随机事件与样本空间 PPT
合集下载
1-2节 样本空间和随机事件

(3) 分配律 A ( B C ) ( A B) ( A C ),
A ( B C ) ( A B) ( A C ),
(4)德 摩根律 : A B A B, A B A B.
(对偶律)
A A,
i 1 i i 1 i
样本空间的元素由试验的目的所确定.
二、随机事件
随机事件 在一次试验中可能发生也可能不发
生的结果称为随机事件, 简称事件.事件常用A、
B、C表示. 随机事件是由样本空间的某些样本点构成的. 例如 抛掷一枚骰子, 观察出现的点数. 试验中,骰子“出现1点”, “出现2点”, … ,“出现6 点”, “点数不大于4”, “点数为偶数” 等都为随机事件.
空集 和样本空间S都是样本空间S的子集, 在每次试验中 必不发生,称 为不可能事件; S 必发生,称 S为必然事件. 为叙述方便,把不可能事件和必然事件都包括 在随机事件中.
三、事件间的关系及运算
设试验 E 的样本空间为 S , 而 A, B, Ak (k 1,2,) 是 S 的子集.
个事件,称此事件为事件 A与事件B的积事
件. 记作 A I B或AB 显然 A I B {e | e A且e B}.
A AB
B
S
图示:事件A与B 的积事件.
积事件具有如下性质:
(1)若A B, 则A B A; B A, 则A B B.
(2) A B A; A B B.
3. 和事件
“事件 A与事件B至少有一个发生”也是 一 个事件, 称此事件为事件 A 与事件B的和事件. 记作A B,显然A B {e | e A或e B}.
B A
S
A ( B C ) ( A B) ( A C ),
(4)德 摩根律 : A B A B, A B A B.
(对偶律)
A A,
i 1 i i 1 i
样本空间的元素由试验的目的所确定.
二、随机事件
随机事件 在一次试验中可能发生也可能不发
生的结果称为随机事件, 简称事件.事件常用A、
B、C表示. 随机事件是由样本空间的某些样本点构成的. 例如 抛掷一枚骰子, 观察出现的点数. 试验中,骰子“出现1点”, “出现2点”, … ,“出现6 点”, “点数不大于4”, “点数为偶数” 等都为随机事件.
空集 和样本空间S都是样本空间S的子集, 在每次试验中 必不发生,称 为不可能事件; S 必发生,称 S为必然事件. 为叙述方便,把不可能事件和必然事件都包括 在随机事件中.
三、事件间的关系及运算
设试验 E 的样本空间为 S , 而 A, B, Ak (k 1,2,) 是 S 的子集.
个事件,称此事件为事件 A与事件B的积事
件. 记作 A I B或AB 显然 A I B {e | e A且e B}.
A AB
B
S
图示:事件A与B 的积事件.
积事件具有如下性质:
(1)若A B, 则A B A; B A, 则A B B.
(2) A B A; A B B.
3. 和事件
“事件 A与事件B至少有一个发生”也是 一 个事件, 称此事件为事件 A 与事件B的和事件. 记作A B,显然A B {e | e A或e B}.
B A
S
1.2样本空间、随机事件

二、随机事件的概念
1. 基本概念
随机试验 E 的样本空间 S 的子集称为 E 的随 机事件, 简称事件.
每次实验中, 当且仅当这一子集中的一个样本 点出现时, 称这一事件发生.
由一个样本点组成的单点集, 称为基本事件.
样本空间 S包含所有的样本 , 它点是S自身的 子集, 在每次实验中它总是发生的, S称为必然事 件.
A S
某种产品的合格与否是由该产品的长度与直
径是否合格所决定, 因此 “产品不合格”是“长
不合格”与“直径不度合格”的并.
n
推广 称 A k为 n个事 A 1,A 2 件 , ,A n的和事 k1
件, 称 A k为可列 A 1,A 个 2, 的 事和 件 . 事件 k1
3 . 事 A B x x 件 A 且 x B , 称为事件A
它既可以作为抛掷硬币出现正面或出现反面的模 型, 也可以作为产品检验中合格与不合格的模型, 又能用于排队现象中有人排队与无人排队的模型.
课堂练习
写出下列随机试验的样本空间. 1. 同时掷三颗骰子,记录三颗骰子之和. 2. 生产产品直到得到10件正品,记录生产产品的 总件数.
所以在具体问题的研究 中, 描述随机现象的第一步 就是建立样本空间.
对立事件与互斥事件的区别
A、B 互斥
A、B 对立
A
BS
AB
互斥
A
B A S
A B S 且 A B
对立
事件间的运算规律 设A,B,C为事,件 则有
(1)交换律 AB BA; AB BA.
(2)结合律 A(BC) (AB)C; A(BC) (AB)C.
(3)分配律 A(BC) (A B ) (A C ); A(BC) (A B ) (A C ).
1.2 样本空间、随机事件

S
A=B,则称事件 相等。 若 A ⊂ B 且 B ⊃ A ,即 A=B,则称事件 A 与事件 B 相等。
2°事件 A U B = { x | x ∈ A 或 x ∈ B }称为事件 A 与 B 的 ° 中至少有一个发生。 和事件,它指的是事件 A 与事件 B 中至少有一个发生。 事件,它指的是事件
如何来研究随机现象? 如何来研究随机现象 随机现象是通过随机试验来研究的! 随机现象是通过随机试验来研究的! 随机试验来研究的 研究方法?数学方法? 研究方法?数学方法? 将E的结果数量化!---用集合:S={e},A,B… 的结果数量化!---用集合:S={e}, 用集合 引进(随机)变量、函数(概率、分布函数) 引进(随机)变量、函数(概率、分布函数)… 概率论研究的主线? 概率论研究的主线? 1、事件表示:---利用事件间关系、运算表示较复 事件表示:---利用事件间关系、 利用事件间关系 杂事件… 杂事件 计算事件的概率:----利用概率的定义 性质、 利用概率的定义、 2、计算事件的概率:----利用概率的定义、性质、 概率运算公式… 概率运算公式
2. 几点说明
由一个样本点组成的单点集,称为基本事件。 由一个样本点组成的单点集,称为基本事件。 基本事件
S 作为自己的一个子集,在每次试验中必然发生,称为 作为自己的一个子集,在每次试验中必然发生, 必然发生 必然事件; 必然事件; 空集∅ 作为 S 的一个子集,在每次试验中都不会发生,称 的一个子集,在每次试验中都不会发生, 都不会发生 为不可能事件 不可能事件. 事件
子集
事件间关系。。。 随机事件→事件间关系。。。 事件间关系
集合→ 集合→集合间关系运算
定义于集合的函数: 定义于集合的函数:函数
《有限样本空间与随机事件》课件

PPT素材下载:/sucai/
PPT背景图片:/beijing/ PPT图表下载:/tubiao/
优秀PPT下载:www.1p pt.co m/ xiazai/
PPT教程: /powerpoint/
Word教程: /word/
共有10种可能结果0,1,2,3,4,5,6,7,8,9. 所有可能结果可用集合表示为{0,1,2,3,4,5,6,7,8,9}
学习新知
2.样本点和样本空间
定义
PPT模板下载:/moban/ 行业PPT模板:/hangye/
节日PPT模板:www.1p pt.co m/ jieri/
Word教程: /word/
Excel教程:www.1ppt.c om/excel/
资料下载:www. 1ppt.co m/zilia o/
PPT课件下载:www.1p pt.co m/ kejian/
范文下载:www. 1ppt.co m/fan wen/
试卷下载:www.1ppt.c om/shiti /
Excel教程:www.1ppt.c om/excel/
资料下载:www. 1ppt.co m/zilia o/
PPT课件下载:www.1p pt.co m/ kejian/
范文下载:www. 1ppt.co m/fan wen/
试卷下载:www.1ppt.c om/shiti /
教案下载:ww特点:
(1)试验可以在相同条件下重复进行;可重复性
(2)试验的所有可能结果是明确可知的,
并且不止一个;
可预知性
(3)每次试验总是恰好出现这些可能结果中的一个,但
事先不能确定出现哪一个结果.
随机性
学习新知
概率论 样本空间、随机事件

S4 ={1,2,3,4,5,6}; S5 ={0,1,2…}; S6 ={t | t≥0} t为灯泡寿命; S7 ={(x,y)|T0≤x≤y≤T1},这里x表示最低温度,y 表示最高温度,并设这一地区的温度不会小 于T0,也不会大于T1。 S8 ={(x,y)|x2+y2≤100}, 注意:样本空间的元素是由试验的目的所确 定的。例如,在E2和E3种同是将一枚硬币连 抛三次,由于试验的目的不一样,其样本空 间也不一样。
反之,当且仅当“接点a未闭合”与“接点 b、c都未闭合”二事件中至少有一事件发 生时,指示灯不亮;所以有
.
这个等式也可以由等式 D= A(B∪C) 利用De Morgan对偶律得到.事实上,我 们有
例7 设A,B,C,D是四个事件,用A,B,C, D的运算关系表示下列事件。 (1)A1:“A,B,C,D中仅有A发生” (2)A2:“A,B,C,D中恰有一个发生” (3)A3:“A,B,C,D中至少有一个发生” (4)A4:“A,B,C,D中至少有两个发生” (5)A5:“A,B,C,D中至多有一个发生” (6)A6:“A,B,C,D中至多有两个发生” (7)A7:“A,B,C,D都不发生” (8)A8:“A,B,C,D不都发生” (9)A9:“A,B,C,D中至多一个发生,但D 不发生” (10)A10:“A,B,C,D中至多一个不发生”
7. 事件的对立
AB , A B
— A 与B 互相对立 A 每次试验 A、 B中 有且只有一个发生 称B 为A的对立事件 (or 逆事件), 记为 B A
注意:“A 与B 互相对立”与 “A 与B 互斥”是不同的概念
B A
运算律
事件 运算 对应 集合 运算
吸收律
随机事件与样本空间

问题情境
木柴燃烧,产生热量
明天,地球还会转动
实心铁块丢入水中,铁块浮起
在0 C下,这些雪融化
0
在一定条件下: 必然会发生的事件叫必然事件; 必然不会发生的事件叫不可能事件;
试判断这些事件发生的可能性:
(1)木柴燃烧,产生热量 必然发生 (2)明天,地球仍会转动 必然发生
必然事件
(3)实心铁块丢入水中,铁块浮起 不可能发生 (4)在标准大气压00C以下,雪融化 不可能发生
乙同学
布 剪子 石头
. . . . . . . . .
石头 剪子 布
甲同学
• • • •
练习 写出下列随机试验的样本空间: (1)种下一粒种子,观察种子是否发芽; (2)甲乙两队进行一场比赛,观察甲队的 胜负结果; • (3)从含有15件次品的100件产品中任取5 件,观察其中的次品数。
Ω1={发芽,不发芽} Ω2={胜,负,平} Ω3={0,1,2,3,4,5}
不可能事件
(5)在刚才的图中转动转盘后,指针指向黄色区域
可能发生也可能不发生 (6)两人各买1张彩票,均中奖 可能发生也可能不发生 随机事件
试分析:“从一堆牌中任意抽一张抽到红牌”这一事 件的发生的可能性?
必然发生
必然不会发生
可能发生, 也 可能不发生
三人每次都能摸到红球吗?
思考:
1、样本空间本身表示的事件是必然事件吗? 2、用空集φ表示的事件是不可能事件吗?举例 说明 3、某同学投篮5次,“他投中6次”和“他投 中的次数小于6”分别是什么事件?
你能列举几个随 机现象的例子吗?
二、随机试验
在实际中,一般通过观察试验来研究随机现象.
对随机现象的观察或试验称为随机试验,简称 试验。
概率论课件——样本空间、随机事件

对 立
互
斥
事件间的运算规律 设 A, B, C 为事件, 则有
(1) 交换律
A B B A, AB BA. (Exchange law)
( 2) 结合律 ( A B ) C A ( B C ),
( AB )C A( BC ).
(Combination law)
k 1
n
称 Ak 为可列个事件 A1 , A2 , 的积事件.
k 1
和事件与积事件的运算性质
A A A, A A A, A S S, A S A, A A,
A .
5. 事件 A 与 B 互不相容 (互斥) (Incompatible events) 若事件 A 的出现必然导致事件 B 不出现, B
直径是否合格所决定,因此 “产品不合格”是“长度 不合格”与“直径不合格”的并. 图示事件 A 与 B 的并.
B A B A
S
推广 称 Ak 为 n 个事件 A1 , A2 , , An 的和事件;
k 1
n
称 Ak 为可列个事件 A1 , A2 , 的和事件.
k 1
4. 事件 A 与 B 的交 (积事件) (Product of events)
例如 只包含两个样本点的样本空间
S {H , T }
它既可以作为抛掷硬币出现正面或出现反面的
模型 , 也可以作为产品检验中合格与不合格的模 型 , 又能用于排队现象中有人排队与无人排队的 模型等.
所以在具体问题的研究
中 , 描述随机现象的第一步
就是建立样本空间.
二、随机事件(Random event ) 的概念
第二节 样本空间、随机事件 (Sampling space, Random event )
互
斥
事件间的运算规律 设 A, B, C 为事件, 则有
(1) 交换律
A B B A, AB BA. (Exchange law)
( 2) 结合律 ( A B ) C A ( B C ),
( AB )C A( BC ).
(Combination law)
k 1
n
称 Ak 为可列个事件 A1 , A2 , 的积事件.
k 1
和事件与积事件的运算性质
A A A, A A A, A S S, A S A, A A,
A .
5. 事件 A 与 B 互不相容 (互斥) (Incompatible events) 若事件 A 的出现必然导致事件 B 不出现, B
直径是否合格所决定,因此 “产品不合格”是“长度 不合格”与“直径不合格”的并. 图示事件 A 与 B 的并.
B A B A
S
推广 称 Ak 为 n 个事件 A1 , A2 , , An 的和事件;
k 1
n
称 Ak 为可列个事件 A1 , A2 , 的和事件.
k 1
4. 事件 A 与 B 的交 (积事件) (Product of events)
例如 只包含两个样本点的样本空间
S {H , T }
它既可以作为抛掷硬币出现正面或出现反面的
模型 , 也可以作为产品检验中合格与不合格的模 型 , 又能用于排队现象中有人排队与无人排队的 模型等.
所以在具体问题的研究
中 , 描述随机现象的第一步
就是建立样本空间.
二、随机事件(Random event ) 的概念
第二节 样本空间、随机事件 (Sampling space, Random event )
概率论与数理统计教程_第五版_ppt课件

.
推广:
N元情形
n
称 Ak 为 n 个事件 A1, A2 , , An 的和事件,即 k 1
A1, A2 , , An至少发生一个;
.
3.事件的交(积)
"二事件A, B同时发生"也是一个事件 , 称为 事件A 与事件 B 的积事件,记作A B,显然 A B {e | e A且e B}.
实例 抛掷一枚骰子, 观察出现的点数。 试验中,骰子“出现1点”, “出现2 点”, … ,“出现6点”, “点数不大于4”, “点 数为偶数” 等都为随机事件.
.
五、随机事件的关系及运算
(1)、随机事件间的关系 设试验 E 的样本空间为 , 而 A, B, Ak (k
1,2, )是 的子集. 1、包含关系 若事件 A 出现, 必然导致 B 出现
若事件 A 、B 满足 A B AB .
则称事件 A与B互不相容.
例 抛掷一枚硬币, “出现花面” 与 “出现字面” 是互不相容的两个事件.
说明 当AB= 时,可将AB记为“直和”形 式A+B 任意事件A与不可能事件为互斥.
.
5.事件的差
事件 “A 出现而 B 不出现”,称为事件 A 与 B 的差. 记作 A- B.
一、随机现象 二、随机试验 三、样本空间 样本点 四、随机事件的概念 五、随机事件的关系
.
一、随机试验
1.必然现象(确定) 2.偶然现象(不确定)随机
说明: 1.随机现象揭示了条件和结果之间的非确定性联系 ,
其数量关系无法用函数加以描述. 2.随机现象在一次观察中出现什么结果具有偶然性,
但在大量重复试验或观察中, 这种结果的出现具有 一定的统计规律性 , 概率论就是研究随机现象这 种本质规律的一门数学学科.
推广:
N元情形
n
称 Ak 为 n 个事件 A1, A2 , , An 的和事件,即 k 1
A1, A2 , , An至少发生一个;
.
3.事件的交(积)
"二事件A, B同时发生"也是一个事件 , 称为 事件A 与事件 B 的积事件,记作A B,显然 A B {e | e A且e B}.
实例 抛掷一枚骰子, 观察出现的点数。 试验中,骰子“出现1点”, “出现2 点”, … ,“出现6点”, “点数不大于4”, “点 数为偶数” 等都为随机事件.
.
五、随机事件的关系及运算
(1)、随机事件间的关系 设试验 E 的样本空间为 , 而 A, B, Ak (k
1,2, )是 的子集. 1、包含关系 若事件 A 出现, 必然导致 B 出现
若事件 A 、B 满足 A B AB .
则称事件 A与B互不相容.
例 抛掷一枚硬币, “出现花面” 与 “出现字面” 是互不相容的两个事件.
说明 当AB= 时,可将AB记为“直和”形 式A+B 任意事件A与不可能事件为互斥.
.
5.事件的差
事件 “A 出现而 B 不出现”,称为事件 A 与 B 的差. 记作 A- B.
一、随机现象 二、随机试验 三、样本空间 样本点 四、随机事件的概念 五、随机事件的关系
.
一、随机试验
1.必然现象(确定) 2.偶然现象(不确定)随机
说明: 1.随机现象揭示了条件和结果之间的非确定性联系 ,
其数量关系无法用函数加以描述. 2.随机现象在一次观察中出现什么结果具有偶然性,
但在大量重复试验或观察中, 这种结果的出现具有 一定的统计规律性 , 概率论就是研究随机现象这 种本质规律的一门数学学科.
随机事件与样本空间 PPT

有关古典概率及条件概率的概念的理解及计算
第一节 随机事件的概念
一、 随机现象 二、 随机试验 三、样本空间 样本点 四、随机事件的概念
五、事件的关系与运算
一、随机现象
自然界所观察到的现象:
1.确定性现象
确定性现象 随机现象
在一定条件下必然发生 的现象称为确定性现象.
实确例定性现象的特征
条件完全决定结果
HTT , TTH , THT , TTT }.
若观察出现正面的次数 , 则样本空间为
S {0, 1, 2, 3}.
说明
3. 建立样本空间,事实上就是建立随机现 象的数学模型. 因此 , 一个样本空间可以 概括许多内容大不相同的实际问题.
例如 只包含两个样本点的样本空间
S {H,T} 它既可以作为抛掷硬币出现正面或出现反面的
指挥灯”.
实例6 “一只灯泡的寿命” 可长可 短.
说明
1. 随机现象揭示了条件和结果之间的非确定性联 系 , 其数量关系无法用函数加以描述. 2. 随机现象在一次观察中出现什么结果具有偶然 性(也称随机性). 或者说,出现哪个结果“凭机 会而定”.
3.但在大量重复试验或观察中, 这种结果的出现 具有一定的统计规律性 , 概率论就是研究随机现 象这种本质规律的一门数学学科.
第二次世界大战军事上的需要以及大工业 与管理的复杂化产生了运筹学、系统论、信息 论、控制论与数理统计学等学科.
数理统计学是一门研究怎样去有效地收集、 整理和分析带有随机性的数据,以对所考察的
问题作出推断或预测,直至为采取一定的决策
和行动提供依据和建议的 数学分支学科.
统计方法的数学理论要用到很多近代数学 知识,如函数论、拓扑学、矩阵代数、组合数 学等等,但关系最密切的是概率论,故可以这 样说:概率论是数理统计学的基础,数理统计
第一节 随机事件的概念
一、 随机现象 二、 随机试验 三、样本空间 样本点 四、随机事件的概念
五、事件的关系与运算
一、随机现象
自然界所观察到的现象:
1.确定性现象
确定性现象 随机现象
在一定条件下必然发生 的现象称为确定性现象.
实确例定性现象的特征
条件完全决定结果
HTT , TTH , THT , TTT }.
若观察出现正面的次数 , 则样本空间为
S {0, 1, 2, 3}.
说明
3. 建立样本空间,事实上就是建立随机现 象的数学模型. 因此 , 一个样本空间可以 概括许多内容大不相同的实际问题.
例如 只包含两个样本点的样本空间
S {H,T} 它既可以作为抛掷硬币出现正面或出现反面的
指挥灯”.
实例6 “一只灯泡的寿命” 可长可 短.
说明
1. 随机现象揭示了条件和结果之间的非确定性联 系 , 其数量关系无法用函数加以描述. 2. 随机现象在一次观察中出现什么结果具有偶然 性(也称随机性). 或者说,出现哪个结果“凭机 会而定”.
3.但在大量重复试验或观察中, 这种结果的出现 具有一定的统计规律性 , 概率论就是研究随机现 象这种本质规律的一门数学学科.
第二次世界大战军事上的需要以及大工业 与管理的复杂化产生了运筹学、系统论、信息 论、控制论与数理统计学等学科.
数理统计学是一门研究怎样去有效地收集、 整理和分析带有随机性的数据,以对所考察的
问题作出推断或预测,直至为采取一定的决策
和行动提供依据和建议的 数学分支学科.
统计方法的数学理论要用到很多近代数学 知识,如函数论、拓扑学、矩阵代数、组合数 学等等,但关系最密切的是概率论,故可以这 样说:概率论是数理统计学的基础,数理统计
随机事件和样本空间

由此可知,事件 A B 的含意与集合论中的意义是一致的。 因为不可能事件 不含有任何 ,所以对任一事件 A,我们约定 A
图中的阴影部分是事件“AB”如在例 1.2 中,若 A={球的标号为偶数} B={球的标号≤3}
则 A B={球的标号为 1,2,3,4, ,6,8,10} 4.事件 A 与 B 同时发生“,这样的事件称作事件 A 与 B 的交(或 积) ,记作 A B(或AB) ,它对应图1.3种的阴影部分: 如在例1.2中,若A、B同上,则
, 也就是说 A 与 B 互不
A
B
Байду номын сангаас图 1.5
7 . 若 A 是一个事件,令 A =
A 是 A 的对立事件或逆事 — A,称
件。容易知道在一次试验中,若 A 发生,则 A 必不发生(反之亦然) 即A与 有 A A =
A
二者只能发生其中之一,并且也必然发生其中之一。因而
A
A
=
(A B) C=(A C)( B C) (1.5)
(4)德摩根定理(对偶原则): ________
n
A =
i
_______ n i 1
Ai A = i 1
i i 1
n
__
(1.6)
A
i 1
n
__ i
(1.7)
证明:(略).
n
Ai
An ;若“ A1 ,A2 ,…,
同时发生” ,这样的事件称作A1 , A2 ,…,An 的交,记作
A 1
A2 …
An
或 i 1
n
Ai
1.2样本空间随机事件

k 1
件, 称 Ak为可列个事件A1, A2,的积事件 .
k 1
和事件与积事件的运算性质 A A A, A S S, A A, A A A, A S A, A .
4. 事件A B x x A且x B, 称为事件A与
事件B的差事件 . 当且仅当A发生, B不发生时, 事 件A B发生 .
骰子“出现1点”“,出现2点”,… , “出现6点”, “点数不大于4”, “点数为偶数” 等都为随机事件.
“出现1点”,“出现2点”,… , “出现6点”等都是 基本事件.
“点数不大于6” 就是必然事件. “点数大于6” 就是不可能事件.
三、随机事件间的关系及运算
设实验E的样本空间为S ,而A, B, Ak (k 1,) 是S的子集 .
(3) A1A2 A3 A4 A1 A2 A3 A4 A1A2 A3 A4 A1A2 A3 A4; (4) A1 A2 A3 A4 A1 A2 A3 A4 A1 A2 A3 A4 A1 A2 A3 A4
A1 A2 A3 A4;
设一个工人生产了四个零件, Ai 表示他生 产的第 i 个零件是正品( i 1,2,3,4), 试用 Ai 表 示下列各事件: (5)恰好有三个是次品; (6)至多有一个是次品.
或ABC ABC ABC ABC
例3 设一个工人生产了四个零件, Ai 表示他生
产的第 i 个零件是正品( i 1,2,3,4), 试用 Ai 表 示下列各事件: (1)没有一个是次品; (2)至少有一个是次品; (3)只有一个是次品; (4)至少有三个不是次品; (5)恰好有三个是次品; (6)至多有一个是次品.
注:试验的样本空间是根据试验的内容确 定的!
例3 观察一个新灯泡的寿命,其样本点也 有无穷多个:t小时,0 t ,样本空间为:
1.1 样本空间与随机事件解析

可能结果为:“正面,反面”.
H→正面,T→反面
S1 { H , T }.
(2)抛掷一枚骰子,观察出现的点数.
可能结果为: “1”, “2”, “3”, “4”, “5” 或 “6”.
S2 {1, 2, 3, 4, 5, 6}.
(3)4件产品,2正,2次,从中任取3件,观察正次品出 现情况.
“点数不大于4”, “点数为偶数” 等均为随机事件
例2:将一枚硬币抛两次,事件A表示“第一次出现正 面”,事件B表示“两次出现同一面”,事件C表示“至 少出现一次正面”。试写出该试验的样本空间、随机 事件A,B,C。 练习:同时投掷两枚骰子,试写出该试验的样本空间、 随机事件A,B,C。事件A表示“出现的点数之和大于 10”, 事件B表示“出现的点数均为奇数”,事件C表示“出 现 的点数之差的绝对值小于2”。
习题3:袋中装有6个球,4白(a,b,c,d),2红 (x,y),试用列举法写出下列试验的样本空间。
E1( 放回抽样):取一个,放回后,再取一个。
{(i1 , i2 ) 1 i1 , i2 6} 1 i1 i2 6}
n 6 6 n 65
65 n 15 1 2
练习4:观察某时间段内某交通路口的机动车流量情况。
综合习题:
试用列举法写出下列试验的样本空间、随机事件。 习题1:同时掷两枚硬币,观察正反面出现情况,事 件A表示掷出同一面,事件B表示其中一枚掷出正面。
习题2:将一枚骰子连续掷两次,记录骰子点数出现 情况,事件A表示点数之和等于7,事件B表示两枚 骰子点数之差等于1。
S5 {t t 0}. 其中t表示灯泡的使用寿命
注 1. 试验不同, 对应的样本空间一般不同. eg S={H,T} 可以作为抛掷硬币试验的样本空间
H→正面,T→反面
S1 { H , T }.
(2)抛掷一枚骰子,观察出现的点数.
可能结果为: “1”, “2”, “3”, “4”, “5” 或 “6”.
S2 {1, 2, 3, 4, 5, 6}.
(3)4件产品,2正,2次,从中任取3件,观察正次品出 现情况.
“点数不大于4”, “点数为偶数” 等均为随机事件
例2:将一枚硬币抛两次,事件A表示“第一次出现正 面”,事件B表示“两次出现同一面”,事件C表示“至 少出现一次正面”。试写出该试验的样本空间、随机 事件A,B,C。 练习:同时投掷两枚骰子,试写出该试验的样本空间、 随机事件A,B,C。事件A表示“出现的点数之和大于 10”, 事件B表示“出现的点数均为奇数”,事件C表示“出 现 的点数之差的绝对值小于2”。
习题3:袋中装有6个球,4白(a,b,c,d),2红 (x,y),试用列举法写出下列试验的样本空间。
E1( 放回抽样):取一个,放回后,再取一个。
{(i1 , i2 ) 1 i1 , i2 6} 1 i1 i2 6}
n 6 6 n 65
65 n 15 1 2
练习4:观察某时间段内某交通路口的机动车流量情况。
综合习题:
试用列举法写出下列试验的样本空间、随机事件。 习题1:同时掷两枚硬币,观察正反面出现情况,事 件A表示掷出同一面,事件B表示其中一枚掷出正面。
习题2:将一枚骰子连续掷两次,记录骰子点数出现 情况,事件A表示点数之和等于7,事件B表示两枚 骰子点数之差等于1。
S5 {t t 0}. 其中t表示灯泡的使用寿命
注 1. 试验不同, 对应的样本空间一般不同. eg S={H,T} 可以作为抛掷硬币试验的样本空间
有限样本空间与随机事件 课件-高一下学期数学人教A版(2019)必修第二册

解析:因为落地时只有正面朝上
和反面朝上两个可能结果,所以
试验的样本空间可以表示为
Ω={正面朝上,反面朝上}
如果用h表示“正面朝上”,用t
表示“反面朝上”,
解析:用i表示朝上面的“点数
为i”.由于落地时朝上面的点数
有1,2,3,4,5,6,共6个可
能的基本结果,试验的样本空间
可以表示为
Ω={1,2,3,4,5,6}.
例题讲解
抛掷两枚硬币,观察它们落地时朝上的
面的情况,写出试验的样本空间
解析:抛两枚硬币,第一枚硬币可能的基本结果用x表示,第二枚硬币
可能的基本结果用y表示,那么试验的样本点可用(x,y)表示.所以试验
的样本空间
Ω={(正面,正面),(正面,反面),(反面,正面),(反面,反面)}.
如果用1表示“正面朝上”,用0表示“反面朝上”,
(1)任意掷两次出现的点数.(2)“出现的点数之和大于8” .
(2)“出现的点数之和大于8”包含以下10个基本事件:
(3,6),(4,5),(4,6),(5,4),(5,5),
(5,6),(6,3),(6,4),(6,5),(6,6).
即样本空间
Ω={(3,6),(4,5),(4,6),(5,4),(5,5),(5,6),(6,3),(6,4),
生,故此事件是随机事件.
(3)适宜的温度和充足的水分,是种子萌发不可缺少的两个条件,没有
水分,种子就不可能发芽,故此事件是不可能事件.
(4)电话在60秒内接到至少15次传唤,此事件可能发生,也可能不发生
,故此事件是随机事件.
判断一个事件是随机事件、
必然事件还是不可能事件,
首先一定要看条件,其次
有限样本空间与随机事件课件(共26张PPT)

点数的和,样本点与所描述的点一一对应.由图可知,样本点个数为36.
例3.将一枚骰子先后抛掷两次,试验的样本点用表示,其中表示第一次抛掷出现
的点数,表示第二次抛掷出现的点数.
(2)用集合表示事件“出现的点数之和大于8”.
解(2):“出现的点数之和大于8”可用集合表示为
{(3,6), (4,5), (4,6), (5,4), (5,5), (5,6), (6,3), (6,4), (6,5), (6,6)}.
A.1
B.3
C.0
).
D.4
答案:B.
①②③为随机事件,④为必然事件.
题型三:随机事件与样本空间
例3.将一枚骰子先后抛掷两次,试验的样本点用表示,其中表示第一次抛掷出现
的点数,表示第二次抛掷出现的点数.
(1)求样本空间中的样本点个数;
(2)用集合表示事件“出现的点数之和大于8”.
解(1):(法一:列举法)试验的样本空间为:
(4)同时抛掷两枚硬币一次,都出现正面向上;
(5)从分别标有1,2,3,4的四张标签中任取一张,抽到1号标签;
(6)科学技术达到一定水平后,不需要任何能量的永动机将会出现.
答案:(1)(4)(5)随机事件;(2)必然事件;(3)(6)不可能事件.
方法技巧:
对事件分类的两个关键点
条件
事件的分类是与一定的条件相对而言的,
(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),
(6,6)}.
解(1):(法二:树状图法)一枚骰子先后抛掷两次的所有可能结果用树状图表示,
由图可知,共36个样本点.
解(1):(法三:坐标系法)如图所示,坐标平面内的数表示相应两次抛掷后出现的
例3.将一枚骰子先后抛掷两次,试验的样本点用表示,其中表示第一次抛掷出现
的点数,表示第二次抛掷出现的点数.
(2)用集合表示事件“出现的点数之和大于8”.
解(2):“出现的点数之和大于8”可用集合表示为
{(3,6), (4,5), (4,6), (5,4), (5,5), (5,6), (6,3), (6,4), (6,5), (6,6)}.
A.1
B.3
C.0
).
D.4
答案:B.
①②③为随机事件,④为必然事件.
题型三:随机事件与样本空间
例3.将一枚骰子先后抛掷两次,试验的样本点用表示,其中表示第一次抛掷出现
的点数,表示第二次抛掷出现的点数.
(1)求样本空间中的样本点个数;
(2)用集合表示事件“出现的点数之和大于8”.
解(1):(法一:列举法)试验的样本空间为:
(4)同时抛掷两枚硬币一次,都出现正面向上;
(5)从分别标有1,2,3,4的四张标签中任取一张,抽到1号标签;
(6)科学技术达到一定水平后,不需要任何能量的永动机将会出现.
答案:(1)(4)(5)随机事件;(2)必然事件;(3)(6)不可能事件.
方法技巧:
对事件分类的两个关键点
条件
事件的分类是与一定的条件相对而言的,
(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),
(6,6)}.
解(1):(法二:树状图法)一枚骰子先后抛掷两次的所有可能结果用树状图表示,
由图可知,共36个样本点.
解(1):(法三:坐标系法)如图所示,坐标平面内的数表示相应两次抛掷后出现的
样本空间与随机事件

上一页 下一页 返回
4 .1 样本空间与随机事件
3.随机事件 在随机试验E中,可能发生也可能不发生的事情称为随机事件,简称
事件,一般用大写字母A,B,C…表示。在引入样本空间后,事件便 可以表示为样本空间的子集。 每次试验中,一定发生的事件称为必然事件,记为月,每次试验中一 定不发生的事件称为不可能事件,记为Ф,这两个事件是确定性事件, 不是随机事件,但为今后讨论问题方便,也把它们看成随机事件。
是可以事先明确知道的。 (3)每一次试验,实际只出现一种结果,至于实际出现哪一种结果,试验
之前是无法预先知道的。 以上3个特点是随机试验所具有的共同特点,我们就是通过大量的随机
试验去研究随机现象的。 2.样本空间 在研究随机试验E时,首先必须弄清楚这个试验可能出现的所有结果,
称每一个可能的结果为样本点,一般用小写字母ω或e等表示,全体样 本点构成的集合称为样本空间,一般用大写字母Ω或S等表示。
点”,显然事件A的发生必然导致事件B的发生,即A是B的子集。
对任一事件AΩ 。
2.事件相等
若“事件A B且B A”,则事件A与B相等,记为A=B。
上一页 下一页 返回
4 .1 样本空间与随机事件
3.事件的积(交) “事件A与B同时发生”的事件,称为事件A与事件B的积(交)事件,记为
A ∩ B或简记为AB。即由A与B的公共样本点组成的集合。 例如,某公司2009年同时进行了A和B两种投资方案,事件A表示“A
上一页 下一页 返回
4 .1 样本空间与随机事件
如上述随机试验E1中,样本空间Ω={ω正, ω反},样本点简记为: 随机试验E2中,样本空间Ω={ω1 , ω2 , … , ω6},样本点记为: 随机试验E3中,若用x表示灯泡使用寿命,则x的取值为某个范围,若灯
4 .1 样本空间与随机事件
3.随机事件 在随机试验E中,可能发生也可能不发生的事情称为随机事件,简称
事件,一般用大写字母A,B,C…表示。在引入样本空间后,事件便 可以表示为样本空间的子集。 每次试验中,一定发生的事件称为必然事件,记为月,每次试验中一 定不发生的事件称为不可能事件,记为Ф,这两个事件是确定性事件, 不是随机事件,但为今后讨论问题方便,也把它们看成随机事件。
是可以事先明确知道的。 (3)每一次试验,实际只出现一种结果,至于实际出现哪一种结果,试验
之前是无法预先知道的。 以上3个特点是随机试验所具有的共同特点,我们就是通过大量的随机
试验去研究随机现象的。 2.样本空间 在研究随机试验E时,首先必须弄清楚这个试验可能出现的所有结果,
称每一个可能的结果为样本点,一般用小写字母ω或e等表示,全体样 本点构成的集合称为样本空间,一般用大写字母Ω或S等表示。
点”,显然事件A的发生必然导致事件B的发生,即A是B的子集。
对任一事件AΩ 。
2.事件相等
若“事件A B且B A”,则事件A与B相等,记为A=B。
上一页 下一页 返回
4 .1 样本空间与随机事件
3.事件的积(交) “事件A与B同时发生”的事件,称为事件A与事件B的积(交)事件,记为
A ∩ B或简记为AB。即由A与B的公共样本点组成的集合。 例如,某公司2009年同时进行了A和B两种投资方案,事件A表示“A
上一页 下一页 返回
4 .1 样本空间与随机事件
如上述随机试验E1中,样本空间Ω={ω正, ω反},样本点简记为: 随机试验E2中,样本空间Ω={ω1 , ω2 , … , ω6},样本点记为: 随机试验E3中,若用x表示灯泡使用寿命,则x的取值为某个范围,若灯
随机事件与样本空间

或ห้องสมุดไป่ตู้
随机试验的试验结果称为随机事件,常用英文大写字母A,B,C等表示;
A=“出现偶数点”,B=“出现4点” ,则
B = A 随机事件一般可分解为更简单的事件,在一定条件下,不可以再分解的事件称为基本事件,一般用ω1、ω2、ω3等表示;
在样本空间中, ω1、ω2、ω3称为样本点。
A=“出现偶数点”,B=“出现4点” ,则
试验的所有可能结果是已知的,但在试验前是不知试验将发生什么结果,并在相同的条件下,试验可以重复进行。
则 A 与 B 互 为 对 立 事 件 。 随机试验的试验结果称为随机事件,常用英文大写字母A,B,C等表示;
随机事件一般可分解为更简单的事件,在一定条件下,不可以再分解的事件称为基本事件,一般用ω1、ω2、ω3等表示;
随机试验的试验结果称为随机事件,常用英文大写字母A,B,C等表示;
下一张幻灯片
两两互斥(互不相容)完备事件组
A1 , A2 , , An 两 两 互 斥 完 备 事 件 组 ,就 是 指 事 件
组中每两个都是互斥事件,并且
n
A1 A2 An Ai i 1
例如: A i =“出现i点” i=1,2,…,6。 A1 , A2 , , A6 为 两 两 互 斥 完 备 事 件 组
例 如 抛 骰 子 时 : A = “ 出 现 偶 数 点 ”, 在样本空间中, ω1、ω2、ω3称为样本点。
随机试验的所有基本事件组成的集合,称为样本空间,记为
;
在样本空间中, ω1、ω2、ω3称为样本点。
B = “ 出 现 奇 数 点 ”; 事件A包含事件B,就是指B发生必导致A发生。
试验的所有可能结果是已知的,但在试验前是不知试验将发生什么结果,并在相同的条件下,试验可以重复进行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《概率论与数理统计》的教学方法: (1)经典概率论部分
大多数学生在系统学习《概率论与数理统计》之前,在中学或多或少对何谓概率有 所了解,因此该门课程的入门较低,但如 何从实际的随机现象中把问题数学化,如 何运用数学符号表示随机现象是学习该部分内容的难点。这部分内容是整个概率论 的基础,要从学生常见的随机想象出发,引导学生如何用数学语言描述随机现象, 而不是仅仅会猜答案,写不出任何接替步骤。具体教学方案分两步:第一步先让学生 初步掌握数学中集合的概念来表述随机事件;熟悉随机事件的运算规律;第二步再学 习概率的定义的发展规律,进而了解概率的公理化体系,掌握条件概率,全概率公式 等内容。
如何来研究随机现象? 随机现象是通过随机试验来研究的.
问题 什么是随机试验?
二、随机试验
定义 在概率论中,把具有以下三个特征的试验称 为随机试验.
1. 可以在相同的条件下重复地进行; 2. 每次试验的可能结果不止一个,并且能事 先明确试验的所有可能结果; 3. 进行一次试验之前不能确定哪一个结果 会出现.
5. 从一批灯泡中任取 一只,测试其寿命.
三、样本空间 样本点
定义1.1 对于随机试验E,它的每一个可 能结果称为样本点,由一个样本点组成的 单点集称为基本事件。所有样本点构成的 集合称为E 的样本空间或必然事件,用或 S表示
我们规定不含任何元素的空集为不可能事件, 用 表示。
实例1 如:掷一枚骰子一次的试验E.
盛骤,谢式千,潘承毅 编 高等教育出版社
牛丽英,陈勇 主编 出 版 社:水利水电出版社
Chapter 1
本章重点: 1.理解随机事件及其概率的概念; 2.理解条件概率及事件独立性的概念; 3.掌握随机事件之间的关系与运算; 4.掌握概率的基本性质及概率加法定理与乘法
定理以及计算概率的全概率公式与贝叶斯公式。 本章难点:
前
言
概率统计是研究随机现象数量规律的 学科, 理论严谨, 应用广泛,发展迅速. 不 仅高等学校各专业都开设了本课程, 而且 在上世纪末,此课程特意被教育部定为本 科生考研的数学课程之一,希望大家能认 真学好这门不易学好的重要课程.
本学科的 ABC
概率(或然率或几率) —— 随机事件出现 的可能性的量度—— 其起源与博弈问题有关.
指挥灯”.
实例6 “一只灯泡的寿命” 可长可 短.
说明
1. 随机现象揭示了条件和结果之间的非确定性联 系 , 其数量关系无法用函数加以描述. 2. 随机现象在一次观察中出现什么结果具有偶然 性(也称随机性). 或者说,出现哪个结果“凭机 会而定”.
3.但在大量重复试验或观察中, 这种结果的出现 具有一定的统计规律性 , 概率论就是研究随机现 象这种本质规律的一门数学学科.
有关古典概率及条件概率的概念的理解及计算
第一节 随机事件的概念
一、 随机现象 二、 随机试验 三、样本空间 样本点 四、随机事件的概念
五、事件的关系与运算
一、随机现象
自然界所观察到的现象:
1.确定性现象
确定性现象 随机现象
在一定条件下必然发生 的现象称为确定性现象.
实确例定性现象的特征
条件完全决定结果
结果: “弹落点会各不相同”.
实例3 “抛掷一枚骰子,观 察出现的点数”.
结果有可能为:
“1”, “2”, “3”, “4”, “5” 或 “6”来自实例4 “从一批含有正
其结果可能为:
品和次品的产品中任意抽
正品 、次品.
取一个产品”.
随机现象的特征
条件不能完全决定结果
实例5 “过马路交叉口时,
可能遇上各种颜色的交通
NDD, DDN , DND, DDD }. 实例3 从一批灯泡中任取
一只, 测试其寿命.
S6 {t t 0}. 其中 t 为灯泡的寿命 .
说明 1. 试验不同, 对应的样本空间也不同.
2. 同一试验 , 若试验目的不同,则对应的样 本空 间也不同.
例如 对于同一试验: “将一枚硬币抛掷三 次若”观.察正面 H、反面 T 出现的情况 ,则样本空间 为 S {HHH , HHT , HTH , THH ,
第二次世界大战军事上的需要以及大工业 与管理的复杂化产生了运筹学、系统论、信息 论、控制论与数理统计学等学科.
数理统计学是一门研究怎样去有效地收集、 整理和分析带有随机性的数据,以对所考察的
问题作出推断或预测,直至为采取一定的决策
和行动提供依据和建议的 数学分支学科.
统计方法的数学理论要用到很多近代数学 知识,如函数论、拓扑学、矩阵代数、组合数 学等等,但关系最密切的是概率论,故可以这 样说:概率论是数理统计学的基础,数理统计
验
3) 进行一次试验之前不能确定哪一个结果会 出现.
(3) 随机试验 E 的所有可能结果组成的集合
称为 E 的样本空间, 记为 S .
课堂练习
写出下列随机试验的样本空间. 1. 同时掷三颗骰子,记录三颗骰子之和. 2. 生产产品直到得到10件正品,记录生产产品
的总件数. 答案 1. S {3, 4, 5,, 18}.
“太阳不会从西边升 “起水”从, 高处流向低处”,
“同性电荷必然互斥”, “函数在间断点处不存在导数” 等.
2. 随机现象
在一定条件下可能出现也可能不出现的现象 称为随机现象. 实例1 “在相同条件下掷一枚均匀的硬币,观 察正反两面出现的情况”.
结果有可能出现正面也可能出现反面.
实例2 “用同一门炮向同 一目标发射同一种炮弹多 发 , 观察弹落点的情况”.
学是概率论的一种应用. 但是它们是两个并列 的数学分支学科,并无从属关系.
概率论 32学时
随机事件及其概率 随机变量及其分布 多维随机变量及其分布 随机变量的数字特征与极限定理
数理统计 24学时
样本及其分布 参数估计 假设检验
《概率论与数理统计》的教学内容分为三个模块: (1)经典概率论部分 (2)随机变量的函数及其分布 (3)数理统计初步
A=“第一次出现正面”, B=“两次出现同一面”; (3)在“1,2,3,4”这4个数 中可重复的任取2个数字, A=“一个数是另一个数的2 倍”;
说明 1. 随机试验简称为试验, 是一个广泛的术语.它包 括各种各样的科学实验, 也包括对客观事物进行 的 “调查”、“观察”、或 “测量” 等. 2. 随机试验通常用 E 来表示. 实例 “抛掷一枚硬币,观 察正面,反面出现的情况”.
分析
(1) 试验可以在相同的条件下重复地进行;
(2) 试验的所有可能结果:
反过来,S的每个子集都对应了该试验的一个随 机事件.
随机事件的定义 随机试验 E 的样本空间 S 的子集称为 E
的随机事件, 简称事件.
当且仅当子集A中某个样本点出现时,称 事件A发生.
特别地: 基本事件 由一个样本点组成的单点集
实例 “出现1点”, “出现2点”, … , “出现6点”. 必然事件 随机试验中必然发生的事件. 实例 上述试验中 “点数不大于6” 就是必然事件. 不可能事件 随机试验中不可能发生的事件. 实例 上述试验中 “点数大于6” 就是不可能事件.
样本空间S作为自身最大的子集包含所有的样 本点(基本事件),表示必然事件.
空集 不含任何样本点表示不可能事件.
例1.1 写出掷骰子试验的样本点, 样本空间, 基本事件, 事件A—出现偶数, 事件B—出现奇数
解:用 i 表示掷骰子出现的点数为 i,i 1,6;
{1 ,2 ,3 ,4 ,5 ,6 }
HTT , TTH , THT , TTT }.
若观察出现正面的次数 , 则样本空间为
S {0, 1, 2, 3}.
说明
3. 建立样本空间,事实上就是建立随机现 象的数学模型. 因此 , 一个样本空间可以 概括许多内容大不相同的实际问题.
例如 只包含两个样本点的样本空间
S {H,T} 它既可以作为抛掷硬币出现正面或出现反面的
模型 , 也可以作为产品检验中合格与不合格的 模型 , 又能用于排队现象中有人排队与无人排 队的模型等.
在具体问题的 研究中 , 描述随机 现象的第一步就是 建立样本空间.
小结
(1) 概率论是研究随机现象规律性的一门数学学科
.(2) 随机现象是通过随机试验来研究的.
随机 试
1) 可以在相同的条件下重复地进行; 2) 每次试验的可能结果不止一个, 并且能事 先明确试验的所有可能结果;
基本事件 Ai {i }, i, i 1,2,,6;
A {2 ,4 ,6 };
B {1 ,3 ,5 }.
注意:描述随机事件A,B,C,……的方法
例如:将一枚硬币抛掷两次试验,怎样表示至少出现一 次正面这一事件?
设A=“至少出现一次正面” 或者A= {(H,H), (H,T), (T,H)}
并能应用这些概念解决某些实际问题。
《概率论与数理统计》的教学方法: (2)数理统计初步
概率论一般是研究如何来揭示随机现象所隐含的本质规律,反映在课程内容上就是 随机变量分布函数、分布律和概率密度函数的寻求以及研究它们的数字特征;统计 是以概率论为基础,利用实验数 据对分布函数,概率密度函数进行估计和检验,这 部分内容,主要讲授参数的点估计和区间估计,参数的假设检验,尤其要让学生熟 悉正态总体均值和方差的区间估计方法,假设检验方法,关于广义方差分析和回归 分析,由于学时所限,可以一带而过,作为学生自学的内容。
(2) 几点说明
1) 随机事件可简称为事件, 并以大写英文字母
A, B, C, 来表示事件
例如 抛掷一枚骰子, 观察出现的点数. 可设 A = “点数不大于4”,
B = “点数为奇数” 等 等.
2) 随机试验、样本空间与随机事件的关系 每一个随机试验相应地有一个样本空间, 样
大多数学生在系统学习《概率论与数理统计》之前,在中学或多或少对何谓概率有 所了解,因此该门课程的入门较低,但如 何从实际的随机现象中把问题数学化,如 何运用数学符号表示随机现象是学习该部分内容的难点。这部分内容是整个概率论 的基础,要从学生常见的随机想象出发,引导学生如何用数学语言描述随机现象, 而不是仅仅会猜答案,写不出任何接替步骤。具体教学方案分两步:第一步先让学生 初步掌握数学中集合的概念来表述随机事件;熟悉随机事件的运算规律;第二步再学 习概率的定义的发展规律,进而了解概率的公理化体系,掌握条件概率,全概率公式 等内容。
如何来研究随机现象? 随机现象是通过随机试验来研究的.
问题 什么是随机试验?
二、随机试验
定义 在概率论中,把具有以下三个特征的试验称 为随机试验.
1. 可以在相同的条件下重复地进行; 2. 每次试验的可能结果不止一个,并且能事 先明确试验的所有可能结果; 3. 进行一次试验之前不能确定哪一个结果 会出现.
5. 从一批灯泡中任取 一只,测试其寿命.
三、样本空间 样本点
定义1.1 对于随机试验E,它的每一个可 能结果称为样本点,由一个样本点组成的 单点集称为基本事件。所有样本点构成的 集合称为E 的样本空间或必然事件,用或 S表示
我们规定不含任何元素的空集为不可能事件, 用 表示。
实例1 如:掷一枚骰子一次的试验E.
盛骤,谢式千,潘承毅 编 高等教育出版社
牛丽英,陈勇 主编 出 版 社:水利水电出版社
Chapter 1
本章重点: 1.理解随机事件及其概率的概念; 2.理解条件概率及事件独立性的概念; 3.掌握随机事件之间的关系与运算; 4.掌握概率的基本性质及概率加法定理与乘法
定理以及计算概率的全概率公式与贝叶斯公式。 本章难点:
前
言
概率统计是研究随机现象数量规律的 学科, 理论严谨, 应用广泛,发展迅速. 不 仅高等学校各专业都开设了本课程, 而且 在上世纪末,此课程特意被教育部定为本 科生考研的数学课程之一,希望大家能认 真学好这门不易学好的重要课程.
本学科的 ABC
概率(或然率或几率) —— 随机事件出现 的可能性的量度—— 其起源与博弈问题有关.
指挥灯”.
实例6 “一只灯泡的寿命” 可长可 短.
说明
1. 随机现象揭示了条件和结果之间的非确定性联 系 , 其数量关系无法用函数加以描述. 2. 随机现象在一次观察中出现什么结果具有偶然 性(也称随机性). 或者说,出现哪个结果“凭机 会而定”.
3.但在大量重复试验或观察中, 这种结果的出现 具有一定的统计规律性 , 概率论就是研究随机现 象这种本质规律的一门数学学科.
有关古典概率及条件概率的概念的理解及计算
第一节 随机事件的概念
一、 随机现象 二、 随机试验 三、样本空间 样本点 四、随机事件的概念
五、事件的关系与运算
一、随机现象
自然界所观察到的现象:
1.确定性现象
确定性现象 随机现象
在一定条件下必然发生 的现象称为确定性现象.
实确例定性现象的特征
条件完全决定结果
结果: “弹落点会各不相同”.
实例3 “抛掷一枚骰子,观 察出现的点数”.
结果有可能为:
“1”, “2”, “3”, “4”, “5” 或 “6”来自实例4 “从一批含有正
其结果可能为:
品和次品的产品中任意抽
正品 、次品.
取一个产品”.
随机现象的特征
条件不能完全决定结果
实例5 “过马路交叉口时,
可能遇上各种颜色的交通
NDD, DDN , DND, DDD }. 实例3 从一批灯泡中任取
一只, 测试其寿命.
S6 {t t 0}. 其中 t 为灯泡的寿命 .
说明 1. 试验不同, 对应的样本空间也不同.
2. 同一试验 , 若试验目的不同,则对应的样 本空 间也不同.
例如 对于同一试验: “将一枚硬币抛掷三 次若”观.察正面 H、反面 T 出现的情况 ,则样本空间 为 S {HHH , HHT , HTH , THH ,
第二次世界大战军事上的需要以及大工业 与管理的复杂化产生了运筹学、系统论、信息 论、控制论与数理统计学等学科.
数理统计学是一门研究怎样去有效地收集、 整理和分析带有随机性的数据,以对所考察的
问题作出推断或预测,直至为采取一定的决策
和行动提供依据和建议的 数学分支学科.
统计方法的数学理论要用到很多近代数学 知识,如函数论、拓扑学、矩阵代数、组合数 学等等,但关系最密切的是概率论,故可以这 样说:概率论是数理统计学的基础,数理统计
验
3) 进行一次试验之前不能确定哪一个结果会 出现.
(3) 随机试验 E 的所有可能结果组成的集合
称为 E 的样本空间, 记为 S .
课堂练习
写出下列随机试验的样本空间. 1. 同时掷三颗骰子,记录三颗骰子之和. 2. 生产产品直到得到10件正品,记录生产产品
的总件数. 答案 1. S {3, 4, 5,, 18}.
“太阳不会从西边升 “起水”从, 高处流向低处”,
“同性电荷必然互斥”, “函数在间断点处不存在导数” 等.
2. 随机现象
在一定条件下可能出现也可能不出现的现象 称为随机现象. 实例1 “在相同条件下掷一枚均匀的硬币,观 察正反两面出现的情况”.
结果有可能出现正面也可能出现反面.
实例2 “用同一门炮向同 一目标发射同一种炮弹多 发 , 观察弹落点的情况”.
学是概率论的一种应用. 但是它们是两个并列 的数学分支学科,并无从属关系.
概率论 32学时
随机事件及其概率 随机变量及其分布 多维随机变量及其分布 随机变量的数字特征与极限定理
数理统计 24学时
样本及其分布 参数估计 假设检验
《概率论与数理统计》的教学内容分为三个模块: (1)经典概率论部分 (2)随机变量的函数及其分布 (3)数理统计初步
A=“第一次出现正面”, B=“两次出现同一面”; (3)在“1,2,3,4”这4个数 中可重复的任取2个数字, A=“一个数是另一个数的2 倍”;
说明 1. 随机试验简称为试验, 是一个广泛的术语.它包 括各种各样的科学实验, 也包括对客观事物进行 的 “调查”、“观察”、或 “测量” 等. 2. 随机试验通常用 E 来表示. 实例 “抛掷一枚硬币,观 察正面,反面出现的情况”.
分析
(1) 试验可以在相同的条件下重复地进行;
(2) 试验的所有可能结果:
反过来,S的每个子集都对应了该试验的一个随 机事件.
随机事件的定义 随机试验 E 的样本空间 S 的子集称为 E
的随机事件, 简称事件.
当且仅当子集A中某个样本点出现时,称 事件A发生.
特别地: 基本事件 由一个样本点组成的单点集
实例 “出现1点”, “出现2点”, … , “出现6点”. 必然事件 随机试验中必然发生的事件. 实例 上述试验中 “点数不大于6” 就是必然事件. 不可能事件 随机试验中不可能发生的事件. 实例 上述试验中 “点数大于6” 就是不可能事件.
样本空间S作为自身最大的子集包含所有的样 本点(基本事件),表示必然事件.
空集 不含任何样本点表示不可能事件.
例1.1 写出掷骰子试验的样本点, 样本空间, 基本事件, 事件A—出现偶数, 事件B—出现奇数
解:用 i 表示掷骰子出现的点数为 i,i 1,6;
{1 ,2 ,3 ,4 ,5 ,6 }
HTT , TTH , THT , TTT }.
若观察出现正面的次数 , 则样本空间为
S {0, 1, 2, 3}.
说明
3. 建立样本空间,事实上就是建立随机现 象的数学模型. 因此 , 一个样本空间可以 概括许多内容大不相同的实际问题.
例如 只包含两个样本点的样本空间
S {H,T} 它既可以作为抛掷硬币出现正面或出现反面的
模型 , 也可以作为产品检验中合格与不合格的 模型 , 又能用于排队现象中有人排队与无人排 队的模型等.
在具体问题的 研究中 , 描述随机 现象的第一步就是 建立样本空间.
小结
(1) 概率论是研究随机现象规律性的一门数学学科
.(2) 随机现象是通过随机试验来研究的.
随机 试
1) 可以在相同的条件下重复地进行; 2) 每次试验的可能结果不止一个, 并且能事 先明确试验的所有可能结果;
基本事件 Ai {i }, i, i 1,2,,6;
A {2 ,4 ,6 };
B {1 ,3 ,5 }.
注意:描述随机事件A,B,C,……的方法
例如:将一枚硬币抛掷两次试验,怎样表示至少出现一 次正面这一事件?
设A=“至少出现一次正面” 或者A= {(H,H), (H,T), (T,H)}
并能应用这些概念解决某些实际问题。
《概率论与数理统计》的教学方法: (2)数理统计初步
概率论一般是研究如何来揭示随机现象所隐含的本质规律,反映在课程内容上就是 随机变量分布函数、分布律和概率密度函数的寻求以及研究它们的数字特征;统计 是以概率论为基础,利用实验数 据对分布函数,概率密度函数进行估计和检验,这 部分内容,主要讲授参数的点估计和区间估计,参数的假设检验,尤其要让学生熟 悉正态总体均值和方差的区间估计方法,假设检验方法,关于广义方差分析和回归 分析,由于学时所限,可以一带而过,作为学生自学的内容。
(2) 几点说明
1) 随机事件可简称为事件, 并以大写英文字母
A, B, C, 来表示事件
例如 抛掷一枚骰子, 观察出现的点数. 可设 A = “点数不大于4”,
B = “点数为奇数” 等 等.
2) 随机试验、样本空间与随机事件的关系 每一个随机试验相应地有一个样本空间, 样