施工临时贝雷梁钢便桥计算书
贝雷梁便桥计算书
贝雷梁施工便桥设计计算书中铁十一局集团第四工程有限公司二〇一六年三月贝雷梁便桥计算书1、便桥设计依据1.1、设计依据和设计规范《公路桥涵设计通用规范》(JTG D60-2004) 《钢结构设计规范》(GB 50017-2003) 《港口工程荷载规范》(JTJ215-98) 1.2、技术标准1)荷载:按80t 履带吊吊重20t 荷载验算,其中80t 履带吊吊重20t 为栈桥设计的主要荷载。
2)宽度:考虑施工车辆通行需求和经济性因素,按行车道8m 宽布置,每孔跨度12m ,5跨一联。
3)水流力:按流速1.75m/s 考虑。
4)标高:按照设计高潮位+4.75m 设计,栈桥顶面标高设计为+7.0m 。
5)栈桥设计车速:15km/h 。
6)风荷载:工作状态:13.8m/s ;非工作状态:40m/s 。
7)型钢、钢管桩允许应力 抗拉、压 []188.5MPa σ= 抗弯 []188.5w MPa σ= 抗剪 []110MPa τ=单排单层贝雷梁容许弯矩[]788.2M kN m =⋅ 单排单层贝雷梁容许剪力[]245.2Q kN = 2、便桥结构设计 2.1、技术标准(1)设计恒载:栈桥结构自重(2)验算活载:80t履带吊(自重80t+吊重20t)。
10方混凝土罐车栈桥上通行,载重时重量40t 。
总重:400 kN ,轮距:1.8 m,轴距:3.45 m +1.35m前轴重力标准值:60kN,后轴重力标准值:2×170kN前轮着地面积:0.30m×0.20m,后轮着地面积:0.60m×0.20m(3)设计行车速度:15km/h(4)设计使用寿命:5年2.2、便桥结构形式便桥桥面行车道宽度8.0m。
桥面系由上往下依次为10mm组合型花纹钢板,工12.6小纵梁,工22b横向分配梁。
便桥纵梁采用8排单层321型贝雷梁,间距为0.9+1.3m+0.9m+1.3m+0.9m+1.3m+0.9m,贝雷梁跨度12m,采用5跨一联布置,中间设置刚性墩。
贝雷架钢便桥计算书30米跨
30m贝雷架钢便桥计算书1.工程概况本桥适用于30m下承式贝雷架钢便桥。
桥梁主体结构为321型三排单层加强贝雷架。
便桥净宽4.2m,行车道净宽4m,人行道宽净宽1m。
桥面铺设8mm 厚Q235钢板,面板上沿桥向横向焊接φ12的圆钢,间距15cm,面板下设加强肋10#工字钢,间距25cm,工字钢底部铺设横向分配梁28b#工字钢,横穿贝雷架,纵向间距为1.5m。
2.设计参数2.1设计荷载设计荷载按照公路I级,考虑到贝雷架钢便桥长30m,采用车道荷载进行桥梁结构设计计算。
贝雷架钢便桥结构图见图1,立面图见图2。
图1 贝雷架钢便桥结构图(单位:mm)图2 贝雷架钢便桥立面图(单位:mm)2.2受力模型建立受力模型,如图3。
图3 桥梁受力模型(单位:mm)对桥梁受力模型进行简化,简化为简支梁受力模型(偏于安全),见图4。
图4 简化后的受力模型(单位:mm)3.加强肋10#工字钢受力验算3.1工字钢及面板参数构件参数:理论重量11.261kg/m(0.11261kN/m),d=4.5mm,Ix:Sx= 8.59,Wx=49cm3,[σ]=145Mpa/1.2=120.8 Mpa,[τ]=85Mpa/1.2=70.8Mpa,安全系数取1.2,E=206GPa,Ix=245cm4,8mm厚钢板0.628kN/m2。
3.2荷载组成根据公路I级车道荷载的均布荷载标准值qk=10.5kN/m,桥涵计算跨径小于或等于5m时,Pk=180kN;桥涵计算跨径等于或大于50m时,Pk=360kN,桥涵计算跨径大于5m,小于50m时,Pk值采用内插法求得。
因计算跨径为1.5m,故集中力Pk=180kN。
荷载组合采用1.2恒载+1.4活载。
3.3受力计算以简支梁模型计算,以跨中1.5m最不利位置进行受力分析,以单根工字钢进行受力计算。
截取单元见图5。
图5 截取单元的断面图3.3.1恒载计算(1)面板重力0.628×4×1.5=3.768kN(2)10#工字钢重力(0.11261kN/m)0.11261×1.5×(4/0.25+1)=2.87kN则单根工字钢每延米重力q1=(3.768+2.87)/((4/0.25)+1)=0.26kN/m(3)恒载弯矩M1(组合系数1.2)M1=1.2×0.125×0.26×1.5×1.5=0.09kN·m图6 恒载作用下均布力、剪力及弯矩图3.3.2活载计算根据公路I级车道荷载的均布荷载标准值qk=10.5kN/m,桥涵计算跨径小于或等于5m时,Pk=180kN;桥涵计算跨径等于或大于50m时,Pk=360kN,桥涵计算跨径大于5m,小于50m时,Pk值采用直线内插求得,计算跨径为1.5m,故Pk=180kN。
贝雷便桥施工方案及计算书2
钢便桥施工方案本合同施工便道8号桥处、3号桥处、荆山分离K0+240处、本标段起点与3标交接处(原胜利桥东60米处)计划各架设1座钢便桥,根据现场勘察和测量放样,3号桥及8号桥跨径设计为2×12m、荆山分离K0+240处跨径设计为1×12m、本标段起点与3标交接处(原胜利桥东60米处)跨径设计为2×15m。
设计荷载:挂车-80T一、便桥结构形式1、下部结构8号桥处3号桥处以及荆山分离K0+240处便桥基础采用d=20cm的松木作为桩基,按梅花状布置,打入深度10m,二边共20根桩;松木桩上做C20的混凝土尺寸为6m×1。
5m×1。
5m的桥台。
本标段起点与3标交接处(原胜利桥东60米处)便桥基础采用d=40cm的钢管,桥头位置设置2排,桥墩位置设置1排,每排4根,按一字型布置,钢管桩长度为8m,钢管顶面焊接40b工字钢作为盖梁.2、上部结构钢便桥纵梁由双排单层上下加强贝雷组成,每节4片贝雷。
横梁用28a工字钢,桥面系为U形钢桥面板(标准、中央).二、施工工艺一)8号桥处3号桥处以及荆山分离K0+240处便桥1、桩基1。
1、木桩选材1、选用松木,长度不小于10m,桩身弯曲度不超过1%;2、原木大小头的相差率不超过桩长的1%;3、原木上有腐朽、虫害及漏节等瑕点不予使用。
1。
2、木桩的制作1、除去原木上的枝干和树皮,削去突出部分,不需刨光;2、砍削桩尖:将桩尖为平尖,加工成三棱或四棱锥形,长度为20~30cm;3、锯平桩顶:桩顶平整,桩顶面垂直于桩轴中线。
桩顶设铁桩箍;4、当木桩不够长时必须接长,接头面须平整与桩轴线垂直.每桩只允许有一个接头。
1。
3、桩接头构造和位置应符合下列要求:1、接头在承台或局部冲刷线以下不小于1m;2、相邻桩接头的高度差不得小于0.75m;3、在一个基础中,同一水平面内的接头数不得超过2个;4、接头的构造应符合设计要求,接头处桩的厚度不小于20cm1。
贝雷梁钢便桥检算书(6.30)
便桥检算方案拟定:全桥共两跨,桥跨组合3.5m+3.5m,采用3.5米预制混凝土板梁,桥面宽度为6米,便桥限载为50t。
1号墩及0、2号台均为实体墩、扩大基础。
边梁宽1.35m,中梁宽1.5m。
梁高均为0.4 m,梁体采用C30钢筋混凝土一、荷载分析:(一)恒载:板梁自重:(折算为集中荷载)1、边梁:q1 =1.2×0.4×1.35×3.5 ×25=56.7KN2、中梁:q2 =1.2×0.4×1.5×3.5×2.5 =63KN(二)活载:1、双50 t2、作用于单片梁上为:25 t3、作用于墩台处为:50×2=100 t(三)荷载内力分析1.恒载内力分析:(1)边梁:q1 =56.7KNM max=49.7 KN mQ max= 28.4 KN(2)中梁:q2 =63KNM max=55.2 KN mQ max= 31.5 KN2. 活载内力分析:作用于单片梁上荷载为250 KN :荷载作用于跨中为最:M max =218.8 KNm荷载作用于梁端为最:Q max = 250 KN3、荷载组合分析:恒载+活载:(1)边梁: M max =49.7+218.8=268.5 KN mQ max =28.4+250=278.4 KN(2)中梁:M max =55.2+218.8=274 KN mQ max =31.5+250=281.5 KN二、板梁检算:(一)配筋计算:1、受压钢筋:(1)边梁:)'0('')20(1M s a h s A y f xh bx c f -+-≤α268.5×106≤1.0×11.9×1350×(400/2×0.8)×(350-160/2)+ 300×A ‘S ×(350-50)A ‘S ≥-4727㎜2说明不需要配置受压钢筋,可按构造配筋。
临时便桥计算书
可门4#、5#泊位临时便桥计算书1、设计说明因福州港可门作业区4#、5#泊位码头工程施工需要,在1#引桥的东侧需搭设一座临时钢便桥,桥长120m,宽4.0m,沿1#引桥长度方向布置。
便桥第一排桩轴线距北围堤轴线40.75m,其内侧桩中心距1#引桥边线2m。
可门4#、5#泊位码头工程临时便桥为贝雷梁钢栈桥,桥面宽度4.0m,为方面水上混凝土浇注和施工材料运输,栈桥桥面与引桥空心板安装后面标高齐平。
栈桥跨度采用8m,上部采用2榀4片贝雷纵梁(非加强单层双排),2榀贝雷纵梁按间距布置,横向每3m间距采用10号槽钢加工支撑架连成整体;分配横梁采用25a型工字钢,间距为0.75m;桥面系采用22a型槽钢(卧放),横断面布置18根;基础采用υ630×8mm钢管桩,为加强基础的整体性,每排桥墩的钢管桩采用12号槽钢连成整体,每排墩采用2根钢管桩,墩顶横梁采用36a 型工字钢。
考虑水上小型施工船只能够自由出入,桩顶标高设计为+3.9m。
栈桥设计荷载采用8m3混凝土搅拌运输车(满载),混凝土搅拌运输车活载计算时采用荷载冲击系数1.15及偏载系数1.2,钢管桩按摩擦桩设计。
根据现场调查及钻探资料,施工区水深约为3.5~20m,淤泥厚度12~30m,第一层土为灰黄色淤泥混砂,厚度1~4m,第二层土为深灰色淤泥,厚度26~29m。
计算时,上述土层的摩擦力均按15Kpa取值。
2、贝雷纵梁验算栈桥总宽4m,计算跨径8m,栈桥自上而下分别为υ630×8mm钢管桩、36a 型工字钢下横梁、“321”军用贝雷梁、25a型工字钢分配横梁(间距0.75m)及22a型槽钢桥面。
单片贝雷:I=250497.2cm4,E=2×105Mpa,W=3578.5cm3[M]=788.2kn·m,[Q]=245.2kn则4EI=2.004×106 kn·m22.1荷载布置2.1.1上部结构恒载(按4m宽计)(1)22a槽钢:18×24.99×10/1000=4.50 kn/m(2)25b型工字钢分配横梁:42×6×10/1000/0.75=3.36 kn/m(3)“321”军用贝雷梁:每片贝雷重287kg(含支撑梁、销子等):287×6×10/3/1000=5.74 kn/m(4)36a型工字钢下横梁:6×60×10/1000=3.6 kn/m2.1.2活载(1)8m3混凝土搅拌运输车(满载):车重20t,8m3混凝土20t(2)人群:不计考虑栈桥实际情况,同方向车辆间距大于15m。
贝雷梁便桥设计检算书.doc
贝雷梁便桥设计检算书一、工程概况xx河道湍急,项目桥梁工程多为跨江桥。
故设在xx1#、2#和3#、4#桥之间分别设置一座施工便桥,桥长均为21m 、净宽均为3.75m、限载50t 。
二、检算书(一)基本数据及说明1、便桥允许通行能力及载重在同一时间只允许一辆车位于便桥上,车辆自重加装载重量总计不超过50t ,限速5 km/ h ,严禁在便桥范围内急刹车,取Q 1 =500kN 。
2、便桥基本数据(1)自重:贝雷片纵梁:p 1 = 4.73kN /m⋅21m =99.33kN横向连接及钢板桥面:p2=[(14.71 cm2 ⋅12 +187.5 cm2)×21 m + 46.48 cm2×5.20 m×15⋅]×7.85=106.13kN桥台及及基础:p3 = 12.4 m3⋅ρ C25混凝土+26.5m 3⋅ρ浆砌片石= 86kN(2)跨度:便桥采用贝雷片纵梁四排下加强的组拼形式,两桥台支点中心距20.6m,纵梁总长21m,采用7节贝雷架拼装成 4 排加强型,其容许弯矩[W]= 4729.0kN.m ,容许剪力[Q]= 980.8kN ,自重荷载集度q1 = 4.73kN /m。
(3)桥面系荷载集度:() /m kN 63.101821q =+=p p (二)便桥检算1、横向连接强度检算最不利状况:当满载车行于跨中时荷载 P max = kQ 1=1.2×500kN = 600kN式中 k 动载系数,取1.2Q 1满荷载总重计算图式(按最不利情况并结合现场实际情况组合)及结果如下:q=10.625kNP=600kN (弯矩最大) R=96KN(剪力)R=396KN(弯矩) P=600kN (剪力最大)R=396KN(弯矩)R=696KN(剪力)注:图中红色表示活载移到端部剪力最大组合情况。
Q max = p max +=⨯2q L 600+10.63×21/2=711.56kN < [Q ]=4×24.52×0.9=882.7kN M max = p ·8q 22L L + = 3735.7kN /m <[M ]= 4×1687.5×0.9 = 5323kN ·m 满足要求!2、横向连接挠度检算f = f 1+ f 2 + f 3式中: f 1 自重W 引起的挠度;f 1=X47200X10384X2.1X5715X10.625X2384q 53-44=EI L = 5.5493mmf 2外荷P 引起的挠度:f 2 =mm EI L 80.6X4577200X10384X7X2.1X 16X600X21n 384q 163-33== f 3销孔间隙引起的挠度;节数n = 7,销孔间隙△L = 0.159cm ,桁高h = 150cm 。
贝雷梁钢便桥计算书
贝雷梁钢便桥计算书峃⼝隧道钢栈桥计算书1、⼯程概况本施⼯便桥采⽤321型单层上承式贝雷桁架,栈桥0#桥台与⽼56省道相连,6#桥台位于峃⼝隧道起点位置,横跨泗溪。
便桥孔跨布置为10m+5*15m,全长85⽶,桥⾯净宽6⽶,⼈⾏道宽度,纵向坡度+3%,桥⾯⾄河床⾯净⾼10⽶,⾄⽔⾯净空为⽶(图 1 为钢栈桥截⾯图)。
钢栈桥桥⾯系主体结构由δ=10 mm 花纹钢板、I10 ⼯字钢纵梁(间距 m)、I20 ⼯字钢横梁(长,间距 m)组成。
桥⾯板与⼯字钢采⽤⼿⼯电弧焊焊接连接,桥⾯系布置于贝雷桁梁之上,与贝雷桁梁之间⽤U 型螺栓固定。
贝雷桁梁由贝雷⽚拼制⽽成,横向设置6⽚,间距,贝雷⽚之间采⽤⾓钢⽀撑花架连接成整体。
本桥基础为明挖基础,基础为7××的钢筋砼,扩⼤基础必须坐落于河床基岩上,且基础顶标⾼低于河床。
基础上部墩⾝均采⽤φ630 mm(δ=8 mm)钢管,采⽤双排桩横桥向各布置 2 根,钢管桩之间由平联、斜撑连接。
钢管桩顶设双I32 ⼯字钢分配梁。
本桥基础设计为明挖基础,基础采⽤C25钢筋砼,钢管桩位于砼基础上与预埋钢板焊接牢固,在此不做计算。
图1 钢栈桥截⾯图(单位:mm)2、计算⽬标本计算的计算⽬标为:1)确定通⾏车辆荷载等级;2)确定各构件计算模型以及边界约束条件;3)验算各构件强度与刚度。
3、计算依据本计算的计算依据如下:[1] 黄绍⾦, 刘陌⽣. 装配式公路钢桥多⽤途使⽤⼿册[M]. 北京: ⼈民交通出版社,2001[2] 《钢结构设计规范》(GB 50017-2003)[3] 《公路桥涵设计通⽤规范》(JTG D60-2004)[4] 《公路桥涵钢结构及⽊结构设计规范》(JTJ025-86)4、计算理论及⽅法本计算主要依据《装配式公路钢桥多⽤途使⽤⼿册》(黄绍⾦,刘陌⽣着.北京:⼈民交通出版社,)、《钢结构设计规范》(GB 50017-2003)、《公路桥涵设计通⽤规范》(JTG D60-2004)、《公路桥涵钢结构及⽊结构设计规范》(JTJ025-86)等规范中的相关规定,通过MIDAS/Civil 2012结构分析软件计算完成。
钢便桥贝雷梁工程量计算
钢便桥贝雷梁工程量计算
贝雷纵梁验算
栈桥总宽4m,计算跨径为20m。
栈桥结构自下而上分别为:φ219×8mm 钢管桩、28a型工字钢下横梁、“321”军用贝雷梁、25b型工字钢分配横梁(间距0.75m)、22a型槽钢桥面。
单片贝雷:I=250497.2cm4,E=2×105Mpa,W=3578.5cm3
[M]=788.2 kn·m, [Q]=245.2 kn
则4EI=2004×106 kn·m2
(一)荷载布置
1、上部结构恒载(按4m宽计)
(1)22a型槽钢:18×24.99×10/1000=4.50kn/m
(2)25b型工字钢分配横梁:42.0×6×10/1000/0.75=3.36kn/m
(3)“321”军用贝雷梁:每片贝雷重287kg(含支撑架、销子等):
287×4×10/3/1000=3.83kn/m
(4)28a型工字钢下横梁:6×43.4×10/1000=2.60 kn/根
2、活载
(1)汽-20级
(2)8m3混凝土搅拌运输车(满载):车重20t,8m3混凝土19.2t (3)人群:不计
考虑栈桥实际情况,同方向车辆间距大于15m,即一跨内同方向半幅桥内**多只布置一辆重车。
贝雷便桥施工方案及计算书2
贝雷便桥施工方案及计算书2一、项目概况1.1 项目背景贝雷便桥项目位于XX省XX市,是连接两座城市的重要交通枢纽,为了改善当地交通状况,特制订此次便桥施工方案及计算书。
1.2 项目目标本项目的主要目标是在保障道路通行的情况下,实现便桥的施工并保证施工质量,同时尽量减少对周边环境的影响。
二、施工方案2.1 施工准备在施工开始之前,需要进行充分的施工准备工作。
首先是搭建施工工地,包括施工办公区、设备摆放区等;其次是准备施工所需的人员和设备,确保施工进度。
2.2 施工流程便桥的施工主要包括地基处理、桥墩浇筑、桥面铺设等阶段。
在施工过程中,需严格遵守相关技术标准和安全规范,确保施工质量。
2.3 施工周期整个便桥施工的周期预计为X个月,具体时间会根据实际情况进行调整。
在施工过程中,会定期进行施工进度的检查和评估,确保按时完成施工任务。
三、计算书3.1 材料清单根据便桥的设计要求,列出了施工所需的各种材料清单,包括水泥、钢筋、砂石等。
在采购材料的过程中,需严格按照设计要求进行选择。
3.2 费用估算对便桥施工的各个阶段进行了费用估算,包括人工费、材料费、设备费等。
在施工之前,需要对预算进行认真审核,确保施工经费的充足。
四、总结与展望通过本次便桥施工方案及计算书的编制,详细介绍了本项目的施工方案和费用计算,为后续的施工工作提供了重要的参考依据。
希望本项目能够按照预定计划顺利进行,为当地交通发展做出贡献。
附录附录1:施工图纸附录2:施工技术方案附录3:施工进度计划以上内容为贝雷便桥施工方案及计算书2的相关内容,如有问题请及时与责任人联系。
贝雷梁钢栈桥设计计算书
1、工程概况本栈桥工程为广西北海金滩14K㎡场地施工用辅助通道。
设计宽度8米,设计长度1755.6米,跨径采用15米。
2、结构验算2.1 验算依据(1)《公路桥涵施工技术规范》(JTG/T F50-2015)(2)《公路钢结构桥梁设计规范》(JTG D64-2015)(3)《公路桥涵设计通用规范》(JTGD60-2015)(4)《公路桥涵地基与基础设计规范》(JTG D63-2007)(5)《公路桥涵钢结构设计规范》(GB50017-2003)(6)《建筑桩基技术规程》(JGJ94-2008)(7)《钢管桩施工技术规程》(YBJ233-1991)(8)《桥梁施工图设计文件》(9)《广西北海金滩14K㎡场地岩土勘察报告》2.2 荷载参数作用于栈桥的荷载分为恒荷载及可变荷载。
恒荷载主要为栈桥结构自重,可变验算荷载为设计荷载:55t渣土运输车。
2.2.1 恒载由计算程序自动考虑。
2.2.2 可变荷载(1)55 吨渣土运输车渣土运输车共3 轴,其具体尺寸如下图,前轮着地面积为0.3×0.2m,后轮着地面积为0.6×0.2m。
单轮最大设计荷载为5.5t。
55吨渣运输车轴距布置图(单位:mm)2.3 荷载工况按最不利的原则考虑以下控制工况:(1)验算控制工况考虑栈桥实际情况,单跨长度为15m,同一跨内最多布置两辆重车,贝雷梁、桥面系验算控制工况为:工况1:结构自重+55t渣土运输车荷载+55t渣土运输车荷载, 55t渣土运输车移动荷载作用于标准贝雷梁段;工况2:结构自重+55t渣土运输车荷载+55t渣土运输车荷载, 55t渣土运输车移动荷载作用于通航口加强弦杆贝雷梁段;2.4 结构材料1、钢弹性模量E=2.1×105 mpa;剪切模量G=0.81×105 mpa;密度ρ=7850 Kg/m;线膨胀系数α=1.2×10-5;泊松比μ=0.3;抗拉、抗压和抗弯强度设计值f d =190MPa;抗剪强度设计值fvd=110MPa;2、贝雷梁中各杆件理论容许应力:抗拉、抗压和抗弯强度设计值fd=200MPa;抗剪强度设计值fvd=120MPa。
贝雷架施工便桥计算书
贝雷架施工便桥计算书一、工程简介本桥位于沿江高速公路铜陵连接线K2+005处, 距离顺安河入江口约18KM, 该段为部通航河流。
桥位处地质为亚粘土、角砾石及弱风化砾岩。
河底标高为5.8米, 大堤标高为13.45米 , 堤顶宽6米, 堤顶距离约为105米, 两侧为耕地及水塘, 高程为8~9米, 场地微地貌单元为河流冲积地貌, 地下水相对稳定。
二、桥位选址及布置根据施工便道旳位置和桥位通航条件, 保证与施工便道贯穿。
根据两岸接线位置、地形、高差和地质等状况, 测定最合适旳桥梁中线;测量河流宽度, 测定推出桥梁跨径。
三、贝雷架桥面构造1.桁架及销子桁架构造由上下弦杆、竖杆及斜杆焊接而成。
上下弦杆旳一端为阴头, 另一端为阳头。
阴阳头均有销栓孔。
两节桁架连接时, 将一节旳阳头插入另一节旳阴头内, 对准销子孔, 插上销子。
弦杆焊有多块带圆孔旳钢板, 其中有: 弦杆螺栓孔, 在拼装双层或加强桥梁时, 在此孔插桁架螺栓或弦杆螺栓, 使双层桁架或桁架与加强弦杆结合起来;支撑架孔, 用于安装支撑架。
当桁架用在桥梁上部时, 使用中间两个孔;当桁架用作桥墩时, 用端部旳一对孔, 以加固上下节桁架。
下弦杆两端钢板上旳圆孔及弦杆槽钢腹板上旳长圆孔叫做风构孔, 用以连接抗风拉杆。
下弦杆设有4 块横梁垫板, 上有栓钉, 以固定横梁位置。
端竖杆有支撑架孔, 为安装支撑架、斜撑与联板用。
端竖杆及中竖杆旳矩形孔叫做横梁夹具孔, 用来安装横梁夹具。
2.加强弦杆加强弦杆是为了提高桥梁旳抗弯能力, 发挥桁架腹杆旳抗剪作用。
桥梁端部弯矩小, 故首尾节桁架均不设加强弦杆。
加强弦杆, 两端设有阴阳头, 中部设有支撑架孔与弦杆螺栓孔。
弦杆螺栓孔板反焊于杆件旳一面, 使连接加强弦杆与桁架旳弦杆螺帽不致外露, 保证桥梁推出时顺利通过滚轴。
加强弦杆与桁架连接。
斜撑旳作用在于增长桥梁旳横向稳定, 其两端各有一空心圆锥形套筒, 上端连于桁架端竖杆支撑架孔, 下端则连在横梁短柱上。
贝雷片钢便桥计算书
贝雷片钢便桥设计计算书1、设计依据1.1《××××××合同段钢便桥设计图》1.2《公路桥涵钢结构及木结构设计规范》1.3《钢结构设计手册》(第三版)1.4《钢结构设计规范》1.5《装配式公路桥梁钢桥使用手册》。
1.6《公路桥涵设计通用规范》1.7《公路钢筋混凝土及预应力混凝土桥涵设计规范》1.8《公路桥涵地基与基础设计规范》2、技术指标设计荷载:公路-Ⅰ级;设计速度:10公里/小时桥面净空:净3.7米。
地震动峰值加速度系数小于0.05g。
设计洪水频率:1/100。
3、结构布置形式××××××合同段需要架设一座便桥跨越都柳江,桥长183米,通过车辆为70t 的汽车,汽车全宽2.7米。
根据以上资料及地面线资料,确定本桥结构布置如下:上部构造:采用公路钢桥标准桥面3.7米,跨径为36+4×33m,全桥共长183m,主梁断面为单层三排加强型弦杆,全桥横向共6片贝雷架。
其中横梁架设在贝雷架的下弦杆上,每隔1.5m一根,连通六片贝雷架,长5.85m。
横梁之上再设纵梁,纵梁长3m,宽0.75m。
纵梁之上再铺设桥板,采用木板则要求按轴压力120KN设计。
护轮木安装在行车道的两侧,用以压住桥板,固定桥面的外缘。
人行道的设计可根据施工中的具体情况而设,可悬臂架设在贝雷架的外侧。
下部构造:钢筋砼桩基础和墩柱为2根φ150cm的圆桩,盖梁为厚度为120cm的C25砼。
墩顶支座采用木跺。
桥型布置见附图1,横断面见下图。
图1、桥梁横断面4、材料参数主梁采用贝雷架拼装而成,根据《装配式公路桥梁钢桥使用手册》,加强型弦杆三排单层的容许弯距为4809.4KN·m,剪力为698.9KN。
桥面板采用木板,承载能力为60KN。
C25砼强度按规范取值。
5、构件计算5.1、荷载分析图2、车辆荷载车辆荷载按《公路桥涵设计通用规范》中车辆荷载的取值。
钢便桥计算书
42米跨贝雷梁钢便桥计算资料一、设计概况根据现场提供资料,桥跨为40米,贝雷片每片长度为3米,因此本次设计按42米计算,设计荷载为60吨,桥面宽度为3.5米,便桥采用321型三排双层加强型贝雷片装配主梁,桁架上面采用I28a工字钢作横向连接(间距1米,共42根,3.5米/根),再在横梁上面设置I10工字钢作纵梁(共3根,桥长通长布置),使受力均匀,桥面采用10mm花纹钢板满铺。
二、贝雷桥的设计1、荷载(1)、静荷载321贝雷片每片自重270kg,横梁每米自重43kg,纵梁每米自重11.26kg,桥面采用15mm厚花纹钢板,按均布荷载,考虑加强弦杆螺栓和桁架销,取跨中恒载弯矩:梁端恒载剪力:(取单侧取8.5KN/m计算)(2)、活荷载计算跨径为42m,桥面净宽3.5m,本设计采用汽车600KN集中荷载进行验算。
跨中有最大弯矩;梁端剪力,按前后轮之间距离3.65米计,后后轮之间1.35米计,则:冲击系数:总荷载作用:(横向分配系数K取0.6计算)最大弯矩:梁端最大剪力:2、贝雷架结构验算根据规范要求,桥梁采用三排双层加强型,允许弯矩满足强度要求。
桁架加强桥梁三排双层加强型,允许剪力满足强度要求。
3、整体挠度计算对于钢桥的设计,为了使车辆能比较平稳的通过桥梁,因此“桥规”要求桥跨结构均应设预拱度。
另外要使钢桥能正常使用,不仅要对桁架进行强度验算,以确保结构具有足够的强度及安全储外,还要计算梁的变形(通常指竖向挠度),以确保结构具有足够的刚度。
因为桥梁如果发生过大的变形,将导致行车困难,加大车辆的冲击作用,引起桥梁剧烈振动。
简支梁容许挠跨比取,则容许最大挠度由活载引起的跨中挠度由静载引起的跨中挠度满足要求此处在计算钢梁的跨中挠度时,未计算由销、孔间隙引起的非弹性挠度变形,此部分变形与钢梁的使用时间及加工制作的精度有关。
三、桥台的设计与计算为防止洪水冲刷桥台,威胁到便桥安全,采取拉森Ⅳ型钢板桩做承台基础围护,钢板桩露出地面2米,埋入地面下13米,内填筑砂石,承台基础采用扩大基础,第一层基础结构尺寸为:3.80m×6.40m×0.5m,承台尺寸为:2.80m×5.40m×0.5m ,背墙厚度为0.8m,高度为3.68米。
贝雷片钢栈桥受力计算书
钢栈桥受力计算8.1钢栈桥的验算8.1.1钢栈桥设计概况:1.钢栈桥桥面宽度为9.0m,全长203m,桥面标高为9.5米。
结构型式为:贝雷片钢栈桥。
栈桥结构见附图。
2.基础:钢栈桥采用钢管桩基础,每排采用3根直径为630mm的三根钢管桩组成,壁厚16mm,钢管桩的横向间距为4米,纵向间距为6米。
入土深度为12m。
钢管桩顶设置法兰盘支座。
3.桥面结构自上而下分别为:桥面:采用1.2cm的钢板,钢板采取满铺桥面,每隔10m留一道1cm的伸缩缝。
纵桥向分配梁:密布[25b槽钢,横桥向分配梁:采用I25a工字钢,间距为1.2m。
主纵梁:采用单层双排150cm高321型贝雷片,每组两片贝雷桁架采用45cm宽花架连接,间距2.85m。
形成装配式贝雷桁架主梁,共四组。
下横梁:采用H600型钢,与钢管桩顶法兰盘支座连接。
支撑:桩与桩之间、两贝雷片之间均用剪力撑进行加固连接,其他各部件之间均采用钢构件进行加固。
8.1.2基本荷载(恒荷载分项系数1.2,活荷载分项系数1.3)1、恒荷载1.2cm的钢板:0.012×78.5=0.942KN/m2[25b槽钢纵向分配梁:0.313KN/mI25a工字钢横向分配梁:0.42KN/m贝雷桁架主梁(1.5m高):6.66KN/m下横梁HN606(606×201×12×20):1.2KN/m(1)活荷载(1)100T履带吊整机质量为112T(基本臂带100T钩)+吊重16T,履带长度7.505m,履带宽度1.015m,履带接触桥面长度6.475m,履带宽度1.015m,接地比压0.0922MPa。
履带吊传给桥面的活荷载:92.2KN/m2。
(2)施工及人群活荷载:4KN/m2。
8.1.3构件内力计算与设计<一>1.2cm钢板采取满铺方式,纵桥向分配梁[25b槽钢采取满铺方式,因此,可以不对钢板进行受力分析计算。
<二>纵桥向分配梁[25b槽钢计算,槽钢(两肢朝下)采取满铺方式,Wx=32.7cm3,r=1.2,y履带带传力:92.2×0.25=23.05KN/m梁自重:0.313KN/m钢板重:0.942×0.25=0.236KN/mq=1.3x23.05+1.2(0.313+0.236)=30.62KN/m计算跨度:L=750mm内力计算:M=1/8×q×l2=1/8×30.62×0.752=2.153KN-m荷载工况一(恒载)内力图M=2.153KN-m强度验算:Wy=2.153×103/1.2×32.7=54.87N/mm2<f=215N/mm2.Ó=M/ry整体稳定验算:L1/b1=750/250=3<16整体稳定,安全,局部稳定无需验算,所选截面满足要求。
贝雷架施工便桥计算书(付超)
贝雷架施工便桥计算书一、结构布置1、采用混凝土扩大基础,基础上设背墙,与正规桥梁一样,基础内布置钢筋,顶面浇筑混凝土后铺设钢板当支座;桥台截面图2、26 m跨便桥采用11排单层加强组合贝雷桁架;贝雷架每节3米,实际桥梁长度为3*9=27米;贝雷架横断面图3、每两片一组用花片架联结,共11片,如上图示意;4、桥面铺16-20mm钢板,钢板与贝雷架上弦杆要有可靠联结,可采用焊连或钻眼反扣U型螺栓与弦杆联结;5、贝雷架每节(3米)联结处都要布置联结片,螺栓连在第二排与第一排桁架的端竖杆上,每节桁架前端竖杆上各设一块;6、桥头引道与便桥一定要直接出去,以免荷载引起桥梁扭转受力,非常不利。
二、贝雷架结构验算以8m3砼运输车为最重,便桥设计以能通过8m3砼运输车即可,运输车自重17t 到20t,8m3砼约20t。
计算时便桥所受荷载按集中荷载考虑——取50t,贝雷架自重取1.5T/m。
当活载作用在跨中时,便桥承受的荷载为最不利荷载。
便桥受力图示如下:便桥荷载示意图1、查贝雷架片相关资料,其由贝雷片销接连成整体,截面力学参数如下表2、26 米跨径(11排单层组合贝雷桁架),计算时按10排计算.①、实际弯矩计算M=ql2/ 8+kpl/4=1.5×9.8×262/8+50×26×9.8×1.1×1.2×1.05/4=5656KN.m②、实际剪力计算Q=k(p+ql)/2=1.1×1.2×1.05( 50×9.8+1.5×26×9.8) /2=604KN.m③、最大允许弯矩、剪力、挠度[M]=788.2×10= 7882KN> M= 5656KN.m[Q]=245.2×10= 2452KN>Q= 604KN.m[f]=L/400=26000/400=65mm> f= 5ql4/384EI+pl3/48EI= 5×1.5×9.8×260004/(384×2.1×105×2505000×104) +50×9.8×1000×260003/(48×2.1×105×2505000×104)=51mm验算全部满足要求。
临时贝雷梁计算书
临时贝雷梁计算书40m临时贝雷梁计算书中交二航局南通洋口港区陆岛通道管线桥项目部二○○九年八月目录1 设计计算依据 (1)1.1 临时桥梁设计方案 (1)1.2 主要技术要求 (1)1.3 遵照规范及主要参考文献 (2)1.4 基本设计参数 (2)1.4.1 有关设计参数 (2)1.4.2 主要材料性能 (3)1.4.3 321贝雷架单元基本数据 (3)2 总体计算 (4)2.1 计算模型 (4)2.2 计算结果 (6)1 设计计算依据1.1 临时桥梁设计方案临时贝雷梁桥跨径40m,计算跨径39m,桥横向宽度为8.5m,为四跨连续梁,上承式结构。
主梁采用321型军用贝雷架拼装而成。
桥梁纵向由13片贝雷架拼装而成,横向由19片贝雷架拼装而成,每片贝雷架间距45cm,横向之间采用45支撑架连接,以提高侧向稳定性和整体刚度。
桥梁横向和纵向布置如图1.1-1和图1.1-2。
图1.1-1 临时贝雷梁桥立面图图1.1-2 临时贝雷梁桥横断面图1.2 主要技术要求⑴设计标高临时贝雷梁桥桥面标高与主桥桥面标高一致,取15.82m。
⑵设计周期2年⑶计算跨径:39.00m⑷桥面宽度:8.50m⑸设计荷载:40m梁体自重285吨,按300设计;运梁车自重20吨,因此荷载总计320吨。
⑹桩基入土深度:15m1.3 遵照规范及主要参考文献⑴国家标准,《钢结构设计规范》(GB50017─2003)⑵国家标准,《低合金结构钢》(GB1591─1994)⑶国家标准,《碳素结构钢》(GB/T 700─2006)⑷国家标准,《热轧普通槽钢截面特性》(GB707─1988)⑸建设部标准,《城市桥梁设计荷载标准》(CJJ77─1998)⑹交通部标准,《公路桥涵钢结构及木结构设计规范》(JTJ025─1986)⑻国家标准,《公路桥涵设计通用规范》(JTG D60─2004)⑻JT/QS0012─1965,装配式公路钢桥设计图1.4 基本设计参数1.4.1 有关设计参数⑴设计荷载①桥跨自重②运梁小车运梁小车为五轮式运梁小车,小车自重20吨。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
施工临时贝雷梁钢便桥计算书目录1.工程概况 (1)2.参考规范及计算参数 (3)2.1. ................................................................................................................... 主要规范标准32.2. ................................................................................................................... 计算荷载取值42.3. ...................................................................................................... 主要材料及力学参数52.4. ............................................................................................................... 贝雷梁性能指标63.上部结构计算 (6)3.1. ........................................................................................................................桥面板计算63.2. ....................................................................................................... 16b槽钢分布梁计算73.3. ............................................................................................................... 贝雷梁内力计算84.杆系模型应力计算结果 (12)4.1. ............................................................................................................................ 计算模型124.2. ................................................................................................................... 计算荷载取值124.3. ............................................................................................................... 贝雷梁计算结果144.4墩顶工字横梁计算结果 (22)4.5钢立柱墩计算结果 (24)5.下部结构验算 (27)6.稳定性验算 (29)7.结论 (29)1.工程概况根据现状道路控制条件,李家花园隧道拓宽改造工程钢便桥跨径布置为6m+9m+24m(27m)+12m。
桥面宽度每跨等宽,第一跨为12.629m,第二跨15.4m,第三跨20.4m(23.4m),第四跨28.673m。
第三跨20.4m宽度跨径为24m,另外3m范围跨径27m。
钢便桥上部结构选用贝雷梁,27m跨径选用单排单层加强型贝雷梁,布置间距为0.25m+2×0.45m,24m跨径选用单排单层加强型贝雷梁,布置间距为0.25m+0.9m,其余跨径均选用双排单层标准贝雷梁,梁高均为1.5m;贝雷梁上等间距布置横向连接工字钢,型号I25b;工字钢以上等间距布置桥面板支撑槽钢;桥面板采用8mm厚花纹钢板,上铺9cm沥青混凝土。
钢便桥下部结构为横梁立柱接桩(板)基础。
横梁根据受力情况由3片或2片梁高1.0m的工字钢拼接而成。
立柱为直径1.0m的钢管柱,与横梁、基础栓接,方便安装与拆卸。
钢管柱之间采用横向钢管连接,加强横向稳定。
基础分为承台桩基和板式扩大基础两种形式,平面位置受限位置用承台桩基础,桩基直径Ф1.2m;其他位置采用板式扩大基础。
钢便桥桥型平面布置图、立面布置图及横断面图如图1-1至图1-4所示。
图1-1 钢便桥平面布置图(单位:mm)图1-2 钢便桥桥型立面布置图(单位:mm)图1-3 钢便桥横断面布置图一(单位:mm)图1-4 钢便桥横断面布置图二(单位:mm)2.参考规范及计算参数2.1.主要规范标准(1)《城市桥梁设计规范》(CJJ 11-2011)(2)《公路桥涵设计通用规范》(JTG D60-2004)(3)《公路桥涵施工技术规范》(JTG/T F50-2011)(4)《城市桥梁工程施工与质量验收规范》(CJJ 2—2008)(5)《公路桥涵钢结构及木结构设计规范》(JTJ025—86)(6)《钢结构工程施工质量及验收规范》(GB50205-2001)(7)《铁路桥梁钢结构设计规范》(TB 10002.2-2005)(8)《钢结构设计规范》(GB50017-2003)2.2.计算荷载取值(1)恒载桥面铺装:25×0.09=2.25kN/m2;8mm钢板:78.5×0.008=0.628kN/m2;16b槽钢:78.5×2.515×10-3=0.197kN/m;25b工字钢:78.5×5.351×10-3=0.42kN/m;单排单层加强型贝雷梁,每片350 Kg,即为0.35×10÷3=1.17kN/m;(2)可变作用汽车荷载效应按城-A车辆荷载计算,沿横桥向按4个车道考虑。
城-A车辆荷载示意图如图2-1所示:图2-1 城-A车辆荷载图示表2-1 城-A车辆荷载参数表2.3.主要材料及力学参数16Mn (Q345):弹性模量E=2.1×105MPa剪切模量G=0.81×105MPa轴向容许应力:200MPa剪切容许应力:120MPa表2-2 钢材容许应力表2.4.贝雷梁性能指标3.上部结构计算3.1.桥面板计算根据表2-1可知,城A车辆荷载重轴轴重为200kN,车轮着地面积为0.6×0.25m2,则重轴均布荷载为:Q1=200/(2×0.6×0.25)=666.7kN/m2。
取1米宽板条,按单向板计算,最不利工况为重轴作用于板跨中;分布梁16b槽钢间距为20cm,因此取桥面板计算跨径为20cm。
根据车辆横向布置情况,1米宽板内仅能作用一个车轮,因此,计算桥面板所用车轮荷载为:100×0.2/0.25=80kN,均布荷载我80/0.2=400kN/m;桥面铺装:25×0.09×1=2.25kN/m;钢板自重q 2=1×0.008×78.5=0.628kN/m ;q=q 1+q 2=400+2.25+0.628=402.878kN/m则跨中弯矩为:M=0.125×402.878×0.22=2.014kN ·m ;W=bh 2/6=1×0.0082/6=1.067×10‐5m 3;桥面板应力为:σ=M/W=2.014×103 /1.067×10‐5 =188.75MPa<[σ]=200Mpa ;桥面板挠度为:44max 115402.8781000(0.2)150150 2.110 1.0670.00410ql f EI -⨯⨯==⨯⨯⨯⨯⨯ 2000.48 1.33150mm mm =<= 因此,8mm 钢板强度和刚度均能满足要求。
3.2. 16b 槽钢分布梁计算桥面分布梁采用16b 槽钢,间距20cm ,即每根槽钢单独承受一组轴重,其下部25b 工字钢横梁,横梁间距按最大0.75m 设置,即槽钢的最大跨度为0.75m 。
当车辆的重轴作用在槽钢跨中时,为最不利工况。
计算时汽车荷载按集中荷载,P=200kN/2=100kN ;桥面铺装自重:25×0.09×0.2=0.45kN/m ;钢板自重:78.5×0.008×0.2=0.126kN/m ;16b 槽钢自重:78.5×2.515×10-3=0.197kN/m ;Q=0.45+0.126+0.197=0.773 kN/m ;221000.750.7730.7518.84848Pl Ql M kN m ⨯⨯=+=+=⋅; []3618.8100.08160.92009.34510M MPa MPa W σσ-⨯⨯===<=⨯; 挠度将均布荷载忽略计算:33max 6111001000(0.75)7500.448 1.87548489.34510 2.110400Pl f mm mm EI -⨯⨯===<=⨯⨯⨯⨯ 因此,16b 槽钢强度和刚度均能满足要求。
3.3. 贝雷梁内力计算3.3.1. 24米跨贝雷梁内力计算跨径为L =24m(按简支计算)。
恒载(按14m 宽计):1)、桥面铺装,一跨(24m )总重:12514240.09756Q kN =⨯⨯⨯=2)、8mm 钢板,一跨(24m )总重:278.514240.008211Q kN =⨯⨯⨯=3)、16b 槽钢,一跨(24m )总重:30.1972414/0.2331Q kN =⨯⨯=4)、25b 工字钢横梁,一跨(24m )总重:40.421424/0.75188.2Q kN =⨯⨯=5)、贝雷梁,单排单层加强型,间距0.25+0.9m 布置,设置24道纵梁,一跨(24m )总重:5 1.172424673.9Q kN =⨯⨯=活载(横向按3个车道布置):城A 车辆荷载重轴作用于跨中时为贝雷梁受力最不利工况,其活载计算简图如下所示:活载计算简图(单位:cm )恒载弯矩:为了简化计算,考虑上面分配梁和面板将荷载均分,故将荷载平均分配给每片贝雷梁的恒载为:12345 3.75/2424Q Q Q Q Q q kN m ++++==⨯; 则每片贝雷梁的跨中最大恒载弯矩为:221 3.752427088ql M kN m ⨯===⋅ 活载弯矩:为了简化计算,将3个车道的活载均分到24片贝雷梁上,并考虑1.5的偏载系数。