OSI模型七个层的作用及工作原理
osi模型有哪七层
![osi模型有哪七层](https://img.taocdn.com/s3/m/1216040090c69ec3d5bb75b4.png)
第一层:物理层这一层负责在计算机之间传递数据位,它为在物理媒体上传输的位流建立规则,这一层定义电缆如何连接到网卡上,以及需要用何种传送技术在电缆上发送数据;同时还定义了位同步及检查。
这一层表示了用户的软件与硬件之间的实际连接。
它实际上与任何协议都不相干,但它定义了数据链路层所使用的访问方法。
物理层是OSI参考模型的最低层,向下直接与物理传输介质相连接。
物理层协议是各种网络设备进行互连时必须遵守的低层协议。
设立物理层的目的是实现两个网络物理设备之间的二进制比特流的透明传输,对数据链路层屏蔽物理传输介质的特性,以便对高层协议有最大的透明性。
ISO对OSI参考模型中的物理层做了如下定义:物理层为建立、维护和释放数据链路实体之间的二进制比特传输的物理连接提供机械的、电气的、功能的和规程的特性。
物理连接可以通过中继系统,允许进行全双工或半双工的二进制比特流的传输。
物理层的数据服务单元是比特,它可以通过同步或异步的方式进行传输。
从以上定义中可以看出,物理层主要特点是:1.物理层主要负责在物理连接上传输二进制比特流;2.物理层提供为建立、维护和释放物理连接所需要的机械、电气、功能与规程的特性。
" 第二层:数据链路层这是OSI模型中极其重要的一层,它把从物理层来的原始数据打包成帧。
一个帧是放置数据的、逻辑的、结构化的包。
数据链路层负责帧在计算机之间的无差错传递。
数据链路层还支持工作站的网络接口卡所用的软件驱动程序。
桥接器的功能在这一层。
数据链路层是OSI参考模型的第二层,它介于物理层与网络层之间。
设立数据链路层的主要目的是将一条原始的、有差错的物理线路变为对网络层无差错的数据链路。
为了实现这个目的,数据链路层必须执行链路管理、帧传输、流量控制、差错控制等功能。
在OSI参考模型中,数据链路层向网络层提供以下基本的服务:1.数据链路建立、维护与释放的链路管理工作;2.数据链路层服务数据单元帧的传输;3.差错检测与控制;4.数据流量控制;5.在多点连接或多条数据链路连接的情况下,提供数据链路端口标识的识别,支持网络层实体建立网络连接;6.帧接收顺序控制" 第三层:网络层这一层定义网络操作系统通信用的协议,为信息确定地址,把逻辑地址和名字翻译成物理的地址。
ISOOSI七层模型的分层与作用
![ISOOSI七层模型的分层与作用](https://img.taocdn.com/s3/m/1ac9fabbd0f34693daef5ef7ba0d4a7302766c69.png)
ISOOSI七层模型的分层与作⽤ISO/OSI的七层模型第七层:应⽤层为⽤户提供服务,给⽤户⼀个操作界⾯,如window的图形界⾯,Linux的命令⾏;第六层:表⽰层数据提供表⽰:把01⼆进制转换为图像数字等⽤户可以看懂的内容,反过来把⽤户的⿏标点击命令⾏执⾏的操作转换成⼆进制让计算机语⾔加密:数据加密压缩:数据压缩第五层:会话层确定是否需要进⾏⽹络传输会话,例如打开浏览器访问页⾯,发送邮件都是需要通过⽹络传输层的,如果仅仅是编辑本地⽂件⽂本,播放本地视频⾳乐等就不需要⾛⽹络传输。
第四层:传输层1、对报⽂进⾏分组(发送时)、组装(接受时)在进⾏⽹络传输的过程中实际上就是数据包的交换拆分组装的过程,应⽤层的数据发送到传输层的时候,因为数据包最⼤不能超过65535也就是2的16次⽅的字节⼤⼩,所以在进⾏传输的时候对数据进⾏分组拆分。
在对端接收的时候⼜按照⼀定的顺序给组装回去。
2、提供传输协议的选择:TCP(传输控制协议):可靠的,⾯向连接的传输协议,特性是可靠,准确,但是传输速度慢UDP(⽤户数据协议):不可靠的,⾯向⽆连接的传输协议,特性是传输速度快,但是不可靠,可能会丢数据3、端⼝封装4、差错校验:tcp协议 A给B发送数据包,因为建⽴了连接,进⾏差错校验的时候B发现错了,就告诉A重新发送;udp协议 A给B发送数据包,因为是⽆连接的,所以B会在发现错误的包之后丢弃;第三层:⽹络层1、IP地址编址确定数据包的源IP和⽬的IP2、路由选择静态路由:优点消耗⼩,效率⾼。
缺点配置繁琐动态路由:优点简单⽅便,缺点消耗⾼第⼆层:数据链路层MAC地址编址MAC地址寻址差错校验第⼀层:物理层数据实际传输电⽓特性定义。
网络OSI七层参考模型
![网络OSI七层参考模型](https://img.taocdn.com/s3/m/19148c8277a20029bd64783e0912a21614797fb4.png)
网络OSI七层参考模型一、OSI参考模型在整个参考模型中,下层是为上层提供服务。
二、TCP/IP常见的协议(一)应用层为应用软件提供接口,使应用程序能够使用网络服务,应用层协议指定相应的传输层协议,以及传输层所使用的端口等。
应用层的PDU被称为Data(数据)。
Telnet:端口号23,使用传输层TCP协议,远程接入协议,提供远程管理服务,通过Telent客户端程序连接到服务器,用户在客户端中输入命令,这些命令在服务器端运行。
FTP:端口号20、21,使用传输层TCP协议,文件传输协议,主要用于文件的下载和上传,采用C/S((主机/服务器)结构。
TFTP:端口号69,使用传输层UDP协议,简单的文件传输协议SNMP:网络管理协议,一般用在管理平台,可将交换机、路由器等一些设备信息上传到网管平台HTTP:端口号80,使用传输层TCP协议,超文本传输协议,提供浏览网页服务。
SMTP:端口号25,使用传输层TCP协议,邮件传输协议DNS:域名解析协议,将域名翻译成IP地址进行访问网址DHCP:动态主机配置协议,自动匹配IP地址(二)传输层传输层协议接受来自应用层协议的数据,封装上相应的传输层头部,帮助其建立端到端的连接。
端口号的取值范围:0-655350-1023:知名端口号,发送过程中会在发送端随机匹配一个端口号,并且是在1023之外未使用的。
传输层的PDU被称为Segment(段)1.TCP一种面向连接的、可靠的传输层通信协议。
在传输前先建立连接,之后才可以传输,传多少接收多少,丢包之后重传确保全部收到。
使用场景在文件传输或者文档传输中使用。
(1)TCP的建立-三次握手A.主机1向主机2进行syn(查询B.主机2向主机1进行syn查询,ACK确定C.主机1进行ACK确定----------TCP连接建立--------------(2)TCP四次挥手A.主机1向主机2发送FIN请求断开连接B.主机2向主机1发送ACK确认C.主机2向主机1发送FIN请求断开连接D.主机1向主机2发送ACK确认----------TCP连接断开--------------(3)TCP序列号与确认序列号序列号:对包进行排序,根据序列号确认序列号:对收到的包进行确认A.主机1向主机2发送3000的数据包,最大数值需要1500包,进行分段传输,0-1499,1500-2999B.主机2收到包后向主机1进行发送确认序列号,未收到或者丢包,主机2会向主机1再次发送所丢失的包进行重传。
OSI参考模型七层结构及各层的作用
![OSI参考模型七层结构及各层的作用](https://img.taocdn.com/s3/m/481f8ac0e43a580216fc700abb68a98271feac15.png)
OSI参考模型七层结构及各层的作用OSI参考模型是开放系统互联参考模型(Open Systems Interconnection Reference Model)的缩写,是国际标准化组织(ISO)在 1977 年提出的一种网络通信架构。
它将计算机网络通信过程划分为七个层次,每个层次都有其独特的功能和作用。
下面将详细介绍每个层次的作用:第一层:物理层(Physical Layer)物理层是网络通信的最底层,负责控制电子信号(比特流)在物理媒介中的传输。
其主要功能包括:数据的传输与接收、提供硬件接口、传输媒介的选择及物理拓扑的建立等。
第二层:数据链路层(Data Link Layer)数据链路层负责将传输介质上的比特流组织成数据块(帧),并提供数据块的可靠传输,以及错误检测和纠正。
其主要功能包括:帧的封装和解封装、数据的流控制、错误检测和纠正等。
第三层:网络层(Network Layer)网络层是负责在网络上进行数据包的传输和路由选择。
其主要功能包括:数据包的传输、路由选择、数据包的分段和重组、流量控制和拥塞控制等。
第四层:传输层(Transport Layer)传输层是负责端到端的数据传输,为应用程序提供可靠的数据传输服务。
其主要功能包括:建立、管理和终止端到端的连接、数据的分段和重组、数据的流量控制和拥塞控制等。
第五层:会话层(Session Layer)会话层负责建立和终止应用程序之间的通信会话,并提供数据注销和恢复、数据加密和解密等功能。
其主要功能包括:会话的建立、管理和终止、数据的同步和校验、数据的加密和解密等。
第六层:表示层(Presentation Layer)表示层负责数据的格式转换、压缩和加密,以及提供数据的安全性和可靠性。
其主要功能包括:数据的格式化和转换、数据的压缩和加密、数据的校验和恢复等。
第七层:应用层(Application Layer)应用层是最上层的层次,与用户直接交互,为用户提供网络服务和资源。
OSI模型七个层的作用及工作原理
![OSI模型七个层的作用及工作原理](https://img.taocdn.com/s3/m/a4db37582379168884868762caaedd3383c4b515.png)
OSI模型七个层的作用及工作原理OSI模型是计算机网络体系结构的理论模型,它将计算机网络分为七个不同的层次。
每一层都有自己的具体功能和任务,通过分层设计,可以清晰地描述计算机网络的工作原理与功能,并且每一层都可以独立地进行修改和更新。
下面将详细介绍OSI模型的七个层及它们的作用和工作原理。
1. 物理层(Physical Layer)物理层是OSI模型的最底层,它负责将原始的比特流发送到物理媒介上,管理数据的物理传输。
物理层的主要功能包括:数据的电子和光学传输、输入/输出端口的连接和控制、线缆和连接器的规范等。
物理层常见的媒介有双绞线、光纤和无线电波。
2. 数据链路层(Data Link Layer)数据链路层位于物理层之上,它负责在直接相连的两个节点之间传输数据。
数据链路层的主要功能是将不可靠的物理连接转化为可靠的数据传输,并进行流量控制和差错检测。
数据链路层通过将数据分成帧来传输,并在每一帧中添加必要的控制信息来保证通信的可靠和准确。
3. 网络层(Network Layer)网络层位于数据链路层之上,它负责将数据从源主机传输到目标主机。
网络层的主要功能是实现数据的路由选择和转发,在不同的网络之间选择最优路径,并通过IP地址进行端到端的数据传输。
网络层使用IP协议来进行数据分组和路由选择。
4. 传输层(Transport Layer)传输层位于网络层之上,它通过提供端到端的可靠数据传输来实现进程之间的通信。
传输层的主要功能是将应用层的数据分割成更小的数据块,并负责数据的传输和错误检测。
常见的传输层协议包括传输控制协议(TCP)和用户数据报协议(UDP)。
5. 会话层(Session Layer)会话层位于传输层之上,它负责建立、管理和终止应用程序之间的会话。
会话层的主要功能是为应用程序之间提供会话控制和同步服务,包括会话的建立、终止和管理、数据传输的同步和复位操作等。
会话层通过会话协议来实现会话的管理。
osi七层参考模型
![osi七层参考模型](https://img.taocdn.com/s3/m/3c91031102768e9951e738fb.png)
7、 应用层(Application layer) 应用层是OSI的最高层,它为OSI模型以 外的应用程序提供服务。
2020/11/23
4、 传输层(Transport layer)(核心层)
主要任务:负责端到端节点间数据传输和控制功能 。
传输层是OSI中承上启下层,下三层面向网络通信, 确保信息准确传输;上三层面向用户主机,为用户提供 各种服务。
传输层不涉及中间转发节点,即与使用的网络无关。
主要功能:弥补网络层服务质量的不足,为会话层提 供端-端的可靠数据传输服务。包括两端主机之间的流 量控制。
2020/11/23
信道的最大带宽; 传输介质(例如,是有导线的还是无导线的等); 传输方式:是基带传输还是频带传输,或者二者均可; 多路复用技术(FDM、TDM和WDM波分多路复用Wavelength Division Multiplexing);
等等。
(2)物理层的主要功能:
物理连接的建立、维持和拆除。
2020/11/23
• 物理或机械特性:规定了DTE和DCE之间 的连接器形式,包括连接器形状、几何尺 寸、引线数目和排列方式等。
• 电气特性:规定了DTE和DCE之间多条信 号线的连接方式、发送器和接收器的电气 参数及其他有关电路的特征。电气特性决 定了传送速率和传输距离。
• 功能特性:对接口各信号线的功能给出了 确切的定义,说明某些连线上出现的某一 电平的电压表示的意义。
形问题。
– 第二大问题:
●噪声干扰 ●噪声可能导致信号传输错误,即接收端难以从混杂
了较大噪声的信号中提取出正确的数据。 ●减少噪声的措施,如抵消与屏蔽、良好的端接和接
地技术等
2020/11/23
OSI七层模型(物理层、数据链路层)一
![OSI七层模型(物理层、数据链路层)一](https://img.taocdn.com/s3/m/0af58ec5b04e852458fb770bf78a6529647d3568.png)
OSI七层模型(物理层、数据链路层)⼀参考模型是国际标准化组织(ISO)制定的⼀个⽤于计算机或通信系统间互联的标准体系,⼀般称为OSI参考模型或七层模型。
七层模型主要分为:1、应⽤层(⾯向⽤户) 2、表现层 3、会话层 4、传输层 5、⽹络层 6、数据链路层 7、物理层(底层)。
物理层作⽤:为传输数据所需要的物理链路创建、维持、拆除,⽽提供具有机械的,电⼦的,功能的和规范的特性。
并可能地屏蔽掉物理设备和传输媒体,通信⼿段的不同,使数据链路层感觉不到这些差异,只考虑完成本层的协议和服务。
它的传输单位是⽐特流,解决⽤户在使⽤时对物理传输介质建⽴、维持和释放问题。
特性: 机械特性:指明接⼝所⽤接线器的形状和尺⼨、引线数⽬和排列、固定和锁定装置等。
电⽓特性:物理层的电⽓特性规定了在物理连接上传输⼆进制位流时线路上信号电压⾼低、阻抗匹配情况、传输速率和距离的限制等。
功能特性:规定了接⼝信号的来源、作⽤以及其他信号之间的关系。
即物理接⼝上各条信号线的功能分配和确切意义。
(数据线、控制线、定时线和地线) 规则特性:定义了在信号线上进⾏⼆进制⽐特流传输的⼀组操作过程,包括各信号线的⼯作顺序和时序,使得⽐特流传输得得以完成。
(传输数据单位:⽐特流,也就是所谓电流)数据链路层 定义了在单个链路上如何传输数据,必须基本⼀些基本的能⼒:如何将数据组合成数据块,在数据链路层中这种数据块为帧,帧是数据链传输的单位。
如何控制帧在物理信道上的传输,包括如何处理传输差错,如何调节发送速率以使与接收⽅相匹配;以及在两个⽹络实体之间提供数据链路通路的建⽴、维持和释放的管理。
数据链路层协议⼜被分为两个⼦层:逻辑链路控树(LLC)协议和媒体访问控制(MAC)协议 主要功能:帧编码和误差纠正控制 帧编码:为了使传输中发⽣差错后只将有错的有限数据进⾏重发,数据链路层将⽐特流组合以帧为单位传送。
每个帧除了要传送的数据外,还包括校验码,以使接收⽅能发现传输中的差错。
网络分层架构介绍
![网络分层架构介绍](https://img.taocdn.com/s3/m/6411b9679b89680202d8250c.png)
1.OSI七层模型1) 物理层:主要定义物理设备标准,如网线的接口类型、光纤的接口类型、各种传输介质的传输速率等。
它的主要作用是传输比特流(就是由1、0转化为电流强弱来进行传输,到达目的地后再转化为1、0,也就是我们常说的数模转换与模数转换)。
这一层的数据叫做比特。
2)数据链路层:定义了如何让格式化数据以帧为单位进行传输,以及如何让控制对物理介质的访问。
这一层通常还提供错误检测和纠正,以确保数据的可靠传输。
3)网络层:在位于不同地理位置的网络中的两个主机系统之间提供连接和路径选择。
Internet的发展使得从世界各站点访问信息的用户数大大增加,而网络层正是管理这种连接的层。
4) 传输层:定义了一些传输数据的协议和端口号(WWW端口80等),如:TCP(传输控制协议,传输效率低,可靠性强,用于传输可靠性要求高,数据量大的数据),UDP(用户数据报协议,与TCP特性恰恰相反,用于传输可靠性要求不高,数据量小的数据,如QQ聊天数据就是通过这种方式传输的)。
主要是将从下层接收的数据进行分段和传输,到达目的地址后再进行重组。
常常把这一层数据叫做段。
5) 会话层:通过传输层(端口号:传输端口接收端口)建立数据传输的通路。
主要在你的系统之间发起会话或者接受会话请求(设备之间需要互相认识可以是IP也可以是MAC或者是主机名)。
6)表示层:可确保一个系统的应用层所发送的信息可以被另一个系统的应用层读取。
例如,PC程序与另一台计算机进行通信,其中一台计算机使用扩展二一十进制交换码(EBCDIC),而另一台则使用美国信息交换标准码(ASCII)来表示相同的字符。
如有必要,表示层会通过使用一种通格式来实现多种数据格式之间的转换。
7) 应用层:是最靠近用户的OSI层。
这一层为用户的应用程序(例如电子邮件、文件传输和终端仿真)提供网络服务。
2.TCP/IP四层网络模型1)应用层:TCP/IP协议的应用层相当于OSI模型的会话层、表示层和应用层,FTP(文件传输协议),DNS(域名系统),HTTP协议,Telnet(网络远程访问协议)2)传输层:提供TCP(传输控制协议),UDP(用户数据报协议)两个协议,主要功能是数据格式化、数据确认和丢失重传等。
OSI七层模型介绍
![OSI七层模型介绍](https://img.taocdn.com/s3/m/0902a3f1941ea76e59fa0401.png)
(5)网络层:这层对端到端的包传输进行定义,他定义了能够标识所有结点的逻辑地址,还定义了路由实现的方式和学习的方式。为了适应最大传输单元长度小于包长度的传输介质,网络层还定义了如何将一个包分解成更小的包的分段方法。示例:IP,IPX等。
(6)数据链路层:他定义了在单个链路上如何传输数据。这些协议与被讨论的歌种介质有关。示例:ATM,FDDI等。
2、语法:
将若干个协议元素和数据组合在一起用来表达一个完整的内容所应遵循的格式,也就是对信息的数据结构做一种规定。例如用户数据与控制信息的结构与格式等。
3、时序:
对事件实现顺序的详细说明。例如在双方进行通信时,发送点发出一个数据报文,如果目标点正确收到,则回答源点接收正确;若接收到错误的信息,则要求源点重发一次。
2.2.1ISO1745--1975:"数据通信系统的基本型控制规程".这是一种面向字符的标准,利用10个控制字符完成链路的建立,拆除及数据交换.对帧的收发情况及差错恢复也是靠这些字符来完成.ISO1155, ISO1177, ISO2626, ISO2629等标准的配合使用可形成多种链路控制和数据传输方式.
(2)层间的标准接口方便了工程模块化。
(3)创建了一个更好的互连环境。
(4)降低了复杂度,使程序更容易修改,产品开发的速度更快。
(5)每层利用紧邻的下层服务,更容易记住个层的功能。
大多数的计算机网络都采用层次式结构,即将一个计算机网络分为若干层次,处在高层次的系统仅是利用较低层次的系统提供的接口和功能,不需了解低层实现该功能所采用的算法和协议;较低层次也仅是使用从高层系统传送来的参数,这就是层次间的无关性。因为有了这种无关性,层次间的每个模块可以用一个新的模块取代,只要新的模块与旧的模块具有相同的功能和接口,即使它们使用的算法和协议都不一样。
OSI七层网络模型由下至上为1至7层
![OSI七层网络模型由下至上为1至7层](https://img.taocdn.com/s3/m/7b5c1eda5022aaea998f0ff7.png)
OSI七层网络模型由下至上为1至7层,分别为物理层(Physical layer),数据链路层(Data link layer),网络层(Network layer),传输层(Transport layer),会话层(Session layer),表示层(Presentation layer),应用层(Application layer)。
应用层,很简单,就是应用程序。
这一层负责确定通信对象,并确保由足够的资源用于通信,这些当然都是想要通信的应用程序干的事情。
表示层,负责数据的编码、转化,确保应用层的正常工作。
这一层,是将我们看到的界面与二进制间互相转化的地方,就是我们的语言与机器语言间的转化。
数据的压缩、解压,加密、解密都发生在这一层。
这一层根据不同的应用目的将数据处理为不同的格式,表现出来就是我们看到的各种各样的文件扩展名。
会话层,负责建立、维护、控制会话,区分不同的会话,以及提供单工(Simplex)、半双工(Half duplex)、全双工(Full duplex)三种通信模式的服务。
我们平时所知的NFS,RPC,X Windows等都工作在这一层。
传输层,负责分割、组合数据,实现端到端的逻辑连接。
数据在上三层是整体的,到了这一层开始被分割,这一层分割后的数据被称为段(Segment)。
三次握手(Three-way handshake),面向连接(Connection-Oriented)或非面向连接(Connectionless-Oriented)的服务,流控(Flow control)等都发生在这一层。
网络层,负责管理网络地址,定位设备,决定路由。
我们所熟知的IP地址和路由器就是工作在这一层。
上层的数据段在这一层被分割,封装后叫做包 (Packet),包有两种,一种叫做用户数据包(Data packets),是上层传下来的用户数据;另一种叫路由更新包(Route update packets),是直接由路由器发出来的,用来和其他路由器进行路由信息的交换。
001七层OSI参考模型
![001七层OSI参考模型](https://img.taocdn.com/s3/m/17c0d7d5ba4cf7ec4afe04a1b0717fd5370cb254.png)
001七层OSI参考模型⼀、什么是七层OSI参考模型OSI(Open System Interconnect),即开放式系统互连。
是国际标准化组织(ISO)制定的⼀个⽤于计算机或通信系统间互联的标准体系,⼀般称为OSI参考模型或七层模型。
⼆、OSI参考模型的划分OSI定义了⽹络互连的七层框架(物理层、数据链路层、⽹络层、传输层、会话层、表⽰层和应⽤层),即OSI开放系统互连参考模型。
每⼀层实现各⾃的功能和协议,并完成与相邻层的接⼝通信。
OSI的服务定义详细说明了各层所提供的服务。
某⼀层的服务就是该层及其下各层的⼀种能⼒,它通过接⼝提供给更⾼⼀层。
各层所提供的服务与这些服务是怎么实现的⽆关。
三、七层详解1、物理层物理层(physical layer):利⽤传输介质为数据链路层提供物理连接,实现⽐特流的透明传输。
物理层是传输的媒介,在线路中将0/1转换成电信号和光信号。
相当于是邮局与邮局之间的搬运⼯。
物理层规定了电平、速度和电缆针脚。
作⽤:承载⽐特流的传输特点:看得见,摸得着。
⽐如集线器(hub),中继器,⽹线,光纤,光猫,双绞线,同轴电缆等2、数据链路层数据链路层(data link layer):采⽤差错控制与流量控制的⽅法,使得有差错的物理线路变成⽆差错的数据链路。
数据链路层,⼜称数链层;相互直连的设备之间需要使⽤地址实现物理传输,⽽这个地址就是MAC地址,也叫物理地址(注:任何⼀个⽹络设备都有⼀个唯⼀的⾝份识别码,这个识别码就是MAC地址,MAC地址是⼀串⼗六进制的12位数字编码)。
相当于邮局中的拆箱⼯⼈。
数据链路层将⽐特组合成字节,再将字节组合成帧,使⽤链路层地址 (以太⽹使⽤MAC地址)来访问介质,并进⾏差错检测。
数据链路层⼜分为2个⼦层:逻辑链路控制⼦层(LLC)和媒体访问控制⼦层(MAC)。
MAC⼦层处理CSMA/CD算法、数据出错校验、成帧等;LLC⼦层定义了⼀些字段使上次协议能共享数据链路层。
网络OSI七层模型及各层作用tcp-ip
![网络OSI七层模型及各层作用tcp-ip](https://img.taocdn.com/s3/m/c716c31ff02d2af90242a8956bec0975f465a4ab.png)
⽹络OSI七层模型及各层作⽤tcp-ip背景虽然说以前学习计算机⽹络的时候,学过了,但为了更好地学习⼀些物联⽹协议(、、、),需要重新复习⼀下。
OSI七层模型七层模型,亦称OSI(Open System Interconnection)。
参考模型是国际标准化组织(ISO)制定的⼀个⽤于计算机或通信系统间互联的标准体系,⼀般称为OSI参考模型或七层模型。
它是⼀个七层的、抽象的模型体,不仅包括⼀系列抽象的术语或概念,也包括具体的协议。
OSI七层模型功能对应的⽹络协议应⽤层应⽤层是⽹络体系中最⾼的⼀层,也是唯⼀⾯向⽤户的⼀层,也可视为为⽤户提供常⽤的应⽤程序,每个⽹络应⽤都对应着不同的协议HTTP、TFTP, FTP, NFS,WAIS、SMTP表⽰层主要负责数据格式的转换,确保⼀个系统的应⽤层发送的消息可以被另⼀个系统的应⽤层读取,编码转换,数据解析,管理数据的解密和加密,同时也对应⽤层的协议进⾏翻译Telnet, Rlogin, SNMP, Gopher会话层负责⽹络中两节点的建⽴,在数据传输中维护计算机⽹络中两台计算机之间的通信连接,并决定何时终⽌通信SMTP, DNS传输层是整个⽹络关键的部分,是实现两个⽤户进程间端到端的可靠通信,处理数据包的错误等传输问题。
是向下通信服务最⾼层,向上⽤户功能最底层。
即向⽹络层提供服务,向会话层提供独⽴于⽹络层的传送服务和可靠的透明数据传输。
TCP, UDP⽹络层进⾏逻辑地址寻址,实现不同⽹络之间的路径选择,IP就在⽹络层IP, ICMP, ARP, RARP, AKP,UUCP数据链路层物理地址(MAC地址),⽹络设备的唯⼀⾝份标识。
建⽴逻辑连接、进⾏硬件地址寻址,相邻的两个设备间的互相通信FDDI, Ethernet, Arpanet, PDN,SLIP, PPP,STP。
HDLC,SDLC,帧中继物理层七层模型中的最底层,主要是物理介质传输媒介(⽹线或者是⽆线),在不同设备中传输⽐特,将0/1信号与电信号或者光信号互相转化IEEE 802.1A, IEEE 802.2到IEEE 802数据发送时从上⾄下封装,收到数据包后从下⾄上解包。
OSI-RM七层作用及功能
![OSI-RM七层作用及功能](https://img.taocdn.com/s3/m/6fe8325ce55c3b3567ec102de2bd960590c6d9cf.png)
OSI-RM七层作⽤及功能OSI/RMOSI/RM(Open System Interconnection/Reference Model)——开放系统互连参考模型,1983年ISO颁布的⽹络体系结构标准。
从低到⾼分七层:物理层、数据链路层、⽹络层、传输层、会话层、表⽰层、应⽤层。
各层之间相对独⽴,第N层向N+1层提供服务。
主要缺点OSI模型的层次数量与内容不是最佳的,会话层和表⽰层这两层⼏乎是空的,⽽数据链路层和⽹络层包含内容太多,有很多的⼦层插⼊,每个⼦层都有不同的功能。
OSI模型以及相应的服务定义和协议极其复杂,它们很难实现,有些功能,如缟址、流量控制和差错控制,都会在每⼀层上重复出现,降低了系统的效率。
分层原则ISO将整个通信功能划分为7个层次,分层原则如下:⽹络中各结点都有相同的层次;不同结点的同等层具有相同的功能;同⼀结点内相邻层之间通过接⼝通信;每⼀层使⽤下层提供的服务,并向其上层提供服务;不同结点的同等层按照协议实现对等层之间的通信。
1 物理层规定通信设备的机械的、电⽓的、功能的和过程的特性,⽤以建⽴、维护和拆除物理链路连接。
数据单位——⽐特,传输⽅式⼀般为串⾏功能:①提供物理链路所需的机械(设备)、电⽓(信号)、功能和规程(单⼯、半双⼯、全双⼯)②为数据链路层提供服务,从数据链路层接收数据,并按规定形式的信号和格式将数据发送。
③向数据链路层提供数据(把⽐特流还原为数据链路层可以理解的格式)和电路标识、故障状态及服务质量参数等等2 数据链路层为⽹络层提供服务,从源开放系统的⽹络层向⽬的开放系统的⽹络层传输数据,屏蔽了物理层的特征。
数据单位:帧数据链路层完成从物理层到⽹络层的过度、准备⼯作功能:①传输管理:为⽹络层提供低出错率、⾼可靠性的数据链路▲②流量控制:协调主机和通信设备之间的数据传输率此处流量控制相邻节点之间的数据链路层的流量控制控制对象:数据帧3 ⽹络层处理与寻址和传输有关的管理问题(这⾥所说的传输有关问题是指提供传输基础、准备⼯作)同⼀LAN内可以省略该层。
osi模型每到层的作用
![osi模型每到层的作用](https://img.taocdn.com/s3/m/6b4b3761dc36a32d7375a417866fb84ae55cc364.png)
osi模型每到层的作用OSI模型(Open Systems Interconnection)是一个由国际标准化组织(ISO)制定的计算机网络参考模型,它将网络通信过程分为七个不同的层级。
每个层级都有特定的功能和任务,各自负责处理特定的数据处理和传输任务,共同构成了一个完整的网络通信系统。
在本文中,我们将详细介绍每个层级的作用以及它们在网络通信中的功能。
第一层 - 物理层物理层是OSI模型的最底层,它负责处理网络中的物理传输和连接。
它的主要作用是将数字数据转化为适合传输的模拟信号,同时也负责解码接收到的模拟信号并将其转化为数字数据。
物理层还定义了电缆、连接器和物理设备的规范,以确保数据能够有效地在各设备之间传输。
第二层 - 数据链路层数据链路层负责将物理层传输的原始数据帧转化为有意义的数据包。
它通过引入地址和其他控制信息来解决物理层可能存在的错误和丢失。
数据链路层还处理流量控制,以确保不同速度的源在通信过程中实现数据同步。
此外,数据链路层还负责检测和纠正错误,确保数据的可靠传输。
第三层 - 网络层网络层是OSI模型中负责处理分组交换和路径选择的层级。
它的主要作用是通过编址和路由选择将数据包从一个节点传输到另一个节点。
网络层使用IP协议来为每个数据包分配唯一的地址,并根据网络状况和路由表选择最佳路径进行传输。
网络层还负责在不同的网络之间进行数据转发和路由器的控制。
第四层 - 传输层传输层是OSI模型的关键层级,它负责端到端的数据传输和连接管理。
传输层为应用程序提供可靠的数据传输服务,确保数据包按照正确的顺序到达目标。
它使用TCP协议来提供面向连接的服务,或使用UDP协议来提供面向无连接的服务。
传输层还负责流量控制和拥塞控制,以确保网络的稳定性和高效性。
第五层 - 会话层会话层负责建立、管理和终止网络中的会话。
它处理不同设备之间的通信管理,包括建立连接、同步数据和恢复中断连接等任务。
会话层通过协议控制会话的开始、结束和重启,以及在会话中处理错误和故障。
OSI七层模型详解
![OSI七层模型详解](https://img.taocdn.com/s3/m/ea349d7649d7c1c708a1284ac850ad02de800731.png)
OSI七层模型详解1. OSI简述 OSI是⼀种开放系统互连参考模型(Open system interconnect简称OSI),是国际标准化组织(ISO)和国际电报电话咨询委员会(CCITT)联合制定的开放系统互连参考模型,为开放式互连信息系统提供了⼀种功能结构的框架。
它从低到⾼分别是:物理层、数据链路层、⽹络层、传输层、会话层、表⽰层、应⽤层。
2.OSI七层协议2.1 物理层 定义: 物理层是OSI的第⼀层,它虽然是最底层,但是是整个开放系统的基础。
物理层为设备之间的数据通信提供传输媒体及互连设备,为数据传输提供可靠的环境。
媒体和互连设备: 物理层的媒体包括架空明线、平衡电缆、光纤、⽆线信道等。
通信⽤的互连设备指DTE和DCE间的互连设备。
DTE即数据终端设备,⼜称物理设备,如计算机、终端等都包括在内。
⽽DCE则是数据通信设备或电路连接设备,如调制解调器等。
数据传输通常是经过DTE——DCE,再经过DCE——DTE的路径。
互连设备指将DTE、DCE连接起来的装置,如各种插头、插座。
LAN中的各种粗、细同轴电缆、T型接、插头,接收器,发送器,中继器等都属物理层的媒体和连接器。
主要功能: 为数据端设备提供传送数据的通路,数据通路可以是⼀个物理媒体,也可以是多个物理媒体连接⽽成。
⼀次完整的数据传输,包括激活物理连接,传送数据,终⽌物理连接。
所谓的激活,就是不管有多少物理媒体的参与,都要在通信的两个数据终端设备之间连接起来,形成⼀条通路。
传输数据:物理层要形成适合数据传输需要的实体,为数据传送服务。
⼀是要保证数据能在其上正确的通过,⼆是要提供⾜够的带宽(带宽是指每秒钟能通过的⽐特(BIT)数),以减少信道上的拥塞。
传输数据的⽅式能满⾜点到点,⼀点到多点,串⾏并⾏,半双⼯和全双⼯,同步和异步传输的需要。
2.2 数据链路层 定义: 数据链路可以粗略地理解为数据通道。
物理层要为终端设备间的数据通信提供传输媒体及其连接。
OSI七层模型基础知识及各层常见应用
![OSI七层模型基础知识及各层常见应用](https://img.taocdn.com/s3/m/7f53c3da4431b90d6d85c710.png)
O S I七层模型基础知识及各层常见应用Revised by Petrel at 2021O S I七层模型基础知识及各层常见应用OSIOpenSourceInitiative(简称OSI,有译作开放源代码促进会、开放原始码组织)是一个旨在推动开源软件发展的非盈利组织。
OSI参考模型(OSI/RM)的全称是开放系统互连参考模型(OpenSystemInterconnectionReferenceModel,OSI/RM),它是由国际标准化组织ISO提出的一个网络系统互连模型。
它是网络技术的基础,也是分析、评判各种网络技术的依据,它揭开了网络的神秘面纱,让其有理可依,有据可循。
一、OSI参考模型知识要点图表1:OSI模型基础知识速览模型把网络通信的工作分为7层。
1至4层被认为是低层,这些层与数据移动密切相关。
5至7层是高层,包含应用程序级的数据。
每一层负责一项具体的工作,然后把数据传送到下一层。
由低到高具体分为:物理层、数据链路层、网络层、传输层、会话层、表示层和应用层。
第7层应用层—直接对应用程序提供服务,应用程序可以变化,但要包括电子消息传输第6层表示层—格式化数据,以便为应用程序提供通用接口。
这可以包括加密服务第5层会话层—在两个节点之间建立端连接。
此服务包括建立连接是以全双工还是以半双工的方式进行设置,尽管可以在层4中处理双工方式第4层传输层—常规数据递送-面向连接或无连接。
包括全双工或半双工、流控制和错误恢复服务?第3层网络层—本层通过寻址来建立两个节点之间的连接,它包括通过互连网络来路由和中继数据第2层数据链路层—在此层将数据分帧,并处理流控制。
本层指定拓扑结构并提供硬件寻址第1层物理层—原始比特流的传输电子信号传输和硬件接口数据发送时,从第七层传到第一层,接受方则相反。
各层对应的典型设备如下:应用层……………….计算机:应用程序,如FTP,SMTP,HTTP表示层……………….计算机:编码方式,图像编解码、URL字段传输编码会话层……………….计算机:建立会话,SESSION认证、断点续传传输层……………….计算机:进程和端口网络层…………………网络:路由器,防火墙、多层交换机数据链路层………..网络:网卡,网桥,交换机物理层…………………网络:中继器,集线器、网线、HUB二、OSI基础知识OSI/RM参考模型的提出世界上第一个网络体系结构由IBM公司提出(74年,SNA),以后其他公司也相继提出自己的网络体系结构如:Digital公司的DNA,美国国防部的TCP/IP等,多种网络体系结构并存,其结果是若采用IBM的结构,只能选用IBM的产品,只能与同种结构的网络互联。
osi七层模型分层原则
![osi七层模型分层原则](https://img.taocdn.com/s3/m/054ac58dba4cf7ec4afe04a1b0717fd5360cb292.png)
osi七层模型分层原则OSI七层模型分层原则在计算机网络中,为了实现不同网络设备之间的互联互通,人们提出了OSI七层模型。
该模型将网络通信过程分为七个层次,每个层次负责特定的功能。
这种分层原则带来了许多好处,包括提高了网络的可靠性、可扩展性和可维护性。
下面将详细介绍每个层次的功能和作用。
1.物理层物理层是OSI七层模型的最底层,负责将数字数据转换成物理信号,并通过物理介质进行传输。
它定义了传输数据的电气和机械特性,如电压、电流、线缆类型等。
物理层的主要功能是实现数据的传输和接收,确保数据能够在网络中正确地传递。
2.数据链路层数据链路层负责将物理层传输的数据进行分帧,并在相邻节点之间建立可靠的数据链路。
它定义了帧的格式、错误检测和纠正机制,以及流量控制和访问控制等功能。
数据链路层的主要作用是保证数据在相邻节点之间的可靠传输。
3.网络层网络层负责将数据链路层传输的数据进行路由选择和转发,实现不同网络之间的互联互通。
它定义了IP协议,用于标识和寻址网络中的设备,以及实现数据的分组和路由选择等功能。
网络层的主要功能是实现数据的跨网络传输。
4.传输层传输层负责在源端和目的端之间建立可靠的端到端通信连接,并实现数据的可靠传输和流量控制。
它定义了TCP和UDP协议,用于实现可靠传输和非可靠传输。
传输层的主要功能是保证数据在源端和目的端之间的可靠传输。
5.会话层会话层负责在源端和目的端之间建立、管理和终止会话连接,实现进程之间的通信。
它定义了会话协议,用于实现会话的建立和终止,以及数据的同步和检查点等功能。
会话层的主要功能是实现进程之间的通信和协调。
6.表示层表示层负责对数据进行加密、解密、压缩和解压缩等处理,以便在不同系统之间进行数据的格式转换和表示。
它定义了数据的格式和表示规则,以及数据的加密和解密算法等功能。
表示层的主要功能是实现数据的格式转换和加密解密。
7.应用层应用层负责提供网络应用程序的接口和功能,如电子邮件、文件传输、远程登录等。
OSI模型各层功能
![OSI模型各层功能](https://img.taocdn.com/s3/m/c694fd196c175f0e7cd13724.png)
2.2.2ISO3309--1984:称为"HDLC 帧结构".ISO4335--1984:称为"HDLC 规程要素 ".ISO7809--1984:称为"HDLC 规程类型汇编".这3个标准都是为面向比特的数据传输控制而制定的.有人习惯上把这3个标准组合称为高级链路控制规程.
2.2.3ISO7776:称为"DTE数据链路层规程".与CCITT X.25LAB"平衡型链路访问规程"相兼容.
(3)会话层:他定义了如何开始、控制和结束一个会话,包括对多个双向小时的控制和管理,以便在只完成连续消息的一部分时可以通知应用,从而使表示层看到的数据是连续的,在某些情况下,如果表示层收到了所有的数据,则用数据代表表示层。示例:RPC,SQL等。
(4)传输层:这层的功能包括是否选择差错恢复协议还是无差错恢复协议,及在同一主机上对不同应用的数据流的输入进行复用,还包括对收到的顺序不对的数据包的重新排序功能。示例:TCP,UDP,SPX。
网络中的计算机与终端间要想正确的传送信息和数据,必须在数据传输的顺序、数据的格式及内容等方面有一个约定或规则,这种约定或规则称做协议。网络协议主要有三个组成部分:
1、语义:
是对协议元素的含义进行解释,不同类型的协议元素所规定的语义是不同的。例如需要发出何种控制信息、完成何种动作及得到的响应等。
2.1链路层的主要功能
链路层是为网络层提供数据传送服务的,这种服务要依靠本层具备的功能来实现。链路层应具备如下功能:
2.1.1链路连接的建立,拆除,分离。
2.1.2帧定界和帧同步。链路层的数据传输单元是帧,协议不同,帧的长短和界面也有差别,但无论如何必须对帧进行定界。
OSI七层模型详解
![OSI七层模型详解](https://img.taocdn.com/s3/m/415815074a7302768e9939bc.png)
七层模型详解1.物理层:描述:怎么利用物理媒体?作用:物理层规定了激活、维持、关闭通信端点之间的机械特性、电气特性、功能特性以及过程特性。
该层为上层协议提供了一个传序数据的物理媒体。
协议:属于物理层定义的典型规范代表包括:EIA/TIARS-232、EIA/TIARS-449、V。
35、RJ-45等。
连接物理:LAN中的各种粗细同轴电缆、T型接插头,接收器,发送器,中继器等属物理层的媒体和链器。
转发器Repeater、集线器Hub、重发器(也成中继器或转发器)。
示例:Rj45,802.3等。
数据单位:在这一层数据单位称为比特(bit)。
2.数据链路层:描述:每一步该怎么走?作用:数据链路层在不可靠的物理介质上提供可靠的传输。
该层的作用包括:物理地址寻址,数据的成帧,流量控制,数据的检错,重发等。
协议:数据链路层协议的代表包括:SDLC,HDLC,PPP,STP,帧中继等。
连接物理:连接设备:网桥(也称桥接器),Bridge(可以进行两个网段直接的数据链路层的协议转换)。
示例:A TM,FDDI等。
数据单位:在这一层数据单位称为帧(frame)。
3.网络层描述:走哪条路去?作用:网络层负责对子网间的数据包进行选择。
此外,网络层还可以实现拥塞控制,网际互联网等。
协议:网络层的代表协议包括:IP,IPX,RIP,OSPF等。
连接物理:连接设备:路由器(Router),桥路器BROUTER(网桥和路由器的混合系统)。
示例:IP,IPX等。
数据单位:在这一层数据的单位称为数据包(Packet)。
4.传输层描述:对方在哪?作用:传输层是第一个端到端,即主机到主机的层次。
传输层负责将上层数据分段并提供端到端的,可靠的或不可靠的传输。
此外,传输层还要处理端到端的差错控制和流量控制问题。
协议:传输层的协议包括:TCP,UDP,SPX等。
IP为不可靠,TCP为可靠。
连接物理:示例:TCP,UDP,SPX。
数据单位:在这一层,数据单位成为数据段(segment)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
OSI模型七个层的作用及工作原理
OSI模型,即开放式通信系统互联参考模型,是国际标准化组织(ISO)提出的一个试图使各种计算机在世界范围内互联为网络的标准框架。
OSI模型分为物理层、数据链路层、网络层、传输层、会话层、表示层和应用层,在本文对这七个层的作用及工作原理做简单介绍。
OSI/RM协议是由ISO(国际标准化组织)制订的,它的基本功能是:提供给开发者一个必需的、通用的概念以便开发完善、可以用来解释连接不同系统的框架。
根据标准,OSI模型分七层,见图1,用这些规定来实现网络数据的传输。
图1 OSI模型
1、物理层(Physical Layer)
OSI模型的最底层或第一层。
该层包括物理联网媒介,如电缆连线连接器,主要是对物理连接方式、电气特性、机械特性等做一些规定,制订相关标准,这样大家就可以按照相同的标准开发出通用的产品,很明显直流24V与交流220V是无法对接的,因此就要统一标准,大家都用直流24V吧,至于为什么采用24V呢?您就当是争执各方妥协的结果吧。
所以,这层标准解决的是数据传输所应用的设备标准的问题。
物理层的协议产生并检测电压,以便发送和接收携带数据的信号。
尽管物理层不提供纠错服务,但它能够设定数据传输速率并监测数据出错率,网络物理问题,如电线断开,将影响物理层。
用户要传递信息就要利用一些物理媒体,如双绞线、同轴电缆等,但具体的物理媒体并不在0SI的7层之内,有人把物理媒体当做第0层,物理层的任务就是为它的上一层提供一个物理连接,以及它们的机械、电气、功能和过程特性。
如规定使用电缆和接头的类型、传送信号的电压等。
在这一层,数据还没有被组织,仅作为原始的位流或电气电压处理,请注意,我们所说的通信仅仅指数字通信方式,因此,数据的单位是比特(位-bit)。
2、数据链路层(Datalink Layer)
OSI模型的第二层。
它控制网络层与物理层之间的通信,解决的是所传输的数据的准确性的问题。
数据链路层的主要功能是如何在不可靠的物理线路上进行数据的可
靠传递。
为了保证传输,从网络层接收到的数据被分制成特定的可被物理层传输的帧。
帧是用来移动数据的结构包,它不仅包括原始数据,还包括发送方和接收方的物理地址以及纠错和控制信息。
其中的地址确定了帧将发送到何处,而纠错和控制信息则确保帧无差错到达。
如果在传送数据时,接收点检测到所传数据中有差错,就要通知发送方重发这一帧。
数据链路层的功能独立于网络与它的节点和所采用的物理层类型,它也不关心是否正在运行Word、Excel或使用Internet。
有一些连接设备,如交换机,由于它们要对帧解码并使用帧信息将数据发送到正确的接收方,所以它们是工作在数据链路层的。
该层的作用包括物理地址寻址、数据的成帧、流量控制、数据的检错、重发等。
数据链路层协议的代表包括SDLC、HDLC、PPP、STP、帧中继等,这些协议规定了不同的检验或容错规则,使数据传输准确可靠。
因此数据链路层具有检验功能,它制订了各种方法和数据分割手段,用以保障物理层和网络层直接数据传输的准确性和可靠性。
如何保障数据传输过程不出差错呢?
3、网络层(Network Layer)
OSI模型的第三层。
网络层主要功能是将网络地址翻译成对应的物理地址,并决定如何将数据从发送方路由到接收方,它解决的是寻址和优化传输路径问题。
网络层通过综合考虑发送优先权、网络拥塞程度、服务质量以及可选路由的花费来决定从一个网络中节点A到另一个网络中节点B的最佳
路径。
由于网络层处理路由,而路由器不仅连接网络各段,还智能指导数据传送,属于网络层。
在网络中,“路由(router)”基于编址方案、使用模式以及可达性来指引数据的发送。
网络层负责在源机器和目标机器之间建立它们所使用的路由。
这一层本身没有任何错误检测和修正机制,因此,网络层必须依赖于端端之间的由DLL提供的可靠传输服务。
网络层用于本地LAN网段之上的计算机系统建立通信,它之所以可以这样做,是因为它有自己的路由地址结构,这种结构与第二层机器地址是分开的、独立的,这种协议称为路由或可路由协议。
路由协议包括IP、Novell公司的IPX以及Apple Talk协议。
网络层是可选的,它只用于当两个计算机系统处于不同的由路由器分割开的网段这种情况,或者当通信应用要求某种网络层或传输层提供的服务、特性或者能力时。
例如,当两台主机处于同一个LAN网段的直接相连这种情况,它们之间的通信只使用LAN的通信机制就可以了(即OSI参考模型的一二层)。
教你如何走捷径,如何更快地到达目的地。
4、传输层(Transport Layer)
OSI模型中最重要的一层。
传输协议同时进行流量控制,或是根据接收方可以接收数据的快慢程度,规定适当的发送速率,解决的是传输效率和能力的问题。
传输层按照网络能处理的最大尺寸将较长的数据包进行强制分割,例如,以太网无法接收大于1500字节的数据包。
发送方节点的传输层将数据分割成较小的数据片,同时对每一数据片安排一序列号,以便
数据到达接收方节点的传输层时能以正确的顺序重组,该过程即被称为排序。
工作在传输层的二种服务是TCP/IP协议套中的TCP(传输控制协议),另一项传输层服务是IPX/SPX协议集的SPX(序列包交换)。
怎样能快速发送数据,传输大量信息?
5、会话层(Session Layer)
会话层负责在网络中的两节点之间建立、维持和终止通信,在这一层协议中,可以解决节点连接的协调和管理问题。
会话层的功能包括:建立通信链接,保持会话过程通信链接的畅通,同步两个节点之间的对话,决定通信是否被中断以及通信中断时决定从何处重新发送。
有人把会话层称作网络通信的“交通警察”。
当通过拨号向你的ISP(因特网服务提供商)请求连接到因特网时,ISP服务器上的会话层就会向你与你的PC客户机上的会话层进行协商连接,若你的电话线偶然从墙上插孔脱落时,你终端机上的会话层将检测到连接中断并重新发起连接。
会话层通过决定节点通信的优先级和通信时间的长短来设置通信期限。
6、表示层 (Presentation Layer)
表示层是应用程序和网络之间的翻译官。
在表示层,数据将按照网络能理解的方案进行格式化,这种格式化也因为使用网络的类型不同而不同。
表示层管理数据的解密与加密,如系统口令的处理。
例如,在Internet 上查询你银行账户,使用的即是一种安全连接。
你的账户数据在发送前被加密,在网络的另一端,表示层将对接收到的数据解密。
除此之
外,表示层协议还对图片、视频、文本等文件格式信息进行解码和编码,解码与编码的目的是使数据量变小,例如MPEG和JPEG等。
7、应用层(ApplicationLayer)
应用层是负责提供数据接口标准,应用程序使用这个标准就可以使用网络服务。
术语“应用层”并不是指运行在网络上的某个特别应用程序,应用层提供的服务包括文件传输、文件管理以及电子邮件的信息处理。
对于OSI模型的理解有一个比较恰当的比喻,我们还是应用一个直观的示例来解释一下吧。
有这样一个原则,计算机的所有算法和功能都是在模仿人类的管理经验,因此它是对人类管理经验的实现和快速处理。
比如我们公司和你们公司有业务联系,我们的老板想要与你们的老板进行沟通,要是我们个人之间可能打个电话或者发个E-mail就解决了,但是公司之间如果这样做就显得不正式,或者沟通不可靠,那怎么办呢?就必须遵守管理流程,我们老板(应用层Application Layer)可能会先写个意向性的文档之类的东西,说明一下他的想法、目的,然后交给秘书或助理(表示层Presen-tation Layer),助理把这份文档变成公文形式,这样显得较为正式,也体现出大公司的管理水准,然后他把这份公文转交到下一层部门-事务部(会话层Session Layer),事务部在处理各种公司事务的同时,按照优先级规定,停下手中的工作,优先把这份公文装订或者装入信封,然后通过可靠的人员(传输层Transport Layer)送到邮局或快递公司(网络层Network Layer),邮局或快递公司的工作人员(数据链路层Datalink Layer)
通过分拣工作,把公文按地址要求装箱(物理层Physical Layer),最后送到目的地,这个目的地也是一个邮局或快递公司,然后再通过分拣一送达一整理一上交一阅读,把我们公司的工作按相反的顺序执行一遍,你们老板就收到了我们老板的信函。
小贴士:看似简单的一件事,其实需要很多复杂的过程配合,需要遵守管理制度,这样才能最可靠、最快速。
也许你可能会认为这样做不是更麻烦吗?其实这样的管理方法才能有效、安全、快速地把事情办好,这就是管理的作用,而计算机运用高速的处理能力去完成这样的事情就显得轻而易举了,计算机的广泛应用确实提高了我们的管理水平和效率。
当然了,也不是毎个管理都包含所有过程的,它可以根据需要进行优化,现场总线就不是应用全部0SI模型内容的协议,比如FF总线仅仅由物理层、数据链路层、应提交、处理等工作,实现各自的商业价值。