(1)设存在点P,使得PA=PB,此时PA=PB=2t,PC=4-2t,在Rt△PCB中,PC2+CB2=PB2,即:(4-2t)2+32=(2t)2,解得:t=,∴当t=时,PA=PB;(2)当点P在∠BAC的平分线上时,如图1,过点P作PE⊥AB于点E,此时BP=7-2t,PE=PC=2t-4,BE=5-4=1,在Rt△BEP中,PE2+BE2=BP2,即:(2t-4)2+12=(7-2t)2,解得:t=,∴当时,P在△ABC的角平分线上;(3)根据题意得:AP=2t,当P在AC上时,△BCP为等腰三角形,∴PC=BC,即4-2t=3,∴t=,当P在AB上时,△BCP为等腰三角形,①CP=PB,点P在BC的垂直平分线上,如图2,过P作PE⊥BC于E,∴BE=BC=,∴PB=AB,即2t-3-4=,解得:t=,②PB=BC,即2t-3-4=3,解得:t=5,③PC=BC,如图3,过C作CF⊥AB于F,∴BF=BP,∵∠ACB=90°,由射影定理得;BC2=BF•AB,即32=×5,解得:t=,∴当时,△BCP为等腰三角形.【解析】(1)设存在点P,使得PA=PB,此时PA=PB=2t,PC=4-2t,根据勾股定理列方程即可得到结论;(2)当点P在∠CAB的平分线上时,如图1,过点P作PE⊥AB于点E,此时BP=7-2t,PE=PC=2t-4,BE=5-4=1,根据勾股定理列方程即可得到结论;(3)在Rt△ABC中,根据勾股定理得到AC=4cm,根据题意得:AP=2t,当P在AC上时,△BCP为等腰三角形,得到PC=BC,即4-2t=3,求得t=,当P在AB上时,△BCP 为等腰三角形,若CP=PB,点P在BC的垂直平分线上,如图2,过P作PE⊥BC于E,求得t=,若PB=BC,即2t-3-4=3,解得t=5,③PC=BC,如图3,过C作CF⊥AB于F,由射影定理得;BC2=BF•AB,列方程32=×5,即可得到结论.本题考查了等腰三角形的判定,三角形的面积,难度适中.利用分类讨论的思想是解(3)题的关键.19.【答案】解:(1)甲发现当x=0时,y=5,则c=5;乙发现函数的最大值为9,即c+=9;丙发现函数图象的对称轴是直线x=2,则-=4,即b=4;丁发现4是方程-x2+bx+c=0的一个根,则c+4b=16,假设甲和丙正确,即c=5,b=4,则即c+=9,故乙正确,而丁错误,故错误的是丁,函数的表达式为:y=-x2+4x+5;(2)y=-x2+4x+5,则点A(2,9),平移后顶点坐标为:(2,9-m),y=-x2+4x+5,令y=0,则x=5或-1,故点B(5,0),而点C(0,5),过点A作y轴的平行线交BC于点H,由点B、C的坐标得,直线BC的表达式为:y=-x+5,当x=2时,y=3,故点H(2,3),函数图象的顶点落在△ABC的内部,则3<9-m<9,解得:0<m<6;(3)c=b2,则抛物线的表达式为:y=x2+bx+b2,函数的对称轴为:x=b,①当b≥0时,即b≥0,则x=0时,y取得最大值,即b2=5,解得:b=(舍去负值);②当-2<b<0时,即-4<b<0,当x=b时,y取得最大值,即-(b)2+b2+b2=5,解得:b=±2(舍去2);③当b≤-4时,同理可得:b=1-(舍去);综上,b=或-2.【解析】(1)假设两位同学的结论正确,用其去验证另外两个同学的结论,只要找出一个正确一个错误,即可得出结论;(2)y=-x2+4x+5,则点A(2,9),平移后顶点坐标为:(2,9-m),按照平移后的图象顶点在点A、H之间求解即可;(3)分b≥0、-2<b<0、b≤-4三种情况,分别求解即可.本题考查的是二次函数综合运用,涉及到一次函数的性质、函数的最值、图形的平移等,综合性强,难度适中.。
2020年浙江省绍兴市中考数学模拟试卷解析版

2020年浙江省绍兴市中考数学模拟试卷解析版
一、选择题(每题4分,共40分)
1.(4分)给出四个数0,﹣2020,,2020,其中最大的数是()A.0B.﹣2020C.D.2020
【考点】实数大小比较.
【分析】根据实数的大小比较,即可解答.
【解答】解:∵﹣2020<0<<2020,
∴最大的数是2020,
故选:D.
【点评】本题考查了实数的大小比较,解决本题的关键是熟记实数的大小比较.2.(4分)如图是由五个相同的小立方块搭成的几何体,则它的俯视图是()
A.B.
C.D.
【考点】简单组合体的三视图.
【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.
【解答】解:从上面看易得上面一层有3个正方形,下面中间有一个正方形.故选:A.
【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.(4分)计算(3a2)2的正确结果是()
A.9a5B.6a5C.6a4D.9a4
【考点】幂的乘方与积的乘方.
第1 页共24 页。
2020届浙江省杭州市中考数学模拟试卷(2)(含解析)

2020届浙江省杭州市中考数学模拟试卷(2)一、选择题(本大题共10小题,共30.0分)1.2016的相反数是()A. 12016B. −12016C. ±2016D. −20162.不等式组:{x+1>34−x≥0的解集用数轴表示为()A. B.C. D.3.深圳地铁自开通以来,发展速度不断加快,现已成为深圳市民主要出行方式之一.截止到2017年12月31日,2017年总客流量达到14.39亿人次,日平均高达394.34万亿人次,位于全国地铁排行第四名.用科学记数法表示14.39亿为()A. 14.39×108B. 14.39×109C. 14.39×107D. 1.439×1094.下列计算,正确的是()A. 3+2ab=5abB. 5xy−y=5xC. −5m2n+5nm2=0D. x3−x=x25.如图,已知正五边形ABCDE内接于⊙O,连结BD,CE相交于点F,则∠BFC的度数是()A. 60°B. 70°C. 72°D. 90°6.如图,AB//EF,∠ABP=13∠ABC,∠EFP=13∠EFC,已知∠FCD=60°,则∠P的度数为()A. 60°B. 80°C. 90°D. 100°7.如图,某校把一块形状为直角三角形的废地开辟为生物园,∠ACB=90°,AC=80m,BC=60m,若线段CD是一条小渠,且D点在边AB上运动,已知水渠的造价为10元/m,则最低造价是()A. 100元B. 120元C. 240元D. 480元8.在反比例函数y=k−2图象的每一条曲线上,y都随x的增大而增大,则k的取值范围是()xA. k>2B. k>0C. k≥2D. k<29.下列函数中,图象在第一象限满足y的值随x的值增大而减少的是()C. y=2x−3D. y=−x2A. y=2xB. y=1x10.如图所示,∠AOP=∠BOP=15°,PC//OA,PD⊥OA.若PC=4,则PD的值为()A. 1.5B. 4C. 2D. 1二、填空题(本大题共6小题,共24.0分)11.某正数的平方根是a和a−16,则这个数的立方根为______.12.某校三个绿化小组一天植树的棵数如下:10,x,8,已知这组数据只有一个众数且众数等于中位数,那么这组数据的平均数是____________.13.分解因式:x3−3x=.14.圆锥的底面半径是4,母线长是9,则它的侧面展开图的圆心角的度数为______ .15.有这样一列代数式:2x,5x2,10x3,17x4,26x5,37x6,…,则第n个的代数式是______.16.四边形具有不稳定性.如图,将面积为5的矩形“推”成面积为4的平行四边形,则cosα的值为______.三、解答题(本大题共7小题,共66.0分)17.有这样一个问题:探究函数y=x2−1x的图象与性质:小宏根据学习函数的经验,对函数y=x2−1x的图象与性质进行了探究.下面是小宏的探究过程,请补充完整:(1)函数y=x2−1x的自变量x的取值范围是______;(2)下表是y与x的几组对应值x…−3−2−1−12−131312123…y…−83−320m83−83−3232n…求m,n的值;(3)如图,在平面直角坐标系xOy中,描出了以上表中各对应值为坐标的点,根据描出的点,画出该函数的图象;(4)结合函数的图象,写出该函数的性质(两条即可):①______②______.18.小明放学回家看到桌上有一盘小麻糕,妈妈说当中有芝麻馅、肉馅各1个,青菜馅2个,这些小麻糕除馅外无其他差别.(1)小明随机从盘中取出一个小麻糕,取出的是芝麻馅的概率是______.(2)小明随机从盘中一次取出两个小麻糕,试用画树状图或列表的方法表示所有可能的结果,并求取出的两个都是青菜馅的概率.19.解分式方程:xx−2+6x+2=1.20.已知:如图,点E、C在BF上,∠A=∠D,AB//DE.求证:AC//DF.21.如图1,已知正方形ABCD的边长为1,点A关于直线BP的对称点是点Q,连结PQ、DQ、CQ、BQ,设AP=x.(1)若点P是AD边上的一个动点,①如图1,当点Q落在对角线BD上时,求x的值;②如图2,若PQ的延长线交CD边于点E,并且∠CQD=90°,求△PDE的面积;(2)若点P是射线AD上的一个动点,当CQ=1时,求x的值.22.已知点A(−1,1)在二次函数y=x2+mx+2n的图象上.(1)用含n的代数式表示m;(2)如果二次函数的图象与x轴只有一个交点,求这个二次函数的图象的顶点坐标.23.在△ABC中,AB=AC,∠A=30°,将线段BC绕点B逆时针旋转60°得到线段BD,再将线段BD平移到EF,使点E在AB上,点F在AC上.(1)如图1,直接写出∠ABD和∠CFE的度数;(2)在图1中证明:AE=CF;(3)如图2,连接CE,判断△CEF的形状并加以证明.【答案与解析】1.答案:D解析:解:2016的相反数是−2016,故选:D .根据相反数的定义可得答案.此题主要考查了相反数,关键是掌握只有符号不同的两个数叫做互为相反数.2.答案:A解析:解:不等式组可化为:{x >2x ≤4, 在数轴上可表示为:故选A .本题应该先对不等式组进行化简,然后在数轴上分别表示出x 的取值范围,它们相交的地方就是不等式组的解集.本题考查不等式组解集的表示方法.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.3.答案:D解析:此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数. 解:14.39亿=1.439×109.故选D .4.答案:C解析:解:A、一个是数字,一个是字母,不是同类项,不能合并,错误;B、字母不同,不是同类项,不能合并,错误;C、正确;D、字母的指数不同,不是同类项,不能合并,错误.故选:C.根据同类项的概念及合并同类项的法则得出.本题主要考查同类项的概念和合并同类项的法则.同类项的概念是所含字母相同,相同字母的指数也相同的项是同类项,不是同类项的一定不能合并.合并同类项的法则,即系数相加作为系数,字母和字母的指数不变.5.答案:C解析:解:如图所示:∵五边形ABCDE为正五边形,∴BC=CD=DE,∠BCD=∠CDE=108°,=36°,∴∠CBD=∠CDB=∠CED=∠DCE=180°−108°2∴∠BFC=∠BDC+∠DCE=72°.故选:C.首先根据正五边形的性质得到BC=CD=DE,∠BCD=∠CDE=108°,然后利用三角形内角和定理=36°,最后利用三角形的外角的性质得到∠BFC=得∠CBD=∠CDB=∠CED=∠DCE=180°−108°2∠BDC+∠DCE=72°.本题考查的是多边形内角与外角,正五边形的性质,三角形内角和定理,等腰三角形的性质,利用数形结合求解是解答此题的关键.6.答案:B解析:解:过C作CQ//AB,∵AB//EF,∴AB//EF//CQ,∴∠ABC+∠BCQ=180°,∠EFC+∠FCQ=180°,∴∠ABC+∠BCF+∠EFC=360°,∵∠FCD=60°,∴∠BCF=120°,∴∠ABC+∠EFC=360°−120°=240°,∵,∠ABP=13∠ABC,∠EFP=13∠EFC,∴∠ABP+∠PFE=80°,∴∠P=80°,故选:B.过C作CQ//AB,利用平行线的性质和判定进行解答即可.此题考查平行线的性质,关键是利用平行线的性质和判定进行解答.7.答案:D解析:当CD为斜边上的高时,CD最短,从而水渠造价最低,∵∠ACB=90°,AC=80m,BC=60m,∴(m),∵CD·AB=AC·BC,即CD·100=80×60,∴CD=48m,∴水渠的最低造价为48×10=480(元).故选D.8.答案:D解析:解:∵反比例函数y=k−2x图象的每一条曲线上,y都随x的增大而增大,∴k−2<0,∴k<2故选:D.根据反比例函数的性质,可求k的取值范围.本题考查了反比例函数的性质,熟练掌握当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.9.答案:B解析:此题主要考查了函数的性质,正确掌握相关函数的性质是解题关键.直接利用一次函数以及反比例函数和二次函数的增减性进而分析得出答案.解:A.y=2x,图象在第一象限满足y的值随x的值增大而增大,故此选项错误;B.y=1,图象在第一象限满足y的值随x的值增大而减小,故此选项正确;xC.y=2x−3图象在第一象限满足y的值随x的值增大而增大,故此选项错误;D.、y=−x2,图象在第四象限满足y的值随x的值增大而减小,故此选项错误.故选B.10.答案:C解析:解:如图:过点P做PM//CO交AO于M,PM//CO∴∠CPO=∠POD,∠AOP=∠BOP=15°,PC//OA∴四边形COMP为菱形,PM=4PM//CO⇒∠PMD=∠AOP+∠BOP=30°,又∵PD⊥OAPC=2.∴PD=12令解:作CN⊥OA.OC=2,∴CN=12又∵∠CNO=∠PDO,∴CN//PD,∵PC//OD,∴四边形CNDP 是长方形,∴PD =CN =2故选:C .过点P 做PM//CO 交AO 于M ,可得∠CPO =∠POD ,再结合题目推出四边形COMP 为菱形,即可得PM =4,又由CO//PM 可得∠PMD =30°,由直角三角形性质即可得PD .本题考查角平分线的性质,关键是运用了平行线和直角三角形的性质,并且需通过辅助线求解. 11.答案:4解析:解:∵一个正数的平方根是a 和a −16,∴a 和a −16互为相反数,即a +(a −16)=0;解得a =8,则这个数为82=64,则这个数立方根为4,故答案为:4.根据正数的平方根有两个,且互为相反数,由此可得a 的方程,解方程即可得到a 的值;进而可得这个正数的立方根.本题考查了平方根和立方根的概念,解题的关键是掌握平方根和立方根的概念,注意一个正数有两个平方根,它们互为相反数.12.答案:283或263解析:解:因为这组数据只有一个众数且众数等于中位数,所以x =10或8,那么这组数据的平均数是13×(10+10+8)=283,或13×(10+8+8)=263.故填283或263. 13.答案:x(x +√3)(x −√3)解析:试题分析:先提取公因式x 后,再把剩下的式子写成x 2−(√3)2,符合平方差公式的特点,可以继续分解.x3−3x=x(x2−3),=x(x+√3)(x−√3).14.答案:160°解析:解:圆锥的底面周长是:2×4π=8π,=8π,设圆心角的度数是n°,则9nπ180解得:n=160.故侧面展开图的圆心角的度数是160°.故答案是:160°.首先求得圆锥的底面周长,即扇形的弧长,然后根据弧长的计算公式即可求得圆心角的度数.此题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.15.答案:(n2+1)x n解析:解:由分析得到的规律可知第n项为(n2+1)x n.故答案为:(n2+1)x n.分析题中每个单项式,系数为(n2+1),含未知数的部分为:x n,则第n项应为:(n2+1)x n.本题主要考查数字的变化规律,解此题的关键是找出单项式的变换规律.在找规律时对有变换的部分分开找,例如系数的变换情况和未知量的变换情况分开找.16.答案:35解析:解:根据平行四边形的底与原来的正方形的边长相同,由面积为5的矩形“推”成面积为4,的平行四边形,可得平行四边形的高是正方形边长的45∴sinα=4,5∴cosα=3.5故答案为:35根据锐角三角函数解答即可.本题主要考查了锐角三角函数,熟记相关定义是解答本题的关键.17.答案:(1)x ≠0;(2)当x =−12时,m =(−12)2−1−12=32,当x =3时,n =32−13=83. (3)函数图象如图所示:(4)x <0时,函数y 随x 的增大而增大;x >0时,函数y 随x 的增大而增大.解析:解:(1)函数y =x 2−1x 的自变量x 的取值范围x ≠0,故答案为x ≠0.(2)见答案;(3)见答案;(4)性质①x <0时,函数y 随x 的增大而增大.②x >0时,函数y 随x 的增大而增大.故答案为:x <0时,函数y 随x 的增大而增大;为x >0时,函数y 随x 的增大而增大.(1)根据分母不能为0即可写出自变量的取值范围、(2)分别求出x =−12、3时的函数值即可.(3)利用描点法即可画出图象,观察图象可得函数的性质.(4)利用图象写两个性质即可.本题考查函数的图象一个的问题,解题的关键是确定函数自变量的取值范围,学会用描点法画函数图象,能观察图象,总结函数的性质,属于中考常考题型.18.答案:14解析:解:(1)∵有芝麻馅、肉馅各1个,青菜馅2个,∴小明随机从盘中取出一个小麻糕,取出的是芝麻馅的概率是14;故答案为:14;(2)如图所示:一共有12种可能,取出的两个都是青菜馅的有2种,故取出的两个都是青菜馅的概率为:212=16.(1)直接利用概率公式求出取出的是肉包的概率;(2)直接列举出所有的可能,进而利用概率公式求出答案.此题主要考查了树状图法求概率,正确列举出所有的可能是解题关键.19.答案:解:去分母,得x(x+2)+6(x−2)=(x−2)(x+2).化简得:8x=8,解得x=1.经检验,x=1是原方程的解.∴原方程的解是x=1.解析:考查分式方程的解法,先去分母化成整式方程,再解这个整式方程,注意验根.20.答案:证明:∵AB//DE,∴∠A=∠1,∵∠A=∠D,∴∠1=∠D,∴AC//DF.解析:根据平行线的判定和性质定理即可得到结论.本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质定理是解题的关键.21.答案:解:(1)如图1,∵点A关于直线BP的对称点是点Q,∴AP=PQ=x,AB=BQ=1,∠A=∠BQP=90°,∵点Q落在对角线BD上,∴∠DQP=90°,∵正方形ABCD的边长为1,∴PD=1−x,BD=√2,∴DQ=√2−1,Rt△PQD中,∠BDP=45°,∴PQ=DQ,即x=√2−1;②如图2,由对称得:∠BQP=∠A=90°,∴∠BQE=90°,∵∠CQD=90°,∴∠DQE+∠CQE=∠CQE+∠BQC=90°,∴∠DQE=∠BQC,∵AB=BQ=BC,∴∠BQC=∠BCQ,∵∠BCD=90°,∴∠ECQ =∠EQC ,∴EQ =EC ,同理可得:EQ =DE ,∴DE =EC =EQ =12, ∵AP =PQ =x ,PD =1−x ,Rt △PDE 中,PD 2+DE 2=PE 2,(1−x)2+(12)2=(x +12)2 x =13, ∴PD =1−13=23, ∴S △PDE =12DE ⋅PD =12×12×23=16;(2)如图3,过Q 作GH//AD ,交AB 的延长线于G ,过P 作PH ⊥GH 于H ,∵BQ =AB =CQ =BC =1,∴△BQC 是等边三角形,∴∠QBC =60°,∵∠ABC =90°,∴∠QBG =180°−90°−60°=30°,∴GQ =12,BG =√32, ∵∠A =∠G =∠H =90°,∴四边形AGHP 是矩形,∴PH =AG =1+√32, ∵∠PQH =180°−∠PQB −∠BQG =180°−90°−60°=30°,∴PQ =2PH =2+√3,∵AP =PQ ,∴x =2+√3.解析:(1)①根据点Q 落在对角线BD 上,可知:∠A =∠BQP =∠DQP =90°,根据∠DQP 是等腰直角三角形得DQ =PQ ,得x 的值为√2−1;②如图2,先根据等腰三角形的判定得:EQ =EC ,同理可得:EQ =DE ,根据勾股定理得:PD 2+DE 2=PE 2,则(1−x)2+(12)2=(x +12)2,可计算x 的值,根据三角形的面积公式可得结论;(2)如图3,作辅助线,构建30度的直角三角形,先计算BG 的长,证明四边形AGHP 是矩形,得PH =AG =1+√32,最后根据30度的直角三角形的性质可得PQ 的长,从而得x 的值.此题是四边形的综合题,主要考查了正方形的性质,等腰三角形的性质,勾股定理,直角三角形的性质,对称性,画出图形是解本题的关键,也是难点,是一道比较好的压轴题.22.答案:解:(1)∵点A(−1,1)在二次函数y =x 2+mx +2n 的图象上,∴1−m +2n =1,∴m =2n ;(2)∵该二次函数的图象与x 轴只有一个交点,∴△=m 2−8n =0.∵由(1)知,m =2n ,∴4n 2−8n =0,即4n(n −2)=0,解得n =0或n =2,∴m =0或m =4,当n =0,m =0时,二次函数解析式为y =x 2,顶点坐标为(0,0);当n =2,m =4时,二次函数解析式为y =x 2+4x +4=(x +2)2,顶点坐标为(−2,0);综上所述,如果二次函数的图象与x 轴只有一个交点,这个二次函数的图象的顶点坐标为(0,0)或(−2,0).解析:(1)把点A的坐标代入函数解析式,列出含有m、n的等式,通过变形得到含m的代数式表示n.(2)抛物线与x轴只有一个交点,则△=0,由此求得m、n的值;得出二次函数的解析式,然后分别求出二次函数图象的顶点坐标即可.本题考查了抛物线与x轴的交点、二次函数图象上点的坐标特征、待定系数法求二次函数的解析式.求出n和m的值是解决问题(2)的关键.23.答案:解:(1)∵线段BC绕点B逆时针旋转60°得到线段BD,∴∠DBC=60°,∵AB=AC,∠A=30°,∴∠ABC=75°,∴∠ABD=15°,∴∠CFE=45°;(2)证明:连结CD、DF.∵线段BC绕点B逆时针旋转60°得到线段BD,∴BD=BC,∠CBD=60°.∴△BCD是等边三角形.∴CD=BD.∵线段BD平移到EF,∴EF//BD,EF=BD.∴四边形BDFE是平行四边形,EF=CD.∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°.∴∠ABD=∠ABC−∠CBD=15°=∠ACD.∴∠DFE=∠ABD=15°,∠AEF=∠ABD=15°.∴∠AEF=∠ACD=15°.∵∠CFE=∠A+∠AEF=30°+15°=45°,∴∠CFD=∠CFE−∠DFE=45°−15°=30°.∴∠A=∠CFD=30°.在△AEF和△FCD中,{∠AEF=∠ACD ∠A=∠CFDEF=CD,∴△AEF≌△FCD(AAS).∴ΑE=CF.(3)答:△CEF是等腰直角三角形.证明:过点E作EG⊥CF于G,∵∠CFE=45°,∴∠FEG=45°.∴EG=FG.∵∠A=30°,∠AGE=90°,∴EG=12AE.∵ΑE=CF,∴EG=12CF.∴FG=12CF.∴G为CF的中点.∴EG为CF的垂直平分线.∴EF=EC.∴∠CEF=2∠FEG=90°.∴△CEF是等腰直角三角形.解析:(1)根据旋转的性质得出∠DBC=60°,再根据等腰三角形得出∠ABC=75°,解答即可.(2)根据全等三角形的判定和性质证明即可;(3)根据等腰直角三角形的判定进行判断和证明即可.本题考查了全等三角形的判定与性质、等腰三角形的性质以及旋转的性质,综合性较强,熟练掌握定理及性质是解题的关键.。
浙江省金华市2020年中考数学仿真模拟考试题(参考答案)

浙江省金华市2020年中考数学仿真模拟考试题参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:向北行驶3km,记作+3km,向南行驶2km记作﹣2km,故选:B.2.解:a6÷a2=a4,故选:C.3.解:由分式的值为零的条件得x﹣3=0,且x+3≠0,解得x=3.故选:A.4.解:A、3+5<10,不能组成三角形;B、4+6=10,不能组成三角形;C、1+1<3,不能组成三角形;D、4+6>9,能组成三角形.故选:D.5.解:∵主视图和左视图都是三角形,∴此几何体为锥体,∵俯视图是一个圆及圆心,∴此几何体为圆锥,故选:D.6.解:设袋中黑球有x个,根据题意,得:=,解得:x=4,经检验:x=4是原分式方程的解,所以袋中黑球有4个,故选:C.7.解:如图建立平面直角坐标系,则点N和点Q的坐标分别为(1,1),(﹣2,2),故选:D.8.解:不等式整理得:,由不等式组的解集为x<3,得到k的范围是k≥1,故选:C.9.解:∵△ABC绕点A逆时针旋转一定角度,得到△ADE,∴∠BAD=∠CAE=65°,∠B=∠D,∵∠AFB=90°,∴∠B=90°﹣∠BAD=25°,∴∠B=∠D=25°.故选:C.10.解:由题意可得:12秒时,水槽内水面的高度为10cm,12秒后水槽内高度变化趋势改变,∴正方体的棱长为10cm;∴正方体的体积为:103=1000cm3设注水的速度为xcm3/s,圆柱的底面积为scm2,根据题意得:解得:∴圆柱形水槽的容积为:400×20=8000 cm3故选:A.二.填空题(共6小题,满分24分,每小题4分)11.解:原式=(2+m)(2﹣m),故答案为:(2+m)(2﹣m).12.解:数据30,18,24,26,33,28的中位数是,故答案为:2713.解:∵x﹣2y=4,∴原式=4(x﹣2y)﹣2=16﹣2=14.故答案为:14.14.解:在Rt△ABC中,∵∠CAB=90°,∠B=α,AC=800米,∴tanα=,∴AB==(米).故答案为:.15.解法一:如图所示,过A作AE⊥x轴于E,以AE为边在AE的左侧作正方形AEFG,交AB于P,根据点A(2,3)和点B(0,2),可得直线AB的解析式为y=x+2,由A(2,3),可得OF=1,当x=﹣1时,y=﹣+2=,即P(﹣1,),∴PF=,将△AGP绕点A逆时针旋转90°得△AEH,则△ADP≌△ADH,∴PD=HD,PG=EH=,设DE=x,则DH=DP=x+,FD=1+2﹣x=3﹣x,Rt△PDF中,PF2+DF2=PD2,即()2+(3﹣x)2=(x+)2,解得x=1,∴OD=2﹣1=1,即D(1,0),根据点A(2,3)和点D(1,0),可得直线AD的解析式为y=3x﹣3,解方程组,可得或,∴C(﹣1,﹣6),故答案为:(﹣1,﹣6).解法二:如图,过A作AD⊥y轴于D,将AB绕着点B顺时针旋转90°,得到A'B,过A'作A'H⊥y轴于H,由AB=BA',∠ADB=∠BHA'=90°,∠BAD=∠A'BH,可得△ABD≌△BA'H,∴BH=AD=2,又∵OB=2,∴点H与点O重合,点A'在x轴上,∴A'(1,0),又∵等腰Rt△ABA'中,∠BAA'=45°,而∠BAC=45°,∴点A'在AC上,由A(2,3),A'(1,0),可得直线AC的解析式为y=3x﹣3,解方程组,可得或,∴C(﹣1,﹣6),故答案为:(﹣1,﹣6).解法三:如图,过B作BF⊥AC于F,过F作FD⊥y轴于D,过A作AE⊥DF于E,则△ABF为等腰直角三角形,易得△AEF≌△FDB,设BD=a,则EF=a,∵点A(2,3)和点B(0,2),∴DF=2﹣a=AE,OD=OB﹣BD=2﹣a,∵AE+OD=3,∴2﹣a+2﹣a=3,解得a=,∴F(,),设直线AF的解析式为y=kx+b,则,解得,∴y=3x﹣3,解方程组,可得或,∴C(﹣1,﹣6),故答案为:(﹣1,﹣6).16.解:(1)如图2中,连接B1C1交DD1于H.∵D1A=D1B1=30∴D1是的圆心,∵AD1⊥B1C1,∴B1H=C1H=30×sin60°=15,∴B1C1=30∴弓臂两端B1,C1的距离为30(2)如图3中,连接B1C1交DD1于H,连接B2C2交DD2于G.设半圆的半径为r,则πr=,∴r=20,∴AG=GB2=20,GD1=30﹣20=10,在Rt△GB2D2中,GD2==10∴D1D2=10﹣10.故答案为30,10﹣10,三.解答题(共8小题,满分66分)17.解:原式==2﹣2+1+﹣1=.18.解:去分母得:4x2+10x﹣2x+5=4x2﹣25,解得:x=﹣,经检验x=﹣是分式方程的解.19.解:(1)20÷25%=80(人),答:该校共抽查了80名同学的暖心行动.(2)360°×=144°,答:扇形统计图中扇形B的圆心角度数为144°.(3)2400×=960(人),答:该校2400名同学中进行送鲜花行动的约有960名.20.解:(1)设P(x,y),由题意x+y=2,∴P(2,0)或(1,1)或(0,2)不合题意舍弃,△P AB如图所示.(2)设P(x,y),由题意x2+42=4(4+y),整数解为(2,1)或(0,0)或(4,4)(舍去)等,△P AB如图所示.21.解:(1)如图①,连接OB,∵BC是圆的切线,∴OB⊥BC,∵四边形OABC是平行四边形,∴OA∥BC,∴OB⊥OA,∴△AOB是等腰直角三角形,∴∠OAB=45°;(2)如图②,过点O作OH⊥EC于点H,设EH=t,∵OH⊥EC,∴EF=2HE=2t,∵四边形OABC是平行四边形,∴AB=CO=EF=2t,∵△AOB是等腰直角三角形,∴OA=t,则HO===t,∵OC=2OH,∴∠OCE=30°,∴∠COE=180°﹣45°﹣30°=105°.22.解:(1)过点P作x轴垂线PG,连接BP,CP,∵P是正六边形ABCDEF的对称中心,CD=4,∴BP=CP=4,G是CD的中点,∴PG=2,∴P(4,2),∵P在反比例函数y=上,∴k=8,∴y=,连接AC交PB于G,则AC⊥PB,由正六边形的性质得A(2,4),∴点A在反比例函数图象上;(2)过Q作QM⊥x轴于M,∵六边形ABCDEF为正六边形,∴∠EDM=60°,设DM=b,则QM=b,∴Q(b+6,b),∵该反比例函数图象与DE交于点Q,∴b(b+6)=8,解得:b=﹣3+,b=﹣3﹣(不合题意舍去),∴点Q的横坐标为3+;(3)连接AP,A(2,4),B(0,2),C(2,0),D(6,0),E(8,),F(6,4),设正六边形向左平移m个单位,向上平移n个单位,则平移后点的坐标分别为∴A(2﹣m,4+n),B(﹣m,2+n),C(2﹣m,n),D(6﹣m,n),E(8﹣m,2+n),F(6﹣m,4+n),①将正六边形向左平移4个单位后,E(4,2),F(2,4);则点E与F都在反比例函数图象上;②将正六边形向右平移2个单位,再向上平移2个单位后,C(4,2),B(2,4)则点B与C都在反比例函数图象上;23.解:(1)设抛物线解析式为y=ax(x﹣10),∵当t=2时,AD=4,∴点D的坐标为(2,4),∴将点D坐标代入解析式得﹣16a=4,解得:a=﹣,抛物线的函数表达式为y=﹣x2+x;(2)由抛物线的对称性得BE=OA=t,∴AB=10﹣2t,当x=t时,AD=﹣t2+t,∴矩形ABCD的周长=2(AB+AD)=2[(10﹣2t)+(﹣t2+t)]=﹣t2+t+20=﹣(t﹣1)2+,∵﹣<0,∴当t=1时,矩形ABCD的周长有最大值,最大值为;(3)如图,当t=2时,点A、B、C、D的坐标分别为(2,0)、(8,0)、(8,4)、(2,4),∴矩形ABCD对角线的交点P的坐标为(5,2),当平移后的抛物线过点A时,点H的坐标为(4,4),此时GH不能将矩形面积平分;当平移后的抛物线过点C时,点G的坐标为(6,0),此时GH也不能将矩形面积平分;∴当G,H中有一点落在线段AD或BC上时,直线GH不可能将矩形面积平分;当点G,H分别落在线段AB,DC上时,直线GH过点P,必平分矩形ABCD的面积.∵AB∥CD,∴线段OD平移后得到线段GH.∴线段OD的中点Q平移后的对应点是P.∴DP=PB,由平移知,PQ∥OB∴PQ是△ODB的中位线,∴PQ=OB=4,所以抛物线向右平移的距离是4个单位.24.解:(1)∵点P,N是BC,CD的中点,∴PN∥BD,PN=BD,∵点P,M是CD,DE的中点,∴PM∥CE,PM=CE,∵AB=AC,AD=AE,∴BD=CE,∴PM=PN,∵PN∥BD,∴∠DPN=∠ADC,∵PM∥CE,∴∠DPM=∠DCA,∵∠BAC=90°,∴∠ADC+∠ACD=90°,∴∠MPN=∠DPM+∠DPN=∠DCA+∠ADC=90°,∴PM⊥PN,故答案为:PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.由旋转知,∠BAD=∠CAE,∵AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,BD=CE,利用三角形的中位线得,PN=BD,PM=CE,∴PM=PN,∴△PMN是等腰三角形,同(1)的方法得,PM∥CE,∴∠DPM=∠DCE,同(1)的方法得,PN∥BD,∴∠PNC=∠DBC,∵∠DPN=∠DCB+∠PNC=∠DCB+∠DBC,∴∠MPN=∠DPM+∠DPN=∠DCE+∠DCB+∠DBC =∠BCE+∠DBC=∠ACB+∠ACE+∠DBC=∠ACB+∠ABD+∠DBC=∠ACB+∠ABC,∵∠BAC=90°,∴∠ACB+∠ABC=90°,∴∠MPN=90°,∴△PMN是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,△PMN是等腰直角三角形,∴MN最大时,△PMN的面积最大,∴DE∥BC且DE在顶点A上面,∴MN最大=AM+AN,连接AM,AN,在△ADE中,AD=AE=4,∠DAE=90°,∴AM=2,在Rt△ABC中,AB=AC=10,AN=5,∴MN最大=2+5=7,∴S△PMN最大=PM2=×MN2=×(7)2=.方法2:由(2)知,△PMN是等腰直角三角形,PM=PN=BD,∴PM最大时,△PMN面积最大,∴点D在BA的延长线上,∴BD=AB+AD=14,∴PM=7,∴S△PMN最大=PM2=×72=.。
2020年浙江省杭州市中考数学摸底测试试卷附解析

2020年浙江省杭州市中考数学摸底测试试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.物体的影子在正东方向,则太阳在物体的( )A .正东方向B .正南方向C .正西方向D .正北方向2. 如图,四边形 EFGD 是△ABC 的内接矩形,已知高线 AH 长 8 ㎝,底边 BC 长 10cm ,设 DG=x (cm ) , DE=y ( cm ) ,那么y 与x 的函数关系式为( )A .45y x =B .54y x =C .485y x =- D .584y x =-3.有一面积为 60 的梯形,其上底长是下底长13,若下底长为 x ,高为 y ,则y 与x 之间的函数关系式为( )A .60y x =B .60(0)y x x =>C .90y x =D .90(0)y x x=> 4.在等腰三角形ABC 中,∠C=90°,BC=2cm. 如果以AC 的中点0为旋转中心,将这个三角形旋转 180°,点B 落在点B ′处,那么点B ′与B 相距( )A .3cmB .23cmC .5cmD .25cm5.下列图形中,△ABC 与△A ′B ′C ′关于点0成中心对称的是 ( )6.如图,已知一次函数y kx b =+的图象,当x<0时,y 的取值范围是 ( )A .y>0B .y<OC .-2<y<OD .y<-27.课间操时,小华、小军、小刚的位置如图所示,如果小华的位置用(0,O)表示,小军的位置用(2,1)表示,那么小刚的位置可以表示成()A.(5,4)B.(4,5) C(3,4)D.(4,3)8.如果关于x的不等式(1)1x<,那么 a 的取值范围是()+>+的解集为1a x aA.0a<-a>-D.1a>B.0a<C.19.某班有48位同学,在一次数学测验中,分数只取整数,统计其成绩,绘制出频数分布直方图(横半轴表示分数,把50.5分到100.5分之间的分数分成5组,组距是10分,纵半轴表示频数)如图所示,从左到右的小矩形的高度比是1:3:6:4:2,则由图可知,其中分数在70.5~80.5之间的人数是()A.9 B.18 C.12 D.6二、填空题10.某口袋中有红色、黄色、蓝色玻璃球 80个.小明通过多次模球实验后,发现摸到红球、黄球、蓝球的频率依次为 20、30、50,则可估计口袋中红球的数目为,黄球的数目为,蓝球的数目为.11.在直径为 lO m的圆柱形油槽内装入一些油后,截面如图所示,如果油面宽AB= 8m,那么油的深度(油面高度)是 m.12.如图所示,水平放置的圆柱形油桶的截面半径是 R,油面高为截面上有油的弓形(阴影部分)的面积为.13.如图所示,∠1、∠2、∠3、∠4 之间的关系是.14.直角三角形两直角边分别为5和12,则斜边上的中线长为_______.15.放假了,小明和小丽去蔬菜加工厂社会实践,两人同时工作了一段时间后,休息时小明对小丽说:“我已加工了28千克,你呢?”小丽思考了一会儿说:“我来考考你.图⑴、图⑵分别表示你和我的工作量与工作时间的关系,你能算出我加工了多少千克吗?”小明思考后回答:“你难不倒我,你现在加工了千克.”16.如图,∠C=∠D=90°,请你再添加一个条件,使△ABD≌△BAC,并在添加的条件后的( )内写出判定全等的依据.(1) ( );(2) ( );(3) ( );(4) ( ).17.全等三角形的对应边,对应角.18.(2)(1)(2)(1)(2)(1)-++-+=-+().m x y n x y x y19.将一副气七巧版(如图(1))拼成一只小猫的形状(如图(2)),则(2)中的∠AOB = .(1) (2)20.如图,小南和小颖正在玩一个游戏:每人先抛掷骰子(骰子共有6个面,分别标有数字1,2,3,4,5,6),骰子朝上的数字是几,就将棋子前进几格,并获得格子中的相应物品.现在轮到小南掷,棋子在标有数字“1”的那一格,小南能一次就获得“汽车”吗?(填“能”或“不能”);小颖下一次抛掷可能得到“汽车”的概率是.(注:小汽车在第八格内)三、解答题21.如图所示,我市某广场一灯柱 AB 被一钢缆CD 固定,CD 与地面成40°夹角,且DB = 5m,则 BC 的长度是多少?现再在 C点上方 2m 处加固另一条钢缆 ED,则钢缆 ED的长度是多少?(结果保留三个有效数字)22.判断下列各组线段的长度是否成比例,说明理由.(1)1,2,3,4;(2) 2, 4,3, 6;(3)1. 2 ,1. 8 ,30 ,45;(4)11,22 ,44,5516(3)8结果保留根号);23.(1)2(2)计算:2622724.解不等式:(1)1223ix xx+-<-;(2)22(2)12x x+->25.某公司销售部有营销人员l5人,销售部为了制定某种商品的月销售定额,统计这15人某月的销售量如下:每人销售件数(件)1800510250210150120人数(人)113532(1)求这l5位营销人员该月销售量的平均数,众数,中位数;(2)假设销售部负责人把每位营销人员的月销售额定为320件,你认为是否合理,为什么?如果不合理,请你制定一个合理的销售定额,并说明理由.26.桌面上放着一个圆锥和一个长方体,下面画着三幅图,请找出主视图、左视图和俯视图对应的字母.27.已知关于 x, y 的方程组239x y mx y m+=⎧⎨-=⎩.(1)若x的值比y 的值小 5,求m的值;(2)若方程组的解适合方程3217x y+=,求m的值.28.一块玻璃长 a(cm),宽 b(cm),长、宽各裁掉x(cm)后恰能铺盖一张办公桌台面(玻璃与台面一样大),问:(1)栽掉部分的面积是多少?(2)台面面积是多少?你能用两种算法解答吗?比较两种算法,你发现了什么?29.如图所示,将△ABC绕点O按逆时针方向旋转60°后,得到△DEF,请画出△DEF.30.(1)如图①,小明想剪一块面积为 25cm2的正方形纸板,你能帮他求出正方形纸板的边长吗?(2)若小明想将两块边长都为 3cm 的正方形纸板沿对角线剪开,拼成如图②所示的一个大正方形,你能带他求出这个大正方形的面积吗?它的边长是整数吗?若不是整数,那么请你估计这个边长的值在哪两个整数之间?图①图②【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.C3.D4.D5.A6.D7.D8.D9.B二、填空题10.16,24,4011.212.2223R π13. ∠2>∠1=∠4>∠3.14.6.515.2016.(1)AD=BC ,HL (2)BD=AC ,HL (3)∠DAB=∠CBA ,AAS (4)∠DBA=∠CAB ,AAS 17.相等,相等18.m n -19.90°20. 不能,61三、解答题21.在 Rt △BCD 中,BD =5,tan BC CDB BD ∠=,05tan 40 4.20BC =≈BE= BC+CE= 6.20,7.96DE =≈答:BC 的长约为 4. 20 m ,ED 的长约为7.96 m .22.(1)∵ 1×4≠2×3,∴1,2,3,4 不成比例.(2)由小到大排列为:2,3,4,6,∵2 ×6 = 3 ×4= 12∴2,4,3,6成比例,即2346= (3)从小到大排列为:1.2,1.8,30,45,∵1.2 ×45 = 1.8×30 ,∴1. 2 ,1. 8 ,30 ,45 成比例.( 4 ) ∵1 1 ×55≠22×44∴.11,22,44,55 不成比例.23.(1)1-24.(1)x<-1;(2)x>225.(1)平均数:320件,众数:210件,中位数:210件;(2)不合理,理同略26.A:左视图,B:主视图,C:俯视图27.(1)5m=-;(2)m=1928.(1)(2ax bx x+-)cm2;(2)方法一:22ab ax bx x ab ax bx x-+-=--+()()cm2;方法二:2a xb x ab ax bx x--=--+()()a xb x ab bx ax x()()()--=--+cm2;发现2 29.略30.(1)5cm (2)在 4 和 5 之间。
2020年浙江省中考数学名校模拟试卷附解析

2020年浙江省中考数学名校模拟试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图①,有6张写有汉字的卡片,它们的背面都相同,现将它们背面朝上洗匀后如图②摆放,从中任意翻开一张是汉字“自”的概率是( )A .21B .31C .32D .61 2.如图所示放置的正三棱柱的三视图是( )A .B .C .D . 3.已知关于x 的一元二次方程221()04x R r x d -++=无实数根,其中 R 、r 分别是⊙O 1、⊙O 2的半径,d 为两圆的圆心距,则⊙O 1、⊙O 2的位置关系为( )A .外切B .内切C .外离D .外切或内切4.在半径为50cm 的图形铁片上剪去一块扇形铁皮,用剩余部分制做成一个底面直径为80cm ,母线长为50cm 的圆锥形烟囱帽,则剪去的扇形的圆心角的度数为( )A .288°B .144°C .72°D .36° 5.若x 为任意实数时,二次三项式26x x c -+的值都不小于0,则常数c 满足的条件是( ) A .c ≥0 B . c ≥9 C . c >0 D . c >96.有下列方程:①24810x -=;②230m m +=;③2(23)4y -=;④21(3)273x -=.其中能用直接开平方法解的是 ( )A .①②③B .①③C .①③④D .①③③④7.下列命题中错误的是( )A . 25x =,则5x =B . 若a (0a ≥a 是它的算术平方根C . 2(3)π-3π-D . 在直角三角形中,若两条直角边分别是5,25,则斜边长为 5 8.直线2y x =-+和直线2y x =-的交点 P 的坐标是( )A . P (2, 0)B . P (-2,0)C . P (0,2)D . P (0, -2)9.若3520x x -≤+,则( )A .x 有最大的整数解一6B .x 有最小的整数解一5C .x 有最大的整数解 6D .x 有最大的整数解 510.下列多项式中,不能用提取公因式法分解因式的是( )A .()()p q p q p q -++B .2()2()p q p q +-+C .2()()p q q p ---D .3()p q p q +--11.α、β都是钝角,甲、乙、丙、丁计算1()6αβ+的结果依次为50°、26°、72°、90°,其中有正确的结果,则计算正确的是( )A .甲B .乙C .丙D .丁12.如图,M N P R ,,,分别是数轴上四个整数所对应的点,其中有一点是原点,并且1MN NP PR ===.数a 对应的点在M 与N 之间,数b 对应的点在P 与R 之间,若3a b +=,则原点是( )A .M 或RB .N 或PC .M 或ND .P 或R二、填空题13.如图, 如果函数y=-x 与y=x4-的图像交于A 、B 两点, 过点A 作AC 垂直于y 轴, 垂足为点C, 则△BOC 的面积为___________.14. 掷一枚质地均匀的小正方体,它的六个面上分别标有数宇 1、2、3、4、5、6,则朝上一面的数字是小于 6 的概率是 .15.△AOB 和它缩小后得到的△COD 的位置如图所示,则原图形与像相似比为 .16.命题“角平分线上的点到角两边的距离相等”的题设是 , 结论是 .17.点M 、N 分别是正八边形相邻的边AB 、BC 上的点,且AM =BN ,点O 是正八边形的中心,则∠MON = 度.18.如图,在正方形ABCD 中,以对角线AC 为一边作菱形AEFC ,则∠FAB= .19.如图所示,AD 是△ABC 的中线,延长AD 到点E ,使DE=AD ,连结EB ,EC ,则四边形ABEC 是平行四边形.这是根据 .20.如图,小李准备建造一个蔬菜大棚,棚宽4m ,高3m ,长20m ,棚的斜面用塑料布遮盖,不计墙的厚度,那么阳光透过的最大面积为 m 2.21. 某举办班徽设计比赛,全班50名同学,计划每位同学交设计方案一份,拟评选出 10份作为一等奖,则该班小明同学获一等奖的概率为 .22.如图,将一副三角板折叠放在一起,使直角的顶点重合于点O ,则AOC DOB ∠+∠= .23.已知关于x 的分式方程4333k x x x-+=--有增根,则k 的值是 . 24.国家规定存款利息的纳税办法是:利息税=利息×20,银行一年定期储蓄的年利率为 1. 98,今年小刚取出一年到期的本金及利息时,缴纳了 3. 96 元利息税,则小刚一年前存入银行的钱为 .25.若2(4)|2|0a b -+-=,则b a = ;2a b a b+-= . 三、解答题26.如图,放在直角坐标系中的正方形ABCD 的边长为4.现做如下实验:转盘被划分成4个相同的小扇形,并分别标上数字1,2,3.4,分别转动两次转盘,转盘停止后,指针所指向的数字作为直角坐标系中M 点的坐标(第一次作横坐标,第二次作纵坐标),指针如果指向分界线上,则重新转动转盘.(1)请你用树状图或列表的方法,求M 点落在正方形ABCD 面上(含内部与边界)的概率;(2)将正方形ABCD 平移整数个单位,则是否存在某种平移,使点M 落在正方形ABCD 面上的概率为34?若存在,指出一种具体的平移过程?若不存在,请说明理由.27.下面几个立体图形,请将它们加以分类.28.如图是由 16个相同的小正方形拼成的正方形网格,现将其中的两个小正方形涂黑. 请你用两种不同的方法分别在下图中再将两个空白的小正方形涂黑;使它们成为轴对称图形.29.某高校共有 5 个同规格的大餐厅和 2 个同规格的小餐厅,经过测试:同时开放 1 个大餐厅,2 个小餐厅,可供 1680 名学生就餐;同时开放 2 个大餐厅, 1 个小餐厅,可供2280 名学生就餐.(1)求 1 个大餐厅,1个小餐厅分别可供多少名学生就餐;(2)若 7 个餐厅同时开放,能否供全校的5300 名学生就餐?请说明理由.30.杭州世博会期间,嘉年华游乐场投资150万元引进一项大型游乐设施,若不计维修保养费用,预计开放后每月可创收33万元.而该游乐设施开放后,从第1个月到第x个月的维修保养费用累计..为y(万元),且y=ax2+bx;若将创收扣除投资和维修保养费用称为游乐场的纯收益g(万元),g也是关于x的解析式;(1)若维修保养费用第1个月为2万元,第2个月为4万元,求y关于x的解析式;(2)求纯收益g关于x的解析式;(3)问设施开放几个月后,游乐场的纯收益达到最大?几个月后,能收回投资?【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.A2.A3.C4.C5.B6.C7.A8.A9.B10.A11.AA二、填空题13.214.5615. 2:116.一个点在角的平分线上,这个点到角两边的距离相等17.4518.22.5°19.对角线互相平分的四边形是平行四边形20.10021.1522. 180°23.124.1000元25.16,1三、解答题26.(1)41164==P ;(2)先向右平移1个单位,再向上平移2个单位(答案不唯一).棱锥:①③,直棱柱:②④,圆柱体:⑤28.29.( 1) 1 个大餐厅可供 960 名学生就餐, 1 个小餐厅可供360 人就餐;(2)5300 人30.(1)由题意,x=1时,y=2;x=2时,y=2+4=6.代入y=ax2+bx,解得a=b=1,所以y=x2+x;(2)纯收益g=33x-150-(x2+x)=-x2+32x-150;(3)g=-(x-16)2+106,即设施开放16个月后,游乐场的纯收益达到最大;又在0<x≤16时,g随着x的增大而增大,当x≤5时,g<0;而x=6时,g>0.所以6个月后能收回投资.。
2020年浙江省宁波市中考数学模拟考试试卷A卷附解析

2020年浙江省宁波市中考数学模拟考试试卷A卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1. 给出下列式子:① cos450>sin600;②sin780>cos780;③sin300>tan450;④ sin250=cos650,其中正确的是 ( )A .①③B .②④C .①④D .③④2.对于抛物线21(5)33y x =--+,下列说法正确的是( )A .开口向下,顶点坐标(53),B .开口向上,顶点坐标(53),C .开口向下,顶点坐标(53)-,D .开口向上,顶点坐标(53)-, 3.由表格中信息可知,若使2y ax bx c =++,则下列 y 与x 之间的函数关系式正确的是( )A .43y x x =-+B .34y x x -=+C .233y x x =--D .248y x x =-+4.下列四边形中既是轴对称图形,又是中心对称图形的是( )A .梯形B .等腰梯形C .平行四边形D .矩形 5.将一元二次方程(1)(22)2x x -+=-化为一般形式是( ) A .22410x x +-=B .22410x x -+=C .2230x x -=D .220x = 6.已知在△ABC 和△DFE 中,∠A=∠D=90°,则下列条件中不能判定△ABC 和△DEF 全等的是( )A .AB=DE ,AC=DFB .AC=EF,BC=DFC .AB=DE ,BC=FED .∠C=∠F ,BC=FE7.4个红球、3个白球、2个黑球放入一个不透明的袋子里,从中摸出8个球,恰好红球、白球、黑球都摸到,这件事情( )A .可能发生B .不可能发生C .很可能发生D .必然发生8.钟表上l2时l5分时,时针与分针的夹角为( )A .90°B 82.5°C .67.5°D .60°9.方程16(1)13x --=去括号后,得( ) A .6221x -+= B .6226x -+= C .1613x --= D .621x --=10.以x=-3为解的方程是()A.3x-7=2 B.5x-2=-x C.6x+8=-26 D.x+7=4x+1611.两个数的差为负数,这两个数()A.都是负数B.一个是正数,一个是负数C.减数大于被减数D.减数小于被减数12.用最小的正整数、最小的质数、最小的非负数和最小的合数组成的四位数中,最大的一个是()A.4210 B.4310 C.3210 D.432113.当身边没有量角器时,怎样得到一些特定度数的角呢?动手操作有时可以解“燃眉之急”.如图,已知长方形ABCD,我们按如下步骤操作可以得到一个特定的角:(1)以点A 所在直线为折痕,折叠纸片,使点B落在AD上,折痕与BC交于E;(2)将纸片展平后,再一次折叠纸片,以E所在直线为折痕,使点A落在BC上,折痕EF交AD于F.则∠AFE的度数为()A.60︒B.67.5︒C.72︒D.75︒二、填空题14.在一个不透明的袋子中装有 2 个红球,3个白球,它们除颜色外其余均相同,随机从中摸出一球,记录下颜色后将它放回袋子中,充分摇匀后,再随机模出一球,则两次都摸到红球的概率是.15.二次函数y=x2-2x-3与x轴两交点之间的距离为.16.在直角坐标系中,△ABC的三个顶点的位置如图所示.(1)画出△ABC关于y轴对称的△A′B′C′(其中A′,B′,C′分别是A,B,C的对应点,不写画法);(2)直接写出A′,B′,C′三点的坐标.17.如图,在直角坐标平面内,线段AB垂直于y轴,垂足为B,且AB=2,如果将线段AB 沿y轴翻折,点A落在点C处,那么点C的横坐标是.18.在△ABC 中,AB = AC ,∠A 的外角等于 150°,则∠B 的外角等于 . 19.如图,在△ABC 中,AB=AC=10cm ,DE 是AB 的中垂线,△BDC 的周长为 16 cm ,则 BC 的长为 .20.若)3)(5(-+x x 是二次三项式152--kx x 的因式,那么k = .21.已知∠α=23°38′,则∠α的余角的度数是 .22.1-(+2)的相反数是 .三、解答题23.身高 1.6m 的小明在课外数学活动小组的户外活动中,准备利用太阳光线和影子测 旗杆 AB 的高度. 如图所示,在小亮的帮助下,小明圆满地完成了任务.(1)他们必须测出哪几条线段的长?(2)若旗杆的影长为 4m ,小明的影长为1.2m ,请你帮小明计算出旗杆的长.24.如图所示,已知:AB 是⊙O 的直径,BC 是⊙O 的切线,切点为 B ,OC 平行于弦AD. 求证:DC 是⊙O 的切线.25.为减少环境污染,自 2008年 6 月 1 日起,全国的商品零售场所开始实行“塑料购 物袋有偿使用制度”(以下简称“限塑令”). 某班同学于 6月上旬的一天,在某超市门口采用问卷调查的方式,随机调查了“限塑令”实施前后,顾客在该超市用购物袋的情况,以下是根据100位顾客的100份有效答卷画出的统计图表的一部分:“限塑令”实施后,塑料购物袋使用后的处理方式统计表(1)补全图①,“限塑令”实施前,如果每天约有 2000人次到该超市购物. 根据这100位顾客平均一次购物使用塑料购物袋的平均数,估计这个超市每天需要为顾客提供多少个塑料购物袋?(2)补全图②,并根据统计图和统计表说明...........,购物时怎样选用购物袋,塑料购物袋使用后 怎样处理,能对环境保护带来积极的影响.26. 如图,在△ABC 中,∠A= 90°,AB=24cm ,AC=16 cm ,现有动点 P 从点B 出 发,沿射线BA 方向运动,动点Q 从点C 出发,沿射线CA 方向运动,已知点 P 的速度是4 cm/s ,点 Q 的速度是 2cm/s ,它们同时出发,问:经过几秒,△APQ 的面积是△ABC 面积的一半?图1“限塑令”实施前,平均一次购物使用不同数量塑料..购物袋的人数统计图 “限塑令”实施后,使用各种 购物袋的人数分布统计图 其它 % 46% 24%27.说出下列命题的题设和结论,并指出它是真命题还是假命题:(1)系数相同的单项式是同类项;(2)有两个角和一条边对应相等的两个三角形全等;(3)同旁内角相等.28.如图,直角梯形ABCD,AD∥BC,∠ADC=135°,DC=82,以D为圆心,以8个单位长为半径作⊙D,试判断BC与⊙D的位置关系?29.下面第一排表示了各袋中球的情况,请你用第二排的语言来描述摸到红球的可能性大小,并用线连起来.30.在如图所示的数轴上表示数-3、0、52、1,并比较它们的大小,将它们按从小到大的顺序用“<”连接.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.A3.A4.D5.D6.B7.D8.B9.B10.D11.C12.A13.B二、填空题14.42515.416.(1)图略;(2)A′(2,3),B′(3,1),C′(-1,-2) 17.-218.105°19.6cm20.-221.66°22′22.1三、解答题23.(1)必须测出旅杆的影长 AC 和小明的影长DF.(2) ∵EF∥BC,DE∥AB,∴△ABC∽△DEF,∴AB DEAC DF=,∵4 1.6161.23AB⨯==m∴旗杆高为163m.24.连结 OD,∵AD∥OC,∴∠A=∠BOC,∠ADO=∠COD,∵OA=OD,∴∠A=∠AD0,∴∠DOC=∠BOC,∵OD= OB , OC=OC,∴△DOC≌△BOC又∵BC 是⊙O切线,∴∠0DC=∠0BC=90°,∴CD 是⊙O的切线.25.(1)补图略,6000个 (2)图②中,使用收费塑料购物袋的人数所占百分比为 25%;例如:由图②和统计表可知,购物时应尽量使用自备和押金式环保袋,少用塑料购物袋;塑料购物袋应尽量循环使用,以便减少塑料购物袋的使用量,为环保做贡献26.2 s或 12 s27.(1)题设:单项式的系数相同;结论:它们是同类项,是假命题;(2)题设:两个三角形的两个角和一条边对应相等;结论:这两个三角形全等,是假命题;(3)题设:两个角是同旁内角;结论:这两个角相等,是假命题28.解:作DE⊥BC于E∵AD∥BC,∴∠ADC+∠C=180°,又∠ADC=135°,∴∠C=45°,∴△DEC为等腰直角三角形.82,∴DE=8,∴DE=r,因此BC与⊙D相∵CD=切.29.略30.在数轴上表示如图所示.各数的大小关系为53012-<-<<。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省2020年中考数学模拟试题含答案一、选择题(本大题共18小题,每小题3分,共54分)1.若集合A ={x |-2<x <1},B ={x |0<x <2},则A ∩B 等于( ) A .{x |-1<x <1} B .{x |-2<x <1} C .{x |-2<x <2} D .{x |0<x <1}答案D解析利用数轴可求得A ∩B ={x |0<x <1},故选D. 2.函数y =2-x +ln(x -1)的定义域为( ) A .(1,2] B .[1,2]C .(-∞,1) D .[2,+∞) 答案A解析由⎩⎪⎨⎪⎧2-x ≥0,x -1>0,得1<x ≤2,即函数的定义域为(1,2].故选A.3.不等式组⎩⎪⎨⎪⎧x +y ≤2,y ≥x 表示的平面区域是( )答案C解析 由不等式组⎩⎪⎨⎪⎧x +y ≤2,y ≥x 可知不等式组表示的平面区域为x +y=2的下方,直线y =x 的上方,故选C.4.设向量a =(1,-1),b =(0,1),则下列结论中正确的是( ) A .|a |=|b | B .a ·b =1 C .(a +b )⊥b D .a ∥b答案 C解析 因为|a |=2,|b |=1,故A 错误;a ·b =-1,故B 错误;(a +b )·b =(1,0)·(0,1)=0,故C 正确; a ,b 不平行,故D 错误.故选C.5.已知m ,n 为两条不同的直线,α,β,γ为三个不同的平面,下列结论正确的是( )A .若m ∥α,n ∥α,则m ∥nB .若α∥γ,β∥γ,则α∥βC .若α⊥β,m ∥α,则m ⊥βD .若α⊥β,m ⊂α,n ⊂β,则m ⊥n 答案 B解析 对于选项A ,若m ,n ⊂β,m ∩n =P ,α∥β,则m ∥α,n ∥α,此时m 与n 不平行,故A 错;对于选项B ,由平面平行的传递性可知B 正确;对于选项C ,当α⊥β,α∩β=l ,m ∥l ,m ⊄α时,有m ∥α, 此时m ∥β或m ⊂β,故C 错;对于选项D ,位于两个互相垂直的平面内的两条直线位置关系不确定,故D 错.故选B.6.不等式x +3>|2x -1|的解集为( ) A.⎝ ⎛⎭⎪⎫-4,23 B.⎝ ⎛⎭⎪⎫-23,4 C .(-∞,4) D.⎝ ⎛⎭⎪⎫-23,+∞ 答案 B解析 不等式x +3>|2x -1|等价于-(x +3)<2x -1<x +3, 由此解得-23<x <4,故选B.7.命题p :x ∈R 且满足sin2x =1.命题q :x ∈R 且满足tan x =1,则p是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案C解析由sin2x =1,得2x =π2+2k π,k ∈Z , 即x =π4+k π,k ∈Z ;由tan x =1,得x =π4+k π,k ∈Z , 所以p 是q 的充要条件,故选C.8.在△ABC 中,cos A =35,cos B =45,则sin(A -B )等于( ) A .-725B.725C .-925D.925 答案 B解析 ∵A ,B ∈(0,π),∴sin A =45,sin B =35, ∴sin(A -B )=sin A cos B -cos A sin B =725.9.已知圆C 经过A (5,2),B (-1,4)两点,圆心在x 轴上,则圆C 的方程是( )A .(x -2)2+y 2=13B .(x +2)2+y 2=17C .(x +1)2+y 2=40D .(x -1)2+y 2=20答案D解析设圆C 的圆心坐标为(m,0),则由|CA |=|CB |,得(m -5)2+4=(m +1)2+16,解得m =1,圆的半径为25,所以其方程为(x -1)2+y 2=20,故选D.10.已知a <0,-1<b <0,则下列结论正确的是( ) A .a >ab >ab 2 B .ab >a >ab 2 C .ab >ab 2>a D .ab 2>ab >a 答案 C解析 由题意得ab -ab 2=ab (1-b )>0, 所以ab >ab 2,ab 2-a =a (b +1)(b -1)>0, 所以ab 2>a ,故选C.11.已知一个几何体的三视图如图所示(单位:cm),则这个几何体的侧面积是( )A.(1+2)cm2B.(3+2)cm2C.(4+2)cm2D.(5+2)cm2答案C解析由三视图可知该几何体的直观图如图所示,所以侧面积为(4+2)cm2.故选C.12.已知关于x的不等式x2-4ax+3a2<0(a>0)的解集为(x1,x2),则x1+x2+ax1x2的最小值是( )A.63B.233 C.433 D.263答案 C解析 由题意得x 1+x 2=4a ,x 1x 2=3a 2, 则x 1+x 2+a x 1x 2=4a +13a ,因为a >0,所以4a +13a ≥433, 当且仅当a =36时等号成立.所以x 1+x 2+a x 1x 2的最小值是433,故选C.13.已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x -4,x >0,若函数y =f ()f (x )+a 有四个零点,则实数a 的取值范围为( ) A .[-2,2) B .[1,5) C .[1,2) D .[-2,5)答案 C解析 函数y =f ()f (x )+a 有四个零点, 则f ()f (x )+a =0有四个解,则方程f (x )+a =-1与f (x )+a =2各有两个解,作出函数f (x )的图象(图略)可得⎩⎪⎨⎪⎧-3<-a -1≤1,-3<2-a ≤1,解得⎩⎪⎨⎪⎧-2≤a <2,1≤a <5,所以1≤a <2.故选C.14.已知等比数列{a n }的公比q =2,前n 项和为S n ,若S 3=72,则S 6等于( ) A.312B.632C .63 D.1272答案 B解析 由题意得S 6=S 3(1+q 3)=72×(1+23)=632,故选B.15.已知数列{a n }为等比数列,若a 4+a 6=10,则a 7(a 1+2a 3)+a 3a 9的值为( )A .10B .20C .100D .200 答案 C解析 a 7(a 1+2a 3)+a 3a 9=a 7a 1+2a 7a 3+a 3a 9=a 24+2a 4a 6+a 26=(a 4+a 6)2=102=100,故选C.16.已知函数f (x )=⎩⎪⎨⎪⎧x +2,x >a ,x 2+5x +2,x ≤a ,函数g (x )=f (x )-2x 恰有三个不同的零点,则实数a 的取值范围是( ) A .[-1,1) B .[0,2] C .[-2,2) D .[-1,2)答案 D解析 由题意知g (x )=⎩⎪⎨⎪⎧2-x ,x >a ,x 2+3x +2,x ≤a ,因为g (x )有三个不同的零点,所以2-x =0在x >a 时有一个解,由x =2得a <2. 由x 2+3x +2=0,得x =-1或x =-2, 则由x ≤a 得a ≥-1.综上,a 的取值范围为[-1,2),故选D.17.已知F 1(-c,0),F 2(c,0)分别为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,P 为双曲线上的一点且满足PF 1—→·PF 2—→=-12c 2,则此双曲线的离心率的取值范围是( ) A .[2,+∞) B .[3,+∞)C .[2,+∞)D.⎣⎢⎡⎭⎪⎫5+12,+∞答案 C解析 设P (x 0,y 0),则PF 1—→·PF 2—→=(-c -x 0)(c -x 0)+y 20=x 20+y 20-c 2, 所以x 20+y 20-c 2=-12c 2.又x 20a 2-y 20b 2=1,所以x 20=a 2⎝ ⎛⎭⎪⎫1+y 20b 2, 所以a 2⎝⎛⎭⎪⎫1+y 20b 2+y 20-c 2=-12c 2, 整理得c 2y 20b 2=c 22-a 2,所以c 22-a 2≥0,所以c ≥2a ,e ≥2,故选C.18.在长方体ABCD -A 1B 1C 1D 1中,AB =2,BC =AA 1=1,点P 为对角线AC 1上的动点,点Q 为底面ABCD 上的动点(点P ,Q 可以重合),则B 1P +PQ 的最小值为( )A.32B.2C.3D .2答案 A解析 P 在对角线AC 1上,Q 在底面ABCD 上,PQ 取最小值时P 在平面ABCD 上的射影落在AC 上,将△AB 1C 1沿AC 1翻折到△AB 1′C 1,使平面AB 1′C 1与平面ACC 1在同一平面内,B 1P =B 1′P ,所以(B 1′P +PQ )min 为B 1′到AC 的距离B 1′Q .由题意知,△ACC 1和△AB 1′C 1为有一个角为30°的直角三角形,∠B 1′AC =60°,AB 1′=3,所以B 1′Q =3·sin60°=32.二、填空题(本大题共4小题,每空3分,共15分)19.若坐标原点到抛物线x =-m 2y 2的准线的距离为2,则m =________;焦点坐标为________.答案 ±24 (-2,0)解析 由y 2=-1m 2x ,得准线方程为x =14m 2,∴14m 2=2,∴m 2=18,即m =±24,∴y 2=-8x ,∴焦点坐标为(-2,0).20.在数列{a n }中,a 1=1,a n +1=(-1)n (a n +1),记S n 为{a n }的前n 项和,则S 2017=________.答案 -1007解析 由a 1=1,a n +1=(-1)n (a n +1),可得a 2=-2,a 3=-1,a 4=0,a 5=1,该数列是周期为4的循环数列,所以S 2017=504(a 1+a 2+a 3+a 4)+a 1=504×(-2)+1=-1007.21.已知向量a =(-5,5),b =(-3,4),则a -b 在b 方向上的投影为________.答案 2解析 由a =(-5,5),b =(-3,4),则a -b =(-2,1),(a -b )·b =(-2)×(-3)+1×4=10,|b |=9+16=5,则a -b 在b 方向上的投影为(a -b )·b |b |=105=2. 22.已知函数f (x )=x 2+px -q (p ,q ∈R )的值域为[-1,+∞),若关于x 的不等式f (x )<s 的解集为(t ,t +4),则实数s =________. 答案 3解析 因为函数f (x )=x 2+px -q =⎝ ⎛⎭⎪⎫x +p 22-p 24-q 的值域为[-1,+∞),所以-p 24-q =-1,即p 2+4q =4.因为不等式f (x )<s 的解集为(t ,t +4),所以方程x 2+px -q -s =0的两根为x 1=t ,x 2=t +4,则x 2-x 1=(x 1+x 2)2-4x 1x 2=(-p )2-4(-q -s ) =p 2+4q +4s =4+4s =4,解得s =3.三、解答题(本大题共3小题,共31分)23.(10分)等比数列{a n }中,已知a 1=2,a 4=16.(1)求数列{a n }的通项公式;(2)若a 3,a 5分别为等差数列{b n }的第3项和第5项,试求数列{b n }的通项公式及前n 项和S n .解 (1)设{a n }的公比为q ,由已知得16=2q 3,解得q =2. 所以a n =2·2n -1=2n (n ∈N *).(2)由(1)得a 3=8,a 5=32,则b 3=8,b 5=32.设{b n }的公差为d ,则有⎩⎪⎨⎪⎧ b 1+2d =8,b 1+4d =32. 解得⎩⎪⎨⎪⎧b 1=-16,d =12. 所以b n =-16+12(n -1)=12n -28.所以数列{b n }的前n 项和S n =n (-16+12n -28)2=6n 2-22n (n ∈N *).24.(10分)如图,已知椭圆x 2a 2+y 2=1(a >1),过直线l :x =2上一点P作椭圆的切线,切点为A ,当P 点在x 轴上时,切线P A 的斜率为±22.(1)求椭圆的方程;(2)设O 为坐标原点,求△POA 面积的最小值.解 (1)当P 点在x 轴上时,P (2,0),P A :y =±22(x -2).联立⎩⎨⎧y =±22(x -2),x 2a 2+y 2=1,化简得⎝ ⎛⎭⎪⎫1a 2+12x 2-2x +1=0, 由Δ=0,解得a 2=2,所以椭圆的方程为x 22+y 2=1.(2)设切线方程为y =kx +m ,P (2,y 0),A (x 1,y 1),则⎩⎪⎨⎪⎧y =kx +m ,x 2+2y 2-2=0, 化简得(1+2k 2)x 2+4kmx +2m 2-2=0,由Δ=0,解得m 2=2k 2+1,且x 1=-2km 1+2k 2,y 1=m 1+2k 2,y 0=2k +m , 则|PO |=y 20+4,直线PO 的方程为y =y 02x ,则点A 到直线PO 的距离d =|y 0x 1-2y 1|y 20+4,设△POA 的面积为S ,则S =12|PO |·d =12|y 0x 1-2y 1|=12⎪⎪⎪⎪⎪⎪(2k +m )-2km 1+2k 2-2m 1+2k 2=⎪⎪⎪⎪⎪⎪1+2k 2+km1+2k 2m =|k +m |.当m =2k 2+1时,S =|k +1+2k 2|.(S -k )2=1+2k 2,则k 2+2Sk -S 2+1=0,Δ=8S 2-4≥0,解得S ≥22,当S =22时k =-22.同理当m =-2k 2+1时,可得S ≥22,当S =22时k =22.所以△POA 面积的最小值为22.25.(11分)设a 为实数,函数f (x )=(x -a )2+|x -a |-a (a -1).(1)若f (0)≤1,求a 的取值范围;(2)讨论f (x )的单调性;(3)当a ≥2时,讨论f (x )+4x 在区间(0,+∞)内的零点个数.解 (1)f (0)=a 2+|a |-a 2+a =|a |+a ,因为f (0)≤1,所以|a |+a ≤1,当a ≤0时,0≤1,显然成立;当a >0时,则有|a |+a =2a ≤1,所以a ≤12,所以0<a ≤12.综上所述,a 的取值范围是⎝ ⎛⎦⎥⎤-∞,12. (2)f (x )=⎩⎪⎨⎪⎧x 2-(2a -1)x ,x ≥a ,x 2-(2a +1)x +2a ,x <a . 对于u 1=x 2-(2a -1)x ,其对称轴为x =2a -12=a -12<a ,开口向上,所以f (x )在(a ,+∞)上单调递增;对于u 2=x 2-(2a +1)x +2a ,其对称轴为x =2a +12=a +12>a ,开口向上,所以f (x )在(-∞,a )上单调递减.综上所述,f (x )在(a ,+∞)上单调递增,在(-∞,a )上单调递减.(3)由(2)得f (x )在(a ,+∞)上单调递增,在(0,a )上单调递减,所以f (x )min =f (a )=a -a 2.①当a =2时,f (x )min =f (2)=-2,f (x )=⎩⎪⎨⎪⎧x 2-3x ,x ≥2,x 2-5x +4,x <2, 令f (x )+4x =0,即f (x )=-4x (x >0),因为f (x )在(0,2)上单调递减,所以f (x )>f (2)=-2,而g (x )=-4x 在(0,2)上单调递增,所以g (x )<g (2)=-2,所以y =f (x )与g (x )=-4x 在(0,2)上无交点;当x ≥2时,f (x )=x 2-3x =-4x ,即x 3-3x 2+4=0, 所以x 3-2x 2-x 2+4=0,所以(x -2)2(x +1)=0, 因为x ≥2,所以x =2,综上当a =2时,f (x )+4x 有一个零点x =2.②当a >2时,f (x )min =f (a )=a -a 2,当x ∈(0,a )时,f (0)=2a >4,f (a )=a -a 2,而g (x )=-4x 在(0,a )上单调递增,当x =a 时,g (x )=-4a ,下面比较f (a )=a -a 2与-4a 的大小,因为a -a 2-⎝ ⎛⎭⎪⎫-4a =-(a 3-a 2-4)a =-(a -2)(a 2+a +2)a<0, 所以f (a )=a -a 2<-4a .结合图象不难得到当a >2时,y =f (x )与g (x )=-4x 有两个交点.综上所述,当a =2时,f (x )+4x 在区间(0,+∞)内有一个零点x =2;当a >2时,f (x )+4x 在区间(0,+∞)内有两个零点.。