塔吊的稳定性验算
塔吊计算书
附塔机基础及平衡重和塔吊计算书○1基础计算书一、参数信息塔吊型号:QTZ80,塔吊起升高度H:50.00m,塔身宽度B:1.6m,基础埋深d:1.60m,自重G:600kN,基础承台厚度hc:1.00m,最大起重荷载Q:60kN,基础承台宽度Bc:5.50m,混凝土强度等级:C35,钢筋级别:HRB400,基础底面配筋直径:25mm二、塔吊对交叉梁中心作用力的计算1、塔吊竖向力计算塔吊自重:G=600kN;塔吊最大起重荷载:Q=60kN;作用于塔吊的竖向力:Fk=G+Q=600+60=660kN;2、塔吊弯矩计算风荷载对塔吊基础产生的弯矩计算:Mkmax=960kN·m;三、塔吊抗倾覆稳定验算基础抗倾覆稳定性按下式计算:e=Mk /(Fk+Gk)≤Bc/3式中 e──偏心距,即地面反力的合力至基础中心的距离; Mk──作用在基础上的弯矩;Fk──作用在基础上的垂直载荷;Gk ──混凝土基础重力,Gk=25×5.5×5.5×1=756.25kN;Bc──为基础的底面宽度;计算得:e=960/(660+756.25)=0.678m < 5.5/3=1.833m;基础抗倾覆稳定性满足要求!四、地基承载力验算依据《建筑地基基础设计规范》(GB50007-2011)第5.2条承载力计算。
计算简图:混凝土基础抗倾翻稳定性计算: e=0.678m < 5.5/6=0.917m 地面压应力计算: P k =(F k +G k )/A P kmax =(F k +G k )/A + M k /W式中:F k ──塔吊作用于基础的竖向力,它包括塔吊自重和最大起重荷载,F k =660kN ; G k ──基础自重,G k =756.25kN ; Bc ──基础底面的宽度,取Bc=5.5m ;M k ──倾覆力矩,包括风荷载产生的力矩和最大起重力矩,M k = 960kN ·m ; W ──基础底面的抵抗矩,W=0.118Bc 3=0.118×5.53=19.632m 3; 不考虑附着基础设计值:P k =(660+756.25)/5.52=46.818kPaP kmax =(660+756.25)/5.52+960/19.632=95.717kPa ; P kmin =(660+756.25)/5.52-960/19.632=0kPa ; 实际计算取的地基承载力设计值为:f a =160.000kPa ;地基承载力特征值f a 大于压力标准值P k =46.818kPa ,满足要求!地基承载力特征值1.2×fa 大于无附着时的压力标准值Pkmax=95.717kPa,满足要求!五、基础受冲切承载力验算依据《建筑地基基础设计规范》(GB 50007-2011)第8.2.7条。
塔吊计算书
附塔机基础及平衡重和塔吊计算书○1基础计算书一、参数信息塔吊型号:QTZ80,塔吊起升高度H:50.00m,塔身宽度B:1.6m,基础埋深d:1.60m,自重G:600kN,基础承台厚度hc:1.00m,最大起重荷载Q:60kN,基础承台宽度Bc:5.50m,混凝土强度等级:C35,钢筋级别:HRB400,基础底面配筋直径:25mm二、塔吊对交叉梁中心作用力的计算1、塔吊竖向力计算塔吊自重:G=600kN;塔吊最大起重荷载:Q=60kN;作用于塔吊的竖向力:Fk=G+Q=600+60=660kN;2、塔吊弯矩计算风荷载对塔吊基础产生的弯矩计算:Mkmax=960kN·m;三、塔吊抗倾覆稳定验算基础抗倾覆稳定性按下式计算:e=Mk /(Fk+Gk)≤Bc/3式中 e──偏心距,即地面反力的合力至基础中心的距离; Mk──作用在基础上的弯矩;Fk──作用在基础上的垂直载荷;Gk ──混凝土基础重力,Gk=25×5.5×5.5×1=756.25kN;Bc──为基础的底面宽度;计算得:e=960/(660+756.25)=0.678m < 5.5/3=1.833m;基础抗倾覆稳定性满足要求!四、地基承载力验算依据《建筑地基基础设计规范》(GB50007-2011)第5.2条承载力计算。
计算简图:混凝土基础抗倾翻稳定性计算: e=0.678m < 5.5/6=0.917m 地面压应力计算: P k =(F k +G k )/A P kmax =(F k +G k )/A + M k /W式中:F k ──塔吊作用于基础的竖向力,它包括塔吊自重和最大起重荷载,F k =660kN ; G k ──基础自重,G k =756.25kN ; Bc ──基础底面的宽度,取Bc=5.5m ;M k ──倾覆力矩,包括风荷载产生的力矩和最大起重力矩,M k = 960kN ·m ; W ──基础底面的抵抗矩,W=0.118Bc 3=0.118×5.53=19.632m 3; 不考虑附着基础设计值:P k =(660+756.25)/5.52=46.818kPaP kmax =(660+756.25)/5.52+960/19.632=95.717kPa ; P kmin =(660+756.25)/5.52-960/19.632=0kPa ; 实际计算取的地基承载力设计值为:f a =160.000kPa ;地基承载力特征值f a 大于压力标准值P k =46.818kPa ,满足要求!地基承载力特征值1.2×f a 大于无附着时的压力标准值P kmax =95.717kPa ,满足要求!五、基础受冲切承载力验算依据《建筑地基基础设计规范》(GB 50007-2011)第8.2.7条。
QTZ80(6013)塔机基础计算书
QTZ80(6013)塔机基础计算书QTZ80(6013)塔机(臂长60米,端部起重量1.0吨,最大起重量6吨),独立安装高度不大于37.4米,采用基础6.0mx6.0mx1.5m 、配筋HRB335双层双向Φ25@195、地面承受力220KPa 时,能满足使用要求,符合技术和安全规范。
1、抗倾覆稳定性验算塔式起重机独立安装时,基础所承受的载荷如图所示。
取其工作状态和非工作状态中最不利工况进行稳定性校核。
根据塔式起重机设计规范,塔机稳定的条件为:P imin3M Fn h b e Fv Fg +=≤+ (1) 地面压力按公式(2)验算:2()[]3B B Fv Fg P P b+=≤ (2) 式中: e ——偏心距,即地面反力的合力至基础中心的距离m ;M ——作用在基础上的弯矩;M=2400KN.mF V ——作用在基础上的垂直载荷;F V =650KN.F n ——作用在基础上的水平荷载力;Fn=85KN.F g ——混凝土基础的重力;Fn=24 KN/m3xbxhxl.PB——地面计算压应力;〔PB〕——地面计算许用压应力,由实地勘探和基础处理情况而定,一般情况取〔PB 〕=2×105 ~3×105Pa 。
取〔PB〕=220KPa。
经计算结果:e=1.3≤b/3=2m.P b =216KPa≤〔PB〕=220KPa.稳定性验算通过。
2、地基承载力验算DP k =2(F V +F g )/3xlxa ≤〔P B 〕根据塔机受力情况,产生的地基反力如上图所示。
P k ——基础底面边缘的最大压力值MPa ;l ——矩形基础底面的长边宽度m ;a ——合力作用点至基础底面最大压力边缘的距离m ;其中:a=b/2-e ;计算结果:P k =127KPa ≤〔P B 〕=220KPa 。
满足地基承载力要求,验算通过。
3、结论从上述计算可知,基础的抗倾覆稳定性、地基承载力都满足要求,故基础符合设计要求和安全规范。
塔式起重机整机稳定性的综合检验检测-最新文档
塔式起重机整机稳定性的综合检验检测1.引言塔式起重机整机稳定性检验,是指起重机在工作状态下和非工作状态下整机抗倾翻能力的检验,是塔式起重机安全技术检验的一个重要方面。
本文以普通塔式起重机为例,从起重机基础、金属结构、塔架的垂直度、安全保?o装置以及载荷试验等与起重机整体稳定性相关的几个方面来探讨检验检测的内容、方法,以期全面、准确的掌握所检验塔机的稳定性能。
2.检验依据(1)GB 6067-2010《起重机械安全规程》;(2)GB3811-2008《起重机械制造技术规程》;(3)GB 5144-2006《塔式起重机安全规程》;(4)JGJ/T187-2009《塔式起重机混凝土基础工程技术规范》;(5)TSG Q7016-2016《起重机械安装改造重大修理监督检验规则》等相关标准、规范。
3.起重机基础检验3.1 基础强度:塔机基础强度达不到标准的要求,承载力不够可能会造成塔机基础不均匀沉降,甚至还会使塔身发生倾斜,如果该倾斜使得塔身的垂直度远不能满足有关标准,塔身在强大的外力作用下便可能发生倒塔事故。
一般塔式起重机安装基础是由土建单位根据起重机制造单位提供的安装使用说明书的要求设计施工,安装单位现场确认,由安装单位向检验部门提供基础验收合格证明。
如果检验人员对基础有怀疑,可查阅基础施工图以及混凝土强度检测报告等相关技术资料,并按以下方法进行计算校验:作用在混凝土基础形心上的稳定力矩Md若大于作用在混凝土基础形心的倾覆力矩Mq,即Md>Mq,则塔机的基础稳定性符合要求,否则不符合要求。
3.2 塔机底架:塔式起重机的底架常用的有十字梁式、预埋牛腿式。
底架十字梁和预埋螺栓配合固定,浇注基础前一定要用水准仪测好基础标高,放好垫钢板,保证八块钢板在同一水平面内,可以采取临时点焊的方法和基础钢筋固定,保证最大水平偏差≤20mm。
混凝土浇注时会对垫板产生影响,所以十字梁安装前必须进行二次调整,底架的水平和调整是个繁琐的过程,往往要反复拆卸、反复调整多次,它是塔机安装垂直度控制的关键项目,也是对塔机垂直度产生影响最重要的环节。
塔吊的稳定性及其要求
塔吊的稳定性及其要求作为建筑工程中不可或缺的重要设备,塔吊凭借其强大的承载能力和高效的作业性能,成为了现代建筑中最为常见的起重机械之一。
然而,在使用过程中,由于塔吊的高度和结构特点,其稳定性问题也显得尤为重要。
本文旨在探讨塔吊的稳定性及其要求,以便更好地应对在实际工程中可能遇到的挑战。
一、塔吊稳定性问题一般来说,塔吊的稳定性问题主要与其高度、风力、荷载以及地基等因素有关。
其中,高度是影响塔吊稳定性的一个主要因素。
随着塔吊高度的增加,其重心向上移动,支撑面积也会减小,这使得塔吊稳定性降低。
此外,风力也是影响塔吊稳定性的另一个重要因素。
在风力作用下,塔吊会产生侧向荷载,这对塔吊的稳定性将产生严重的影响。
最后,地基也是影响塔吊稳定性的关键因素。
如果地基承载能力不足,或者地基设计不合理,将直接影响塔吊的稳定性和安全性。
由此可见,塔吊的稳定性问题是一项十分复杂和关键的技术问题。
为了确保塔吊在使用过程中的稳定性和安全性,塔吊在设计和施工过程中必须满足一系列的技术要求。
二、塔吊稳定性要求1.地基要求作为塔吊的支撑基础,地基的承载能力和稳定性是影响塔吊稳定性的重要因素。
因此,在选择地基时,首先要考虑的是地基的承载能力和稳定性。
一般情况下,如果塔吊的高度较低(如50m 以下),则可以采用深基础或浅基础,但如果塔吊高度较高(如100m以上),则需要采用深基础。
此外,在选择地基时,还需要考虑周边的环境和地质条件,选择合适的地基类型和设计方案。
2.锚固要求塔吊的稳定性与锚固系统的设计和施工密切相关。
一般来说,塔吊的锚固系统应具备足够的承载能力和稳定性,才能确保塔吊不会因受到外力而翻倒或倾斜。
此外,锚固系统的施工要求也非常严格。
一般来说,锚固系统需要采用专业的固定器材,配合锚固设计要求进行施工。
在施工过程中,还需要对锚固系统的质量和可靠性进行再次检查和测试。
3.配重要求在使用过程中,为了保证塔吊的稳定性和安全性,还需要根据塔吊的高度和工作条件,配合正确的配重方案。
塔吊格构柱稳定性验算方法
塔吊格构柱稳定性验算方法本工程塔吊基础下的格构柱高度最长为20.5m,依据《钢结构设计规范》(GB50017-2003),计算模型选取塔吊最大独立自由高度60m,塔身未采取任何附着装置状态。
1、格构柱截面的力学特性:格构柱的截面尺寸为0.502×0.502m;主肢选用:16号角钢b×d×r=160×16mm;缀板选用(mXm):0.42×0.2主肢的截面力学参数为A0=49.07cm2,Z0=4.55cm,Ix0=1175.08cm2,Iy0=1175.08cm2;格构柱截面示意图格构柱的y-y轴截面总惯性矩:Z,=4Z,o÷Λ(∣-^o)2格构柱的x-x轴截面总惯性矩:b2A=4Λo+4经过计算得到:I x=4×[1175.08+49.07×(50.2/2-4.55)1=87589.85cm4;I y=4×[1175.08+49.07×(50.2/2-4.55)2]=87589.85cm4;2、格构柱的长细比计算:格构柱主肢的长细比计算公式:"44)其中H——格构柱的总高度,取21.7m;I——格构柱的截面惯性矩,取,1=87589.85cm1I尸87589.85Cm%A0------------ 个主肢的截面面积,取49.07Cm2。
经过计算得到3=102.72,I y=102.72。
格构柱分肢对最小刚度轴IT的长细比计算公式:其中b——缀板厚度,取b=0.5m°h——缀板长度,取h=0.2m°a1——格构架截面长,取a尸0.502m。
经过计算得iι=[(0.25+0.04)∕48+5×0.2520/8]0M.404m o为二21.7/0.404=53.7。
换算长细比计算公式:―=—经过计算得到NkX=II5.91,2ky=115.91o3、格构柱的整体稳定性计算:格构柱在弯矩作用平面内的整体稳定性计算公式:N赢&力其中N——轴心压力的计算值(kN);取N=1791.33kN;A——格构柱横截面的毛截面面积,取4X49.07cm;0——轴心受压构件弯矩作用平面内的稳定系数;根据换算长细比2ox=115.91,2o y=115.91≤《钢结构设计规范》得到。
塔吊稳定性验算
塔吊稳定性验算塔吊稳定性验算可分为有荷载时和无荷载时两种状态。
一、塔吊有荷载时稳定性验算塔吊有荷载时,计算简图:塔吊有荷载时,稳定安全系数可按下式验算:式中K1──塔吊有荷载时稳定安全系数,允许稳定安全系数最小取1.15; G──起重机自重力(包括配重,压重),G=400.00(kN);c──起重机重心至旋转中心的距离,c=1.50(m);h0──起重机重心至支承平面距离, h0=5.00(m);b──起重机旋转中心至倾覆边缘的距离,b=2。
50(m);Q──最大工作荷载,Q=100。
00(kN);g──重力加速度(m/s2),取9。
81;v──起升速度,v=0.50(m/s);t──制动时间,t=20。
00(s);a──起重机旋转中心至悬挂物重心的水平距离,a=15。
00(m);W1──作用在起重机上的风力,W1=4.00(kN);W2──作用在荷载上的风力,W2=0.30(kN);P1──自W1作用线至倾覆点的垂直距离,P1=8。
00(m);P2──自W2作用线至倾覆点的垂直距离,P2=2。
50(m);h──吊杆端部至支承平面的垂直距离,h=30。
00(m);n──起重机的旋转速度,n=1。
0(r/min);H──吊杆端部到重物最低位置时的重心距离,H=28.0(m);α──塔吊的倾斜角(轨道或道路的坡度),α=2.0(度).经过计算得到K1 = 1.154由于K1〉=1。
15,所以当塔吊有荷载时,稳定安全系数满足要求!二、塔吊无荷载时稳定性验算塔吊无荷载时,计算简图:塔吊无荷载时,稳定安全系数可按下式验算:式中K2──塔吊无荷载时稳定安全系数,允许稳定安全系数最小取1.15; G1──后倾覆点前面塔吊各部分的重力,G1=320。
00(kN);c1──G1至旋转中心的距离,c1=0。
50(m);b──起重机旋转中心至倾覆边缘的距离,b=0.80(m);h1──G1至支承平面的距离,h1=6。
塔式起重机工作状态下的稳定性分析
塔式起重机工作状态下的稳定性分析朱国庆 14010325指导教师:郭翔鹰摘要塔式起重机的稳定性是指塔式起重机在自重和外载荷的作用下抵抗倾翻的能力。
本文通过对影响其工作状态稳定性的相关因素的分析,导出了不同状态下塔式起重机稳定性判定公式,并提出了提高塔式起重机稳定性的措施。
关键词:塔式起重机稳定性分析一、引言塔式起重机(tower crane)简称塔机,亦称塔吊,起源于西欧。
动臂装在高耸塔身上部的旋转起重机。
作业空间大,主要用于房屋建筑施工中物料的垂直和水平输送及建筑构件的安装。
随着我国工程建设的快速发展,塔式起重机得到了广泛应用,由于塔式起重机臂架长,工作面大,结构连接点多,整机高度高,操作及现场管理人员专业素质不高等原因,导致起重机倒塌失稳事故经常发生,由此造成了巨大的人员伤亡和财产损失。
塔式起重机的稳定性是指塔式起重机在自重和外载荷的作用下抵抗倾翻的能力。
外载荷的变化通常会导致塔式起重机的稳定性发生变化。
当外载荷达到某一临界条件,塔式起重机失稳倒塌事故就可能会发生。
因此根据可能发生倾覆失稳的各种最不利载荷条件对塔式起重机的稳定性进行判定校核就显得尤为重要[1]。
塔式起重机稳定性的判别条件为:各种载荷对倾覆边的力矩之和大于零[2]。
利用上述条件进行计算时,规定起稳定作用的力矩方向为正,起倾翻作用的力矩为负。
实际应用中,可根据塔式起重机的稳定系数判定其稳定性。
塔式起重机的稳定系数可由下式表达:K=M稳倾式中,M为稳定系数;M稳为起稳定作用的力矩之和,N·m;M倾为起倾翻作用的力矩之和,N·m。
二、塔式起重机工作状态承受载荷图1 塔式起重机工作状态承受载荷塔式起重机工作状态承受载荷如图所示。
G表示起重机机架重量,G1表示起吊物体重量,G2表示平衡块重量,G3表示吊臂重量,与塔身中心线距离为l4,图中未标出。
F A,F B 分别为A、B点处所受约束力。
q为风载,风载方向既可以是图示方向,也可以和图示方向反向。
塔吊附墙验算计算书
塔吊附墙验算计算书塔机附着验算计算书本文的计算依据为《塔式起重机混凝土基础工程技术标准》/T187-2019和《钢结构设计标准》GB-2017.一、塔机附着杆参数塔机型号为QTZ63(TC5610)-中塔身桁架结构类型,计算高度为98m,起重臂长度为56m,起重臂与平衡臂截面计算高度为1.06m。
塔身宽度为1.6m,平衡臂长度为12.9m。
工作状态时扭矩标准值Tk1为269.3kN·m,包含风荷载。
非工作状态下不平衡自重引起的倾覆力矩标准值Mk'为1940kN·m(反向),工作状态下不平衡自重引起的倾覆力矩标准值Mk为1720kN·m。
附着杆数为四杆附着,附墙杆截面类型为格构柱,附墙杆类型为Ⅰ类,塔身锚固环边长为1.8m。
二、风荷载及附着参数附着次数为2,附着点1到塔机的横向距离为5m,附着点2到塔机的横向距离为2.2m,附着点3到塔机的横向距离为2.2m,附着点4到塔机的横向距离为2.2m。
工作状态基本风压ω为0.2kN/m,塔身前后片桁架的平均充实率α为0.35.点1到塔机的竖向距离为2m,点2到塔机的竖向距离为4.8m,点3到塔机的竖向距离为3.2m,点4到塔机的竖向距离为3.2m。
非工作状态基本风压ω'为0.35kN/m。
工作状态和非工作状态的风压等效高、工作状态和非工作状态的附着点高度、附着点净高、工作状态风压等效均布荷载等参数均有具体数值,这里不再赘述。
285.472kN时,支座6处附墙杆内力计算如下:考虑塔机产生的扭矩由支座6处的附墙杆承担,因此需要计算支座6处锚固环的截面扭矩T。
根据扭矩组合标准值T kTk1269.3kN·m,可得到T的值。
同时考虑塔身承受双向的风荷载和倾覆力矩及扭矩,需要将水平内力Nw计算出来。
根据计算简图和塔机附着示意图、平面图,可以得到α和β的值,并用力法计算各杆件轴力。
最终得到支座6处附墙杆的水平内力Nw20.5RE285.472kN。
TC5610(QTZ63)塔吊基础验算书
TC5610(QTZ63)塔吊天然基础的计算书一、参数信息塔吊型号:QTZ63,塔吊起升高度H:120.00m,塔身宽度B:1.6m,基础埋深d:1.3m,基础承台厚度hc:1.30m,基础承台宽度Bc:5.00m,(KN) Mk (KN)Fk(KN) Fh工作状态下511.2 18.3 1335非工作状态下464.1 73.9 1552 地基承载力特征值f ak:270kPa,基础宽度修正系数ηb:0.15,基础埋深修正系数ηd:1.4,基础底面以下土重度γ:20kN/m3,基础底面以上土加权平均重度γm:20kN/m3。
一、工作状态下验算:(1)塔吊抗倾覆稳定验算基础抗倾覆稳定性按下式计算:e=(M k+F h×h)/(F k+G k)≤Bc/3式中 e──偏心距,即地面反力的合力至基础中心的距离;M k──作用在基础上的弯矩;F k──作用在基础上的垂直载荷;G k──混凝土基础重力,G k=25×5×5×1.3=812.5kN;Bc──为基础的底面宽度;计算得:e=(1335+18.3*1.3)/(812.5+511.2)=1.026m < 5/3=1.6m;基础抗倾覆稳定性满足要求!(2)地基承载力验算依据《建筑地基基础设计规范》(GB50007-2002)第5.2条承载力计算。
计算简图:混凝土基础抗倾翻稳定性计算:e=1.026m >B/6= 5/6=0.833m 为大偏心受压构件地基承载力应同时满足下式:P k=(F k+G k)/A≤ f aP kmax=2×(F k+G k)/(3×a×Bc)≤1.2 f a式中 F k──作用在基础上的垂直载荷;G k──混凝土基础重力;a──合力作用点至基础底面最大压力边缘距离(m),按下式计算:a=Bc/2-M k/(F k+G k)=5/2-1335/(511.2+812.5)=1.4914m。
TC5013塔式起重机(固定)底架、基础设计,整机稳定性计算
目录1、TC5013塔机稳定性计算 (3)1.1抗倾翻稳定性 (3)1.1.1验算工况 (3)1.1.2抗倾翻稳定性校核 (4)1.2基本稳定性 (4)1.3动态稳定性 (6)1.4暴风侵袭稳定性 (7)1.5突然卸载稳定性 (8)1.6安装拆卸稳定性 (8)1.7地面压应力验算: (10)2、TC5013塔式起重机(固定)底架、基础设计 (10)2.1计算依据: (10)2.2参数信息 (11)2.3塔吊荷载取值与基础承台顶面的竖向力与力距 (11)2.4结构设计: (12)2.4.1桩基选型: (12)2.4.2地基基础 (12)2.4.3矩形承台弯距的计算 (13)2.4.4矩形承台弯矩的计算 (13)2.4.5矩形承台截面主筋的计算 (14)2.4.6矩形承台截面抗剪切计算 (14)2.4.7桩承载力验算 (15)2.4.8桩竖向极限承载力验算及桩长计算 (15)1、TC5013塔机稳定性计算1.1抗倾翻稳定性1.1.1验算工况本塔式起重机为固定基础的自升式塔式起重机,其抗倾翻稳定性的计算包括:安装架设、拆卸和使用过程(工作状态、非工作状态)。
列表4-1如下:表4-1固定基础塔式起重机验算工况1.1.2抗倾翻稳定性校核图4.1 抗倾翻稳定性计算简图由于固定基础式的倾覆边沿不明确,GB/T13752-92提出,固定式砼基塔机整机抗倾翻稳定性验算公式:3bF F h F M e g v h ≤+⋅+=式中:e —偏心距。
M —作用于基础上的弯矩。
h —基础深度。
b —基础宽度。
Fv —作用于基础上的垂直载荷。
Fh —作用于基础上的水平载荷。
Fg —混凝土基础的重力。
作用于基础上的弯矩包括自重载荷、起升载荷、离心力、惯性力及风载荷产生的力矩,根据上述工况计算如下:1.2基本稳定性工作状态:无风静载、考虑自重载荷及吊重对整机稳定性的影响,载荷放大系数:自重载荷系数取1.0,离心力系数取1.0,起升载荷系数取1.5,(1) 自重载荷计算名称质量(Kg) 重心至回转中心距离mm力距Kg.mm起重臂第一节480 2250 1080000 起重臂第二节865 10500 9082500 起重臂第三节788 20500 16154000 起重臂第四节713 30500 21746500 起重臂第五节636 40500 25758000 起重臂第六节512 50500 25856000 起重臂第七节465 57500 26737500 起重臂第八节330 62500 20625000 起重臂第九节312 67500 21060000 起重臂第十节83 70740 5871420 起重臂其他176 35630 4532000 变幅机构220 7860 1729200 平衡臂1856 -7523 13963533 起升机构1600 -8280 -1324800 平衡重14700 -16270 -189879000 司机室244 1310 319640 电气系统150 -3810 -571500 平衡臂拉杆541 -6142 -3322822 回转塔身880 0 0上转台1230 0 0回转机构500 0 0回转支承420 0 0下转台1351 0 0套架3667 0 0引进平台255 2190 493407液压顶升机构230 -1700 -391000塔身15750 0斜撑1720 0底架3150基础70000 0合计120824 -49770422表4-2 基本稳定性自重载荷(2)离心力计算:F=mw2=m(0.7×2×3.14/60)2=(8000+246+279)*0.0055*15500/10000=72.675离心力矩Fr=72.675×(42000+1000)=3125025N.mm(3)起升载荷力矩计算:F.r=(8000+246+279)×15500= 132137500 N.mm(4)偏心e计算:M=(132137500×1.5+3125025×1.0-49770422×1.0)×10=1453108030N.mmF h=0NFg+Fv=[(8000+246+279)+120824]×10=1293490Ne=1123.4mm1.3动态稳定性工作状态:有风载、考虑自重载荷及吊重对整机稳定性的影响,载荷放大系数:起升载荷系数取1.30,离心力系数取1.0,自重载荷取1.0,风载荷系数取1.0(1)风载荷计算:部件风力风压迎风面积总面积充实率挡风风载荷到基础对基础底面系数N/m2mm2mm2ω折减系数N 距离mm力矩N.mm塔身 1.6 250 1476273 4110752 0.3591 0.47 13884 23530 32669052 下转台 1.6 250 657743 1027196 0.6403 0.15 302.56 46500 1406904 支撑 1.2 250 2349500 2349500 1.0 704.85 46855 33025746 回转塔身 1.3 250 1222557 3007303 0.4065 0.39 552.37 48333 2669776司机室 1.2 250 2992000 2992000 897.60 43450 3900072起重臂 1.3 250 181526 806482 0.2251 0.66 6885.9 50050 887737 平衡臂 1.6 250 163720 375760 0.4357 0.34 100.20 49500 495000 平衡重 1.2 250 3604400 3604400 1.0 1081.3 49500 5352534 三机构 1.2 250 828000 828000 1.0 248.4 49500 1229580 电气 1.2 250 720000 720000 1.0 216 49500 1069200 载荷1800 48333 8699940 合计63472266 表 4-3 动态稳定性风载荷(2)偏心e计算:M=(132137500×1.3+3125025×1.0-49770422×1.0)×10+ 63472266×1.0×10=1886056190N.mmFg+Fv=[(8000+246+279)+120824]×10=1293490Ne = 1458mm1.4暴风侵袭稳定性非工作状态,载荷放大系数:自重载荷取1.0,风载荷系数取1.2。
塔吊抗倾覆稳定性和地基承载力验算报告
一、塔式起重机安装1、塔式起重机安装条件,安装前,必须经维修保养,并应进行全面的检查,确认合格后方可安装。
2、塔式起重机的基础及其地基承载力应符合使用说明书和设计图纸的要求。
安装前应对基础进行验收,合格后方可安装。
基础周围应有排水设施。
3、塔式起重机基础应按使用说明书的要求进行设计,且应符合现行国家标准《塔式起重机安全规程》GB5144及《塔式起重机》GB/T5031的规定。
4、内爬式塔式起重机的基础、锚固、爬升支承结构等应根据使用说明书提供的荷载进行设计计算,并应对内爬式塔式起重机的建筑承载结构进行验算。
二、塔式起重机基础的设计1、塔式起重机的基础应按国家现行标准和使用说明书所规定的要求进行设计和施工。
施工单位应根据地质勘察报告确认施工现场的地基承载力。
2、当施工现场满足塔式起重机使用说明书对基础的要求时,可自行设计基础,可采用下列常用的基础形式;板式基础。
根据QTZ315(ZJ7035)塔式起重机基础的设计要求,其基础底板地耐力不小于0.2mpa(200T/m2)。
而根据黄石市佳境建筑设计XXX提供的勘察报告;粘土含碎石,承载力特征值为480~500kPa。
经过计算地耐力数据满足设计要求。
3、板式基础设计计算应符合下列规定;a、应进行抗倾覆稳定性和地基承载力验算。
b、整体抗倾覆稳定性应满足下式规定:4、板式基础是指矩形、截面高度不变的混凝土基础,组合式基础是指由若干格构式钢柱或钢管柱与其下端连接的基础、以及上端连接的混凝土承台或型钢平台组成的基础。
对计算说明如下:a、计算公式中,在计算地基承载力时采用的是荷载标准组合;而在板式基础设计与桩基承台的抗弯、抗剪、抗冲切计算时,采用的是荷载基本组合。
荷载组合系数取值应符合现行国家标准《建筑结构荷载规范》GB50009的相关规定。
如某型号的塔式起重机作用在基础顶面的最不利荷载标准值为:弯矩M k等于725kN·m,竖向力F k等于1281kN,水平力F Vk等于158kN。
塔吊稳定性计算
塔吊稳定性验算塔吊稳定性验算可分为有荷载时和无荷载时两种状态。
一、塔吊有荷载时稳定性验算塔吊有荷载时,计算简图::稳定安全系数可按下式验算塔吊有荷载时,式中 K1──塔吊有荷载时稳定安全系数,允许稳定安全系数最小取1.15;;),G=400.00(kN)──起重机自重力 G(包括配重,压重; c──起重机重心至旋转中心的距离,c=1.50(m); h0──起重机重心至支承平面距离, h0=5.00(m);,b=2.50(m) b──起重机旋转中心至倾覆边缘的距离; Q──最大工作荷载,Q=100.00(kN)2;9.81(m/s g──重力加速度),取; v──起升速度,v=0.50(m/s); t──制动时间,t=20.00(s);──起重机旋转中心至悬挂物重心的水平距离 a,a=15.00(m)专业文档供参考,如有帮助请下载。
.W1──作用在起重机上的风力,W1=4.00(kN);W2──作用在荷载上的风力,W2=0.30(kN);P1──自W1作用线至倾覆点的垂直距离,P1=8.00(m);P2──自W2作用线至倾覆点的垂直距离,P2=2.50(m);h──吊杆端部至支承平面的垂直距离,h=30.00(m);n──起重机的旋转速度,n=1.0(r/min);H──吊杆端部到重物最低位置时的重心距离,H=28.0(m);α──塔吊的倾斜角(轨道或道路的坡度),α=2.0(度)。
经过计算得到 K = 1.1541由于K>=1.15,所以当塔吊有荷载时,稳定安全系数满足要求!1二、塔吊无荷载时稳定性验算塔吊无荷载时,计算简图::稳定安全系数可按下式验算塔吊无荷载时,式中 K2──塔吊无荷载时稳定安全系数,允许稳定安全系数最小取1.15; G1──后倾覆点前面塔吊各部分的重力,G1=320.00(kN);c1──G1至旋转中心的距离,c1=0.50(m);b──起重机旋转中心至倾覆边缘的距离,b=0.80(m);h1──G1至支承平面的距离,h1=6.00(m);专业文档供参考,如有帮助请下载。
吊机常用稳定性验算
吊机常用稳定性验算静态稳定性常用稳定性安全系数K 1表示(见图15-15);K 1=223324421122M G ()()() 1.4M ()(R )l G l l G l l G l l Q G l ++++--=≥+-稳倾吊式中 G 1 —— 起重臂重量;G 2 —— 下车重量;G 3 —— 上车重量;G 4 —— 平衡重;(Q +G 吊)—— 起重量加吊具重量;b.动态稳定动态稳定性就是除起重机自重和吊载之外,还要考虑风力、惯性力、离心力和坡度的影响。
风力是考虑不利于稳定性的工作风力,与起重机臂长度有直接关系,例如以10m/s 的风速为例,起重臂长为10m ,产生的倾翻力矩为1800N •m ;臂长为20m ,产生倾翻力矩为8000N •m ;臂长为30m 时,倾翻力矩为20000N •m 。
坡度的影响也是不可忽视的,经计算,当起重机倾斜1º时,起重能力要下降7.4%;倾斜2º时,降低14.3%;倾斜3º时,降低19.8%。
惯性力主要是指物品突然起吊和下放突然刹车时,产生的不利稳定的惯性力。
实际是增加了起吊重力。
离心力是指起重机回转时,起重臂、吊物所产生的离心力。
特别是吊物的离心力,通过钢丝绳直接作用在起重臂端部,增加起重机的倾翻力矩。
图15-16 起重机动态稳定计算图动态稳定性安全系数为: 212112222221202(0.5)(0.5)()sin 900(0.5)b Q G Qv Qn Rh G lc R l Ph P h v h Qh Gh gt gt n h K Q R l α++---+++++-=-⎡⎤⎢⎥⎣⎦ 式中 Q —— 起吊载荷;G —— 起重机自重;G b —— 折算到臂头的起重臂自重;R —— 幅度;P 1 —— 作用在起重机上的工作状态最大风力;P 2 —— 作用在起吊物品上的工作状态最大风力;h 1、h 2 —— 与P 1、P 2对应的高度;h 0 —— 起吊物品至臂端的高度;t 1 —— 起升机构启、制动时间;t 2 —— 变幅机构启、制动时间;v 1 —— 起升速度;v2 ——变幅速度;n ——起重机回转速度;α——起重机支承面倾角;l、c ——尺寸见图15-16。
塔吊安全验算书
塔吊安全验算书一、塔吊基础验算一、参数信息塔吊型号:QTZ80塔机自重标准值:FK1=627.00KN起重荷载标准值:Fqk=60.00kN水平力:F h=73.9kN;塔吊最大起重力矩:M=800.00kN.m柱作用于基础承台的竖向荷载:N k=188.13kN塔吊计算高度:H=115m塔身宽度:B=1.60m承台混凝土等级:C35矩形承台边长:5.0m承台厚度:Hc=1.400m承台钢筋级别:HPB235桩混凝土等级:C35保护层厚度:50mm桩直径d=1.000m桩钢筋级别:HRB400桩入土深度:13.00m二、荷载计算1)塔机自重标准值F k1=627kN2)起重荷载标准值F qk=60kN3)塔机作用于桩基承台顶面的竖向力F=1.2×(Fk1+Fqk)=824.40kN柱作用于桩基承台顶面的竖向力N=1.2×N k=225.76kN 4)基础以及覆土自重G k=1.2×(5.02+3.2×1.97)×25×1.4=1316.11kN5)最大压力:N=F+ N+G k =824.40+225.76+1316.11=2366.27kN 6)塔吊的倾覆力矩 M=1.4×800=1120.00kN.m 三、承台计算1、塔吊基础承载力计算 依据《建筑地基基础设计规范》(GB50007-2011)第5.2条承载力计算。
当不考虑附着时的基础设计值计算公式:P max =F+G+N A+M W,P min =F+G+N A− MW当考虑附着时的基础设计值计算公式P=F+G+N A当考虑偏心距较大时的基础设计值计算公式:P max =2(F+G+N )3BcaF ——塔吊作用于基础的竖向力,它包括塔吊自重,压重和最大起重荷载,F=824.40kN;N——柱作用于基础的竖向力,N=218.52KNG——基础自重与基础上面的土的自重,G=1316.11kNBc——基础底面的宽度,取Bc=5.00m;W——基础底面的抵抗矩,W=bh2/6=53/6=20.83m3;M1——塔吊倾覆力矩,包括风荷载产生的力矩和最大起重力矩,M=1.4×800=1120.00kN.m;M2——柱作用于基础的弯矩,M=1.4*N*e1=1.4*218.52*0.3=91.78kN.m;A——基础底面积,A基础底面积=5.02+3.2×1.97=31.34m2a——合力作用点至基础底面最大压力边缘距离(m),按下式计算:a=B c/2 - MF+Ga=5.00/2-1120.00/(824.40+1316.11)=1.98m。
TC5013塔式起重机(固定)底架、基础设计,整机稳定性计算
目录1、TC5013塔机稳定性计算 (3)1.1抗倾翻稳定性 (3)1.1.1验算工况 (3)1.1.2抗倾翻稳定性校核 (4)1.2基本稳定性 (4)1.3动态稳定性 (6)1.4暴风侵袭稳定性 (7)1.5突然卸载稳定性 (8)1.6安装拆卸稳定性 (8)1.7地面压应力验算: (10)2、TC5013塔式起重机(固定)底架、基础设计 (10)2.1计算依据: (10)2.2参数信息 (11)2.3塔吊荷载取值与基础承台顶面的竖向力与力距 (11)2.4结构设计: (12)2.4.1桩基选型: (12)2.4.2地基基础 (12)2.4.3矩形承台弯距的计算 (13)2.4.4矩形承台弯矩的计算 (13)2.4.5矩形承台截面主筋的计算 (14)2.4.6矩形承台截面抗剪切计算 (14)2.4.7桩承载力验算 (15)2.4.8桩竖向极限承载力验算及桩长计算 (15)1、TC5013塔机稳定性计算1.1抗倾翻稳定性1.1.1验算工况本塔式起重机为固定基础的自升式塔式起重机,其抗倾翻稳定性的计算包括:安装架设、拆卸和使用过程(工作状态、非工作状态)。
列表4-1如下:表4-1固定基础塔式起重机验算工况1.1.2抗倾翻稳定性校核图4.1 抗倾翻稳定性计算简图由于固定基础式的倾覆边沿不明确,GB/T13752-92提出,固定式砼基塔机整机抗倾翻稳定性验算公式:3bF F h F M e g v h ≤+⋅+=式中:e —偏心距。
M —作用于基础上的弯矩。
h —基础深度。
b —基础宽度。
Fv —作用于基础上的垂直载荷。
Fh —作用于基础上的水平载荷。
Fg —混凝土基础的重力。
作用于基础上的弯矩包括自重载荷、起升载荷、离心力、惯性力及风载荷产生的力矩,根据上述工况计算如下:1.2基本稳定性工作状态:无风静载、考虑自重载荷及吊重对整机稳定性的影响,载荷放大系数:自重载荷系数取1.0,离心力系数取1.0,起升载荷系数取1.5,(1) 自重载荷计算名称质量(Kg) 重心至回转中心距离mm力距Kg.mm起重臂第一节480 2250 1080000 起重臂第二节865 10500 9082500 起重臂第三节788 20500 16154000 起重臂第四节713 30500 21746500 起重臂第五节636 40500 25758000 起重臂第六节512 50500 25856000 起重臂第七节465 57500 26737500 起重臂第八节330 62500 20625000 起重臂第九节312 67500 21060000 起重臂第十节83 70740 5871420 起重臂其他176 35630 4532000 变幅机构220 7860 1729200 平衡臂1856 -7523 13963533 起升机构1600 -8280 -1324800 平衡重14700 -16270 -189879000 司机室244 1310 319640 电气系统150 -3810 -571500 平衡臂拉杆541 -6142 -3322822 回转塔身880 0 0上转台1230 0 0回转机构500 0 0回转支承420 0 0下转台1351 0 0套架3667 0 0引进平台255 2190 493407液压顶升机构230 -1700 -391000塔身15750 0斜撑1720 0底架3150基础70000 0合计120824 -49770422表4-2 基本稳定性自重载荷(2)离心力计算:F=mw2=m(0.7×2×3.14/60)2=(8000+246+279)*0.0055*15500/10000=72.675离心力矩Fr=72.675×(42000+1000)=3125025N.mm(3)起升载荷力矩计算:F.r=(8000+246+279)×15500= 132137500 N.mm(4)偏心e计算:M=(132137500×1.5+3125025×1.0-49770422×1.0)×10=1453108030N.mmF h=0NFg+Fv=[(8000+246+279)+120824]×10=1293490Ne=1123.4mm1.3动态稳定性工作状态:有风载、考虑自重载荷及吊重对整机稳定性的影响,载荷放大系数:起升载荷系数取1.30,离心力系数取1.0,自重载荷取1.0,风载荷系数取1.0(1)风载荷计算:部件风力风压迎风面积总面积充实率挡风风载荷到基础对基础底面系数N/m2mm2mm2ω折减系数N 距离mm力矩N.mm塔身 1.6 250 1476273 4110752 0.3591 0.47 13884 23530 32669052 下转台 1.6 250 657743 1027196 0.6403 0.15 302.56 46500 1406904 支撑 1.2 250 2349500 2349500 1.0 704.85 46855 33025746 回转塔身 1.3 250 1222557 3007303 0.4065 0.39 552.37 48333 2669776司机室 1.2 250 2992000 2992000 897.60 43450 3900072起重臂 1.3 250 181526 806482 0.2251 0.66 6885.9 50050 887737 平衡臂 1.6 250 163720 375760 0.4357 0.34 100.20 49500 495000 平衡重 1.2 250 3604400 3604400 1.0 1081.3 49500 5352534 三机构 1.2 250 828000 828000 1.0 248.4 49500 1229580 电气 1.2 250 720000 720000 1.0 216 49500 1069200 载荷1800 48333 8699940 合计63472266 表 4-3 动态稳定性风载荷(2)偏心e计算:M=(132137500×1.3+3125025×1.0-49770422×1.0)×10+ 63472266×1.0×10=1886056190N.mmFg+Fv=[(8000+246+279)+120824]×10=1293490Ne = 1458mm1.4暴风侵袭稳定性非工作状态,载荷放大系数:自重载荷取1.0,风载荷系数取1.2。
矩形板式塔吊基础抗倾覆验算
矩形板式塔吊基础抗倾覆验算咱们今天聊聊这个矩形板式塔吊基础抗倾覆验算,说得简单点,就是在建塔吊之前,我们得算一算它是不是稳当,能不能经得起那些大风大浪,咱们可不想看到一台塔吊晃晃悠悠的,还没开始干活就已经不稳了,对吧?别说,塔吊那可不是小玩意儿,它一旦倾覆,那可是大事,轻则影响工程进度,重则酿成大祸,甚至伤及工人安全。
想想就让人打个寒战。
咱们说的矩形板式塔吊,其实就是塔吊的底座部分,底座可不是随便弄个东西就行了,得有足够的强度和稳定性才能保证整个塔吊的安全。
所以啊,我们得先验算一下这个基础抗倾覆的能力,简单点说,就是要确定它能不能“站得稳”。
说到这里,大家可能会好奇,为什么这么复杂的计算还要搞得这么详细?因为塔吊一旦倾覆,那可不是“摔倒了再爬起来”的事儿,而是会涉及到更多的危险和麻烦,谁也不想这种事发生。
搞清楚了,咱们再来仔细分析一下,塔吊基础抗倾覆验算到底是怎么回事。
首先得考虑塔吊自身的重量。
对,别看它一个“杆子”似的东西,它的钢铁构件加起来可不轻。
这个重量需要通过基础进行支撑,否则塔吊一开始就会变成“纸老虎”。
塔吊的工作载荷也得算上。
什么叫工作载荷呢?就是说塔吊上吊的东西有多重。
这东西可不能小看,塔吊吊的可不止几吨重的东西,很多时候那可是几十吨,甚至上百吨的货物。
如果基础没做好,想想一台大塔吊吊着几吨的货,突然脚下一滑,那场面真是“惊心动魄”。
再来呢,还得考虑外部环境的因素。
比如风力。
这玩意儿,一开始你看不出来,但一旦起风,塔吊就开始“摇摆”了。
风速一上来,塔吊开始有了“飘”的感觉,这时候如果基础不稳,那就容易出问题。
别说是风了,地震、土壤松软这些因素都得考虑进去。
咱们可不能让塔吊站在一个沙滩上,风一吹就倾倒。
对吧?你总不能把一个大大的生日蛋糕放在桌子边上,风一吹就倒了吧?不管你怎么努力装饰,底下支撑不住,还是得“倒下”。
咱们可以想象一下,塔吊的基础就像是一个“根基”一样。
就像我们人一样,站得稳不稳全靠脚下那双鞋。
塔吊的稳定性验算
塔吊的稳定性验算塔吊的稳定性验算塔吊抗倾覆稳定性校核应遵照GB3811—83“起重机设计规范”中的有关规定进行。
1.无风、静载稳定性校核验算工况是:起重臂处于最大幅度位置(对于小车变幅起重臂小车位于最大幅度),起重臂指向下坡方向,无风,起重机静置并负有额定载荷,塔式起重机无风静载工况下抗倾覆稳定性按下式验算:0.95M K——K L M L——M D≥0式中M K——由塔吊自重及压重产生的稳定力矩;M L——塔吊负载对倾覆边的力矩;K L——载荷系数,查GB3811—83,取为1.4;M D——由坡度因素而产生的倾覆力矩。
2.有风、动载稳定性校核验算工况是,起重臂处于最大幅度位置(对于小车变幅臂架,小车位于最大幅度),风从平衡臂吹向起重臂,塔式起重机负有额定荷载并正在工作中。
塔吊有风动载工况下的抗倾覆稳定性按下式验算:0.95M K——K L M L——M W——M D≥0式中M K——由塔吊重及压重产生的稳定力矩;K L——载荷系数,查GB3811—83,取为1.15;M L——由起重机额定载荷产生的倾覆力矩;M W——由作用于塔吊各部的风荷及作用于荷载迎风面的风荷所产生的倾覆力矩;M D——由工作机构工作、起、制动以及风荷动力作用、坡度因素而产生的倾覆力矩。
3.突然卸载(或吊具脱落)稳定性校核验算工况是,起重臂仰起处于最小幅度(对于小车变幅起重臂,小车位于臂根处),风从起重臂吹向平衡臂,塔式起重机突然卸载或吊具突然脱落。
在此工况下,塔吊抗倾覆稳定性按下式验算0.95M K——M O——M W——M D≥0式中M K——由塔吊自重及压重产生的稳定力矩;M O——由于突然卸载而造成的倾覆力矩,查GB3811-83,可大致取为0.2Q H L(Q H为额定载荷,L为幅度);M W——由作用于塔吊各部的风荷所产生的倾覆力矩;M D——由于坡度等因素而造成的倾覆力矩。
4.安装状态时稳定性校核上回转塔吊在塔身立起后的稳定性按下式验算P w1h≤0.95CP G式中P w1——工作状态最大风力(N);h——风载荷合力作用点距地高度(m);P G——塔吊已架立部分的重量(t);C——塔吊已架立部分重心至倾翻边的水平距离(m)。
塔吊临时固定措施验算
塔吊临时固定措施验算1. 引言塔吊是一种用于起重和搬运重物的施工机械,在建筑工地和其他工程项目中广泛使用。
然而,在使用塔吊时,为了确保工地的安全,需要采取一系列的临时固定措施。
本文将介绍塔吊临时固定措施的验算方法,以帮助确保塔吊在使用过程中的稳定性和安全性。
2. 塔吊临时固定措施的重要性塔吊作为一种大型施工机械,其自身的高度和工作范围使其在使用中具有一定的不稳定性。
为了确保塔吊在使用期间不发生倾覆或脱离固定的情况,必须采取适当的临时固定措施。
这些措施可以有效地提高塔吊的稳定性和安全性,保护工地人员的生命和财产安全。
3. 塔吊临时固定措施的验算方法3.1 塔吊固定杆的数量和位置塔吊的固定杆是使其稳定的关键元素之一。
确定固定杆的数量和位置需要考虑塔吊的高度、工作范围、工作负载等因素。
一般来说,固定杆的数量应根据塔吊的高度来决定。
对于较低的塔吊,通常每根固定杆设置在塔吊的四个角上;对于较高的塔吊,建议在塔吊的每个角上设置两根固定杆。
3.2 塔吊固定杆的长度和直径塔吊固定杆的长度和直径是决定其承载能力的重要因素。
根据工程经验,通常可以采用公式来计算塔吊固定杆的所需长度和直径。
固定杆的长度应该能够牢固地固定在地面,以防止塔吊的倾覆。
固定杆的直径应足够强度,以承受塔吊受到的水平和垂直载荷。
3.3 塔吊基础的设计和施工塔吊的基础是支撑塔吊的重要设施,其设计和施工要符合相关的规范和标准。
在设计塔吊基础时,需要考虑地下水位、土壤的承载能力等因素。
基础的尺寸和深度应该足够大,能够承受塔吊受到的各种力和载荷。
4. 塔吊临时固定措施的验收标准为了确保塔吊的临时固定措施符合安全要求,可以制定一系列的验收标准。
这些标准可以包括固定杆的数量和位置、固定杆的长度和直径、基础的设计和施工等方面的要求。
在使用塔吊之前,必须对临时固定措施进行验收,并确保其符合相关的验收标准。
5. 结论塔吊临时固定措施的验算是确保塔吊在使用过程中的稳定性和安全性的重要环节。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
塔吊的稳定性验算
塔吊抗倾覆稳定性校核应遵照GB3811—83“起重机设计规范”中的有关规定进行。
1.无风、静载稳定性校核
验算工况是:起重臂处于最大幅度位置(对于小车变幅起重臂小车位于最大幅度),起重臂指向下坡方向,无风,起重机静置并负有额定载荷,
塔式起重机无风静载工况下抗倾覆稳定性按下式验算:
0.95M K——K L M L——M D≥0
式中M K——由塔吊自重及压重产生的稳定力矩;
M L——塔吊负载对倾覆边的力矩;
K L——载荷系数,查GB3811—83,取为1.4;
M D——由坡度因素而产生的倾覆力矩。
2.有风、动载稳定性校核
验算工况是,起重臂处于最大幅度位置(对于小车变幅臂架,小车位于最大幅度),风从平衡臂吹向起重臂,塔式起重机负有额定荷载并正在工作中。
塔吊有风动载工况下的抗倾覆稳定性按下式验算:
0.95M K——K L M L——M W——M D≥0
式中M K——由塔吊重及压重产生的稳定力矩;
K L——载荷系数,查GB3811—83,取为1.15;
M L——由起重机额定载荷产生的倾覆力矩;
M W——由作用于塔吊各部的风荷及作用于荷载迎风面的风荷所产生的倾覆力矩;
M D——由工作机构工作、起、制动以及风荷动力作用、坡度因素而产生的倾覆力矩。
3.突然卸载(或吊具脱落)稳定性校核
验算工况是,起重臂仰起处于最小幅度(对于小车变幅起重臂,小车位于臂根处),风从起重臂吹向平衡臂,塔式起重机突然卸载或吊具突然脱落。
在此工况下,塔吊抗倾覆稳定性按下式验算
0.95M K——M O——M W——M D≥0
式中M K——由塔吊自重及压重产生的稳定力矩;
M O——由于突然卸载而造成的倾覆力矩,查GB3811-83,可大
致取为0.2Q H L(Q H为额定载荷,L为幅度);
M W——由作用于塔吊各部的风荷所产生的倾覆力矩;
M D——由于坡度等因素而造成的倾覆力矩。
4.安装状态时稳定性校核
上回转塔吊在塔身立起后的稳定性按下式验算
P w1h≤0.95CP G
式中P w1——工作状态最大风力(N);
h——风载荷合力作用点距地高度(m);
P G——塔吊已架立部分的重量(t);
C——塔吊已架立部分重心至倾翻边的水平距离(m)。