接触网课程设计报告

合集下载

接触网课设

接触网课设

接触网工程课程设计报告专业:电气工程及其自动化班级:电气1003姓名:叶佩凡学号: 201009253指导教师:张廷荣兰州交通大学自动化与电气工程学院2013 年7月15日1基本题目及分析题目:接触线张力的分析与研究。

接触线的张力对高速运行时的接触悬挂的性能有重要影响。

对于高速接触悬挂的要求是弹性小而且均匀,根据关系式()j c l T T k η⎡⎤=+⨯⎣⎦,这就要求接触线的张力尽可能大。

加大接触线的张力可以有效地提高接触线的波动速度,同时相应地提高列车运行速度。

加大接触线的张力以后,可以得到两个附加效果:第一可以相应地限制高速运行时的动态抬升量。

根据法国的试验,一般运行在300km/h 时,总抬升量在100mm 以内;第二个附加效果可以提高弹性系数的不均匀度,使跨中的弹性得以有效降低,约为0.5mm/N ,而悬挂点处约为0.4mm/N ,从而使弹性在整个跨距内趋于一致,大大降低了弹性不均匀系数。

2接触线张力的分析与研究2.1 加大接触线张力途径的综合分析加大接触线的张力有两种途径:其一是增大其截面积;其二是提高使用拉力(或拉应力)。

关于接触线的横截面尺寸,考虑到在空间敷设的可能性和可行性,规定了相应极限值,即允许采用的接触线的最大横截面积为150mm 2,就是这样的横截面积在安装过程中也会形成硬弯,甚至会有产生断裂点的危险性,这些硬弯或断裂点会导致接触线局部磨损加快。

在拉应力恒定时,接触线横截面积的增大相应地减少弹性。

为了保持较小的弹性,因此力求用尽可能大的横截面的接触线。

增大接触线的横截面积,可以有效提高拉断力,增大载流量,相应地降低温升,所以适当增加横截面积是有利的。

但是,过大地增大接触线的横截面积会产生两个负面效果:其一是使接触线线密度增加,从而降低了波动速度,这是极为有害的;其二是架设时的不均匀性及平直性的危险增加。

所以,德国在研制Re330型接触悬挂时,仍然把接触线的截面积限制在120mm 2以下。

接触网保护课程设计

接触网保护课程设计

接触网保护课程设计一、课程目标知识目标:1. 学生能理解接触网的基本概念、组成及工作原理;2. 学生能掌握接触网保护装置的种类、原理及功能;3. 学生能了解接触网故障类型及危害;4. 学生能掌握接触网保护参数的设置及调整方法。

技能目标:1. 学生能够运用所学知识,分析接触网故障原因;2. 学生能够根据实际情况,选择合适的接触网保护装置;3. 学生能够通过实践操作,掌握接触网保护参数的设置与调整;4. 学生能够运用所学知识,解决接触网保护中的实际问题。

情感态度价值观目标:1. 培养学生对接触网保护工作的兴趣和责任感;2. 增强学生团队合作意识,培养沟通协调能力;3. 培养学生严谨、务实的学习态度,树立安全意识;4. 提高学生对我国高速铁路事业的认同感和自豪感。

课程性质:本课程为专业基础课程,以理论教学和实践操作相结合的方式进行。

学生特点:学生具备一定的电气基础知识,但对接触网保护了解较少。

教学要求:注重理论与实践相结合,强化学生动手操作能力,培养学生解决实际问题的能力。

通过课程学习,使学生能够掌握接触网保护的基本知识,具备一定的故障分析和处理能力。

二、教学内容1. 接触网基本概念:接触网的结构、功能及工作原理;2. 接触网保护装置:种类、原理、功能及应用;- 绝缘监察装置- 避雷器- 自动重合闸装置- 故障测距装置3. 接触网故障类型及危害:短路故障、接地故障、断线故障等;4. 接触网保护参数设置与调整:保护定值、时间特性、动作特性等;5. 接触网保护案例分析:分析典型故障案例,掌握故障处理方法;6. 接触网保护实践操作:模拟实际操作,进行保护装置的设置与调整。

教学内容安排与进度:第一周:接触网基本概念及保护装置介绍;第二周:接触网故障类型及危害;第三周:接触网保护参数设置与调整;第四周:接触网保护案例分析与实践操作。

教材章节关联:《电气化铁道接触网》第三章:接触网保护;《高速铁路接触网技术》第七章:接触网保护与故障处理。

接触网课程设计(段嘉旭)

接触网课程设计(段嘉旭)

接触网技术课程设计报告班级:电气083学号:200809242姓名:段嘉旭指导教师:张廷荣2012 年 2 月28 日1.基本题目1.1 题目直线地区锚段长度的计算1.2题目分析在区间或站场上,为满足供电方面和机械方面的要求,将接触网分成若干一定长度且相互独立的分段,这种独立的分段叫做锚段。

划分锚段的目的主要是:加补偿器;缩小机械事故范围;使吊弦的偏移不致超过许可值以及改善接触线的受力情况等。

划分锚段的主要依据是在气象条件发生变化时,使接触网内所产生的张力增量不超过规定值。

锚段长度的决定和跨距长度一样,也必须进行相应的计算。

高速电气化铁路,接触网基本上全部采用全补偿链形悬挂,对于全补偿链形悬挂,其锚段长度的计算方法及理论基础与半补偿链形悬挂的情况相同。

2.题目:直线地区锚段长度的计算2.1 半补偿链形悬挂张力增量计算及其锚段长度的计算2.1.1锚段长度的确定直线区段锚段长度的确定仅按在极限温度下,中心锚结与补偿器之间接触线的张力差不大于其额定张力的±15%来要求。

即不考虑承力索的张力差变化。

曲线区段锚段长度的确定按在极限温度下,中心锚结与补偿器之间的张力差,接触线不大于其额定张力的±15%,承力索不大于其张力差的±10%来要求。

同时由于全补偿链形悬挂中,接触线弛度的变化很小,因温度变化而耗损于弛度变化方向的纵向位移更小,故在计算中可令ε为零。

2.1.2 已知条件我国电气化铁路广泛采用承力索线胀系数cα=11.55×10-61/℃,承力索弹性系数Ec=18500Kg/mm2,承力索计算横截面积Sc=70mm2;接触线胀系数jα=17×10-61/℃,接触线弹性系数E j=12600Kg/mm2,接触线计算横截面积S j=100mm2;吊弦及定位器处于正常位置时的温度t d=2minmax tt+=15℃,结构高度h=1.2m,计算中ε取零。

悬挂合成自重负载:q=1.555Kg/m2.1.3 张力增量计算过程及其锚段长度的确定 (1)直线区段接触线张力增量计算1、接触线无弛度时相应跨距下承力索弛度: 通过查表3-2可得,00.5475F =根据023C h F =-可得:吊弦的平均长度231.20.54750.835C m =-⨯=2、计算温度差,确定计算条件:0001max 401525d t t t ∆=-=-= 0002min 101525d t t t ∆=-=--=-由于|1t ∆|=|2t ∆|,所以以2Δt 为计算条件。

接触网课程设计36

接触网课程设计36

接触网课程设计36一、课程目标知识目标:1. 学生能理解接触网的基本概念,掌握其组成、分类及功能;2. 学生能掌握接触网的主要参数及其对铁路运行的影响;3. 学生能了解接触网的设计原则和标准,以及在我国的应用情况。

技能目标:1. 学生能运用所学知识,分析接触网的故障原因,并提出解决措施;2. 学生能通过实际操作,学会接触网的基本检查和维护方法;3. 学生能运用相关软件,进行接触网参数的简单计算和优化。

情感态度价值观目标:1. 学生培养对铁路电气化技术的兴趣,激发学习热情;2. 学生树立安全意识,重视接触网运行安全,关注铁路行业的发展;3. 学生培养团队协作精神,提高沟通与交流能力。

课程性质:本课程为铁路电气化专业基础课程,旨在帮助学生掌握接触网的基本知识、技能和情感态度。

学生特点:学生具备一定的物理、电学基础知识,但对接触网的专业知识了解较少,需要通过本课程的学习,提高专业素养。

教学要求:结合学生特点,注重理论与实践相结合,通过案例分析、实际操作等教学方式,提高学生的专业知识和技能。

在教学过程中,关注学生的情感态度,培养其安全意识、团队协作精神和沟通能力。

将课程目标分解为具体的学习成果,以便进行教学设计和评估。

二、教学内容1. 接触网基本概念:介绍接触网的定义、作用、发展历程;2. 接触网组成与分类:分析接触网的各个组成部分,包括接触线、承力索、绝缘子、支柱等,以及不同类型的接触网;3. 接触网参数:讲解接触网的主要参数,如接触线高度、拉出值、弓网关系等,及其对铁路运行的影响;4. 接触网设计原则与标准:阐述接触网设计的基本原则、技术标准和规范要求;5. 接触网故障分析:分析接触网常见故障类型、原因及处理方法;6. 接触网检查与维护:介绍接触网的检查方法、维护周期和注意事项;7. 接触网参数计算与优化:运用相关软件,进行接触网参数的简单计算和优化;8. 接触网案例分析:分析实际接触网故障案例,提出解决措施。

接触网课程设计

接触网课程设计

接触网课程设计一、课程目标知识目标:1. 学生能理解接触网的基本概念,掌握其结构、原理和分类。

2. 学生能掌握接触网的主要设备及其功能,了解接触网的运行维护要求。

3. 学生能了解接触网在我国高速铁路及城市轨道交通中的应用和发展。

技能目标:1. 学生能运用所学知识,分析接触网故障原因,并提出解决措施。

2. 学生能通过实际操作,掌握接触网设备的检查、维护和保养方法。

3. 学生能运用专业软件,进行接触网参数的计算和优化。

情感态度价值观目标:1. 培养学生对接触网工程的兴趣,激发他们投身铁路事业的热情。

2. 培养学生的团队合作精神,使他们学会在工程实践中相互协作、共同解决问题。

3. 增强学生的安全意识,让他们明白接触网安全对铁路运输的重要性。

课程性质:本课程为专业实践课程,以理论教学为基础,结合实际操作,培养学生的专业素养和实际操作能力。

学生特点:学生为高中年级学生,具备一定的物理和数学基础,对接触网有一定了解,但对实际操作和维护知识掌握较少。

教学要求:结合学生特点和课程性质,采用理论教学与实践操作相结合的方式,注重培养学生的动手能力和解决实际问题的能力。

通过课程学习,使学生掌握接触网的基本知识,具备一定的工程实践能力。

二、教学内容1. 接触网基础理论:- 接触网的定义、结构、原理及分类。

- 接触网的主要技术参数及标准。

- 接触网在我国铁路及城市轨道交通中的应用案例。

2. 接触网设备及其功能:- 接触线、承力索、悬挂索等主要设备的作用及结构。

- 避雷器、接地装置、绝缘子等辅助设备的功能及原理。

- 接触网设备的运行维护要求及故障处理方法。

3. 接触网运行与维护:- 接触网运行的基本要求及安全措施。

- 接触网设备的检查、维护和保养方法。

- 接触网故障诊断与处理流程。

4. 接触网参数计算与优化:- 接触网参数的基本概念及计算方法。

- 接触网优化设计的原则及方法。

- 应用专业软件进行接触网参数计算与优化实例。

5. 实践教学环节:- 接触网设备认识实习。

接触网doc

接触网doc

接触网工程课程设计评语:考勤(10)守纪(10)设计过程(40)设计报告(30)小组答辩(10)总成绩(100)专业:电气工程及其自动化班级:电气1001姓名:李树攀学号: 201009032指导教师:李红兰州交通大学自动化与电气工程学院2013 年7月15日目录1题目 (1)2设计方案 (1)2.1支柱的分类 (1)2.2选择支柱 (1)2.3原始参数及分析 (1)3支柱容量计算 (3)3.1垂直负载 (3)3.2水平负载 (3)3.2.1支柱本身的风负载 (3)3.2.2线索传给支柱的风负载 (4)3.2.3之字值形成的水平分力 (4)3.3垂直于线路方向力矩 (4)3.4顺线路方向的力矩 (4)4基础类型选择 (5)5小结 (5)参考文献 (5)附录一 (6)附录二 (7)1题目支柱选用,结合使用环境进行支柱材质选择,结合悬挂结构进行支柱高度计算,结合使用位置及悬挂要求进行容量计算,根据要求选择支柱型号,并根据地质条件设计基础。

2设计方案2.1支柱的分类接触悬挂是被支柱支持在铁路线上方的,支柱有很多种,按其材料、支持装置形式、用途以及负载条件进行分类。

目前采用的有预应力钢筋混凝土柱和钢柱。

根据支柱上的支持装置的不同,支柱可分为腕臂支柱、软横跨支柱、硬横跨支柱和定位支柱。

按其用途,可分为中间支柱、转换支柱和锚柱。

2.2选择支柱区间腕臂柱多采用预应力钢筋混凝土支柱,其优点是节约钢材,生产周期短,运输方便,解决了因混凝土收缩而开裂的问题和挠度问题。

由于钢柱用钢量大,造价高,耐腐蚀性差,且维修不便。

所以本设计主要说明腕臂支柱的选择要求,根据环境变化和经济方面的考虑采用预应力混凝土支柱。

如图1所示。

200280⨯290550⨯2300550033001110085002600图1预应力钢筋混凝土支柱2.3原始参数及分析表1 风速不均匀系数计算风速(m/s ) 20以下 20~30 31~35 35以上 风速不均匀系数a1.000.85 0.750.70腕臂支柱选择混凝土柱,型号为6.27.838H+,跨距为50m 。

接触网技术课程设计报告1

接触网技术课程设计报告1

接触网技术课程设计报告班级:电气084学号: 200809329姓名:王艺霏指导教师:于晓英评语:年月日1.基本题目1.1 题目计算某地区的跨距,已知条件为:最大风速为30m/s ,触线水平面内支持扰度j γ=50mm ,无冰负载,接触线j T =9800N ;d=11.8mm,R=500m 。

1.2 题目分析跨距就是两相邻支柱间的距离,跨距有经济跨距和技术跨距两个概念。

单从经济观点考虑问题所决定的跨距为经济跨距;而按技术要求决定的跨距称为技术跨距。

在一般情况下,经济跨距总是要大于技术跨距的,因此,技术跨距总是研究的中心核心问题。

技术跨距是根据接触线在受横向水平力 (如风力) 作用时,对受电弓中心线所产生的许可偏移而决定的。

对于简单接触悬挂,驰度也是决定跨距的重要因素。

通过计算接触线驰度,来校验跨距长度是否满足跨距的要求。

2.跨距长度的计算为了简化计算,以简单接触悬挂的受风偏移状态为例来计算说明,并假设跨距两端是死固定,同时认为在受风以后,不考虑导线的弹性伸长。

2.1 接触线水平偏移的分析当风作用在接触线上时,接触线产生顺风方向的偏移,如图1 所示。

如图中表示的是接触线在跨距内任一点的横断面,接触线在垂直负载和水平风负载的作用下移动一定距离,根据相似的关系,水平偏移的计算如下:图 1接触线的水平受风偏移即y j bj pj gv qvj j q p y b =vj j q p yb = (1)接触线在跨距内任意点的弛度y 值为:jv T x l x q y 2)(-⋅=(2)将y 值代入式(1)中得j b jj T x l x p 2)(-⋅=(3)当2/l x =时,具有最大水平风偏移,即jj j T l p b 82max ⋅=(4)2.2 直线区段接触线水平偏移及最大跨距在直线区段上,当接触线布置成之字形时,根据相邻定位点之字值得大小,分别按一下两种情况进行计算。

(1) 等之字值布置接触线 (直线区段) 等之字值风偏分析图如图 2 所示:图 2 等之字值布置跨中任意点接触线相对受电弓中心的偏移值有1y 、2y 组成:j b =1y +2y其中max j ba xl1y 2yajj T x l x p y 2)(1-⋅=lx l a y )2(2-=式中a ——接触线之字值(mm)j p ——接触线单位长度上的风负载(kN/m) j T ——接触线张力(kN)l ——跨距长度(m)由此可得接触线在跨距长度内任意点对线路中心的偏移值j b 为lx l a T x l x p b jj j )2(2)(-+-⋅=(5) 令 0=dxdb j 解得:lp aT l x j j⋅-=22 将x 值再代入式(5),整理可得:222max 28l p Ta T l pb j jj j ⋅+⋅=(6) (2) 不等之字布置接触线 (直线区段) 不等之字布置风偏分析如图3所示:图 3 不等之字值布置可按等之字值得计算方法令a 为两定点之字值得平均值,此时:由图3可得:max j baxl1y 2y 1a a3y2a 221a a a +=222121113a a a a a a a y -=+-=-= (7) 于是有 j b =1y +2y +3y ;将不等之字值布置时形成的偏移分量代入式(6)中,并将3y 代替式中a 值,就可求得接触线在跨距内最大偏移值max j b ,得22)(82122212max a a l p T a a T l p b j jJj j -+⋅++⋅=(8)如果取式(6)中的jx j b b =max ,并求解出l ,可得到接触线在直线上的最大跨距)(222max a b b p T l jx jx jj -++=(9)式中max l ——最大计算跨距值(m)j T ——接触线的张力(kN)j P ——接触线单位长度的风负载(kN/m)jx b ——接触线的许可偏移值(m)a ——接触线之字值(在曲线区段上为拉出值)(mm) 2.3 曲线区段接触线水平偏移及最大跨距接触线在曲线区段上布置成割线的形式,拉出值为a ,其曲线区段上的受风偏移如图(4)所示。

接触网课程设计-高速电气化铁路接触网电分相形式探讨

接触网课程设计-高速电气化铁路接触网电分相形式探讨

接触网技术课程设计报告班级:电气****学号: *********姓名:某某某指导教师:某某某2012 年02 月24 日自动化与电气工程学院接触网技术课程设计目录1 基本题目 (1)1.1 题目 (1)1.2 题目分析 (1)2.题目:高速电气化铁路接触网电分相形式探讨 (1)2.1 概述 (1)2.2 电气化铁路接触网电分相的分类 (1)2.3绝缘锚段关节 (2)2.4 锚段关节转换跨距和动车受电弓间距的确定 (4)2.5常用电分相形式 (5)2.6电分相设置要求 (7)2.7 目前电分相常见问题 (8)3.结论与体会 (8)参考书目 (9)1 基本题目1.1 题目高速电气化铁路接触网电分相形式探讨。

1.2 题目分析电分相是为了满足接触网不同相供电而在两相交接处设立的分相隔离装置,电分相类型和材质的不同对机车受电弓取流的稳定性、受电弓的质量、列车最高速度和牵引变电所继电保护等都有影响。

当今电气化铁路不断提速,对行车安全要求很高,因此选用好电分相才对列车行车安全、稳定非常重要,本文列举并分析了国内常用的电分相形式,对电分相有一个全面的介绍,希望能对今后高速铁路接触网电分相的认识和学习有所帮助。

2题目:高速电气化铁路接触网电分相形式探讨2.1 概述目前我国电气化铁路电力机车和动车都采用单相供电,为平衡电力系统各相负荷,牵引供电一般实行三相电源相序轮换供电,即电气化铁道牵引变电所向接触网供电的馈线是不同相的,保证铁路牵引供电网实现相与相之间电气隔离,在不同相供电臂的接触网对接处设置了绝缘结构,称电分相。

我国高速铁路电分相一般设置在牵引变电所出口处及供电臂末端、铁路局分界处,主要由接触网部分、车载装置、地面信号装置等组成。

我国早期电气化铁路采用结构复杂的接触网八跨、六跨、五跨等双绝缘锚段关节组成的电分相(简称关节式电分相)。

在20世纪80~90年代电气化工程改造中普遍采用绝缘材料制作的结构简单的器件式电分相。

接触网技术课程设计报告——京沪网悬挂类型的选择

接触网技术课程设计报告——京沪网悬挂类型的选择

接触网技术课程设计报告班级:电气学号:姓名:指导教师:评语:年月日1.基本题目1.1 题目高速电气化铁路悬挂类型设计;参考《高速电气化铁路接触网》京—沪高速铁路接触类型。

1.2 题目分析目前,世界各国为满足高速受流的要求,都根据自己国家高速铁路规划的动力装置和受电弓的结构及性能的不同,而采用了不同的悬挂类型。

其类型就现有情况而言,有弹性链型悬挂、简单链型悬挂、复式链型悬挂(或称双链型aa悬挂)。

本文结合所学高速电气化铁路接触网课程参考国外高速接触网的发展状况,运营经验以及不同国家的弓网受流质量评价标准,对上述三种链型悬挂类型进行了较为全面的技术经济比较,并简单分析了我国京沪高速宜采用简单链型悬挂方式的原因。

2.题目:高速电气化铁路悬挂类型设计2.1国外高速接触网的发展状况国外高速接触网悬挂类型基本上也可归为三类:即以日本为代表的复链型悬挂,以法国为代表的简单链型悬挂和以德国为代表的弹性链型悬挂[1](见下页图)。

从国外高速接触网的发展情况来看, 总的趋势是:(1) 尽可能地简化接触网的结构, 以提高接触网的可靠性。

(2) 在材质一定的条件下, 尽可能地提高接触线的张力, 以提高接触线的波动速度提高运营速度。

(3)积极研制和开发与接触网参数及运营速度相匹配高速受电弓。

2.2 关于弓网受流质量的评价标准日本、法国、德国以及欧洲铁路联盟对弓网受流质量的评价标准不尽相同, 见表1(下页)。

对比分析日、法、德及欧铁联盟的受流质量评价标准[2]可知: (1)提高接触线的波动传播速度,是提高列车运营速度的最有效途径。

对于这一点,各国的认识是一致的。

(2)日、法、德三国对离线率及离线电弧的控制均较严格,如离线率一般不超过5% ,一次离线的最大时间不超过200ms。

表1 日、法、德及欧铁联盟高速受流质量评价标准国别评价项目评价要点日本接触线的波动传播速度最高运营速度与接触线波动传播速度之比控制在70%以下离线及离线率一次离线时间不应大于200 ms, 离线率最好不超过5%, 在最差的情况下, 应不超过20%导线的最大允许抬升量180 mm导线的应力在设计中应妥善处理使用应力与疲劳振动关系法国速度超过250 km/ h 时, 受流质量与接触网的弹性均匀度关系不大,而更大程度上取决于接触线的振动。

接触网实训课程设计

接触网实训课程设计

接触网实训课程设计一、课程目标知识目标:1. 学生能够理解接触网的基本结构、原理和功能,掌握接触网的关键技术参数。

2. 学生能够描述接触网系统的安装、调试、运行及维护的基本流程。

3. 学生了解我国接触网技术标准及行业发展现状。

技能目标:1. 学生能够独立进行接触网的简单故障排查及处理。

2. 学生能够在指导下完成接触网设备的安装、调试及维护操作。

3. 学生能够运用所学知识解决实际问题,提高实践操作能力。

情感态度价值观目标:1. 培养学生热爱轨道交通事业,增强职业责任感和使命感。

2. 培养学生严谨、细致、团结协作的工作态度,提高安全意识。

3. 培养学生尊重他人、关爱环境、珍惜资源的良好品质。

课程性质分析:本课程为实践性课程,注重培养学生的动手操作能力、实际应用能力和问题解决能力。

学生特点分析:学生具备一定的理论基础,求知欲强,喜欢动手实践,但部分学生对接触网技术了解较少,需要加强引导。

教学要求:1. 结合实际工程案例,提高课程的实用性和针对性。

2. 注重理论与实践相结合,强化学生的动手操作能力。

3. 采取分组合作、讨论交流等形式,激发学生的学习兴趣,培养团队协作精神。

二、教学内容1. 接触网基本概念:接触网的结构、原理、分类及功能,国内外接触网技术标准和发展趋势。

2. 接触网设备与材料:接触线、承力索、绝缘子、悬挂装置等设备的功能、结构及性能参数。

3. 接触网施工技术:接触网施工准备、施工工艺、施工质量控制及验收标准。

4. 接触网运行与维护:接触网运行原理、运行维护方法、故障处理及安全防护措施。

5. 接触网实训操作:接触网设备安装、调试、运行及维护的实训操作,包括简单故障排查与处理。

教学内容安排与进度:第一周:接触网基本概念及发展历程第二周:接触网设备与材料第三周:接触网施工技术第四周:接触网运行与维护第五周:接触网实训操作(分组进行)教材章节关联:《轨道交通接触网技术》第一章:接触网基本概念第二章:接触网设备与材料第三章:接触网施工技术第四章:接触网运行与维护三、教学方法本课程将采用以下多样化的教学方法,以充分激发学生的学习兴趣和主动性:1. 讲授法:通过系统讲解接触网的基本概念、原理、设备与材料等理论知识,为学生奠定扎实的理论基础。

交大接触网课程设计

交大接触网课程设计

接触网技术课程设计报告班学*2012 年 2 月24 日1基本题目1.1 题目张力自动补偿装置的分析与研究。

1.2 题目分析电气化铁路接触网和普通意义上的输电线路有本质区别。

输电线路在铺设时只需预留出热胀冷缩导致输电线内张力变化的裕量,而接触网的负载时高速移动的电力机车,为了确保受流质量,预留裕量的方法是不可取的。

为了解决这一问题,一般在一个锚段的两端,在接触线及承力索内串接张力自动补偿装置后,再进行下锚。

2题目:张力自动补偿装置的分析与研究2.1 张力自动补偿装置的概念张力自动补偿装置,又称张力自动补偿器,它是装在锚段的两端,并且串接在接触线和承力索内,它的作用是补偿线索内的张力变化,使张力保持恒定。

因为在大气温度发生变化时,接触线或承力索也会发生伸长或缩短,从而使线索内的张力发生变化,这时就会影响到接触线或承力索的驰度也会发生变化,因而使受流条件恶化。

为改变这种情况,一般在一个锚段的两端,在接触线及承力索内串接张力自动补偿装置后,再进行下锚。

对张力自动补偿装置的要求有二:其一,补偿装置应灵活,在线索内的张力发生缓慢变化时,应能及时补偿,传送效率要高;其二,具有快速制动作用,一旦发生断线事故或其他异常情况,线索内的张力迅速变化时,补偿装置还应有一种制动功能。

一般对于全补偿的承力索内的补偿装置,如果不具备这种功能时,还需专门加有断线制动装置,以防止在一旦发生断线时,坠砣串落地而造成事故扩大、恢复困难。

张力自动补偿装置有许多种类,有滑轮式、棘轮式、鼓轮式、液压式及弹簧式等。

2.2 滑轮式张力自动补偿装置我国电气化铁路广泛采用滑轮组式补偿装置,它是由补偿滑轮、补偿绳、杵环杆、锤铊杆、限制导管和坠砣组成。

对于半补偿链形悬挂,承力索为硬锚,就是直接下锚,如图2.1所示;对于全补偿链形悬挂,接触线和承力索都通过滑轮组补偿装置后下锚,此时承力索采用三个滑轮,接触线采用两个滑轮,承力索张力为15kN,接触线张力为10kN,承力索采用的传动比为3:1,接触线采用的传动比为2:1,所以坠砣的重负载都是5kN,如图2.2所示。

接触网 (2)

接触网 (2)

1 设计原始题目1.1 设计内容及要求根据接触线磨耗与接触线张力配合:根据实际运行的接触网确定磨耗的计算方法,根据磨耗大小及列车运行时速确定接触线张力,通过张力计算绘制磨耗—张力曲线。

1.2 题目分析与设计思路列车运行中,受电弓与接触线之间必存在摩擦,使接触线产生磨耗,其效果可用磨耗面积及磨耗比来量度。

接触线磨耗通过改变接触线的质量,从而影响波动速度与接触线的张力,要使列车运行时速保持一定,则需要控制波动速度一定,而改变接触线的张力,这样,就得到了张力与磨耗的关系式,绘制出磨耗—张力曲线。

2 设计课题的计算与分析2.1计算的意义接触线张力对受流质量起着关键作用,改变接触线的张力可以改善接触网的受流特性参数,而接触线的磨耗又影响接触线的张力,通过研究接触线磨耗与张力之间的关系来保证较好的受流质量,同时保证接触线寿命。

2.2接触线磨耗2.2.1 磨耗在受流系统中,受电弓和接触线高速滑动接触,必然产生磨耗。

从成因上可分为电气磨耗、化学磨耗和机械磨耗。

电气磨耗是指电离子转移和电弧烧损。

化学磨耗是指在腐蚀环境下溶解、锈蚀。

机械磨耗又分为粘结磨耗和硬粒磨耗,粘结磨耗是导线凸现部分经滑板摩擦,其原子间相互结合造成的,硬粒磨耗是导线凸现部分在滑动接触过程中相互切削引起的。

其中,尤以电气磨耗影响最为主要。

2.2.2 磨耗比接触线通过万架弓次后,被磨去的横截面与总截面积之比称为磨耗比,磨耗比是直接反映运行状态的参数,磨耗比大,则直接表明了弓线间的接触情况不好,或者接触线与滑板的材质不匹配,使接触线磨损加剧;反之磨耗比小,则客观表现弓线间具有良好的匹配关系。

接触线的磨耗不能一直持续下去,磨耗比不能超过一定值,当其超过定值后,安全系数将不再满足要求,按照规定,局部磨耗达到15%时,则对该锚段检修周期缩短;达到25%时,对该磨耗点进行补强;达到30%时,进行截除重做接头。

2.2.3 磨耗的计算方法说明:以CTHB-120银铜合金接触线为例,如图1,线材直径为13.2mm,横截面积为2120mm。

接触网工程课程设计终极

接触网工程课程设计终极

接触网工程课程设计评语:考勤(10)守纪(10)设计过程(40)设计报告(30)小组答辩(10)总成绩(100)专业:电气工程及其自动化班级:电气1001姓名:李彦飞学号: 201009033指导教师:张廷荣兰州交通大学自动化与电气工程学院2013 年7月18日1 设计原始题目1.1、具体题目高速电气化铁路接触网悬挂模式设计。

1.2、设计的内容对各种悬挂模式进行分析比较,确定适合高速运行接触网的悬挂模式,选择接触线、承力索、吊弦、弹性辅助索等的型号,计算其张力,进行张力补偿的设计。

2、设计课题的分析与选型2.1、高速铁路接触网悬挂方式接触网的分类主要以接触网悬挂类型来区分,在一条接触网线路上,无论是在区间还是在站场,为满足供电和机械性能方面要求,总是将接触网分成若干长度且相互独立的分段(即为接触网锚段),接触网悬挂分类是针对架空接触网中每个锚段而言。

到目前为止,现实已经开通运营或正在建设的高速铁路接触网系统悬挂方式主要有三类:简单链型、弹性链型、复链型。

(1) 简单链型悬挂简单链形悬挂是一条接触线通过吊弦悬挂在一条承力索上,承力索通过钩头鞍子或悬吊滑轮悬挂在支持装置上。

此种悬挂方式稳定性的好坏主要取决于接触网系统的跨距、接触线和承力索的张力、吊弦长度、吊弦间距、支持装置及支柱稳定性等技术参数的好坏。

1:承力索 2:吊弦 3:接触线图1 简单链型悬挂 (2) 弹性链形悬挂弹性链型悬挂是在简单链型悬挂基础上在每处悬挂点增加Y 形弹性吊索,长度一般为8~16m ,仍为单链形悬挂。

此悬挂方式稳定性好与坏,除受跨距、承力索和接触线的张力、吊弦、支持装置及支柱稳定性影响外,弹性吊索张力对其稳定性的影响也十分的大。

德国、法国、日本等多国已经在行驶试验中证实该接触网结构1232形式适合于高速行驶。

1:承力索 2:弹性辅助索 3:接触线 4:弹性吊弦 5:整体吊弦图2 弹性链型悬挂(3) 复链形悬挂复链型悬挂是接触线经短吊弦悬挂在辅助吊索上,辅助吊索又通过吊弦悬挂在承力索上。

接触网课程设计

接触网课程设计

接触网课程设计接触网工程课程设计报告评语:考勤(10)守纪(10)设计过程(40)设计报告(30)小组答辩(10)总成绩(100)专业:电气工程及其自动化班级:电气1102 姓名:学号:指导教师:兰州交通大学自动化与电气工程学院2021 年7月 4日接触网工程课程设计报告1基本题目1.1题目高速电气化铁路接触网悬挂模式设计 1.2题目分析接触网性能的优劣直接影响着受流质量,并最终影响到列车的行车速度与安全。

目前主要的悬挂方式有:以日本为代表的复链型悬挂、以德国为代表的弹性链型悬挂及以法国为代表的简单型悬挂。

我国京沪高铁采用了简单悬挂。

可见简单悬挂已足以满足高速电气化铁路的要求。

以下将对常见的三种悬挂方式做一对比,并类比京沪高速电气化铁路接触悬挂作简要设计。

2高速电气化铁路悬挂类型设计2.1不同类型悬挂模式的比较 2.1.1简单链型悬挂简单链型悬挂结构简单,造价较便宜,不仅一次性投资减少,而且运营费用有所降低,但火花趋于严重,法国自己也承认,是以牺牲有限的受流质量换取经济利益,同样的条件下接触线的寿命有所缩短。

图1 简单链型悬挂简图2.1.2弹性链型悬挂:德国电气化铁路采用弹性悬挂,代表类型为Re250型及Re330型,它们分别适应的速度为250km/h和330km/h。

弹性悬挂带有弹性吊索,弹性吊索的计算需要相当精确的计算和一套严格的施工程序,其调整工作相当繁琐。

图2 弹性链型悬挂简图1接触网工程课程设计报告2.1.3复链型悬挂日本采用复链悬挂,主要是该方式于日本有着特殊优势,受流稳定性及风稳定性都较为优越,弹性均匀度较好。

日本在动力配置方面属于动力分散式,四拖四动的摩托车组;同时,日本是个岛国,风速普遍较大,这是采用复链的原因。

但复链悬挂单位长度质量较大,造成波动速度无法提升,影响列车速度进一步提升,而且会造成接触网较大的接触磨耗,进而影响使用寿命;而且这种悬挂方式一次性投资太大,结构复杂、组成零部件太多,导致接触网运营的维修费高昂,发生事故时抢修难度大、运输中断时间长。

接触网课程设计报告无交叉线岔的分析与设计

接触网课程设计报告无交叉线岔的分析与设计

电气化铁路接触网无交叉线岔的分析与设计1 题目分析与方案设计1.1 题目分析在铁路的站场上,站线、侧线、到发线总是并入正线的。

如果线路设一个道岔,那么接触网就必须设一个线岔。

就像道岔的形式多种多样,线岔的形式也是多种多样的。

目前,在我国的普通线路上使用的是普通交叉线岔,而在武广、郑西、京沪客专等高速铁路接触网上,除部分交叉线岔外,大多数都采用高速无交叉线岔。

无交叉线岔就是在道岔处,正线和侧线两组接触网悬挂无相交点。

随着无交叉线岔方式的提出,线岔的概念也发生相应的变化,如今,线岔应理解为电气化铁路的接触网在站场轨道道岔上方两组接触悬挂汇交(过渡)的特殊结构。

有交叉线岔是电气化铁路创建之初便采用的结构形式,在我国施工、运营也已有约40年的历史,实践证明,这种结构形式简单可靠,便于施工和维修,适于低速和中速运行,故在我国得到普遍采用。

对于电气化铁路而言,要提高电力机车运行速度,必须通过减少离线率来提高受电弓的受流质量,这就需要通过改善接触网的弹性来改善弓网关系。

有交叉线岔的集中重量、硬点及受电弓相对于两支接触线压力的不均匀性,成了改善接触网弹性的制约点,从而制约了电气化铁路的提速与发展。

为了适应电气化铁路提速的需要,无交叉线岔应用而生。

无交叉线的优点:无交叉线岔的优点是正线和侧线两组接触线既不相交、不接触,也没有线岔设施,因此既不会产生刮弓事故,也没有因线岔形成的硬点,提高了接触网悬挂的弹性均匀性,从而保证在高速行车时,消除了打弓、钻工及刮弓的可能性。

无交叉线岔的主要表现为:道岔处两支悬挂在空间是分开的,不像普通线岔那样有交点,相对于交叉线岔,无交叉线岔的安装与调整比较麻烦,但它能满足高速电气化铁路的要求,机车经过线岔时平稳良好的受流优越性是其他结构无法替代的。

无交叉线岔应能保证正线高速通过时不受侧线接触悬挂的影响,同时在机车从正线驶向侧线或从侧线驶入正线时都能平稳顺利的过渡。

1.2 方案设计在平面布置时,应使侧线接触线位于正线线路中心以外999mm。

接触网技术课程设计报告——高速电气化铁路接触网的干扰影响及防护研究

接触网技术课程设计报告——高速电气化铁路接触网的干扰影响及防护研究

接触网技术课程设计报告班级:电气08*学号: 2008090**姓名: ******指导教师:王秀华评语:2012年 2 月24 日1.基本题目1.1 题目高速电气化铁路接触网的干扰影响及防护研究1.2 题目分析目前,接触网的干扰影响及防护研究,是一个很重要的问题,关系到整个电气化铁道能否正常可靠的运行。

我国干线牵引供电系统采用工频单相交流制,其牵引网事一种不对称的回路。

当牵引电流流过接触网时,会在接触线周围形成电场和磁场,这种电场和磁场对沿线邻近的通信线路和设备产生干扰和影响,严重时会危机设备和人身安全。

单相交流电气化铁路将对沿线架设的通信线路产生静电感应电压影响,电磁感应影响以及杂音干扰。

因此必须在修建电气化铁路的同时,必须考虑到防干扰。

在具体防护线路的接线方式主要有吸流变压器(BT)方式,吸流变压器钢轨方式,单设回流线方式,自耦变压器(AT)方式同轴电力电缆方式。

另外,对于带电的设备都会考虑到接地和防雷,当然接触网的防雷和接地也是防护至关重要的问题。

2.题目:交流电气化线路的干扰影响2.1 静电感应电压影响当接触网加上25KV的工作电压之后,就在接触网导线(包括承力索和接触线)的四周建立起垂直于导线表面的交变电场,由于静电感应作用,处于电场内的架空通信线路将产生静电感应电位,从而对通信线路产生有害影响。

2.2 电磁感应影响当线路上有电力机车运行时,接触网内就有工频单相交流牵引电流,它在接触网的周围建立起交变电磁场,因而对沿线架设的通信线路产生电磁交链,使通信线路中产生沿导线纵方向的感应电动势,称为纵电动势。

当通信线与接触网距离不远,其平行长度又较长时,在通信线路中感应的纵电动势可以达到危险的程度。

2.3 杂音干扰牵引电流是随时间波动的电流,当采用整流器式电力机车时,机车上的交流将被整流变成直流,在整流电流中会出现大量高次谐波,不仅正弦波形发生了很大的畸变,而且在波峰处产生了谐波的成分。

因此交流电流除了加上所述能在通信线路产生感应纵电动势外,其谐波成分也能在通信中造成谐波感应电压,形成通信杂音,这就是我们通常说的交流牵引网对沿线通信线路的杂音干扰。

接触网课程设计(接触网绝缘配合)

接触网课程设计(接触网绝缘配合)

接触网技术课程设计报告学号:姓名:指导教师:Array年月日1.大体题目题目接触网绝缘配合。

题目分析接触网的绝缘配合,确实是依照接触网所在的电气化铁路供电系统中所可能施加于接触网的各类电压,包括正常工作电压、操作过电压和大气过电压,并考虑爱惜装置的特性和接触网的绝缘特性,来确信接触网对所加电压的必要的耐受强度,以便把作用于接触网上的各类电压所引致的接触网绝缘损坏和阻碍接触网不中断正常供电的概率,降低到在经济上和铁路运营上所能同意的水平。

良好的绝缘配合,确实是要在技术上正确处置各类电压、各类限压方法(如装设避雷器)和接触网绝缘耐受能力三者之间的配合关系,并在经济上和谐接触网建设投资费、运营保护费和事故损失费三者之间的关系。

因此,对接触网的绝缘配合进行分析与研究是十分必要的。

2.题目:接触网绝缘配合的分析与研究接触网的绝缘部件(1)绝缘子是接触网带电体与支柱设备或其他接地体维持电断气缘的重要部件。

接触网用的绝缘子多为悬式绝缘子和棒式绝缘子。

悬式绝缘子要紧用来悬吊或支撑接触悬挂,电气化铁路供电的额定电压是25KV,选用的绝缘子形式一样是由三片组成的绝缘子串,轻污染区采纳三片一般型悬式绝缘子组成,重污染区采纳四片均为防污型悬式绝缘子组成的绝缘子串。

棒式绝缘子是依照电气化铁路接触网的工作条件而专门设计的一种瓷质的整体式绝缘子,依照利用环境及条件可分为一般型﹑防污型及双重绝缘三种类型。

绝缘子的性能好坏,对接触网可否正常供电阻碍专门大。

﹙2﹚绝缘子的机械性能绝缘子在接触网中不仅起绝缘作用,而且还经受着机械负荷,专门是软横跨的承力索及下锚用的绝缘子经受着线索的全数张力,因此对绝缘子的电气及机械性能的要求都是极为严格的。

(3)绝缘子的电气强度绝缘子在工作中要受到各类大气环境的阻碍,并可能受到工频电压、内部过电压和外部过电压的作用。

因此,要求绝缘子在这三种电压作用及相应的环境之下能够正常工作或维持必然绝缘水平。

绝缘子的电气性能,用干闪络电压﹑湿闪络电压和击穿电压表示。

接触网课程设计 高速电气化铁路接触网悬挂模式设计

接触网课程设计   高速电气化铁路接触网悬挂模式设计

接触网工程课程设计专 业: 电气工程及其自动化 班 级: 电气09 姓 名: 学 号: 200909 指导教师:兰州交通大学自动化与电气工程学院2012 年 7月 13日指导教师评语平时(30)报告(30)修改(40)总成绩1基本题目1.1题目高速电气化铁路接触网悬挂模式设计。

1.2题目分析现代高速铁路绝大多数都采用电力牵引方式,作为牵引供电系统的主体——接触网,其性能的优劣直接决定着电力机车受电弓的受流质量,最终影响列车的运行速度与安全。

目前,世界各国为满足高速受流的要求,都根据自己国家高速铁路规划的动力装置和受电弓的结构及性能的不同,而采用了不同的悬挂类型。

悬挂类型是高速铁路接触网设计和施工的最基本参数。

高速铁路接触网对悬挂类型的要求,是能够提供良好的受流质量、寿命长、少维修、故障率低,同时应该有较高的性能价格比。

目前国外高速铁路接触网大体有三种悬挂类型:以日本为代表的复链型悬挂、以德国为代表的弹性链型悬挂和以法国为代表的简单链型悬挂。

本报告结合所学高速电气化铁路接触网课程参考国外高速接触网的发展状况,运营经验以及不同国家的弓网受流质量评价标准,对上述三种链型悬挂类型进行了较为全面的技术经济比较,并简单分析了我国高速(以京沪高铁为例)宜采用简单链型悬挂方式的原因。

另外,对张力补偿装置的选择也略作阐述。

2 高速电气化铁路悬挂类型设计2.1不同类型接触网悬挂的分析比较日本于1964年开通的世界上第一条高速铁路—东京至新大阪的东海道新干线,采用的是复链型悬挂,复链型悬挂图如图1所示。

九十年代以前,日本的高速铁路接触网都采用复链型悬挂。

但是这种悬挂类型一次性投资太大,而且因为结构复杂、组成零部件太多,导致接触网运营的维修费用高昂,发生事故时抢修难度大、运输中断时间长。

承力索吊悬接触线图1复链型悬挂图德国高速铁路接触网一直采用弹性链型悬挂,如图2所示。

在总结Re75,Re100,Re160三种标准的基础上,形成了Re200,Re250和Re330标准系列。

接触网课程设计--接触网的接地与防雷设计

接触网课程设计--接触网的接地与防雷设计

接触网工程课程设计专业:电气工程及其自动化班级:__________________________ 姓名:__________________________ 学号:__________________________ 指导教师:_______________________兰州交通大学自动化与电气工程学院2012年7月13日1 方案选择1.1题目接触网的接地与防雷。

1.2题目分析接触网是牵引供电系统的重要组成部分,绝大部分裸露在自然环境中没有备份,需要采用必要的大气过电压防护措施。

如果缺少防护措施或措施不当,可能引起绝缘子损坏,造成线路跳闸,直接影响电气化铁路运营。

同时雷击产生的侵入波过电压通过接触网传入牵引变电所,可能引起所内电气设备的损坏造成更大事故。

我国地域广大,因雷击造成人员伤亡、设备损坏的事故屡见不鲜。

根据牵引供电系统运营部门统计数据分析,目前开通的 26 万多千米电气化铁道中部分雷击事故比较频繁,所以应重视接触网的防雷设计,以运输安全为目标,以系统优化、综合防护、防雷减灾的原则进行接触网的防雷设计。

接触网地线是起保护作用,地线将接触网设备中非常带电的金属部分于钢轨连接起来,当绝缘子发生击穿,闪络或因老化而严重漏电时,变电所保护装置回立即反映事故状态,迅速切断电路。

2 设计计算2.1 直接雷击接触网雷击包括直接雷台,雷电反击和感应雷击过电压等。

雷击接触网承力索产生直击雷过电压同样与雷电流幅值成正比,即雷击过电压约为100 倍的电流幅值,雷击承力索将产生几百到几千 kV 过电压。

雷电反击过电压雷击支柱顶部产生接触网雷电反击过电压,其中不仅有雷电流通过支柱,而且在支柱顶产生电位,同时空气中迅速变化的电磁场还在导线上产生感应电压;按图 l 表示客运专线典型接触网支柱悬挂方式,根据 DL/T 620-1997《交流电气装置的过电压保护和绝缘配合》计算方法,计算耐雷电反击过电压水平。

感应雷击距接触网有限远S>65m处, 雷击对地放电时.在接触网上产生的过电压与雷电流幅值成正比,其比值为 3.84。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程名称:接触场平面设计设计题目:站场平面设计院系:电气工程系专业:铁道电气化年级: 2011级姓名:浩学号: 20116687 指导教师:王老师西南交通大学峨眉校区2015年 1月8 日课程设计任务书专业铁道电气化姓名浩学号 20116687开题日期: 2014年月日完成日期: 2015 年月日题目接触场平面设计一、设计的目的通过该设计,使学生初步掌握接触场平面设计的设计步骤和方法,熟悉有关平面设计图纸的使用;基本掌握站场平面设计需要考虑的元素;锻炼学生综合运用所学知识的能力,为今后进行工程设计奠定良好的基础。

二、设计的容及要求1.负载计算。

2.最大跨距计算。

3.半补偿链形悬挂安装曲线计算。

4.半补偿链形悬挂锚段长度及力增量曲线决定。

5.平面设计:(1)基本要求;(2)支柱布置;(3)拉出值及之字值标注;(4)锚段关节;(5)咽喉区放大图;(6)接触网分段。

6.站场平面表格填写:侧面限界、支柱类型、地质情况、基础类型、安装参考图号。

三、指导教师评语四、成绩指导教师 (签章)年月日接触网课程设计任务书一、原始资料1.悬挂形式:正线全补偿简单链形悬挂,站线半补偿简单链形悬挂。

2.气象条件:学号尾数1的为第一典型气象区,学号尾数2的为第二典型气象区,学号尾数3的为第三典型气象区,学号尾数4的为第四典型气象区,学号尾数5的为第五典型气象区,学号尾数6的为第六典型气象区,学号尾数7的为第七典型气象区,学号尾数8的为第八典型气象区,学号尾数0、9的为第九典型气象区。

3.悬挂数据:学号尾数0、1的结构高度为1.1米,学号尾数2的结构高度为1.2米,学号尾数3的结构高度为1.3米,学号尾数4的结构高度为1.4米,学号尾数5的结构高度为1.5米,学号尾数6、7的结构高度为1.6米,学号尾数8、9的结构高度为1.7米。

站线:承力索JT70,Tcmax=1500kg;接触线CT85,Tjm=1000kg。

正线:承力索JT70,Tcm=1500kg;接触线CT110,Tjm=1000kg。

e=4m4.土壤特性:(1)女生:安息角(承载力)Φ=30º,挖方地段。

(2)男生:安息角(承载力)Φ=30º,填方地段。

二、设计容1.负载计算2.最大跨距计算3.半补偿链形悬挂安装曲线计算4.半补偿链形悬挂锚段长度及力增量曲线决定5.平面设计(1)基本要求(2)支柱布置(3)拉出值及之字值标注(4)锚段关节(5)咽喉区放大图(6)接触网分段6.站场平面表格填写支柱编号、侧面限界、支柱类型、地质情况、基础类型、安装参考图号三、验算部分1.各种类型支柱校验2.缓和曲线跨距校验四、使用图纸按学号最后两位相加之和的末位数使用站场0---站场9的图纸五、课程设计于任务书下达后六周交老师,延期交以不及格论处,特殊情况申请延期除外。

第一章 负载计算1.1 计算的条件 1.1.1 气象条件的确定第Ⅶ典型气象区,查表可知:最高温度:max 40t C =+︒ 最低温度:min 40t C =-︒ 覆冰温度:5b t C =-︒ 最大风速时的温度:5v t C =-︒ 最大风速:max 30V m s = 覆冰时的风速:15b V m s = 覆冰厚度:10b mm = 覆冰密度:3900/b kg m γ=1.1.2技术条件的确定70JT -:10.5c d mm =,0.599g kg m =,S=65.81 2mm正线:CT110:12.34A mm =,12.34B mm =,0.992g kg m =, S=1112mm 站线:CT85:A=10.8mm ,B=10.76mm ,g=0.769kg/m 吊弦:30.510/d g KN m -=⨯风速不均匀系数a ,最大风速时:0.85a =;覆冰时: 1.00a = 风负载体型系数k ,链形悬挂: 1.25k =1.2负载计算 1.2.1自重负载1、承力索JT —70的自重负载:330.5999.8110 5.8810/c g KN m --=⨯⨯=⨯2、接触线CT110的自重负载:331100.9929.81109.7310/j g kN m--=⨯⨯=⨯3、接触线CT85的自重负载:33850.7699.81107.5410/j g kN m--=⨯⨯=⨯4、吊弦及线夹的自重负载:30.510/d g kN m -=⨯1.2.2 冰负载1、承力索的覆冰重力负载:9093()103.1490010(10.510)9.8110 5.6810/cb b H g b b d g kN mπγ---=⨯⨯+⨯⨯=⨯⨯⨯+⨯⨯=⨯2、接触线的覆冰重力负载:911093()10222101012.3412.343.14900()9.8110 2.40410/222jb b H b b A Bg g kN mπγ---+=⨯⨯+⨯⨯+=⨯⨯+⨯⨯=⨯ 98593()10222101010.8010.763.14900()9.8110 2.18710/222jb b H b b A Bg g kN mπγ---+=⨯⨯+⨯⨯+=⨯⨯+⨯⨯=⨯1.2.3 风负载1、最大风速时承力索单位长度的风负载:26max 2630.615100.6150.85 1.253010.510 6.1710/cv c p a K v d kN m---=⨯⨯⨯⨯⨯=⨯⨯⨯⨯⨯=⨯2、最大风速时接触线单位长度的风负载:26110max 2-6-30.615A 10=0.6150.85 1.253012.3410=7.2610kN/m j v p a K v -=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯2685max 2-6-30.615A 10=0.6150.85 1.253010.8510=6.38110kN/m j v p a K v -=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ 3、覆冰时承力索单位长度的风负载:26262630.615100.615(2)100.6151 1.2510(10.5210)10 2.3410/cbv b cb b c p a K v d a K v d b kN m----=⨯⨯⨯⨯⨯=⨯⨯⨯⨯+⨯=⨯⨯⨯⨯+⨯⨯=⨯4、覆冰时接触线单位长度的风负载:261102-6-30.615(A+b)10=0.6151 1.2510(12.3410)10=1.71710kN/m j bv b p a K v -=⨯⨯⨯⨯⨯⨯⨯⨯⨯+⨯⨯26852-6-30.615(A+b)10=0.6151 1.2510(10.8010)10=1.59910kN/m j bv b p a K v -=⨯⨯⨯⨯⨯⨯⨯⨯⨯+⨯⨯1.2.4 合成负载在计算链形悬挂的合成负载时(是对承力索而言的),其接触线上所承受的水平风负载,被认为是传给了定位器而予以忽略不计。

1、无冰、无风时的自重合成负载:正线: 330110(5.889.730.5)1016.1110/c j d q g g g kN m--=++=++⨯=⨯站线:33085(5.887.540.5)1013.9210/c j d q g g g kN m--=++=++⨯=⨯2、最大风速时的合成负载:正线:33max 1017.5210/v q kN m--===⨯站线:33max 1015.2310/v q kN m--===⨯3、覆冰时的合成负载:正线:331024.3110/b q kN m --====⨯ 站线:331021.9110/b q kN m --====⨯4、合成负载对铅垂线间的夹角:正线:00333arctanarctan()()2.3410arctan5.5216.1110(5.68 2.404)10cb cbb c j d cbo jb p p g g g g g g g ϕ---==+++++⨯==︒⨯++⨯站线:00333arctanarctan()()2.3410arctan6.1313.9210(5.68 2.187)10cb cbb c j d cbo jb p p g g g g g g g ϕ---==+++++⨯==︒⨯++⨯第二章 最大跨距计算2.1 计算的条件1、直线区段“之”字值a =300mm曲线区段拉出值选用表 表2.12、接触线力:100010/10j jm T T g kg N kg KN ==⨯=链形悬挂接触线当量系数m 取0.9接触线单位长度上的风负载:31107.2610/j p kN m-=⨯385 6.38110/j p kN m-=⨯接触线的最大风偏移值:直线区段:max 500j b mm = 曲线区段: max 450j b mm = 支柱在接触线水平面受风时的位移(扰度):50j mm γ=2.2 最大跨距的计算1、在直线区段上:正线:max269.34l m ===站线:max273.96l m ===故对于直线区段,最大跨距取max 65l m =第三章 简单链形悬挂安装曲线计算3.1(站线)半补偿链型悬挂有载承力索的安装曲线3.1.1 计算条件承力索JT-70:max 1500c T kg =,即承力索最大允许力:max 15c T KN =;承力索计算截面积:265.81S mm =;承力索弹性系数105c E GPa =;线胀系数611710c K α--=⨯;承力索自重负载3c 5.8810g kN m -=⨯接触线CT-85:1000jm T kg =,即接触线最大允许力:10j T KN =;接触线计算截面积:286mm S =;接触线弹性系数120j E GPa =;线胀系数611710j K α--=⨯η—经验系数,与材质特性有关,铜承力索为0.75由悬挂点到最近的简单支柱吊弦间的距离(m )4e m =无冰无风时的合成负载:m kN g g g q d j c /1092.1330-⨯=++=max 40t C =+︒ min 40t C =-︒ 5b t C =-︒ max min010102t t t C +=-=-︒当量跨距m l D 60=ϕ=22(2)D D l e l -=0.751 3.1.2 计算与绘制步骤1、 半补偿链型悬挂临界负载:2min 2min 2max 00)(24t Db c jlj W l t t Z T T q q +-⋅+-=αϕ 其中 j c T T Z ϕ+=max max 00min c jt T T q q W ϕ+= 由于0c T 还是未知数,对于铜承力索,用下式近似算出:kN T T c c 25.111575.0max 0=⨯==η 故kN T T Z j c 51.2210751.015max max =⨯+=+=ϕm kN T T q q W c jt /1021.2325.1110751.01092.131092.1333300min ---⨯=⨯⨯⨯+⨯=+=ϕ2min 2min 2max 00)(24t Db c jlj W l t t Z T T q q +-⋅+-=αϕ 232263)1021.23(60)405(51.2210172425.1110751.01092.13---⨯++-⨯⨯⨯⨯+⨯⨯⨯-=m kN /1019.413-⨯=由于:3341.1910/21.9110/lj b q kN m q kN m --=⨯>=⨯,所以取最低温度时条件为计算的起始条件。

相关文档
最新文档