人教版初一数学上册有理数教案
初一数学上册第一章有理数复习教案最新3篇
初一数学上册第一章有理数复习教案最新3篇篇一:数学《有理数》教案篇一一、教材分析:(一)教材的地位和作用:本节课的内容是《新人教版七年级数学》教材中的第一章第四节,“有理数的乘除法”是把“有理数乘法”和“有理数除法”的内容进行整合,在“有理数的加减混合运算”之后的一个学习内容。
在本章教材的编排中,“有理数的乘法”起着承上启下的作用,它既是有理数加减的深入学习,又是有理数除法、有理数乘方的基础,在有理数运算中有很重要的地位。
“有理数的乘法”从具体情境入手,把乘法看做连加,通过类比,让学生进行充分讨论、自主探索与合作交流的形式,自己归纳出有理数乘法法则。
通过这个探索的过程,发展了学生观察、归纳、猜测、验证的能力,使学生在学习的过程中获得成功的体验,增强了自信心。
所以本节课的学习具有一定的现实地位。
(二)学情分析:因为学生在小学的学习里已经接触过正数和0的乘除法,对于两个正数相乘、正数与0相乘、两个正数相除、0与正数相除的情况学生已经掌握。
同时由于前面学习了有理数的加减法运算,学生对负数参与运算有了一定的认识,但仍还有一定的困难。
另外,经过前一阶段的教学,学生对数学问题的研究方法有了一定的了解,课堂上合作交流也做得相对较好。
(三)教学目标分析:基于以上的学情分析,我确定本节课的教学目标如下1、知识目标:让学生经历学习过程,探索归纳得出有理数的乘除法法则,并能熟练运用。
2、能力目标:在课堂学习过程中,使学生经历探索有理数乘除法法则的过程,发展观察、猜想、归纳、验证、运算的能力,同时在探索法则的过程中培养学生分类和归纳的数学思想。
3、情感态度和价值观:在探索过程中尊重学生的学习态度,树立学生学习数学的自信心,培养学生严谨的数学思维习惯。
4、教学重点:会进行有理数的乘除法运算。
5、教学难点:有理数乘除法法则的探索与运用。
确定教学目标的理由依据是:新课标中指出课堂教学中应体现知识与技能、过程与方法、情感态度与价值观的三维目标,同时也基于本节内容的地位与作用。
七年级数学上册有理数及其运算复习教案9篇
七年级数学上册有理数及其运算复习教案9篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作汇报、述职报告、发言致辞、心得体会、规章制度、应急预案、合同协议、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work reports, job reports, speeches, insights, rules and regulations, emergency plans, contract agreements, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!七年级数学上册有理数及其运算复习教案9篇七年级数学上册有理数及其运算复习教案篇1【教学目标】知识与技能:了解并掌握数据收集的基本方法。
人教版七年级数学上册《 第一章 有理数 》教学设计
人教版七年级数学上册《第一章有理数》教学设计一. 教材分析人教版七年级数学上册《第一章有理数》是学生在小学数学基础上,进一步深入学习数学的重要章节。
本章主要介绍有理数的概念、分类、运算及其性质。
内容主要包括:有理数的定义,有理数的分类,有理数的运算,有理数的性质,以及实数的概念。
这些内容是学生进一步学习数学的基础,对于培养学生的逻辑思维能力和数学素养具有重要意义。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于数学概念和运算有一定的认识。
但是,对于有理数的概念和性质,学生可能还比较陌生,需要通过实例和练习来加深理解。
此外,学生的学习习惯和思维方式也有所不同,需要教师进行针对性的引导和指导。
三. 教学目标1.理解有理数的定义,掌握有理数的分类,了解有理数的性质。
2.熟练掌握有理数的运算方法,能够进行简单的有理数计算。
3.培养学生的逻辑思维能力和数学素养,提高学生的数学学习兴趣。
四. 教学重难点1.有理数的定义和分类,有理数的性质。
2.有理数的运算方法,特别是乘除法和混合运算。
五. 教学方法1.采用问题导入法,通过实例引发学生的思考,引导学生自主探索和发现有理数的性质。
2.采用讲授法,教师讲解有理数的概念、分类和性质,引导学生理解和掌握。
3.采用练习法,通过大量的练习题,让学生熟悉和掌握有理数的运算方法。
4.采用小组合作学习法,让学生在小组内进行讨论和交流,培养学生的合作意识和团队精神。
六. 教学准备1.教材和人教版七年级数学上册《第一章有理数》的教学PPT。
2.与本章内容相关的练习题和测试题。
3.教学黑板和粉笔。
七. 教学过程1.导入(5分钟)通过问题导入法,引导学生思考:“什么是数?我们学过的数有哪些?”然后给出有理数的定义,引导学生自主探索和发现有理数的性质。
2.呈现(10分钟)教师讲解有理数的概念、分类和性质,通过PPT展示相关的内容,让学生直观地理解和掌握。
3.操练(10分钟)让学生进行有理数的运算练习,包括加减乘除法和混合运算。
人教版七年级数学上册1.2有理数优秀教学案例
1. 培养学生对数学学科的兴趣,使学生感受到数学的乐趣,从而激发学生学习数学的内在动力。
2. 培养学生积极思考、勇于探索的精神,使学生在面对数学问题时,能够积极寻求解决办法,增强学生的自信心。
3. 通过对有理数的学习,使学生认识到数学在生活中的重要性,培养学生的数学应用意识,提高学生的数学素养。
5. 教学策略:本节课运用了情景创设、问题导向、小组合作和反思与评价等多种教学策略,使学生在轻松愉快的氛围中学习有理数,提高了学生的学习效果和学科素养。
2. 有理数的性质:讲解有理数的加法、减法、乘法、除法运算规则,以及有理数的相反数、倒数等概念。
3. 举例说明:通过具体例子,让学生理解和掌握有理数的性质和运算规则。
(三)学生小组讨论
1. 设计具有探究性和实践性的讨论话题,如“有理数的加法运算规则是什么?请用实例进行说明。”
2. 引导学生积极开展小组讨论,鼓励学生发表自己的观点,培养学生的合作能力和口头表达能力。
二、教学目标
(一)知识与技能
1. 让学生掌握有理数的概念,理解有理数的分类,包括整数、分数、正数、负数、正有理数、负有理数、零等,并能正确地进行分类。
2. 让学生掌握有理数的性质,包括有理数的加法、减法、乘法、除法运算规则,以及有理数的相反数、倒数等概念。
3. 培养学生运用有理数解决实际问题的能力,使学生能够运用有理数的知识解决生活中的数学问题。
2. 问题导向:本节课以问题驱动的教学策略,引导学生发现并提出问题,激发学生的问题意识,培养学生的分析问题和解决问题的能力。
3. 小组合作:本节课通过小组合作的方式,让学生在讨论和交流中共同探讨有理数的概念和运算规则,培养了学生的团队合作能力和自主学习能力。
人教版初中七年级上册数学教案(完整版)
七上数学教案有理数第一章教学目标.知识与技能 1 ①通过生活实例,了解学习有理数的必要性.②理解并掌握数轴、相反数、绝对值、有理数等有关概念.③通过本章的学习,掌握有理数的加、减、乘、除、乘方及简单的混合运算..过程与方法 2 通过本章的学习,培养学生应用数学知识解决实际问题的能力..情感、态度与价值观 3激励学通过师生共同参与的教学活动,结合生活实例引入新课,生学习数学的兴趣,让学生真正体验到数学知识来源于生活并服务于生活.难点、教学重点这一章的主要学习目标都可以归结到有理.重点:有理数的运算运算,数轴、相反数、绝对值---数的运算上,比如有理数的有关概念法则直接目标都是落实到有理数的运近似数等内容的学习,,运算律, 算上. . 有理数法则的理解,难点:负数概念的建立,绝对值意义课时分配课时内容1 正数和负数1 . 1 4 有理数2 . 1 5 有理数的加减法3 . 14 . 1 4 有理数的乘除法 4 有理数的乘方5 . 1 2 单元复习与验收教学建议(即联系实际生活的典型例子)教师在教学过程中注意从实际问题在教师的引导和学生大胆尝试的过程中,让学生参与数学活动,引入,从而使学生自得知识,分析问题和解决问题,使学生自觉地发现问题,自觅规律..在进行有理数的有关概念的教学时:1•)注意从实际问题引入,使学生知道数学知识来源于生活.1(如:从温度与海拔高度引入负数,从而得出有理数的概念;借助温度引出数轴,建立数(有理数)与形(数轴上的点)之间的联系.()注意借助数轴的直观性讲述相反数、绝对值,体会用字母2使学生对概念的认识能更深一步,,•体现代数的特点表示数的优越性,并为今后学习整式、方程打下基础..讲解有理数运算时,有理数加法及乘法法则的导出借助数轴 2在此,会更直观更形象更易于学生理解,法则要着重强调符号的确定基础上注意绝对值的运算,提高学生计算准确率.正数和负数1 .1教学目标.知识与技能 1 ①了解正数与负数的引入是实际生活的需要.②会判断一个数是正数还是负数.③会用正负数表示互为相反意义的量..过程与方法 2训练学生运,通过正负数的学习,培养学生应用数学知识的意识用新知识解决实际问题的能力..情感、态度与价值观 3让学生体激发学生学习数学的兴趣,通过师生共同的教学活动,验到数学知识来源于生活并为生活服务.教学重点难点会运用正负数表示具有相会判断一个数是正数还是负数,重点:的含义.0•反意义的量,理解难点:负数的引入和理解.教与学互动设计(一)创设情境,导入新课由同学感受高于水平面和珠穆朗玛峰和吐鲁番盆地,课件展示低于水平面的不同情况.(二)合作交流,解读探究.举出一些生活中常遇到的具有相反意义的量,如温度是零上 1米和50张课桌,汽车向东80张课桌与卖出90‣,买进5‣和零下7 米等.120向西你能用小学算术中的以上都是一些具有相反意义的量,想一想数来表示出每一对量吗?你能再举一些日常生活中具有相反意义的量吗?该如何表示它们呢?. 2我们把其中一种意义的量,为了用数表示具有相反意义的量,如零上温度,前进、收入、上升、高出等规定为正的,而把与它相反的量,如零下温度、后退、支出、下降、低于等规定为负的,正的量(读作负)“-”负的量用学过的数前面加上用算述里学过的数表示,.号来表示(零除外)一位同学任意说出具有相反每组同学之间相互合作交流,活动意义的两个量,由其他同学用正负数表示.是正数还是负0什么样的数是负数?什么样的数是正数?讨论• 数?号的数,“-”负数是在正数前面加的数,0正数是大于【总结】既不是正数,也不是负数,是正数与负数的分界.0 (三)应用迁移,巩固提高举出几对具有相反意义的量,并分别用正、负数表示.1 例【提示】、“后”与“前”,“下降”与“上升”具有相反意义的量有“收入”与“支出”等.、“得到”与“失去”、“高于”与“低于”旨在考查学生用正负数表示具这是一道开放性试题,【点评】有相反意义量的能力.克0.02在某次乒乓球检测中,一只乒乓球超过标准质量2 例克表示什么?0.03那么-•克,0.02记作+0.03表示比标准质量低【答案】克.可记为6.4%年美国的商品进出口总额比上年减少3 2001例.7.5% +可记为7.5%,中国增长-6.4% 备选例题•个时间单位,1分钟为45²山东淄博)某项科学研究以2004( 10,0时为10并记为每天上午时以后记为正.例10时以前记为负,(应记为7:45上升依此类推,等等.1记为10:45,-1记为9:15如,) A.3 B.-3 C.-2.5 D.-7.45 分135相差10与7:45读懂题意是解决本题的关键.【点拨】钟. B 【答案】(四)总结反思,拓展升华正数就是我为了表示现实生活中具有相反意义的量引进了负数.们过去学过(除零外)的数,在正数前加上“-”号就是负数,不能既不是正数0.另外,说“有正号的数是正数,有负号的数是负数” 也不是负数.,2,-1填空. 1,81 个数是–81…第 -8 , -7 , 6 ,-5,4,-3.2005 个数是–2005第数字绝对值的排列是按由小到大的顺序,通过观察可见,【提示】符号是负正相间,第奇数个数为负,第偶数个数为正.从绝对值和符号两方面考虑.,本题属于找规律问题【点评】(存是小张同学一周中简记储蓄罐中钱的进出情况表1-1-1表. 2 :)入记为“+”表 1-1-1 六五四三二一日星期(元)-2.6 +10 -0.9 -2.1 -1.2 +5.0 16 +)本周小张一共用掉了多少钱?存进了多少钱?1(元.31元, 6.8【答案】)储蓄罐中的钱与原来多了还是少了?2(多了.【答案】)如果不用正、负数的方法记账,你还可以怎样记账?比较3(各种记账的优劣.【答案】用文字说明,但前者更简洁.,1个同学站成一排,从左到右每个人编上号:4.数学游戏: 3.(负号)表示“蹲”“-”,.用“+”表示“站”4,3,2 个同4、第1,则第+4,-3,-2,+1)由一个同学大声喊:1( 2学站,第,-1个同学蹲,并保持这个姿势,然后再大声喊:3、第个同学中有改变姿势的,则表示输了,4、第2,如果第+4,+3,-2 ;作小小的“惩罚” 个同学顺序调整一下,但每个人记作4)增加游戏难度,把2(.的游戏;1自己原来的编号,再重复所有“命令”或“数据”•)这不仅仅是游戏哟!在电脑中,3(“翻译”没有特别的例如,表示的.(特别是二进制数)都是用有理数程序,电脑就不明白你给屏幕上的卡通人下的是“站”还是“蹲”的命令,这时,就可输入正负数以区别不同的姿势.(五)课堂跟踪反馈夯实基础.填空题 1(-吨记为20吨,那么浪费+30吨记为30)如果节约用水1吨.20 4)如果2(. -8 年前记作8,那么4年后记作+吨表示100吨,那么+7吨记作-7)如果运出货物3(运进货.吨100物,小阳体重减少了3,记作+3kg)一年内,小亮体重增加了4(. 2kg ,则小阳增长了2 kg米,下午0.5米,记作-0.5时,水位低于标准水位12.中午 20.5时,水位又上涨了5米,下午1水位上涨了•时,1 米.时的水位;5时和下午1)用正数或负数记录下午1(时水位高多少?12时的水位比中午5)下午2( 1时,水位-5米;下午0.5时,水位1)下午1(【答案】(米)0.5+1=1.5)2(米提升能力公斤,现测得甲、乙、丙三袋粮食重50.粮食每袋标准重量是 3公斤.如果超重部分用正数表示,49.8公斤,49公斤,52量如下:请用正数和负数记录甲、乙、丙三袋粮食的超重数和不足数..-0.2,-1, +2【答案】.有没有这样的有理数,它既不是正数,也不是负数? 4有,是【答案】.0 .下列各数中哪些是正数?哪些是负数? 5116,3.14,0,-1.3,-2,4,,,-0.02,15-37716,0.02,15;负数:-,3.14,1.3,4,正数:【答案】711 -2,-371开放探究 12.同学聚会,约定在中午 6点到会,早到的记为正,迟到的记•点,-1.5点,最迟到的同学记为3为负,结果最早到的同学记为+你知道他们分别是什么时候到的吗?最早到的同学比最迟到的同学早多少小时?点半到,最1点到,最迟的是下午9最早的同学上午【答案】个小时.4.5早的比最迟的早到.新中考题7‣,15‣,冷库B的温度是-5²玉林)冷库A的温度是-2004(则温度高的是冷库• .A教学反思:也是非常重要的一节课,本节课是学生进入初中的第一节数学课为学生课堂上我主要采用了体验探究的教学方式,.负数的引入-----学生在动手使学生直接参与教学活动,提供了大量亲自操作的机会,进而通过教师的引导加工操作中对抽象的数学知识获取感性的认识,使学生的学习过程变为一个再从而获得新知,总结上升为理性认识,感受在解决问题的同时让学生体会到获取知识的方法,创造的过程,为学生今后获取新知以及探索和发现新过程中与他人合作的重要性, . 知打下基础有理数2 .11 有理数1 .2.教学目标.知识与技能1 ①理解有理数的意义.②能把有理数按要求分类.在有理数分类的作用.0③了解.过程与方法 2培养学生分类讨论的意识和能正确地进行分类经历本节的学习,的能力.教学重点难点重点:会把已知各数填入相应的数集图里.难点:掌握有理数的两种分类.教与学互动设计(一)创设情境,导入新课我们认识的数除,通过上节课的学习同学们已经知道讨论交流了小学里所学的之外,还有另一类数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.(二)合作交流,解读探究512…5.2, -7.4,-3,,,0,-10,-9,-7,5.7,3学生列举:365你能说说这些数的特点吗?议一议、分数,也有负0学生回答,并相互补充:有小学学过的整数、整数、负分数.说明:我们把所有的这些数统称为有理数.你能对以上各种类型的数作出一张分类表吗?试一试整正数零整数负整数有理数正分数分数负分数说明:以上分类,若学生思考有困难,可加以引导:因为整数和分数那么整数又包所以有理数可分为整数和分数两大类,统称为有理数,含那些数?分数呢?(正数、那可不可以按数的性质以上按整数和分数来分,做一做负数)来分呢,试一试.正整数正有理数正分数有理数零负整数负有理数负分数)数的集合3(把所有正数组成的集合,叫做正数集合.分数集合、整数集合、什么是负数集合、试着归纳总结,试一试有理数集合.(三)应用迁移,巩固提高把下列各数填入相应的集合内:1 例812 -89 ,0.67,10.l,10%,-0.23456,-,2004,0,3.1416,57… … … …分数集合整数集合负数集合正数集合【答案】228,2004,10%,,-3.1416,-7510.1,0.67,...-0.23456,-89,...负数集合正数集合812,,-3.1416,-570,2004,-89,...-0.23456,10%,10.1,0.67,...分数集合整数集合以下是两位同学的分类方法,你认为他们分类的结果正确2 例吗?为什么?正整数正有理数正分数有理数负整数负有理数负分数正数整数有理数分数负数零两者都错,前者丢掉了零,后者把正负数、整数、分【答案】 . 分类标准不清楚,数混为一谈以上是对各类有理数的特点及有理数的分类进行的训【点评】练,基础性强,需要重视以下结论中正确的有(B)3例是最小的正整数0①是最小的有理数0②既是非正数,也是非负数0④不是负数0③个 D.4个 C.3个B.2个 A.1可能是什么样的数,一定为a如果用字母表示一个数,那4 例正数吗?与你的伙伴交流一下你的看法..0可能是正数,可能是负数,也可能是a不一定,【答案】全面a要求学生能用分类的思想对此题开放性较强.【点评】 . 体会用字母表示数的意义,认识备选例题 ²浙江温州)观察下列数,按某种规律在横线上填入适当2004(6243,…你的理解是,________,,,的数,并说明你的理由.7354._________2,找出各项数的特点是本题关键所在,第一个数为【点拨】3所得的数.1后一个数是前一个数的分子,分母都加5【答案】6(四)总结反思,拓展升华提问:今天你获得了哪些知识?今天我们学习了有理数的定义然后教师总结:由学生自己小结,和有理数的两种分类方法.我们要能正确地判断一个数属于哪一类,”的含义.0要特别注意“的圈中填上适合的数,使得圈内的数依次1-2-1请你在图.1 有理数集、正数集、分数集、负数集.•为整数集、所示.1-2-2答案不唯一,如图【答案】3081120.4-5正有理数.有理数按正、负可分为 2零负有理数整数按整数分,可分为分数)你能自己再制定一个标准,对有理数进行另一种分类吗?1()生活中,我们也常常对事物进行分类,请你举例说明.2(的数,等于1的数,小于1)如将有理数分成大于1(【答案】的数.1例如对人按年龄可分为:)2(青年、少年、儿童、幼儿、婴儿、中年、老年..下面两个圈分别表示负数集和分数集,你能说出两个图的重 3 叠部分表示什么数的集合呢?分数集合负数集合负分数答案(五)课堂跟踪反馈夯实基础.把下列各数填入相应的大括号内: 111 -0.3 ,50%,0,3,-3,,0.125, -722 0} ,3,{-7)整数集合1(11 -0.3} ,50%,-3,,{0.125)分数集合2(221 -0.3} ,{-3)负分数集合3(21 50%} ,0,3,,{0.125)非负数集合4(211 -0.3} ,50%,0,3,-3,,0.125,{-7)有理数集合5(22.下列说法正确的是(D) 2 不是自然数0B.A.整数就是自然数是整数而不是正数0D.C.正数和负数统称为有理数 325(千克,)0.1±25(某商店出售的三种规格的面粉袋上写着.)千克的字样,从中任意两袋,它们质量相0.3±25(,千克)0.2•± 千克. 0.6 差最大的是提升能力可以表示数,在我们现在所学的范围内,你能否试着a.字母 4 可以表示什么样的数?a说明a【答案】,负整数或负分数.0可以表示正整数,正分数,个5.某校对初一新生的男生进行了引体向上的测试,以能做 5名男10超过的次数记为正数,不足的次数记为负数,其中•为标准,生的测试成绩如下: 2 -1 2 -1 3 0 -1 -2 1 0 -名男生有百分之几达标(即达标率)?10)这1(名男生共做了多少个引体向上?10)这2()1(【答案】(个)10-1=49³5)2(;50% 开放探究.应用创新题 68若向东再米,12如果一个人从A地出发先走+米,8米记作+米,你能判断这个人此时在何20米,最后走-18米,又走+15走-处吗?米处.5在A地西边【答案】.新中考题 7年元月某一天的天气预报中,2004²内蒙古赤峰)我市2004(克旗的最低温度是-‣,22宁城县的最低温度是-这一天宁城‣,26 (A)县的最低气温比克旗的最低气温高-8. D‣8. C‣-4. B‣4. A ‣(六)资料采撷原始的计算工具最早人类初期的计算主要是计数.计算是人类的一种思维活动,用来帮助计数的工具是人类的四肢(手、脚、手指、脚趾)或身边的,说明人们常小石头、贝壳、绳子等.中国有句古话叫“屈指可数” 用手指来计算简单的数.名珍藏着一件从秘鲁出土的古代文物,在美国纽约的博物馆里,“基普”叫传基普是古人用来计数和记事的.意即打了绳结的绳子.,波斯国王在一次征战中曾命令一支部队守桥,他•世纪,6说公元前一要他们每守一天解开一个结,把一条打了结的皮带交给留守将士,直守到皮带上的结全部解完了才准撤退.人们用在绳子上打结的方法来计数和记在没有文字的我国古代,事.一件事打一个结,大事打个大结,小事打个小结,办完了一件事就解掉一个结.古人不仅用绳结计数,而且还使用小石子等其他工具来计数.例这样,晚上必须圈到栅栏里.早晨放牧到草地里,他们饲养的羊,如,傍出来一只就往罐子里扔一块小石子;早晨从栅栏里放出来的时候,如果石子全部进去一只就从罐子里拿出一块小石子.晚羊进栅栏时,拿光了,就说明羊全部进圈了;如果罐子里还剩下石子,说明有羊丢失了,必须立刻寻找.教学反思:为学生提供合我主要采用了探究式的教学方式,这节课的教学,作交流的机会,引导学生在已有知识、经验、方法的基础上去思考问,课堂气氛活跃,学习积极性高学生直接参与教学活动,.探寻结果,题另外教师也可以从学生的回答.抽象的问题简单化,通过学生的讨论,有方法型的,中受到启发教师参与学生的讨论可以增加.有技巧型的取长补,学生在讨论的过程中可以相互学习,学生的学习兴趣和动力 . 深刻体会到与他人合作的重要性,短2 .2.1 数轴教学目标.知识与技能 1 ①掌握数轴三要素,能正确画出数轴.能说出数轴上已知点所表示的②能将已知数在数轴上表示出来,数..过程与方法 2逐步形成应用①使学生受到把实际问题抽象成数学问题的训练,数学的意识.②结合本节内容,对学生渗透数形结合的重要思想方法..情感、态度与价值观 3反过来又服务于实践的辩证使学生进一步形成数学来源于实践,唯物主义观点.教学重点难点重点:数轴的概念.难点:从直观认识到理性认识,从而建立数轴概念.教与学互动设计(一)创设情境,导入新课 50m在一条东西方向的马路上,有一个学校,学校东课件展示 100m处分别有一个书店和一个超市,学校西150m•和西处分160m和表示书店、超市、邮局、D、C、B、A别有一个邮局和医院,分别用医院,你会画图表示这一情境吗?(学生画图)(二)合作交流,解读探究0•师:对照大家画的图,为了使表达更清楚,我们把左右两边0的数分别用正数和负数来表示,即用一直线上的点把正数、负数、也就是本节内容──数轴.•都表示出来.)引导学生学会画数轴.1(点拨第一步:画直线定原点第二步:规定从原点向右的方向为正(左边为负方向)第三步:选择适当的长度为单位长度(据情况而定)由学生观察温度计的结构和数轴的结拿出教学温度计,第四步:构是否有共同之处.对比思考:原点相当于什么;正方向与什么一致;单位长度又是什么?)有了以上基础,我们可以来试着定义数轴:2(规定了原点、正方向和单位长度的直线叫数轴.学生自己练习画出数轴.做一做4你能利用你自己画的数轴上的点来表示数试一试:,-3,1.5,7吗?0,-2的点在原点的什么位a则数轴上表示数是一个正数,a若讨论的点在原点的什么位置a置上?与原点相距多少个单位长度;表示-与原点又相距了多少个长度单位?•上?小结整数能在数轴上都找到点吗?分数呢?___________•都可以用数轴上的点表示__________所有的可见,都在原点的右边.______________都在原点的左边,(三)应用迁移,巩固提高下列所画数轴对不对?如果不对,指出错在哪里.1 例43-25321210-1210-1②①③001-10-321-1-2④⑤⑥021-1-2⑦④③正确②错.没有正方向①错.没有原点【答案】⑦错.正方向⑥正确⑤错.单位长度不统一错.没有单位长度标错7 0 ,-,-3,1.5,2 4试一试:用你画的数轴上的点表示例3【答案】 ABCED5-1-41-2-5420-33 7,,D点表示--3,C点表示1.5,B点表示4图中A点表示3.0E点表示的点在原点的什么a 是一个正数,则数轴上表示数a如果3 例的点在原点的什么位置上呢?a表示-•位置上?由数轴上数的特点不准得到,正数都在原点的右边,【提示】负数都在原点左边.原点所有的有理数都可以在数轴上找个点与它对应,【答案】右边的点表示正数,原点左边的点表示负数.数与数轴上的点结合,这是一种重要的数学思想,数【点评】形结合.下列语句:①数轴上的点又能表示整数;②数轴是一条直4 例③数轴上的一个点只能表示一个数;④数轴上找不到既不表示•线;正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.正确的说法有(B)(注:文档可能无法思考全面,请浏览后下载,供参考。
人教版七年级数学上册《有理数》教案1
《有理数》教案教学目标1.知识与技能.①理解有理数的意义.②能把给出的有理数按要求分类.③了解0在有理数分类的作用.2.过程与方法.经历本节的学习,培养学生树立分类讨论的观点和能正确地进行分类的能力.3.情感、态度与价值观.通过联系与发展、对立与统一的思考方法对学生进行辩证唯物主义教育.教学重点难点重点:会把所给的各数填入它所在的数集的图里.难点:掌握有理数的两种分类.教与学互动设计一.创设情境,导入新课.讨论交流:现在,同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.二.合作交流,解读探究.学生列举:3,5.7,﹣7,﹣9,﹣10,0,13,25,﹣356,﹣7.4,5.2议一议:你能说说这些数的特点吗?学生回答,并相互补充:有小学学过的整数、0、分数,也有负整数、负分数. (说明:我们把所有的这些数统称为有理数.)试一试:你能对以上各种类型的数作出一张分类表吗?做一做:以上按整数和分数来分,那可不可以按性质(正数、负数)来分.有理数⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数零负整数负有理数负分数数的集合:把所有正数组成的集合,叫做正数集合.试一试:试着归纳总结,什么是负数集合、整数集合、分数集合、有理数集合.三.应用迁移,巩固提高.把下列各数填入相应的集合内.12 7,3.1416,0,2004,﹣85,﹣0.23456,10%,10.l,0.67,﹣89正数集合负数集合整数集合分数集合。
最新人教版七年级上册数学第一章有理数全章教案
最新人教版七年级上册数学第一章有理数全章教案1.1正数和负数的概念教学目标述评▲知识目标:(1). 让学生判断一个数字是正还是负,(2).使学生会用正数或负数表示生活中具有相反意义的量.▲ 能力目标:(1)使学生了解数是为了满足生产和生活的需要而产生、发展起来的。
(2). 列出前后意义相反的数量,培养学生的观察、归纳和概括能力。
(3).经历探索负数概念的形成过程,使学生建立正数与负数的数感。
(4)培养学生的数学应用意识,将数学应用于生活。
▲情感目标:借助情感因素,营造亲切、和谐、活泼的课堂气氛,鼓励全体学生积极参与教学活动。
以团结协作、严谨求实的学习作风、坚韧不拔的毅力和创新精神陪伴和支持他们。
2学情分析评论.从认知特征来看,七年级学生具有探究性、探究性和想象力。
我从教学中的动画视频开始,以孩子们喜欢的方式进入课堂。
在游戏中学习,在活动中成长,在实践中提高。
在教学中,借助情感因素,营造亲切、和谐、活泼的课堂气氛,鼓励全体学生积极参与教学活动。
以团结协作、严谨求实的学习作风、坚韧不拔的毅力和创新精神陪伴和支持他们。
营造自主探索、合作交流的氛围,在个人展示、讲解、观察、实践等活动中运用多媒体,提高教学效率,验证结论,激发学生学习兴趣。
3重点难点评论.要点:了解正数和负数是由实际需要产生的,能够用正数和负数来表示生活中常用的意义相反的量。
难点:学习负数的必要性,能准确地举出具有相反意义的量的典型例子。
4.教学过程4.1第一学时4.1.1教学活动活动1【导入】动画视频导入评论.小学已经学了六年数学,初中将继续学三年。
要学什么?数学自然与数字的研究密不可分。
早在古代,人们就开始了解数字及其混淆!(动画视频导入)活动2【活动】游戏中学习评论.古代人们的困惑是什么?什么是相反的行为?我们在比赛结束后见。
“反讽”游戏中,预习量的含义正好相反。
活动3【活动】小组讨论,合作交流评论.请列举在生活中具有相反意义的数量。
人教版七年级数学上册第一章《有理数》教学设计
人教版七年级数学上册第一章《有理数》教学设计一. 教材分析人教版七年级数学上册第一章《有理数》是整个初中数学的基础,主要介绍了有理数的定义、分类、运算和性质。
本章内容对于学生来说是比较抽象的,需要通过实例和练习来理解和掌握。
教材通过丰富的例题和练习题,帮助学生逐步掌握有理数的概念和运算方法,为后续的学习打下基础。
二. 学情分析七年级的学生已经具备了一定的数学基础,但对于有理数的抽象概念和运算规则可能还比较陌生。
学生在学习过程中需要通过实际的例子和操作来理解和掌握有理数的概念和运算方法。
此外,学生可能对于负数和分数的概念有一定的困惑,需要通过具体的情境和练习来加深理解。
三. 教学目标1.了解有理数的定义和分类,掌握有理数的运算方法。
2.能够运用有理数的概念和运算方法解决实际问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.有理数的定义和分类。
2.有理数的运算方法,特别是负数和分数的运算。
3.有理数在实际问题中的应用。
五. 教学方法1.实例教学:通过具体的例子来引导学生理解和掌握有理数的概念和运算方法。
2.练习法:通过大量的练习题来巩固学生的理解和掌握程度。
3.问题解决法:通过解决实际问题来培养学生的应用能力和解决问题的能力。
六. 教学准备1.教材和教辅资料。
2.投影仪和教学课件。
3.练习题和测试题。
七. 教学过程1.导入(5分钟)通过引入日常生活中的实例,如温度、海拔等,引出有理数的概念和作用。
2.呈现(10分钟)讲解有理数的定义、分类和性质,通过具体的例子来说明。
3.操练(10分钟)让学生进行有理数的加减乘除运算,引导学生理解和掌握运算方法。
4.巩固(5分钟)通过一些练习题来巩固学生对有理数的理解和掌握程度。
5.拓展(5分钟)讲解有理数在实际问题中的应用,让学生尝试解决一些实际问题。
6.小结(5分钟)对本节课的内容进行总结,强调重难点和需要注意的问题。
7.家庭作业(5分钟)布置一些练习题,让学生在家里进行巩固和复习。
初一上册数学《有理数》教案
初一上册数学《有理数》教案初一上册数学《有理数》教案初一上册数学《有理数》教案1《1.2有理数》教学设计【学习目标】:1、掌握有理数的概念,会对有理数按一定标准进行分类,培养分类能力;2、了解分类的标准与集合的含义;3、体验分类是数学上常用的处理问题方法;【学习重点】:正确理解有理数的概念【学习难点】:正确理解分类的标准和按照一定标准分类《1.2.1有理数》同步练习含答案5.对-3.14,下面说法正确的是(B)A.是负数,不是分数B.是负数,也是分数C.是分数,不是有理数D.不是分数,是有理数《1.2有理数》同步练习含答案解析8.如果a与1互为相反数,则|a|=( )A.2B.﹣2C.1D.﹣1【考点】绝对值;相反数.【分析】根据互为相反数的定义,知a=﹣1,从而求解.互为相反数的定义:只有符号不同的两个数叫互为相反数.【解答】解:根据a与1互为相反数,得a=﹣1.所以|a|=1.故选C.【点评】此题主要是考查了相反数的概念和绝对值的性质.9.若|1﹣a|=a﹣1,则a的取值范围是( )A.a>1B.a≥1C.a<1D.a≤1【考点】绝对值.【分析】根据|1﹣a|=a﹣1得到1﹣a≤0,从而求得答案.【解答】解:∵|1﹣a|=a﹣1,∴1﹣a≤0,∴a≥1,故选B.【点评】本题考查了绝对值的求法,解题的关键是了解非正数的绝对值是它的相反数,难度不大.初一上册数学《有理数》教案2教学目标1、掌握有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;2、了解分类的标准与分类结果的相关性,初步了解“集合”的含义;3、体验分类是数学上的常用处理问题的方法。
教学难点正确理解分类的标准和按照一定的标准进行分类知识重点正确理解有理数的概念教学过程(师生活动)设计理念探索新知在前两个学段,我们已经学习了很多不同类型的数,通过上两节课的学习,又知道了现在的数包括了负数,现在请同学们在草稿纸上任意写出3个数(同时请3个同学在黑板上写出).问题1:观察黑板上的9个数,并给它们进行分类.学生思考讨论和交流分类的情况.学生可能只给出很粗略的分类,如只分为“正数”和“负数”或“零”三类,此时,教师应给予引导和鼓励.例如:对于数5,可这样问:5和5. 1有相同的类型吗?5可以表示5个人,而5. 1可以表示人数吗?(不可以)所以它们是不同类型的数,数5是正数中整个的数,我们就称它为“正整数”,而5. 1不是整个的数,称为“正分数,,.??…(由于小数可化为分数,以后把小数和分数都称为分数)通过教师的引导、鼓励和不断完善,以及学生自己的概括,最后归纳出我们已经学过的5类不同的数,它们分别是“正整数,零,负整数,正分数,负分数.按照书本的说法,得出“整数”“分数”和“有理数”的概念.看书了解有理数名称的由来.“统称”是指“合起来总的名称”的意思.试一试:按照以上的分类,你能作出一张有理数的分类表吗?你能说出以上有理数的分类是以什么为标准的吗?(是按照整数和分数来划分的)分类是数学中解决问题的常用手段,这个引入具有开放的特点,学生乐于参与学生自己尝试分类时,可能会很粗略,教师给予引导和鼓励,划分数的类型要从文字所表示的意义上去引导,这样学生易于理解。
数学人教版(2024)版七年级初一上册 1.2.1 有理数的概念 教案03
第一章有理数1.2.1 有理数的概念备课时间:上课时间:回想一下,目前为止我们学过哪些数?你所知道的数可以分成哪些种类,你是按照什么划分的?学生回答,并相互补充:有小学学过的整数、0、分数,也有负整数、负分数。
这就是全部的分数分类吗?小数呢?事实上,有限小数和无限循环小数都可以化为分数,因此它们也可以看成分数。
进一步地,我们还发现整数又可以写成分数的形式。
二、思考探究,获取新知【教学说明】我们把可以写成分数形式的数称为有理数。
知识点1 有理数的分类根据整数和分数来分类。
【教学说明】可加以引导,有理数可分为整数和分数两大类,那么整数又包含哪些数?分数呢?以上按整数和分数来分,那可不可以按性质(正数、负数)来分呢?我们把所有正数组成的集合,叫做正数集合;所有负整数组成的集合,叫做负数集合。
三、典例精析,掌握新知例1 指出下列各数中的正有理数、负有理数,并分别指出其中的正整数、负整数:跟踪训练:所有正有理数组成正有理数集合,所有负有理数组成负有理数集合,把下面的有理数填入它们属于的集合内。
15,-1/9,-5,7,0。
5,-80,12,-4。
2,2。
3。
正有理数集合:{ ⋯}。
负有理数集合:{ ⋯}。
知识点2 小数与有理数的联系按照定义,能够写成分数形式的数是有理数,那不能写成分数的数就不是有理数。
思考“不能写成分数的数”是哪些数呢?如2/3,−1/2,⋯这些分数是可以化成有限小数或无限循环小数。
同样地,有限小数和无限循环小数都能化为分数,也是有理数。
无限不循环小数(如π)不能化成分数,因此就不是有理数。
例2 :在-1.2,10%,0,+0.33 ̇,7.01001001…(每两个1之间0的个数逐次增加1)中,有理数共有()A.2个B.3个C.4个D.5个四、运用新知,深化理解1.在数0,2,-3,-1.2 中,属于负整数的是()A.0 B.2 C.-3 D.-1.22.-0.5不属于()A.负数B.分数C.负分数D.整数3.下列说法不正确的是()A.-0.5不是分数B.0是整数C. −1/5不是整数D.-2既是负数又是整数4.下列说法错误的是()A.负整数和负分数统称为负有理数B.正整数、负整数和0统称为整数C.正有理数和负有理数统称为有理数D.0是整数,但不是分数5.把下列各数分别填入相应的集合里.-2,0,0.314,25% ,11,0.3 ̇,+12/3.整数集合:{⋯}.分数集合:{⋯}.自然数集合:{⋯}.非正数集合:{⋯}.四、课堂小结填数集的两种方法(1)由数到集合:逐一分析每一个数,看这个数属于哪个集合,然后填入它所属的集合内.(2)由集合到数:逐一分析每个集合,然后从给出的数中找出属于这个集合的数填入.注意:同一个数可能分属于不同的集合.1.2.1 有理数1.整数和分数统称为有理数;2.有理数的分类:(1)按符号分(2)按照整数和分数来分。
人教版七年级上数学《有理数》教案
《有理数》教案一、教学目标(一)知识与技能1.掌握有理数的概念、分类、运算等基础知识。
2.能够正确进行有理数的加减乘除等基本运算。
3.初步掌握有理数运算的法则和运算律。
(二)过程与方法1.通过观察、比较、分析、归纳等方法,培养学生的逻辑思维能力。
2.让学生通过实际操作和小组合作探究,掌握有理数的概念和运算方法。
3.通过实例分析和练习,培养学生的运算能力和解决问题的能力。
(三)情感态度价值观1.让学生感受到数学与生活的联系,培养学生对数学的兴趣和热爱。
2.通过小组合作和实际操作,培养学生的合作意识和实践能力。
3.通过实例分析和探究,让学生感受到数学的科学性和实用性。
二、教学重点与难点(一)教学重点1.有理数的概念、分类、运算等基础知识。
2.有理数运算的法则和运算律。
3.实际应用中有理数的加减乘除等基本运算。
(二)教学难点1.有理数的概念的理解和运用。
2.有理数运算的法则和运算律的掌握和应用。
3.实际应用中有理数的加减乘除等基本运算的灵活运用。
三、教学方法与手段(一)教学方法1.讲授法:讲授有理数的概念、分类、运算等基础知识,引导学生进入学习状态。
2.探究法:通过实例分析和探究,让学生自主发现和理解有理数的运算方法和运算律。
3.练习法:通过大量的实例分析和练习,让学生掌握有理数的加减乘除等基本运算和解决实际问题的能力。
4.归纳法:让学生通过观察、比较、分析、归纳等方法,掌握有理数的运算方法和运算律。
5.互动式教学法:通过小组合作、探究、讨论、交流等方式,让学生在互动中学习、成长。
6.实例分析法:通过具体的实例分析,让学生理解和掌握有理数的加减乘除等基本运算在实际问题中的应用。
7.问题引导法:通过问题引导,激发学生的学习兴趣和思考能力,让学生在解决问题的过程中掌握知识和技能。
8.多媒体辅助教学法:利用多媒体技术,提高教学效果和学生的学习效率。
通过多媒体展示教学内容和实例,让学生更加直观地理解和掌握知识。
初中数学有理数教案【精选5篇】
初中数学有理数教案【精选5篇】学校数学有理数教案【篇1】教学目标:学问力量:理解有理数的概念,把握有理数的两种分类方法,能够按要求对给定的有理数进行分类。
过程与方法:通过本节的学习,培育同学正确的分类争论观点和分类力量。
情感、态度、价值观:通过本节课的学习,体验胜利的喜悦,保持学好数学的信念。
教学重点:把握有理数的两种分类方法教学难点:给定的数字将被填入它所属的集合中教学方法:问题导向法学习方法:自主探究法一、形势归纳学校我们学了整数和分数,上节课我们学了正数和负数。
谁能快速提出以下问题?1.有以下数字:15,-1/9,-5,2/15,-13/8,0.1,-5.22,-80,0,123,2.33(1)将以上数字填入以下两组:正整数集{}和负整数集{}。
你填完了吗?(2)将以上数字填入以下两个集合:整数集合{}和分数集合{}。
你填完了吗?称整数和分数为有理数。
(教导题,板书)二、自学指导同学自学课本,依据课本查找自学的机会提纲中问题的答案;老师先做必要的板书预备,再到同学中巡察指导,并了解把握同学自学状况,为展现归纳作预备。
附:自学提纲:1.___________、____、_______统称为整数,2._______和_________统称为分数3.____ ______统称为有理数,4.在1、2、3、0、-1、-2、-3、1/2、0.1、-0.5、-5/2中,整数: 、分数:;正整数:、负整数: 、正分数: 、负分数:.三、展现归纳1、找有问题的同学逐题展现自学提纲中的问题答案,同学说,老师板书;2、发动同学进行评价、补充、完善,老师依据每个题目的展现状况进行必要的讲解和强调;3、全部展现完毕后,老师对本段学问做系统梳理,关键点予以强调。
四、变式练习逐题出示,先让同学独立完成,再请有问题的同学汇报结果,老师板书,并发动其他同学评价、补充并完善,最终老师依据需要进行重点强调。
1.整数可分为:_____、______和_______,分数可分为:_______和_________.有理数按符号不同可分为正有理数,_______和________.2.推断下列说法是否正确,并说明理由。
人教版七年级数学上册1.2.1《有理数》教案
三、教学难点与重点
1.教学重点
-有理数的定义:强调有理数包括整数和分数,让学生理解整数和分数都属于有理数的范畴。
-有理数的数轴表示:培养学生通过数轴直观地认识有理数,理解数轴上的点与有理数的一一对应关系。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了有理数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对有理数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的课堂上,我们学习了有理数的相关知识。回顾整个教学过程,我觉得有几个地方值得反思和改进。
(1)同号相加:两个正数或两个负数相加,取相同符号,并把绝对值相加。
(2)异号相加:一个正数与一个负数相加,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
(3)加减混合运算:根据运算顺序,先计算括号内的加减法,再计算括号外的加减法。
二、核心素养目标
1.培养学生的数感:通过有理数的认识,使学生在数轴上理解和表示有理数,增强对数的大小的敏感度,提高数感。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解有理数的基本概念。有理数是可以表示为两个整数之比的数,包括整数和分数。它是数学运算的基础,广泛应用于日常生活和科学技术中。
2.案例分析:接下来,我们来看一个具体的案例。以购物找零为例,讲解有理数在实际中的应用,以及如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调有理数的分类和加减法法则这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
数学人教版七年级上册1.2.1有理数教案
课题:1.2.1有理数教学目标:知识与技能:1、在学习了负数的基础上,掌握了有理数的概念,能对有理进行分类;2、确定分类的标准,知道标准与分类结果的相关性,理解“集合”的含义;过程与方法:3、通过体验分类的过程,理解分类在数学上的用处;情感态度价值观:4、通过有理数的学习,提高解决问题的能力,理解数学来源于生活,激发学习数学的兴趣。
教学重点:正确理解有理数的概念.教学难点:确定分类的标准并按照定的标准进行分类教学过程:一、新课引入:复习已学知识我们学过哪几种数?每种数聚几个例子正整数:……正分数:……零:0负整数:……负分数:……二、新课讲解:正整数、0、负整数统称整数,正分数和负分数统称分数.整数和分数统称有理数[问题3]:上面的分类标准是什么?我们还可以按其它标准分类吗?练一练熟能生巧1、任意写出三个数,标出每个数的所属类型,同桌互相验证.2、把下列各数填入它所属于的集合的圈内:15,- ,-5, , ,0.1,-5.32,-80,123,2.333.正整数集合负整数集合正分数集合负分数集合每名学生都参照前一名学生所写的,尽量写不同类型的,最后有下面同学补充.在问题2中学生说出按整数和分数来分,或按正数和负数来分,可以先不去纠正遗漏0的问题,在后面分类是在解决.教师可以按整数和分数的分类标准画出结构图,,而问题3中的分类图可启发学生写出.在练习2中,首先要解释集合的含义.练习2中可补充思考:四个集合合并在一起是什么集合?(若降低难度可分开问)练习3.任意写出5个正数与6个负数,并分别把它们填入相应的大括号里:正数集合:{ …},负数集合:{ …}.练习4.把下列各数分别填在相应的大括号里(数与数之间用逗号分开)正数集合:{ …} 负数集合:{ …}三、课堂小结:用正数和负数可以简明地表示两种具有相反意义的量。
小学里所学的除0以外的数,即大于0的数叫做正数;在正数前面加上“-”号的数,叫做负数。
人教版数学七年级上册《 第一章 有理数 》教学设计
人教版数学七年级上册《第一章有理数》教学设计一. 教材分析人教版数学七年级上册《第一章有理数》是学生在初中阶段接触数学的基础知识,主要介绍有理数的概念、分类、运算及应用。
本章内容为学生后续学习实数、代数式、方程等知识打下基础。
教材内容紧凑,逻辑清晰,通过丰富的例题和练习,帮助学生掌握有理数的相关知识。
二. 学情分析七年级的学生已经具备一定的数学基础,但对有理数的概念和运算可能还存在一定的困惑。
因此,在教学过程中,要注重引导学生理解有理数的概念,突破运算难点,提高学生的数学思维能力。
三. 教学目标1.了解有理数的概念,掌握有理数的分类。
2.熟练掌握有理数的加、减、乘、除运算方法。
3.能够运用有理数解决实际问题,提高解决问题的能力。
4.培养学生的逻辑思维能力,提高学生的数学素养。
四. 教学重难点1.有理数的概念和分类。
2.有理数的运算方法。
3.有理数在实际问题中的应用。
五. 教学方法1.采用问题驱动法,引导学生主动探究有理数的概念和运算方法。
2.运用实例分析法,让学生通过实际问题理解有理数的应用。
3.采用合作学习法,培养学生的团队协作能力和沟通能力。
4.运用多媒体辅助教学,提高教学效果。
六. 教学准备1.准备相关课件、教案、例题及练习题。
2.准备教学素材,如黑板、粉笔、投影仪等。
3.提前让学生预习教材,了解基本概念。
七. 教学过程1.导入(5分钟)利用生活实例引入有理数的概念,如温度、海拔等,激发学生的学习兴趣。
2.呈现(10分钟)讲解有理数的概念、分类,并通过PPT展示相关知识点,让学生初步了解有理数。
3.操练(10分钟)讲解有理数的加、减、乘、除运算方法,并通过例题让学生现场练习,巩固所学知识。
4.巩固(10分钟)布置一些练习题,让学生独立完成,检验学习效果。
教师及时解答学生遇到的问题。
5.拓展(10分钟)利用多媒体展示一些实际问题,让学生运用有理数解决,提高学生的应用能力。
6.小结(5分钟)总结本节课所学知识点,强调重点和难点。
人教版七年级上册数学《有理数》教案
一、教学目的1.知识与技能:使学生理解有理数的概念,掌握正数、负数、零的定义及分类;能够熟练地在数轴上表示有理数,理解数轴上点的位置与有理数大小的对应关系;会进行有理数的加、减、乘、除(不含负数参与乘法)的基本运算。
2.过程与方法:通过生活中的实例引入有理数概念,培养学生的抽象思维能力;通过小组合作、动手操作等方式,让学生体验数轴作为数学工具在有理数表示与比较中的应用;引导学生探索有理数运算法则,培养其归纳总结能力和逻辑推理能力。
3.情感态度与价值观:激发学生对数学学习的兴趣,培养严谨的科学态度;通过有理数的学习,让学生认识到数学与生活的紧密联系,增强应用数学的意识。
二、重点难点●重点:有理数的概念及分类;数轴上有理数的表示与大小比较;有理数的加减运算法则及实际应用。
●难点:理解负数在数轴上的表示及其与正数、零的相对位置关系;有理数加减运算中符号的确定及运算法则的应用。
三、教学方法1.情境教学法:通过生活中的实例(如温度、海拔高度、收支情况等)引入有理数的概念,使抽象的数学概念具体化。
2.直观演示法:利用多媒体展示数轴,动态演示有理数在数轴上的位置及移动过程,帮助学生直观理解。
3.合作学习法:组织学生分组讨论,共同解决问题,如设计有理数加减法的练习题,小组内互相检查答案,促进思维碰撞。
4.探究学习法:引导学生通过观察、归纳、总结等方式,自主探索有理数的运算规律。
四、教学过程1.导入新课(5分钟)o通过生活中的实例(如天气预报中的温度、收支记录等)引出有理数的概念,激发学生的学习兴趣。
1.新知讲授(20分钟)o有理数概念:明确正数、负数、零的定义及分类。
o数轴表示:利用多媒体展示数轴,介绍如何在数轴上表示有理数,理解点与数的对应关系。
o大小比较:通过数轴上的位置关系,讲解有理数的大小比较方法。
o有理数加减运算:介绍有理数加减法的运算法则,特别是符号的确定方法,并通过例题讲解。
1.巩固练习(15分钟)o设计不同层次的有理数加减运算练习题,包括基础题、提高题和拓展题,供学生练习。
有理数教学设计人教版七年级数学上册
1.2.1 有理数【课标要求及解析】:要求:能用数轴上的点表示有理数,会比较有理数的大小,借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母)解析:从标有刻度的温度计表示温度高低这一事例出发,探数轴的画法和用数轴上的点表示数的方法,初步向学生渗透数形结合的数学思想,以使学生借助直观的图形来理解有理数的有关问题。
【教学目标及核心素养】:教学目标:1.掌握有理数的定义以及有理数的两种分类方法.2.了解分类标准与分类结果的相关性,初步了解“集合”的含义3.体会分类是数学上常用的方法.核心素养:分类的标准不同,结果也不同.体会数学分类的思想.【教学重难点】:重点:理解有理数的概念.难点:会对有理数进行分类.【教学准备】:课件,教具【课时安排】:1课时【教学方法】:讨论交流法【教学过程】:一、导入新课:情境引入问题现在,我们已经知道除了小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数?学生列举:11,,-7,-,-7,0,,2/7,-,-3/8,……问题:能否将写的数按照以下类型分类?正整数负整数零正分数负分数二、探究新知:三、巩固练习:1.下列说法正确的是()2.写出下列各数中的负数、正数、整数、分数 .15,-23,1,-2,-,0,1,56%,0.03,4/13,+5.【课堂小结】:1、今天你获得了哪些知识?2、你对本节课还有哪些困惑和建议?【作业布置】:【板书设计】:1.2.1 有理数有理数的概念有理数按照一定的标准进行分类【教学反思】:。
人教版数学七年级上册1.2有理数教学设计
3.鼓励学生在课后继续思考有理数在生活中的应用,将所学知识运用到实际中,提高数学素养。
五、作业布置
为了巩固本节课所学的有理数知识,培养学生的数学思维能力,特布置以下作业:
1.书面作业:
a.请学生完成课本P23-25的练习题1、2、4,巩固有理数的加减乘除运算。
1.学生在数轴理解方面的差异,部分学生可能对数轴的认识不够深刻,需要通过形象生动的教学手段帮助学生建立正确的数轴观念。
2.对有理数运算规则的掌握程度,部分学生可能对混合运算感到困惑,教师应针对这一情况,设计不同层次的习题,引导学生逐步掌握运算方法。
3.学生在情感态度上可能存在畏难情绪,教师应关注学生的心理变化,适时给予鼓励和指导,帮助他们克服困难,建立自信。
4.针对学生在学习过程中表现出的个体差异,教师应采取分层教学策略,关注每一个学生的成长,使他们在原有基础上得到提高。
三、教学重难点和教学设想
(一)教学重难点
1.重点:有理数的概念、分类及其加减乘除运算规则;数轴的理解和应用;相反数、绝对值的定义及性质。
2.难点:有理数的混合运算,特别是正负数的加减运算;数轴上点的移动与有理数的关系;理解并运用相反数和绝对值解决实际问题。
人教版数学七年级上册1.2有理数教学设计
一、教学目标
(一)知识与技能
1.理解有理数的定义,掌握有理数的分类,包括整数、分数以及正数、负数的概念。
2.掌握有理数的加减乘除运算规则,能够熟练地进行混合运算,解决实际问题。
3.理解有理数的数轴表示方法,能够用数轴辅助解题,进行数的大小比较、距离计算等。
4.理解相反数、绝对值的概念,掌握其性质和运算方法,能够应用于实际问题的解决。
人教版七年级数学上册-有理数教案
1. 2 有理数1. 2.1 有理数[教学目标](一)知识与技能:1.能说出有理数的意义。
2,能把给出的有理数按要求分类,知道数0在有理数分类中的作用。
(二)过程与方法:经历按照不同标准对有理数分类的过程,培养归纳概括的数学思想方法。
(三)情感态度价值观:通过有理数的分类,得到对称美的享受。
[教学重点与难点]重点:正确理解有理数的概念.难点:正确理解分类的标准和按照定的标准进行分类.一、情境导入某天毛毛看报纸,见到下面一段内容:冬季的一天,某地的最高气温为6C,最低气温达到—10C,平均气温是0C,而同一天北京的气温—3c〜7C,这里出现了哪些数?我们到目前为止学过了哪些数?你能试着将它们进行分类吗?今天我们要把大家学过的数进行分类命名.一、知识链接1.把下列相等的数用线连起来:2.有限小数(如0.1,1.5)和无限循环小数(如0.3)都可以化为.在以后的学习中,我们把小学学过的小数(有限小数和无限循环小数)都看成是 .3.思考:兀=3.1415926...,能化为分数吗?答:.正整数正分数引入负数之后,我们学过的数可以怎么分类?【自主归纳】整数和分数统称为二、合作探究探究点一:有理数的有关概念4 _ _ 5卜列各数:—5, 1,双一7, °,1-42, + 101, - 0.05 , - 9 中,()3A.只有1, - 7, +101, — 9是整数B.其中有三个数是正整数C.非负数有 1, 8.6 , + 101 , 0D.只有—5,—45,- 0.05是负分数解析:根据有理数的有关概念,整数包括: 1 , —7, 0, +101, —9,故选项A 错误;5 .. 正整数只有两个,即 1和+ 101,故选项B 错误;非负数包括有 1, 8.6 , + 101, 0, 故 选项C 错误;负分数包括—4, — 42, - 0.05 ,故选项D 正确.故选D.53 方法总结:当有理数只含有单个符号时,带负号的数即为负数.然后再区分是整数还是 分数.探究点二:有理数的分类 把下列各数填入相应的集合内.一 10,一… … 3 0, 3.14 , — 67, 0.618 , — 1, 0.3080080008 …正数集合{…}; 负数集合{…}; 整数集合{…}; 分数集合{…}. 解析:要将各数填入相应的集合里, 首先要弄清楚有理数的分类标准, 其次要弄清楚每 个数的特征.在填入相应的集合时,要注意每个有理数,身兼不同的身份,所以解答时不要 顾此失彼.解:正数集合{8, 33, —, 2, 3.14 , 3, 0.618 , 0.3080080008 ....... };4 101 71 .负数集合{ — 10, —72,—10% —67, - 1…}; 整数集合{ — 10, 8, 2, 0, —67, - 1 …};8, — 71, 33, — 10% -3-, 2, ' 2 4 101分数集合{—72", 3:, —10% 101,3.14, 7, 0.618, 0.3080080008 ....... }.方法总结:在填数时要注意以下两种方法:(1)逐个考察给出的每一个数,看它是什么数,是否属于某一集合;(2)逐个填写相应集 合,从给出的数中找出属于这个集合的数,避免出现漏数的现象.三、板书设计 1 .有理数的概念(1)整数:正整数、零和负整数统称整数.(2)有理数:正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数.2 .有理数的分类①按定义分类为:—一负整数 负有理数 负分数本节课是有理数分类的教学, 要给学生较大的思维空间, 促进学生积极主动地参加学习 活动,亲自体验知识的形成过程. 避免教师直接分类带来学习的枯燥性. 要有意识地突出“分 类讨论”数学思想的渗透, 明确分类标准不同, 分类的结果也不相同, 且分类结果应是无遗 漏、无重复的.板书设计1.1正4t 与负数(2)「正整数(也叫自然数)1,2,3,4……1,整数负整数 一 1,-1, 一3,-4…1零 0②按性质分类为:有理数正整数 整数零负整数有理数 ,一正整数 正有理数正分数 分数片 负分数正分数8 , -5.2(即+5 -1)•**分如负分数-4/,r$-3.5(即-3十)…整数和分数统称为有理数2.有理数的分类「「正整效整数0(1)有理数( I负核数I分噜襄卜有理数{瑟之(2)有理4b 0负有理数{:屋I货分数学生练习 _________________________________________。
初一上册数学《有理数》教案
初一上册数学《有理数》教案教学目标:1. 理解有理数的定义和性质,能举例说明有理数的类型;2. 掌握有理数加、减、乘、除的运算法则,能解决实际问题;3. 学会在数轴上表示有理数。
教学重点:1. 有理数的定义和性质;2. 有理数的加减乘除。
教学难点:1. 有理数的加减乘除;2. 四则运算的综合应用。
教学方法:板书、讲解、举例、练习、讨论、课堂互动。
教学过程:一、引入新课1. 通过课前尝试来了解学生对有理数的认知和掌握程度,然后让他们分享答案和认识。
2. 让学生思考在日常生活中哪些数字是有理数,哪些数字不是。
3. 引导学生思考有理数的定义。
二、概念讲解1. 让学生依据自己的认识和前面引导的思考,进一步认识什么是有理数。
2. 讲解有理数的定义、正负数的区别和有理数的类型。
3. 性质:加、减、乘、除。
三、课堂互动1. 在白板上列举加减乘除有理数的例题,让学生认真阅读并思考,然后问学生应该如何解题。
2. 学生自主做题,把答案对大家商量。
四、练习1. 练习册上找一些有关的例题,让学生练习和思考。
2. 常考考题集锦(可自行扩展)五、巩固训练1. 通过一些需要运用四则运算的实际问题,巩固学生对有理数的认识和运算能力。
2. 让学生交换设想题,在课堂上分享解题方法和思路。
六、小结1. 对这节课的教学进行总结和评价,同时鼓励学生多加练习,加深对有理数的认识和掌握。
2. 确定下一发教学计划的安排。
教学资源:1. 课本;2. 练习册;3. 板书工具。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数
[教学目标]
1. 借助数轴,使学生了解相反数的概念
2. 会求一个有理数的相反数
3. 激发学生学习数学的兴趣.
[教学重点与难点]
重点: 理解相反数的意义
难点: 理解相反数的意义
[教学设计]
提问
1、数轴的三要素是什么?
2、填空:
数轴上与原点的距离是2的点有个,这些点表示的数是;与原点的距离是5的点有个,这些点表示的数是。
新课
相反数的概念:
只有符号不同的两个数,我们称它们互为相反数,零的相反数是零。
概念的理解:
(1) 互为相反数的两个数分别在原点的两旁,且到原点的距离相等。
(2) 一般地,数a的相反数是, 不一定是负数。
(3) 在一个数的前面添上“-”号,就表示这个数的相反数,如:-3是3的相反数,-a是a的相反数,因此,当a是负数时,-a是一个正数
-(-3)是(-3)的相反数,所以-(-3)=3,于是
(4) 互为相反数的两个数之和是0
即如果x与y互为相反数,那么x+y=0;反之,若x+y=0, 则x与y互为相反数
(5) 相反数是指两个数之间的一种特殊的关系,而不是指一个种类。
如:“-3是一个相反数”这句话是不对的。
例1 求下列各数的相反数:
(1)-5 (2) (3)0
(4) (5)-2b (6) a-b
(7) a+2
例2 判断:
(1)-2是相反数
(2)-3和+3都是相反数
(3)-3是3的相反数
(4)-3与+3互为相反数
(5)+3是-3的相反数
(6)一个数的相反数不可能是它本身
例3 化简下列各数中的符号:
(1) (2)-(+5)
(3) (4)
例4 填空:
(1)a-4的相反数是,3-x的相反数是。
(2) 是的相反数。
(3)如果-a=-9,那么-a的相反数是。
例5 填空:
(1)若-(a-5)是负数,则a-5 0.
(2) 若是负数,则x+y 0.
例6 已知a、b在数轴上的位置如图所示。
(1) 在数轴上作出它们的相反数;
(2) 用“<”按从小到大的顺序将这四个数连接起来。
例7 如果a-5与a互为相反数,求a.
练习:教材14页
小节:相反数的概念及注意事项
作业:18页第3题。