合肥工业大学版误差理论与数据处理课后作业答案(精)
误差理论与数据处理版课后习题答案完整版
《误差理论与数据处理》(第六版)完整版第一章 绪论1-5 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差 解:绝对误差等于: 相对误差等于:1-8在测量某一长度时,读数值为2.31m ,其最大绝对误差为20m μ,试求其最大相对误差。
%108.66 %1002.311020 100%maxmax 4-6-⨯=⨯⨯=⨯=测得值绝对误差相对误差1-10检定2.5级(即引用误差为2.5%)的全量程为100V 的电压表,发现50V 刻度点的示值误差2V 为最大误差,问该电压表是否合格?%5.22%100%1002100%<=⨯=⨯=测量范围上限某量程最大示值误差最大引用误差该电压表合格1-12用两种方法分别测量L1=50mm ,L2=80mm 。
测得值各为50.004mm ,80.006mm 。
试评定两种方法测量精度的高低。
相对误差L 1:50mm 0.008%100%5050004.501=⨯-=IL 2:80mm 0.0075%100%8080006.802=⨯-=I 21I I > 所以L 2=80mm 方法测量精度高。
21802000180''=-'''o o %000031.010*********.00648002066018021802≈=''''''⨯⨯''=''=o1-13 多级弹导火箭的射程为10000km 时,其射击偏离预定点不超过0.lkm ,优秀射手能在距离50m 远处准确地射中直径为2cm 的靶心,试评述哪一个射击精度高? 解:射手的相对误差为:多级火箭的射击精度高。
1-14若用两种测量方法测量某零件的长度L1=110mm ,其测量误差分别为m μ11±和m μ9±;而用第三种测量方法测量另一零件的长度L2=150mm 。
误差理论与数据处理作业答案 第二章
第二章2-171因此无法说明测量数据中是否存在系统误差。
2通过马利科夫准则进行校核:△=0.4—(—0.4)=0.8因此,有马利科夫准则,当△显著不为零时,则有理由认为测量列存在线性系统误差。
3通过阿卑—赫梅特准则进行校核:u=0.3056因此,由u<= 0.789936可知,本次测量不一定存在周期性的系统误差。
2-19则t=1.404由ν=10+10—2=18及取α=0.05,查t分布表(书中附录表3),得tα=2.1因∣t∣=1.404< tα=2.1故无根据怀疑两组间有系统误差。
2-22解:(1) 3σ准则(莱以特准则)x̅=28.57067σ=0.2646153σ= 0.793844根据3σ准则(莱以特准则)第四测得值的残余误差∣v4∣=0.9493> 0.793844即它含有粗大误差,故将此测得值剔除。
再根据剩下的14个测得值重新计算,得x̅′=28.50286σ==0.0336113σ′= 0.100832由上表知,第十四测得值的残余误差∣v14∣=0.1029> 0.1008即它含有粗大误差,故将此测得值剔除。
再根据剩下的14个测得值重新计算,得x̅′′=28.51σ′′=0.016583σ′′=0.04975剩下的13个测得值的残余误差满足∣vi′′∣<3σ′′故可认为这些测量值不再含有粗大误差。
(2) 罗曼诺夫斯基准则首先怀疑第四测得值含有粗大误差,将其剔除。
然后根据剩下的14个测量值计算平均值和标准差,得x̅=28.50286σ=0.033611选取显著度α=0.05,已知n=15,查表得K(15,0.05)=2.24Kσ=2.240.033611=0.07528774因∣x4—x̅∣=0.90117>0.0752877故第四测量值含有粗大误差,应予剔除。
(3) 格罗布准则由3σ准则计算过程中表格知x̅=28.57067σ=0.264615按测得值的大小,顺序排列的x(1)=28.4,x(15)= 29.52进有两测得值x(1)、x(15)可怀疑,但由于x̅—x(1)=28.57067-28.4=-0.1707x̅—x(15)=28.57067-29.52=0.9493 故先怀疑x(15)是否含有粗大误差计算g(11)=x̅−x(15)σ=3.587查表得g(0)(15,0.05)=2.41则g(11)>g(0)故将第四测得值予以剔除,然后将剩下14个值再一次进行检验分析。
《误差理论与数据处理》部分课后作业参考答案精品文档18页
《误差理论与数据处理》部分课后作业参考答案1-18根据数据运算规则,分别计算下式结果: (1)3151.0+65.8+7.326+0.4162+152.28=? (2)28.13X0.037X1.473=? 【解】(1) 原式≈3151.0+65.8+7.33+0.42+152.28=3376.83 ≈3376.8(2) 原式≈28.1X0.037X1.47 =1.528359 ≈1.52-12某时某地由气压表得到的读数(单位为Pa )为102523.85,102391.30,102257.97,102124.65,101991.33,101858.01,101726.69,101591.36,其权各为1,3,5,7,8,6,4,2,试求加权算术平均值及其标准差。
【解】(1) 加权算术平均值: ∑∑==-+=m i imi ii px xp x x 1100)(=100000+1×2523.85+3×2391.30+5×2257.97+7×2124.65+8×1991.33+∙∙∙=102028.3425Pa(2) 标准差:∑∑==-=mi imi x i x p m vp i112)1(σ=√1×(102523.85−102028.3425)+3×(102391.30−102028.3425)+∙∙∙(1+3+5+7+8+6+4+2)∗(8−1)=86.95Pa2-17对某量进行10次测量,测得数据为14.7,1.0,15.2,14.8,15.5,14.6,14.9,14.8,15.1,15.0,试判断该测量列中是否存在系统误差。
【解】对数据进行列表分析,如下:作出残差与次数的关系图:(1) 线性系统误差:根据关系图利用残余误差观察法可知,不存在线性系统误差。
根据不同公式计算标准差比较法可得:按贝塞尔公式:2633.01121=-=∑=n vni iσ按别捷尔斯公式:2642.0)1(253.112=-=∑=n n vni iσ|u |=|σ2σ1−1|=|0.26420.2633−1|=0.0032<2√n −1=23故不存在线性系统误差。
《误差理论与数据处理》部分课后作业参考答案
《误差理论与数据处理》部分课后作业参考答案1- 18根据数据运算规则,分别计算卞式结果: (1) 3151.0+65.8+7.326+0.4162+152.28=? (2) 28.13X0.037X1.473=? 【解】(1)原式 ^3151.0+65.8+7.33+0.42+152.28=3376.83 $3376.8(2)原式 ^28.1X0.037X1.47=1.528359 ^1.52- 12某时某地由气压表得到的读数(单位为PG 为102523.85, 102391.30, 102257.97, 102124.65, 101991.33, 101858.01, 101726.69, 101591.36,其权各为 1, 3, 5, 7, 8, 6, 4, 2,试求 加权算术平均值及其标准差。
1 x 2523.85 + 3 x 2391.30 + 5 x 2257.97 + 7 x 2124.65 + 8 x 1991.33 +…1+3+5+7+8+6+4+2 =102028.3425PaCT-=(2) 标准差:(1)加权算术平均值:_ 工必(玄一兀)------------------1=1=100000 +(1)线性系统误差:根据关系图利用残余误差观察法町知,不存在线性系统误差。
根据不同公式计算标准差比较法可得:按别捷尔斯公式:cr. =1.253—= 0.2642/心-1)故不存在线性系统误差。
(2)周期性系统误差:=|(-0.26) X 0.04 + 0.04 X 0.24 + 0.24 X (-0.16) + (-0.16) X 0.54 + 0.54 X (-0.36) +…|=0.1112 < Vn — la 2 = 0.624故不存在周期性系统误差。
2- 18对一线圈电感测量10次,前4次是和一个标准线圈比较得到的,后6次是和另一个标准线 圈比较得到的,测得结果如卞(单位为mH ): 50. 82, 50. 83, 50. 87, 50. 89;50. 78, 50. 78, 50. 75, 50. 85, 50. 82, 50.81。
合肥工业大学版误差理论与数据处理课后作业答案(精)
第一章绪论1-1 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差解:绝对误差等于:相对误差等于:1-6 检定2.5级(即引用误差为2.5%)的全量程为l00V的电压表,发现50V刻度点的示值误差2V为最大误差,问该电表是否合格?解:依题意,该电压表的示值误差为 2V由此求出该电表的引用相对误差为 2/100=2%因为 2%<2.5%所以,该电表合格。
1-9 多级弹导火箭的射程为10000km时,其射击偏离预定点不超过0.lkm,优秀射手能在距离50m远处准确地射中直径为2cm的靶心,试评述哪一个射击精度高?解:多级火箭的相对误差为:射手的相对误差为:多级火箭的射击精度高。
第二章误差的基本性质与处理2-4 测量某电路电流共5次,测得数据(单位为mA为168.41,168.54,168.59,168.40,168.50。
试求算术平均值及其标准差、或然误差和平均误差。
解:2—5 在立式测长仪上测量某校对量具,重复测量5次,测得数据(单位为mm为20.0015,20.0016,20.0018,20.0015,20.0011。
若测量值服从正态分布,试以99%的置信概率确定测量结果。
解:求算术平均值求单次测量的标准差求算术平均值的标准差确定测量的极限误差因n=5 较小,算术平均值的极限误差应按t分布处理。
现自由度为:ν=n-1=4;α=1-0.99=0.01,查 t 分布表有:ta=4.60极限误差为写出最后测量结果2-8 用某仪器测量工件尺寸,已知该仪器的标准差σ=0.001mm,若要求测量的允许极限误差为±0.0015mm,而置信概率P为0.95时,应测量多少次?解:根据极限误差的意义,有根据题目给定得已知条件,有查教材附录表3有若n=5,v=4,α=0.05,有t=2.78,若n=4,v=3,α=0.05,有t=3.18,即要达题意要求,必须至少测量5次。
2-19 对某量进行两组测量,测得数据如下:xi0.620.861.131.131.161.181.201.211.221.301.341.391.411.57 yi0.991.121.211.251.311.311.381.411.481.591.601.601.841.95试用秩和检验法判断两组测量值之间是否有系统误差。
误差理论和数据处理(第6版)课后习题答案_完整版
《误差理论与数据处理》(第六版)完整版第一章 绪论1-5 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差 解:绝对误差等于: 相对误差等于:1-8在测量某一长度时,读数值为2.31m ,其最大绝对误差为20m μ,试求其最大相对误差。
1-10检定2.5级(即引用误差为2.5%)的全量程为100V 的电压表,发现50V 刻度点的示值误差2V 为最大误差,问该电压表是否合格?该电压表合格1-12用两种方法分别测量L1=50mm ,L2=80mm 。
测得值各为50.004mm ,80.006mm 。
试评定两种方法测量精度的高低。
相对误差L 1:50mm 0.008%100%5050004.501=⨯-=IL 2:80mm 0.0075%100%8080006.802=⨯-=I21I I > 所以L 2=80mm 方法测量精度高。
1-13 多级弹导火箭的射程为10000km 时,其射击偏离预定点不超过0.lkm ,优秀射手能在距离50m 远处准确地射中直径为2cm 的靶心,试评述哪一个射击精度高? 解:射手的相对误差为:1-14m μ11±和m μ9±;而用第三种测量方法测量另一零件的长度L2=150mm 。
其测量误差为m μ12±,试比较三种测量方法精度的高低。
21802000180''=-'''o o %000031.010*********.00648002066018021802≈=''''''⨯⨯''=''=o相对误差123I I I <<第三种方法的测量精度最高第二章 误差的基本性质与处理2-6测量某电路电流共5次,测得数据(单位为mA )为168.41,168.54,168.59,168.40,168.50。
《误差理论与数据处理》习题2及解答
(mm)
② 重复测量 10 次,计算其算术平均值为: x = 26.2025(mm). 取与①相同的置信度,则测量结果为:26.2025±3σ= 26.2025±0.0015 (mm). ③ 若无该仪器测量的标准差资料,则依 10 次重复测量数据计算标准差和表示测量结 果。选参考值 x0 = 26.202,计算差值 ∆x i = x i − 26.202 、 ∆ x 0 和残差ν i 等列于表中。 序 1 2 3 4 5 6 7 8 9 10 号
∑ν
i =1
i
n( n − 1)
= 1.253
0.0008 5× 4
= 0.000224 (mm)
σx =
σ
n
=
0.000255 5
= 0.000114 ; σ x =
'
σ'
n
=
0.000224 5
= 0.0001
⑤求单次测量的极限误差和算术平均值的极限误差 因假设测量值服从正态分布,并且置信概率 P=2Φ(t)=99%,则Φ(t)=0.495,查附录
∆ x0 = 1 10 ∑ ∆xi = 0.0005 10 i =1
νi
0 +0.0003 +0.0003 0 +0.0001 -0.0003 -0.0002 0 +0.0001 -0.0003
ν i2
0 9×10 9×10 0 1×10
误差理论习题答疑(合肥工业大学,费业泰主编分解
2-17等精度测量某一电压10次,测得结果(单位为V)为25.94,25.97,25.98,26.01,26.04,26.02,26.04,25.98,25.96,26.07。测量完毕后,发现测量装置有接触松动现
象,为判断是否接触不良而引入系统误差,将接触改善后,又重新作了10次等精度测量,测得结果(单位为V)为25.93,25.94,25.98,26.02,26.01,25.90,25.93,26.04,
误差理论习题答疑
1.绪论
2.误差基本原理
3.误差的合成与分解
4.最小二乘法原理
5.回归分析
绪论
绪论1-4
1-4在测量某一长度时,读数值为2.31m,其最大绝对误差为20um,试求其最大相对误差。
解:最大相对误差≈(最大绝对
误差)/测得值,
绪论1-5
1-5使用凯特摆时,由公式 。给定。今测出长度给定。今测出长度 为(1.04230 0.00005)m,振动时间T为(2.0480 0.0005)s。试求g及最大相对误差。如果 测出为(1.04220 0.0005)m,为了使g的误差能小于 ,T的测量必须精确到多少?
解:①别捷尔斯法:
查表得: ,所以 :
,③最大误差法:查表得: 所以,
综上所述,用贝塞尔公式得到的标准差是0.0212g,别捷尔斯法计算得
到的标准是0.02427g、极差法是0.02109g和最大误差法是0.01941g,故最大误差法计算的得到的标准差最小,别捷尔斯法最大。
2-9已知某仪器测量的标准差为0.5 m。①若在该仪器上,对某一轴径测量一次,测得值为26.2025mm,试写出测量结果。②若重复测量10次,测得值(单位为mm)为26.2025,26.2028,26.2028,26.2025,26.2026,26.2022,26.2023,26.2025,26.2026,26.2022,试写出测量结果。③若手头无该仪器测量的标准差值的资料,试由②中10次
误差理论习题答疑(合肥工业大学-费业泰主编
解:先所耗功率:
所以,
所以,该电路所耗功率为0.2835W,其标准差为
解:因为
所以,
解:如图所示,由勾股定理得
然后对d1,d2,H1,H2分别求偏导,即得出误差传递系数。
3-10假定从支点到重心的长度为L的单摆振动周期为T,重力加速度可由公式 给出。若要求测量g的相对标准差 试问按等作用原则分配误差时,测量L和T的相对标准差应该是多少?
而当置信概率p>98.76%时,
此时无根据怀疑两组测量值之间存在系统误差。
2-20对某量进行15次测量,测得数据为28.53,28.52,28.50,28.52,28.53,28.53,28.50,28.49,28.49,28.51,28.53,28.52,28.49,28.40,28.50,若这些测得值以消除系统误差,试用莱以特准则、格罗布斯准则和狄克松准则分别判断该测量列中是否含有粗大误差测量值。
/ y Pa 26.3 22.5 21.7 21.4 25.8 24.9
假设正应力的数值是精确的,求①抗剪强度与正应力之间的线性回归方程。②当正应力
为24.5Pa时,抗剪强度的估计值是多少?
解:①
6-7在4种不同温度下观测某化学反应生成物含量
的百分数,每种在同一温度下重复观测三次,数据如
下:
求y对x的线性回归方程,并进行方差分析和显著性检验
;0.99 1.12 1.21 1.25 1.31 1.31 1.38 1.41 1.48 1.50 1.59 1.60 1.60 1.84 1.95
试用秩和检验法判断两组测量值之间是否有系统误差。
解:将两组混合排列成下表:
得, 因为 秩和T近似服从正态分布,
误差理论与数据处理课后习题及答案
第一章 绪论1-5 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差 解:绝对误差等于: 相对误差等于:1-10检定2.5级(即引用误差为2.5%)的全量程为100V 的电压表,发现50V 刻度点的示值误差2V 为最大误差,问该电压表是否合格?%5.22%100%1002100%<=⨯=⨯=测量范围上限某量程最大示值误差最大引用误差该电压表合格1-14若用两种测量方法测量某零件的长度L1=110mm ,其测量误差分别为m μ11±和m μ9±;而用第三种测量方法测量另一零件的长度L2=150mm 。
其测量误差为m μ12±,试比较三种测量方法精度的高低。
相对误差0.01%110111±=±=mm mI μ0.0082%11092±=±=mm mI μ%008.0150123±=±=mmm I μ123I I I <<第三种方法的测量精度最高2-7在立式测长仪上测量某校对量具,重量测量5次,测得数据(单位为mm )为20.0015,20.0016,20.0018,20.0015,20.0011。
若测量值服从正态分布,试以99%的置信概率确定测量结果。
20.001520.001620.001820.001520.00115x ++++=20.0015()mm =0.00025σ==正态分布 p=99%时,t 2.58=lim t δσ=±21802000180''=-'''o o %000031.010*********.00648002066018021802≈=''''''⨯⨯''=''=o2.58=± 0.0003()mm =±测量结果:lim (20.00150.0003)x X x mm δ=+=±2-12某时某地由气压表得到的读数(单位为Pa )为102523.85,102391.30,102257.97,102124.65,101991.33,101858.01,101724.69,101591.36,其权各为1,3,5,7,8,6,4,2,试求加权算术平均值及其标准差。
费业泰误差理论与数据处理课后答案_百度文库(精)
《误差理论与数据处理》练习题参考答案第一章绪论1-1 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差解:绝对误差等于:相对误差等于:1-6 检定2.5级(即引用误差为2.5%)的全量程为l00V的电压表,发现50V刻度点的示值误差2V为最大误差,问该电表是否合格?解:依题意,该电压表的示值误差为 2V由此求出该电表的引用相对误差为 2/100=2%因为 2%<2.5%所以,该电表合格。
1-9 多级弹导火箭的射程为10000km时,其射击偏离预定点不超过0.lkm,优秀射手能在距离50m远处准确地射中直径为2cm的靶心,试评述哪一个射击精度高?解:多级火箭的相对误差为:射手的相对误差为:多级火箭的射击精度高。
第二章误差的基本性质与处理2-4 测量某电路电流共5次,测得数据(单位为mA为168.41,168.54,168.59,168.40,168.50。
试求算术平均值及其标准差、或然误差和平均误差。
解:2—5 在立式测长仪上测量某校对量具,重复测量5次,测得数据(单位为mm为20.0015,20.0016,20.0018,20.0015,20.0011。
若测量值服从正态分布,试以99%的置信概率确定测量结果。
解:求算术平均值求单次测量的标准差求算术平均值的标准差确定测量的极限误差因n=5 较小,算术平均值的极限误差应按t分布处理。
现自由度为:ν=n-1=4;α=1-0.99=0.01,查 t 分布表有:ta=4.60极限误差为写出最后测量结果2-8 用某仪器测量工件尺寸,已知该仪器的标准差σ=0.001mm,若要求测量的允许极限误差为±0.0015mm,而置信概率P为0.95时,应测量多少次?解:根据极限误差的意义,有根据题目给定得已知条件,有查教材附录表3有若n=5,v=4,α=0.05,有t=2.78,若n=4,v=3,α=0.05,有t=3.18,即要达题意要求,必须至少测量5次。
《误差理论与数据处理》习题2及解答
= 1.253 0.0008 = 0.000224 (mm)
n(n − 1)
5×4
④求算术平均值的标准差
σ = σ = 0.000255 = 0.000114 ;σ ' = σ ' = 0.000224 = 0.0001
x
n
5
x
n
5
⑤求单次测量的极限误差和算术平均值的极限误差 因假设测量值服从正态分布,并且置信概率 P=2Φ(t)=99%,则Φ(t)=0.495,查附录
0 1×10-8 9×10-8 4×10-8
0 1×10-8 9×10-8
10
∑ν
2 i
=
42 ×10−8
i =1
5
算术平均值的标准差:σ = σ = 0.00022 = 0.00007 (mm).
(3) 最大误差法计算
8 个测量数据的最大残差为: ν i max = ν 4 = 0.09 查教材P19 表 2-5,n=8 时,1/K’n=0.61
σ = ν i max = 0.09 × 0.61 = 0.0549 ( g ) Kn'
2-4. 测量某电路电流共 5 次,测得数据(单位为 mA)为 168.41,168.54,168.59,168.40, 168.50,试求算术平均值及其标准差、或然误差和平均误差。
【解】①选参考值 x0 = 168.5 ,计算差值 ∆xi = xi −168.5 、 ∆x0 和残差ν i 等列于表中。
序号
1 2 3 4 5
xi
Δx i
168.41 168.54 168.59 168.40 168.50
x = x0 + ∆x 0 = 168.488
-0.09 0.04 0.09 -0.10
《误差理论与数据处理》答案..
《误差理论与数据处理》第一章绪论1-1.研究误差的意义是什么?简述误差理论的主要内容。
答:研究误差的意义为:(1)正确认识误差的性质,分析误差产生的原因,以消除或减小误差;(2)正确处理测量和实验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据;(3)正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济条件下,得到理想的结果。
误差理论的主要内容:误差定义、误差来源及误差分类等。
1-2.试述测量误差的定义及分类,不同种类误差的特点是什么?答:测量误差就是测的值与被测量的真值之间的差;按照误差的特点和性质,可分为系统误差、随机误差、粗大误差。
系统误差的特点是在所处测量条件下,误差的绝对值和符号保持恒定,或遵循一定的规律变化(大小和符号都按一定规律变化);随机误差的特点是在所处测量条件下,误差的绝对值和符号以不可预定方式变化;粗大误差的特点是可取性。
1-3.试述误差的绝对值和绝对误差有何异同,并举例说明。
答:(1)误差的绝对值都是正数,只是说实际尺寸和标准尺寸差别的大小数量,不反映是“大了”还是“小了”,只是差别量;绝对误差即可能是正值也可能是负值,指的是实际尺寸和标准尺寸的差值。
+多少表明大了多少,-多少表示小了多少。
(2)就测量而言,前者是指系统的误差未定但标准值确定的,后者是指系统本身标准值未定1-5 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差解:绝对误差等于:相对误差等于:1-6.在万能测长仪上,测量某一被测件的长度为 50mm,已知其最大绝对误差为 1μm,试问该被测件的真实长度为多少?解:绝对误差=测得值-真值,即:△L=L-L0已知:L=50,△L=1μm=0.001mm,测件的真实长度L0=L-△L=50-0.001=49.999(mm)1-7.用二等标准活塞压力计测量某压力得 100.2Pa,该压力用更准确的办法测得为100.5Pa,问二等标准活塞压力计测量值的误差为多少?解:在实际检定中,常把高一等级精度的仪器所测得的量值当作实际值。
2000-2016年合肥工业大学821误差理论与数据处理考研真题及答案解析 汇编
2017版合肥工业大学《821误差理论与数据处理》全套考研资料我们是布丁考研网合工大考研团队,是在读学长。
我们亲身经历过合工大考研,录取后把自己当年考研时用过的资料重新整理,从本校的研招办拿到了最新的真题,同时新添加很多高参考价值的内部复习资料,保证资料的真实性,希望能帮助大家成功考入合工大。
此外,我们还提供学长一对一个性化辅导服务,适合二战、在职、基础或本科不好的同学,可在短时间内快速把握重点和考点。
有任何考合工大相关的疑问,也可以咨询我们,学长会提供免费的解答。
更多信息,请关注布丁考研网。
以下为本科目的资料清单(有实物图及预览,货真价实):合肥工业大学《误差理论与数据处理》全套考研资料一、合肥工业大学《误差理论与数据处理》历年考研真题及答案解析2016年合肥工业大学《误差理论与数据处理》考研真题(含答案解析)(11月份统一更新)2015年合肥工业大学《误差理论与数据处理》考研真题(含答案解析)2014年合肥工业大学《误差理论与数据处理》考研真题(含答案解析)2013年合肥工业大学《误差理论与数据处理》考研真题(含答案解析)2012年合肥工业大学《误差理论与数据处理》考研真题(含答案解析)2011年合肥工业大学《误差理论与数据处理》考研真题(含答案解析)2010年合肥工业大学《误差理论与数据处理》考研真题(含答案解析)2009年合肥工业大学《误差理论与数据处理》考研真题(含答案解析)2008年合肥工业大学《误差理论与数据处理》考研真题(含答案解析)2007年合肥工业大学《误差理论与数据处理》考研真题(含答案解析)2006年合肥工业大学《误差理论与数据处理》考研真题(含答案解析)2005年合肥工业大学《误差理论与数据处理》考研真题(含答案解析)2004年合肥工业大学《误差理论与数据处理》考研真题(含答案解析)2003年合肥工业大学《误差理论与数据处理》考研真题(含答案解析)2002年合肥工业大学《误差理论与数据处理》考研真题(含答案解析)2001年合肥工业大学《误差理论与数据处理》考研真题(含答案解析)2000年合肥工业大学《误差理论与数据处理》考研真题(含答案解析)二、合肥工业大学《误差理论与数据分析》考研复习笔记1、合工大误差理论与数据处理老师上课教案;2、合工大误差理论与数据处理教学大纲;3、合工大误差理论与数据处理考研笔记;三、合肥工业大学《误差理论与数据分析》考研复习题1、合工大误差理论与数据处理期末试卷3套含答案;2、误差理论与数据处理习题集;四、赠送资料(电子版,发邮箱)合工大误差理论与数据处理课件以下为截图及预览:2015年考研真题(独家高清版,秒杀任何一家)2014年考研真题答案2014年考研真题授课教案复习题集复习讲义。
误差理论与数据处理课后作业参考答案
郑重声明:此文档非本人原创,仅供考试复习学习参考,不可作为其他非法不道德抄袭等用途,在此感谢原创作者hwj合肥工业大学 第六版《误差理论与数据处理》作业参考答案第一章1-7:其误差为: 100.2-100.5=-0.3Pa 1-14:因为测量过程中涉及到测量的量程不一样,所以用相对误差来表示三种测量方法精度的高低。
1.01.011000011L 11±=±=δ%2. 0082.01100009L 11±≈±=δ%3.008.015000012L 21±=±=δ%,经比较可知第三种测量方法的相对误差较小,故精度最高,其次为第二种方法,第一种方法的精度最低。
1.18:(1) 3376.8 (2)1.5第二章2-10:2-11:① 根据3σ法则,测量结果为:26.2025σ3±=26.2025±0.0015mmi di vi vi^2 1 26.2025 0 0 2 26.2028 0.0003 9E-08 3 26.2028 0.0003 9E-08 4 26.2025 0 0 5 26.2026 1E-04 1E-08 6 26.2022 -0.0003 9E-08 7 26.2023 -0.0002 4E-08 8 26.2025 0 0 9 26.2026 1E-04 1E-08 1026.2022 -0.00039E-08 d26.20254.2E-07② 10次测量的结果已知,d =26.2025,所以其测量结果依然为:26.2025σ3±=26.2025±0.0015mm③ 根据贝塞尔公式:211nii vn σ===-∑,00022.0≈σmm.根据3σ法则,测量结果为: d σ3±=26.2025±0.00022*3mm ≈26.2025±0.0007mm2-19 设第一组数据为x ,第二组数据为y ,则可以计算: ∑==10/x x 26.001V ∑==10/y y 25.971V=-=∑2i 2x )x x (101σ0.00155 ≈-=∑2i 2y )y y (101σ0.00215 由t 检验法,有≈++-+-=)00215.0*1000155.0*10)(1010()21010(*10*10)971.25001.26(t 1.48由自由度ν=10+10-2=18及取05.0=α,查t 分布表得10.2t =α因为 αt 48.1t <==2.10,所以没有根据怀疑这两组数据间有系统误差。
误差理论与数据处理-第六版-习题答案(大学老师给的).
误差理论与数据处理(费业泰)最全课后答案
误差理论习题答案1-4 在测量某一长度时,读数值为2.31m ,其最大绝对误差为 20um ,试求其最大相对误差。
解:最大相对误差≈(最大绝对误差)/测得值,所以642010 100%=8.6610%2.31--⨯≈⨯⨯最大相对误差1-5 使用凯特摆时,由公式21224h h g T π+=()给定。
今测出长度12()h h + 为(1.042300.00005)m ±, 振动时间 T 为(2.04800.0005)s ±,试求g 及最大相对误差。
如果12()h h +测出为(1.042200.0005)m ±,为了使g 的误差能小于20.001/m s ,T 的测量必须精确到多少?解:由21224()h h g T π+=得224 1.042309.81053/2.0480g m s π⨯== 对 21224()h h g T π+=进行全微分,令 12h h h =+ 并令g h T ∆∆∆,,代替d d d g h T ,,得222348h h Tg T T ππ∆∆∆=-从而2g h Tg h T∆∆∆=-的最大相对误差为: 4max max max 0.000050.000522 5.362510%1.04230 2.0480g h T g h T -∆∆∆-=-=-⨯=⨯由21224()h h g T π+=,得T =,所以 2.04790T == 1-7 为什么在使用微安表时,总希望指针在全量程的2/3范围内使用?解:设微安表的量程为0~n X ,测量时指针的指示值为X ,微安表的精度等级为S ,最大误差≤%n X S ,相对误差≤%n X S X,一般n X X ≤ ,故当X 越接近n X 相对误差就越小,故在使用微安表时,希望指针在全量程的2/3范围内使用。
1-9 多级弹导火箭的射程为10000km 时,其射击偏离预定点不超过0.1km,优秀选手能在距离50m 远处准确射中直径为2cm 的靶心,试评述哪一个射击精度高? 解:火箭射击的相对误差: 30.1100%10%10000-⨯= 选手射击的相对误差: 20.02100%410%50-⨯=⨯ 所以,相比较可见火箭的射击精度高。
《误差理论与数据处理》答案解读
《误差理论与数据处理》第一章绪论1-1 •研究误差的意义是什么?简述误差理论的主要内容。
答:研究误差的意义为:(1) 正确认识误差的性质,分析误差产生的原因,以消除或减小误差;(2) 正确处理测量和实验数据,合理计算所得结果,以便在一定条件下得到更接近于真值的数据;(3) 正确组织实验过程,合理设计仪器或选用仪器和测量方法,以便在最经济条件下,得到理想的结果。
误差理论的主要内容:误差定义、误差来源及误差分类等。
1-2 •试述测量误差的定义及分类,不同种类误差的特点是什么?答:测量误差就是测的值与被测量的真值之间的差;按照误差的特点和性质,可分为系统误差、随机误差、粗大误差。
系统误差的特点是在所处测量条件下,误差的绝对值和符号保持恒定,或遵循一定的规律变化(大小和符号都按一定规律变化) ;随机误差的特点是在所处测量条件下,误差的绝对值和符号以不可预定方式变化;粗大误差的特点是可取性。
1-3 •试述误差的绝对值和绝对误差有何异同,并举例说明。
答:(1)误差的绝对值都是正数,只是说实际尺寸和标准尺寸差别的大小数量,不反映是“大了”还是“小了”,只是差别量;绝对误差即可能是正值也可能是负值,指的是实际尺寸和标准尺寸的差值。
+多少表明大了多少,-多少表示小了多少。
(2)就测量而言,前者是指系统的误差未定但标准值确定的,后者是指系统本身标准值未定1-5测得某三角块的三个角度之和为180°00' 02” ,试求测量的绝对误差和相对误差解:绝对误差等于:180°00 02 -180°=2相对误差等于:二- = - 0.00000308641 : 0.000031%180o 180 60 60 6480001-6 •在万能测长仪上,测量某一被测件的长度为50mm已知其最大绝对误差为1卩m,试问该被测件的真实长度为多少?解:绝对误差=测得值—真值,即:△ L = L- L o 已知:L= 50,^ L= 1卩m= 0.001mm,测件的真实长度L 0= L—A L= 50 - 0.001 = 49.999 ( mm1-7 •用二等标准活塞压力计测量某压力得100.2Pa,该压力用更准确的办法测得为100.5Pa , 问二等标准活塞压力计测量值的误差为多少?解:在实际检定中,常把高一等级精度的仪器所测得的量值当作实际值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章绪论
1-1 测得某三角块的三个角度之和为180o00’02”,试求测量的绝对误差和相对误差
解:
绝对误差等于:
相对误差等于:
1-6 检定2.5级(即引用误差为2.5%)的全量程为l00V的电压表,发现50V刻度点的示值误差2V为最大误差,问该电表是否合格?
解:
依题意,该电压表的示值误差为 2V
由此求出该电表的引用相对误差为 2/100=2%
因为 2%<2.5%
所以,该电表合格。
1-9 多级弹导火箭的射程为10000km时,其射击偏离预定点不超过0.lkm,优秀射手能在距离50m远处准确地射中直径为2cm的靶心,试评述哪一个射击精度高?
解:
多级火箭的相对误差为:
射手的相对误差为:
多级火箭的射击精度高。
第二章误差的基本性质与处理
2-4 测量某电路电流共5次,测得数据(单位为mA为168.41,168.54,168.59,168.40,168.50。
试求算术平均值及其标准差、或然误差和平均误差。
解:
2—5 在立式测长仪上测量某校对量具,重复测量5次,测得数据(单位为mm为20.0015,20.0016,20.0018,20.0015,20.0011。
若测量值服从正态分布,试以99%的置信概率确定测量结果。
解:
求算术平均值
求单次测量的标准差
求算术平均值的标准差
确定测量的极限误差
因n=5 较小,算术平均值的极限误差应按t分布处理。
现自由度为:ν=n-1=4;α=1-0.99=0.01,
查 t 分布表有:ta=4.60
极限误差为
写出最后测量结果
2-8 用某仪器测量工件尺寸,已知该仪器的标准差σ=0.001mm,若要求测量的允许极限误差为
±0.0015mm,而置信概率P为0.95时,应测量多少次?
解:根据极限误差的意义,有
根据题目给定得已知条件,有
查教材附录表3有
若n=5,v=4,α=0.05,有t=2.78,
若n=4,v=3,α=0.05,有t=3.18,
即要达题意要求,必须至少测量5次。
2-19 对某量进行两组测量,测得数据如下:
xi0.620.861.131.131.161.181.201.211.221.301.341.391.411.57 yi0.991.121.211.251.311.311.381.411.481.591.601.601.841.95
试用秩和检验法判断两组测量值之间是否有系统误差。
解:
按照秩和检验法要求,将两组数据混合排列成下表:
T12345678910 xi0.620.86 1.13 1.13 1.16 1.18 1.20
yi0.99 1.12 1.21 T11121314151617181920
xi 1.21 1.22 1.30 1.34 1.39 1.41
yi 1.25 1.31 1.31 1.38
T2122232425262728
xi 1.57
yi 1.41 1.48 1.59 1.60 1.60 1.84 1.95
现n x=14,n y=14,取x i的数据计算T,得T=154。
由
;求出:
现取概率2,即,查教材附表1有。
由于,因此,可以认为两组数据间没有系统误差。
第三章误差的合成与分配
3—3 长方体的边长分别为α1,α2, α3测量时:①标准差均为σ;②标准差各为σ1、σ2、σ3 。
试求体积的标准差。
解:
长方体的体积计算公式为:
体积的标准差应为:
现可求出:;;
若:
则有:
若:
则有:
3—9 按公式V=πr2h求圆柱体体积,若已知r约为2cm,h约为20cm,要使体积的相对误差等于1%,试问r和h测量时误差应为多少?
解:
若不考虑测量误差,圆柱体积为
根据题意,体积测量的相对误差为1%,即测定体积的相对误差为:
即
现按等作用原则分配误差,可以求出
测定r的误差应为:
测定h的误差应为:
第四章测量不确定度
4—1 某圆球的半径为r,若重复10次测量得r±σr =(3.132±0.005cm,试求该圆球最大截面的圆周和面积及圆球体积的测量不确定度,置信概率P=99%。
解:①求圆球的最大截面的圆周的测量不确定度
已知圆球的最大截面的圆周为:
其标准不确定度应为:
=0.0314cm
确定包含因子。
查t分布表t0.01(9)=3.25,及K=3.25
故圆球的最大截面的圆周的测量不确定度为:
U=Ku=3.25×0.0314=0.102
②求圆球的体积的测量不确定度
圆球体积为:
其标准不确定度应为:
确定包含因子。
查t分布表t0.01(9)=3.25,及K=3.25
最后确定的圆球的体积的测量不确定度为
U=Ku=3.25×0.616=2.002
4—6 某数字电压表的说明书指出,该表在校准后的两年,其2V量程的测量误差不超过±(14×10-6 读数+1×10-6×量程V,相对标准差为20%,若按均匀分布,求1V测量时电压表的标准不确定度;设在该表校准一年后,对标称值为1V的电压进行16次重复测量,得观测值的平均值为0.92857V,并由此算得单次测量的标准差为0.000036V,若以平均值作为测量的估计值,试分析影响测量结果不确定度的主要来源,分别求出不确定度分量,说明评定方法的类别,求测量结果的合成标准不确定度及其自由度。
简答题:
1. 测量不确定度与测量误差以及不确定度A类评定与B类评定的区别与联系?答:测量不确定度与误差的联系:测量结果的精度评定数
所有的不确定度分量都用标准差表征,由随机误差或系统误差引起
误差是不确定度的基础
区别:误差以真值或约定真值为中心,不确定度以被测量的估计值为中心误差一般难以定值,不确定度可以定量评定不确定度分两类,简单明了。
测量不确定度的评定方法有两类:A类评定和B类评定A类评定:通过对一系列观测数据的统计分析来评定B类评定:基于经验或其他信息所认定的概率分布来评定
2. 在实际测量中如何减小三大类误差对测量结果的影响?
粗大误差的减小方法:
1)加强测量者的工作责任心;2)保证测量条件的稳定,避免在外界条件激烈变化时进行测量;3)采用不等测量或互相校核的方法;4)采用判别准则,在测量结果中发现并剔除。
系统误差的减小方法:
1)从误差根源上消除;2)预先将测量器具的系统误差检定出来,用修正的方法消除;3)对不变的系统误差,可以考虑代替法、抵消法、交换法等测量方法;对线性变化的系统误差,可采用对称法;对周期性系统误差,可考虑半周期法予以减小。
随机误差的减小方法:
1 从误差根源上减小;2)采用多次测量求平均值的方法减小;3采用不等精度、组合测量等方法消除。
3. 动态测试数据的分类及各类数据的特点与性质
动态测试数据分类:
特点:确定性数据可由确定的数学表达式表示出来,正弦周期含有单一频率,而复杂周期数据是由多种频率综合而成的数据,且频率比全为有理数。
准周期数据的频率比不全为有理数,瞬态数据的频谱一般是连续的。
随机过程数据是无法用确定的表达式表示出来,它的值无法预知,但具有统计规律性。
其中非平稳随机过程的均值、方差、自相关函数一般是随时间变化的,而平稳随机过程的均值、方差、自相关函数则不会随时间发生变化
4. 微小误差的判别方法及其应用
对于随机误差核未定系统误差,微小误差判别准则为:若该标准差小于或等于测量结果总标准差的1/3或1/10,则可认为该误差是微小误差,准予舍去。
在计算总误差或误差分配时,若发现有微小误差,可不考虑该项误差对总误差的影响。
选择高一级精度的标准器具时,其误差一般应为被检器具允许总误差的1/10-3/10。
5. 结合实例简述柔性坐标测量机的误差源有哪些?
六自由度柔性关节式坐标测量机是一种非正交坐标测量系统,该仪器具有测量围大、使用灵活轻便等优点,但限制其实际应用的关键就是其测量精度的问题,一般说来,柔性坐标测量机的主要误差包括:
1.标尺误差,包括角度传感器的误差;
2.测头探测误差,如果使用的是硬测头,会因为测量力的不同而导致探测误差;
3.结构参数误差,包括杆件长度误差、杆件扭角误差、偏置量误差等;
4.关节误差,包括径向跳动、轴向跳动、摩擦、变形等,以及关节的回转误差(轴的倾侧);
5.弹性变形误差,由部件的自重、操作力、测量力、加速度产生的力等引起;
6.热变形误差,由测量机外部温度、工作温度与部热源等引起;
7.由环境影响产生的误差,环境影响包括振动、尘土、运行条件等。