牛顿第二定律的系统表达式及应用一中

合集下载

牛顿第二定律详解

牛顿第二定律详解

牛顿第二定律详解实验:用控制变量法研究:a与F的关系,a与m的关系知识简析一、牛顿第二定律1.内容:物体的加速度跟物体所受合外力成正比,跟物体的质量成反比;a的方向与F合的方向总是相同。

2.表达式:F=ma揭示了:①力与a的因果关系,力是产生a的原因和改变物体运动状态的原因;②力与a的定量关系3、对牛顿第二定律理解:(1)F=ma中的F为物体所受到的合外力.(2)F=ma中的m,当对哪个物体受力分析,就是哪个物体的质量,当对一个系统(几个物体组成一个系统)做受力分析时,如果F是系统受到的合外力,则m是系统的合质量.(3)F=ma中的F与a有瞬时对应关系,F变a则变,F大小变,a则大小变,F方向变a也方向变.(4)F=ma中的F与a有矢量对应关系,a的方向一定与F的方向相同。

(5)F=ma中,可根据力的独立性原理求某个力产生的加速度,也可以求某一个方向合外力的加速度.(6)F=ma中,F的单位是牛顿,m的单位是kg,a的单位是米/秒2.(7)F=ma的适用范围:宏观、低速4. 理解时应应掌握以下几个特性。

(1) 矢量性F=ma是一个矢量方程,公式不但表示了大小关系,还表示了方向关系。

(2) 瞬时性a与F同时产生、同时变化、同时消失。

作用力突变,a的大小方向随着改变,是瞬时的对应关系。

(3) 独立性(力的独立作用原理) F合产生a合;Fx合产生ax合;Fy合产生ay合当物体受到几个力作用时,每个力各自独立地使物体产生一个加速度,就象其它力不存在一样,这个性质叫力的独立作用原理。

因此物体受到几个力作用,就产生几个加速度,物体实际的加速度就是这几个加速度的矢量和。

(4) 同体性F=ma中F、m、a各量必须对应同一个物体(5)局限性适用于惯性参考系(即所选参照物必须是静止或匀速直线运动的,一般取地面为参考系);只适用于宏观、低速运动情况,不适用于微观、高速情况。

牛顿运动定律的应用1.应用牛顿运动定律解题的一般步骤:(1) 选取研究对象(2) 分析所选对象在某状态(或某过程中)的受力情况、运动情况(3) 建立直角坐标:其中之一坐标轴沿的方向然后各力沿两轴方向正交分解(4) 列出运动学方程或第二定律方程F合=a合;Fx合=ax合;Fy合=ay合用a这个物理量把运动特点和受力特点联系起来(5) 在求解的过程中,注意解题过程和最后结果的检验,必要时对结果进行讨论.2.物理解题的一般步骤:(1) 审题:解题的关键,明确己知和侍求,特别是语言文字中隐着的条件(如:光滑、匀速、恰好追上、距离最大、共同速度等),看懂文句、及题述的物理现象、状态、过程。

牛顿第二定律及应用

牛顿第二定律及应用

牛顿第二定律及应用牛顿第二定律是经典力学中最基本的定律之一,它描述了物体所受力与物体运动状态之间的关系。

在本文中,我们将探讨牛顿第二定律的详细内容以及其在实际应用中的重要性。

一、牛顿第二定律的表达式牛顿第二定律可以用以下表达式表示:F = ma其中,F代表物体所受的合力,m代表物体的质量,a代表物体的加速度。

这个表达式指出,物体所受的合力等于物体质量与加速度的乘积。

二、质量的概念在牛顿第二定律中,质量是一个关键的概念。

质量指的是物体所具有的惯性,它是一个物体抵抗改变其运动状态的属性。

质量越大,物体的惯性越强,越难改变其运动状态。

质量的单位是千克(kg),常用的国际单位制中,1千克等于1000克。

三、力的概念与测量力是导致物体产生运动或者改变其运动状态的原因。

通常用牛顿(N)作为力的单位。

在物理学中,有很多种类的力,比如重力、摩擦力、张力等。

力的测量需要借助仪器,常用的力的测量仪器是弹簧测力计。

弹簧测力计利用弹簧的弹性来测量物体所受的拉力或者压力。

四、加速度的概念与计算加速度是物体改变速度的度量,表示单位时间内速度的变化量。

它的定义是加速度等于速度变化量除以时间变化量。

加速度的单位是米每平方秒(m/s²)。

如果物体的速度从v₁变化到v₂,所用的时间是t,那么加速度可以用下面的公式计算:a = (v₂ - v₁) / t五、牛顿第二定律的应用牛顿第二定律可以应用于各种各样的情况,下面是一些常见的应用:1. 机械运动:当我们推车或者拉车时,施加在车身上的力会导致车产生加速度。

根据牛顿第二定律,我们可以计算出施加的力大小。

2. 自由落体:牛顿第二定律可以解释自由落体运动。

当物体在重力作用下自由落下时,它所受的合力等于其质量乘以重力加速度,即F = mg。

利用牛顿第二定律,我们可以计算物体的加速度。

3. 物体在斜面上的运动:当物体沿斜面滑动时,可以将物体的重力分解为平行于斜面和垂直于斜面的两个分力。

牛顿第二定律

牛顿第二定律

牛顿第二定律牛顿第二定律,也称为力的运动定律,是经典力学中的基本定律之一。

它揭示了物体的运动与作用在其上的力的关系。

牛顿第二定律的数学表达式为力等于质量乘以加速度,即F = ma。

在本文中,我们将深入探讨牛顿第二定律的原理和应用。

一、原理牛顿第二定律的原理可以简单地表述为:当一个物体受到外力作用时,它的加速度与作用力成正比,与物体的质量成反比。

换句话说,当施加在物体上的力增大时,它的加速度也会增大;当物体的质量增大时,它的加速度则减小。

数学表达式F = ma中,F代表作用力,m代表物体的质量,a代表加速度。

根据这个公式,我们可以计算出物体所受的力,以及物体的加速度。

二、应用牛顿第二定律广泛应用于各个领域,包括力学、动力学、航天等。

以下是牛顿第二定律在实际应用中的一些例子:1. 汽车加速当我们在汽车上踩下油门时,引擎会产生一个向前的力,推动汽车加速。

根据牛顿第二定律,加速度与推动力成正比,与汽车的质量成反比。

因此,如果我们增大引擎的输出力,汽车将更快地加速。

2. 弹簧振动弹簧振动是一个常见的物理现象。

当我们拉伸或压缩弹簧时,弹簧会产生一个与变形成正比的力。

根据牛顿第二定律,弹簧的加速度与作用力成正比,与物体的质量成反比。

所以,当我们增大弹簧的压缩或拉伸程度时,弹簧的振动频率会加快。

3. 物体沿斜面滑动当一个物体沿斜面滑动时,斜面会对物体施加一个向下的力,称为重力分力。

根据牛顿第二定律,物体在斜面上的加速度与重力分力成正比,与物体的质量成反比。

因此,物体质量越大,加速度越小,物体质量越小,加速度越大。

三、结论牛顿第二定律是经典力学中不可或缺的一部分。

它揭示了物体运动和作用力之间的关系,并在实际应用中发挥着重要的作用。

通过对牛顿第二定律的研究与应用,我们能够更好地理解和解释各种物理现象,为工程技术的发展提供理论基础。

总之,牛顿第二定律是物理学领域的核心概念之一。

它的重要性体现在我们对物体力学性质和运动规律的研究中。

牛顿第二定律及其应用

牛顿第二定律及其应用

m
a
M
F
【例】如图所示,放在水平地面上的木板长1 米 , 质 量 为 2kg , B 与 地 面 间 的 动 摩 擦 因 数 为 0.2.一质量为3kg的小铁块A放在B的左端,A、 B之间的动摩擦因数为0.4.当A以3m/s的初 速度向右运动后,求最终A对地的位移和A对B 的位移.
类型三:整体法与隔离法在连接体问题中的灵活应用 【例 3】 如图 3-2-11 所示,光滑水平面上放置质
,已知汽车的质量为4000kg,则汽
车在BC段的加速度大小为
,O
A段汽车的牵引力大小为

v/m·s-
1
10
A
B
C
0 10 20 30 40 t/ s
牛顿第二定律的题型
两种类型: (1)已知运动情况求受力情况
(2)已知受力情况求运动情况
解题关键: 利用
牛顿第二定律 运动学公式
求a
一、力和加速度、速度的关系 力的大小和方向
A.任一时刻A、B加速度的大小相等
(ABD)
B.A、B加速度最大的时刻一定是A、B速度相等的时
皮带传动物体时摩擦力的判定问题
物体与传送带无相对滑动时:
a
A
(1)a=gsinθ时,f=0
B
θ
(2)a>gsinθ时,f沿斜面向下
(3)a<gsinθ时,f沿斜面向上
例、如图所示,一平直传送带以速率V0=2 m/s匀速运行,传送带把A处的工件运送到B处, A、B相距L=10m,从A处把工件轻轻搬到传送 带上,经过时间t =6s能传送到B处。如果提高 传送带的运行速率,工件能较快地从A处传送 到B处。要让工件用最短的时间从A处传送到B 处,说明并计算传送带的速率至少应 为多大?

牛顿第二定律的应用复习讲义

牛顿第二定律的应用复习讲义

第2讲牛顿第二定律的基本应用一、瞬时问题1.牛顿第二定律的表达式为:F合=ma,加速度由物体所受合外力决定,加速度的方向与物体所受合外力的方向一致.当物体所受合外力发生突变时,加速度也随着发生突变,而物体运动的速度不能发生突变.2.轻绳、轻杆和轻弹簧(橡皮条)的区别(1)轻绳和轻杆:剪断轻绳或轻杆断开后,原有的弹力将突变为0.(2)轻弹簧和橡皮条:当轻弹簧和橡皮条两端与其他物体连接时,轻弹簧或橡皮条的弹力不能发生突变.自测1如图1,A、B、C三个小球质量均为m,A、B之间用一根没有弹性的轻质细绳连在一起,B、C之间用轻弹簧拴接,整个系统用细线悬挂在天花板上并且处于静止状态.现将A上面的细线剪断,使A的上端失去拉力,则在剪断细线的瞬间,A、B、C三个小球的加速度分别是(重力加速度为g)()A.1.5g,1.5g,0 B.g,2g,0C.g,g,g D.g,g,0二、超重和失重1.超重(1)定义:物体对支持物的压力(或对悬挂物的拉力)大于物体所受重力的现象.(2)产生条件:物体具有向上的加速度.2.失重(1)定义:物体对支持物的压力(或对悬挂物的拉力)小于物体所受重力的现象.(2)产生条件:物体具有向下的加速度.3.完全失重(1)定义:物体对支持物的压力(或对竖直悬挂物的拉力)等于0的现象称为完全失重现象.(2)产生条件:物体的加速度a=g,方向竖直向下.4.实重和视重(1)实重:物体实际所受的重力,它与物体的运动状态无关.(2)视重:当物体在竖直方向上有加速度时,物体对弹簧测力计的拉力或对台秤的压力将不等于物体的重力.此时弹簧测力计的示数或台秤的示数即为视重.判断正误(1)超重就是物体所受的重力增大了,失重就是物体所受的重力减小了.()(2)物体做自由落体运动时处于完全失重状态,所以做自由落体运动的物体不受重力作用.()(3)物体具有向上的速度时处于超重状态,物体具有向下的速度时处于失重状态.()三、动力学的两类基本问题1.由物体的受力情况求解运动情况的基本思路先求出几个力的合力,由牛顿第二定律(F合=ma)求出加速度,再由运动学的有关公式求出速度或位移.2.由物体的运动情况求解受力情况的基本思路已知加速度或根据运动规律求出加速度,再由牛顿第二定律求出合力,从而确定未知力.3.应用牛顿第二定律解决动力学问题,受力分析和运动分析是关键,加速度是解决此类问题的纽带,分析流程如下:受力情况(F合)F合=ma加速度a运动学公式运动情况(v、x、t)自测2(2019·山东菏泽市第一次模拟)一小物块从倾角为α=30°的足够长的斜面底端以初速度v0=10 m/s沿固定斜面向上运动(如图2所示),已知物块与斜面间的动摩擦因数μ=33,g取10 m/s2,则物块在运动时间t=1.5 s时离斜面底端的距离为()A.3.75 m B.5 m C.6.25 m D.15 m1.两种模型加速度与合外力具有瞬时对应关系,二者总是同时产生、同时变化、同时消失,具体可简化为以下两种模型:2.解题思路分析瞬时变化前后物体的受力情况⇒列牛顿第二定律方程⇒求瞬时加速度3.两个易混问题(1)图3甲、乙中小球m1、m2原来均静止,现如果均从图中A处剪断,则剪断绳子瞬间图甲中的轻质弹簧的弹力来不及变化;图乙中的下段绳子的拉力将变为0(2)由(1)的分析可以得出:绳的弹力可以突变而弹簧的弹力不能突变.例1(多选)(2019·广西桂林、梧州、贵港、玉林、崇左、北海市第一次联合调研)如图4所示,质量均为m 的木块A和B用一轻弹簧相连,竖直放在光滑的水平面上,木块A上放有质量为2m的木块C,三者均处于静止状态.现将木块C迅速移开,若重力加速度为g,则在木块C移开的瞬间()A.弹簧的形变量不改变B.弹簧的弹力大小为mgC.木块A的加速度大小为2g D.木块B对水平面的压力大小迅速变为2mg变式1如图5所示,在动摩擦因数μ=0.2的水平面上有一个质量m=1 kg的小球,小球与水平轻弹簧及与竖直方向成θ=45°角的不可伸长的轻绳一端相连,此时小球处于静止状态,且水平面对小球的弹力恰好为零.在剪断轻绳的瞬间(g取10 m/s2),最大静摩擦力等于滑动摩擦力,下列说法正确的是()A.小球受力个数不变B.水平面对小球的弹力仍然为零C.小球将向左运动,且a=8 m/s2D.小球将向左运动,且a=10 m/s2变式2如图6所示,A球质量为B球质量的3倍,光滑固定斜面的倾角为θ,图甲中,A、B两球用轻弹簧相连,图乙中A、B两球用轻质杆相连,系统静止时,挡板C与斜面垂直,弹簧、轻杆均与斜面平行,重力加速度为g,则在突然撤去挡板的瞬间有()A.图甲中A球的加速度大小为g sin θB.图甲中B球的加速度大小为2g sin θC.图乙中A、B两球的加速度大小均为g sin θD.图乙中轻杆的作用力一定不为零1.对超重和失重的理解(1)不论超重、失重或完全失重,物体的重力都不变,只是“视重”改变.(2)在完全失重的状态下,一切由重力产生的物理现象都会完全消失.(3)尽管物体的加速度不是竖直方向,但只要其加速度在竖直方向上有分量,物体就会处于超重或失重状态.2.判断超重和失重的方法从受力的角度判断当物体所受向上的拉力(或支持力)大于重力时,物体处于超重状态;小于重力时,物体处于失重状态;等于零时,物体处于完全失重状态从加速度的角度判断当物体具有向上的加速度时,物体处于超重状态;具有向下的加速度时,物体处于失重状态;向下的加速度等于重力加速度时,物体处于完全失重状态从速度变化的角度判断①物体向上加速或向下减速时,超重②物体向下加速或向上减速时,失重例2 (2020·湖南衡阳市第一次联考)压敏电阻的阻值随所受压力的增大而减小、某实验小组在升降机水平地面上利用压敏电阻设计了判断升降机运动状态的装置.其工作原理图如图7甲所示,将压敏电阻、定值电阻R 、电流显示器、电源连成电路、在压敏电阻上放置一个绝缘重物,0~t 1时间内升降机停在某一楼层处,t 1时刻升降机开始运动,从电流显示器中得到电路中电流i 随时间t 变化情况如图乙所示,则下列判断不正..确.的是( ) A .t 1~t 2时间内绝缘重物处于超重状态B .t 3~t 4时间内绝缘重物处于失重状态C .升降机开始时可能停在1楼,从t 1时刻开始,经向上加速、匀速、减速,最后停在高楼D .升降机开始时可能停在高楼,从t 1时刻开始,经向下加速、匀速、减速,最后停在1楼变式3 (2019·广东广州市4月综合测试)如图8,跳高运动员起跳后向上运动,越过横杆后开始向下运动,则运动员越过横杆前、后在空中所处的状态分别为( )A .失重、失重B .超重、超重C .失重、超重D .超重、失重变式4 某人在地面上最多可举起50 kg 的物体,若他在竖直向上运动的电梯中最多举起了60 kg 的物体,电梯加速度的大小和方向为(g =10 m/s 2)( )A .2 m/s 2 竖直向上 B.53 m/s 2 竖直向上 C .2 m/s 2 竖直向下 D.53m/s 2 竖直向下1.解题关键(1)两类分析——物体的受力分析和物体的运动过程分析;(2)两个桥梁——加速度是联系运动和力的桥梁;速度是各物理过程间相互联系的桥梁.2.常用方法(1)合成法在物体受力个数较少(2个或3个)时一般采用合成法.(2)正交分解法若物体的受力个数较多(3个或3个以上),则采用正交分解法.类型1 已知物体受力情况,分析物体运动情况例3 (2019·安徽宣城市期末调研测试)如图9,质量为m =1 kg 、大小不计的物块,在水平桌面上向右运动,经过O 点时速度大小为v =4 m/s ,对此物块施加大小为F =6 N 、方向向左的恒力,一段时间后撤去该力,物块刚好能回到O 点,已知物块与桌面间动摩擦因数为μ=0.2,重力加速度g =10 m/s 2,求:(1)此过程中物块到O 点的最远距离;(2)撤去F 时物块到O 点的距离.变式5(2020·山东等级考模拟卷·15)如图10甲所示,在高速公路的连续下坡路段通常会设置避险车道,供发生紧急情况的车辆避险使用,本题中避险车道是主车道旁的一段上坡路面.一辆货车在行驶过程中刹车失灵,以v0=90 km/h的速度驶入避险车道,如图乙所示.设货车进入避险车道后牵引力为零,货车与路面间的动摩擦因数μ=0.30,取重力加速度大小g=10 m/s2.(1)为了防止货车在避险车道上停下后发生溜滑现象,该避险车道上坡路面的倾角θ应该满足什么条件?设最大静摩擦力等于滑动摩擦力,结果用θ的正切值表示.(2)若避险车道路面倾角为15°,求货车在避险车道上行驶的最大距离.(已知sin 15°=0.26,cos 15°=0.97,结果保留两位有效数字.类型2已知物体运动情况,分析物体受力情况例4(2019·安徽安庆市第二次模拟)如图11甲所示,一足够长的粗糙斜面固定在水平地面上,斜面的倾角θ=37°,现有质量m=2.2 kg的物体在水平向左的外力F的作用下由静止开始沿斜面向下运动,经过2 s撤去外力F,物体在0~4 s内运动的速度与时间的关系图线如图乙所示.已知sin 37°=0.6,cos 37°=0.8,取g=10 m/s2,求:(1)物体与斜面间的动摩擦因数和水平外力F的大小;(2)物体在0~4 s内的位移大小.变式6(2019·福建宁德市5月质检)某天,小陈叫了外卖,外卖小哥把货物送到他家阳台正下方的平地上,小陈操控小型无人机带动货物,由静止开始竖直向上做匀加速直线运动,一段时间后,货物又匀速上升53 s,最后再匀减速1 s恰好到达他家阳台且速度为零.货物上升过程中,遥控器上显示无人机在上升过程的最大速度为1 m/s,高度为56 m.货物质量为2 kg,受到的阻力恒为其重力的0.02倍,重力加速度大小g=10 m/s2.求:(1)无人机匀加速上升的高度;(2)上升过程中,无人机对货物的最大作用力大小.1.(2019·江西赣州市上学期期末)电梯顶上悬挂一根劲度系数是200 N /m 的弹簧,弹簧的原长为20 cm ,在弹簧下端挂一个质量为0.4 kg 的砝码.当电梯运动时,测出弹簧长度变为23 cm ,g 取10 m/s 2,则电梯的运动状态及加速度大小为( )A .匀加速上升,a =2.5 m/s 2B .匀减速上升,a =2.5 m/s 2C .匀加速上升,a =5 m/s 2D .匀减速上升,a =5 m/s 22.(多选)一人乘电梯上楼,在竖直上升过程中加速度a 随时间t 变化的图线如图1所示,以竖直向上为a 的正方向,则人对地板的压力( )A .t =2 s 时最大B .t =2 s 时最小C .t =8.5 s 时最大D .t =8.5 s 时最小3.(2020·广东东莞市调研)为了让乘客乘车更为舒适,某探究小组设计了一种新的交通工具,乘客的座椅能随着坡度的变化而自动调整,使座椅始终保持水平,如图2所示.当此车匀减速上坡时,乘客(仅考虑乘客与水平面之间的作用)( )A .处于超重状态B .不受摩擦力的作用C .受到向后(水平向左)的摩擦力作用D .所受合力竖直向上4.(2019·河北衡水中学第一次调研)如图3所示,一根弹簧一端固定在左侧竖直墙上,另一端连着A 小球,同时水平细线一端连着A 球,另一端固定在右侧竖直墙上,弹簧与竖直方向的夹角是60°,A 、B 两小球分别连在另一根竖直弹簧两端.开始时A 、B 两球都静止不动,A 、B 两小球的质量相等,重力加速度为g ,若不计弹簧质量,在水平细线被剪断瞬间,A 、B 两球的加速度分别为( )A .a A =aB =gB .a A =2g ,a B =0C .a A =3g ,a B =0D .a A =23g ,a B =05.(2020·吉林“五地六校”合作体联考)如图4所示,质量分别为m 1、m 2的A 、B 两小球分别连在弹簧两端,B 小球用细绳固定在倾角为30°的光滑斜面上,若不计弹簧质量且细绳和弹簧与斜面平行,在细绳被剪断的瞬间,A 、B 两小球的加速度大小分别为( )A .都等于g 2B .0和(m 1+m 2)g 2m 2C.(m 1+m 2)g 2m 2和0 D .0和g 26.(2019·东北三省四市教研联合体模拟)如图5所示,物体A、B由跨过定滑轮且不可伸长的轻绳连接,由静止开始释放,在物体A加速下降的过程中,下列判断正确的是()A.物体A和物体B均处于超重状态B.物体A和物体B均处于失重状态C.物体A处于超重状态,物体B处于失重状态D.物体A处于失重状态,物体B处于超重状态7.(2019·安徽马鞍山市检测)两物块A、B并排放在水平地面上,且两物块接触面为竖直面,现用一水平推力F作用在物块A上,使A、B由静止开始一起向右做匀加速运动,如图6甲所示,在A、B的速度达到6 m/s时,撤去推力F.已知A、B质量分别为m A=1 kg、m B=3 kg,A与水平面间的动摩擦因数为μ=0.3,B 与地面没有摩擦,物块B运动的v-t图象如图乙所示.g取10 m/s2,求:(1)推力F的大小;(2)物块A刚停止运动时,物块A、B之间的距离.8.(2019·河北承德市期末)如图7所示,有一质量为2 kg的物体放在长为1 m的固定斜面顶端,斜面倾角θ=37°,g=10 m/s2,sin 37°=0.6,cos 37°=0.8.(1)若由静止释放物体,1 s后物体到达斜面底端,则物体到达斜面底端时的速度大小为多少?(2)物体与斜面之间的动摩擦因数为多少?(3)若给物体施加一个竖直方向的恒力,使其由静止释放后沿斜面向下做加速度大小为1.5 m/s2的匀加速直线运动,则该恒力大小为多少?9.(2019·安徽黄山市一模检测)如图8所示,一质量为m的小物块,以v0=15 m/s的速度向右沿水平面运动12.5 m后,冲上倾斜角为37°的斜面,若小物块与水平面及斜面间的动摩擦因数均为0.5,斜面足够长,小物块经过水平面与斜面的连接处时无能量损失.求:(g=10 m/s2,sin 37°=0.6,cos 37°=0.8)(1)小物块在斜面上能达到的最大高度;(2)小物块在斜面上运动的时间.。

高一物理必考知识点牛顿第二定律的应用

高一物理必考知识点牛顿第二定律的应用

高一物理必考知识点牛顿第二定律的应用高一物理必考知识点牛顿第二定律的应用牛顿第二定律是经典力学中的一个重要定律,也是高一物理学习的必考知识点之一。

本文将从牛顿第二定律的基本原理出发,介绍一些常见的应用场景及计算方法,并探讨其重要性。

一、牛顿第二定律的基本原理牛顿第二定律的表达式为F=ma,其中F 表示物体所受合力的大小,a 表示物体的加速度,m 表示物体的质量。

这个定律说明了力与物体的质量和加速度之间的关系。

当物体所受合力增大时,其加速度也会增大;当物体的质量增大时,其加速度会减小。

二、常见的牛顿第二定律应用场景及计算方法1. 平面运动中物体的加速度计算在平面运动中,当物体所受合力已知时,可以利用牛顿第二定律计算物体的加速度。

首先确定物体所受的合力,然后根据 F=ma 计算加速度。

2. 弹簧弹性伸缩力的计算弹簧的弹性伸缩力可以利用牛顿第二定律进行计算。

当物体受到垂直于弹簧伸缩方向的外力时,可以根据 F=ma 计算出物体所受的合力。

然后利用胡克定律 F=-kx(其中 k 表示弹簧的弹性系数,x 表示弹簧的伸缩量)计算出弹簧的弹性伸缩力。

3. 坡道上物体的加速度计算当物体置于斜坡上时,可以利用牛顿第二定律计算物体在坡道上的加速度。

首先确定物体所受的合力,然后根据 F=ma 计算加速度。

需要注意的是,斜坡上的合力包括物体自身重力以及由坡度引起的垂直于坡面的力。

4. 电梯内物体的加速度计算电梯内的物体受到的合力包括物体的重力以及电梯提供的力。

通过设置参考系,可以将问题简化为一个自由下落或上升的问题。

根据物体所受的合力确定加速度,然后利用牛顿第二定律计算出加速度的大小。

三、牛顿第二定律的重要性牛顿第二定律在解决物体运动问题中起着重要的作用。

通过运用牛顿第二定律,我们可以准确地计算物体的加速度,并进一步了解物体受力、受力方向以及运动状态的变化。

同时,牛顿第二定律也为其他物理定律的推导提供了基础。

牛顿第二定律应用广泛,不仅在经典力学中有重要地位,还在其他学科中也有广泛应用。

牛顿第二定律

牛顿第二定律

牛顿第二定律牛顿第二定律,又称为力学基本定律之一,是指物体的加速度与作用在其上的净力成正比,与物体质量成反比。

这一定律由英国科学家艾萨克·牛顿在17世纪提出,被认为是经典力学的基石之一,对于解释物体运动和力的作用具有重要的意义。

牛顿第二定律的数学表达式为F = ma,其中F表示作用在物体上的净力,m表示物体的质量,a表示物体的加速度。

根据这个定律,当作用在物体上的力增大时,物体的加速度也会增加;当物体的质量增加时,物体的加速度则会减小。

通过牛顿第二定律,我们可以推导出一些重要的物理公式。

例如,当物体受到恒定力作用时,根据F = ma的公式,可以得到加速度与作用力成正比,与物体质量成反比的关系。

当作用力相同,质量越大的物体加速度越小,质量越小的物体加速度越大。

此外,牛顿第二定律还可以用来解释物体受到多个力作用时的运动情况。

当物体同时受到多个力作用时,根据矢量相加的原理,可以计算出净力,并根据F = ma的公式求解物体的加速度。

这为我们研究力的合成和物体运动提供了基本的工具。

牛顿第二定律的应用范围非常广泛。

在日常生活中,我们常常可以观察到牛顿第二定律的效应。

例如,当我们推动一辆自行车,我们施加在踏板上的力越大,自行车的加速度也会增加;当我们给一个物体以一定的冲击力,物体受到的加速度与冲击力大小成正比。

牛顿第二定律不仅适用于宏观物体的运动,也适用于微观尺度的物体,比如分子、原子等。

通过牛顿第二定律,人们可以研究微观粒子受力作用的运动规律,从而深入理解物质的基本结构和性质。

然而,需要注意的是,牛顿第二定律并不适用于高速运动物体和极小尺度的微观物体。

在相对论和量子力学等领域,人们提出了相应的修正理论,来描述高速运动和微观物体的运动行为。

总之,牛顿第二定律是力学中的重要定律之一,它描述了物体运动和力的关系。

通过这一定律,我们可以解释和预测物体的运动情况,并应用于各个领域的科学研究和工程实践中。

牛顿第二定律的提出和发展对于推动人类科学的进步起到了重要的作用。

高中物理必修一-牛顿第二定律

高中物理必修一-牛顿第二定律

牛顿第二定律知识集结知识元牛顿第二定律知识讲解1.内容:物体的加速度跟物体所受的合外力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同.2.表达式:F合=ma.3.适用范围:(1)牛顿第二定律只适用于惯性参考系(相对地面静止或匀速直线运动的参考系).(2)牛顿第二定律只适用于宏观物体(相对于分子、原子)、低速运动(远小于光速)的情况.4.对牛顿第二定律的进一步理解牛顿第二定律是动力学的核心内容,我们要从不同的角度,多层次、系统化地理解其内涵:F 量化了迫使物体运动状态发生变化的外部作用,m量化了物体“不愿改变运动状态”的基本特性(惯性),而a则描述了物体的运动状态(v)变化的快慢.明确了上述三个量的物理意义,就不难理解如下的关系了:a∝F,a∝m1.另外,牛顿第二定律给出的F合、m、a三者之间的瞬时关系,也是由力的作用效果的瞬时性特征所决定的.(1)矢量性:a与F合都是矢量,且方向总是相同.(2)瞬时性:a与F合同时产生、同时变化、同时消失,是瞬时对应的.(3)同体性:a与F合是对同一物体而言的两个物理量.(4)独立性:作用于物体上的每个力各自产生的加速度都遵循牛顿第二定律,而物体的合加速度则是每个力产生的加速度的矢量和,合加速度总是与合外力相对应.5.应用牛顿第二定律的解题步骤(1)通过审题灵活地选取研究对象,明确物理过程.(2)分析研究对象的受力情况和运动情况,必要时画好受力示意图和运动过程示意图,规定正方向.(3)根据牛顿第二定律和运动公式列方程求解.(列牛顿第二定律方程时可把力进行分解或合成处理,再列方程)(4)检查答案是否完整、合理,必要时需进行讨论.例题精讲牛顿第二定律例1.由F=ma可知()A.物体质量和加速度成反比B.因为有加速度才有力C.物体的加速度与物体受到的合外力方向一致D.物体的加速度与物体受到的合外力方向不一定相同例2.小明站在电梯里,当电梯以加速度5m/s2下降时,小明受到的支持力()A.小于重力,但不为零B.大于重力C.等于重力D.等于零例3.一轻质弹簧上端固定,下端挂一重物,平衡时弹簧伸长了5cm,再将重物向下拉2cm,然后放手,则在刚释放的瞬间重物的加速度大小是(弹簧始终在弹性限度内,g=10m/s2)()A.4m/s2B.6m/s2C.10m/s2D.14m/s2例4.一质量为m的人站在电梯中,电梯加速上升,加速度的大小为g,g为重力加速度.人对电梯底部的压力为()A.B.2mg C.mgD.当堂练习单选题练习1.如图所示将一小球从空中某一高度自由落下,当小球与正下方的轻弹簧接触时,小球将()A.立刻静止B.立刻开始做减速运动C.开始做匀速运动D.继续做加速运动练习2.如图所示的一种蹦床运动,图中水平虚线PQ是弹性蹦床的原始位置,A为运动员抵达的最高点,B为运动员刚抵达蹦床时刻时刻的位置,C为运动员的最低点,不考虑空气阻力,运动员从A下落到C的过程中速度最大的位置为()A.A点B.B点C.C点D.B、C之间练习3.如图所示,一根轻质弹簧竖直立在水平地面上,下端固定.一小球从高处自由落下,落到弹簧上端,将弹簧压缩至最低点.小球从开始压缩弹簧至最低点的过程中,小球的加速度和速度的变化情况是()A.加速度先变大后变小,速度先变大后变小B.加速度先变大后变小,速度先变小后变大C.加速度先变小后变大,速度先变大后变小D.加速度先变小后变大,速度先变小后变大练习4.“歼-20”是中国成都飞机工业(集团)有限责任公司为中国人民解放军研制的第四代双发重型隐形战斗机该机将担负中国未来对空、对海的主权维护任务.在某次起飞中,由静止开始加速,当加速度a不断减小至零时,飞机刚好起飞.关于起飞过程下列说法正确的是()A.飞机所受合力不变,速度增加越来越慢B.飞机所受合力减小,速度增加越来越快C.速度方向与加速度方向相同,速度增加越来越快D.速度方向与加速度方向相同,速度增加越来越慢小明站在电梯里,当电梯以加速度5m/s2下降时,小明受到的支持力()A.小于重力,但不为零B.大于重力C.等于重力D.等于零练习6.如图所示A、B两相同的木箱(质量不计)用细绳连接放在水平地面上,当两木箱内均装有质量为m的沙子时,用水平力F拉A木箱,使两木箱一起做匀加速直线运动,细绳恰好不被拉断。

牛顿第二定律

牛顿第二定律

牛顿第二定律牛顿第二定律是经典力学中的一项重要定律,用来描述物体所受到的力和物体加速度之间的关系。

它是由英国物理学家艾萨克·牛顿在17世纪提出的,对于我们理解和分析物体运动具有巨大的意义。

牛顿第二定律的数学表达式如下:F = ma其中,F表示物体所受到的净力(单位:牛顿,简称N);m表示物体的质量(单位:千克,简称kg);a表示物体的加速度(单位:米/秒²,简称m/s²)。

根据牛顿第二定律,如果一个物体受到的净力增大或质量减小,那么它的加速度也会增大;相反,如果一个物体受到的净力减小或质量增加,那么它的加速度也会减小。

换句话说,净力和加速度成正比。

牛顿第二定律的应用非常广泛,在物理学、工程学和日常生活中都有着重要的作用。

下面,我们将分别从科学研究和实际应用两个方面来介绍牛顿第二定律的具体应用。

科学研究领域:1. 运动学研究:牛顿第二定律可以用来描述物体在外力作用下的运动轨迹和速度变化。

通过分析物体的加速度和受力情况,科学家可以深入研究和理解物体的运动规律。

2. 力学系统分析:牛顿第二定律可以用来分析复杂的力学系统,例如在机械工程中,通过应用牛顿第二定律,可以计算机械系统的受力情况和加速度,从而优化设计和改进性能。

实际应用领域:1. 汽车工程:牛顿第二定律可以用来计算汽车行驶过程中的加速度和速度变化,从而指导汽车的设计和性能优化。

例如,通过控制引擎输出的力和汽车的质量,可以提高汽车的加速度和行驶稳定性。

2. 物体运动仿真:牛顿第二定律在计算机图形学和游戏开发中经常被用于模拟物体的运动。

通过根据物体所受的力和质量计算出加速度,可以实现真实的运动效果,提高游戏的交互性和真实感。

3. 宇航工程:在航天器发射和飞行控制过程中,牛顿第二定律可以帮助科学家和工程师计算航天器的加速度和受力情况,保证航天器的稳定性和精确定位。

总之,牛顿第二定律是一个重要的力学定律,可以用来描述物体的运动和力学系统的行为。

牛顿第二定律及其知识点

牛顿第二定律及其知识点

牛顿第二定律及其知识点牛顿第二定律是经典力学中的一个重要定律,描述了物体的运动与受力之间的关系。

它是牛顿三大运动定律之一,被广泛地应用于物理学和工程学中。

本文将以“step by step thinking”的方式,逐步介绍牛顿第二定律的概念和知识点。

1.牛顿第二定律的表述牛顿第二定律可以用数学公式来表示:F = ma,其中F表示物体所受的合外力,m表示物体的质量,a表示物体的加速度。

这个公式表明了物体的加速度与作用在它上面的力成正比,与物体的质量成反比。

换句话说,施加在物体上的力越大,物体的加速度就越大;物体的质量越大,物体的加速度就越小。

2.牛顿第二定律的应用牛顿第二定律在物理学和工程学中有着广泛的应用。

它可以用来计算物体的运动轨迹、力的大小和方向等问题。

例如,当我们知道物体的质量和加速度时,可以利用牛顿第二定律计算作用在物体上的合外力大小;当我们知道物体的质量和施加在物体上的力时,可以利用牛顿第二定律计算物体的加速度。

3.牛顿第二定律和惯性系牛顿第二定律的应用范围是惯性系中的物体。

惯性系是指没有受到任何力作用的参考系。

在惯性系中,牛顿第二定律成立;而在非惯性系中,物体可能受到惯性力或其他非惯性力的作用,牛顿第二定律不再成立。

4.牛顿第二定律和质量质量是物体所固有的一个属性,是描述物体惯性的量度。

牛顿第二定律告诉我们,物体的加速度与物体的质量成反比。

具有较大质量的物体,由于其惯性较大,所受到的力相同情况下加速度较小;而具有较小质量的物体,由于其惯性较小,所受到的力相同情况下加速度较大。

5.牛顿第二定律的局限性牛顿第二定律在某些极端条件下可能不适用。

例如,当物体接近光速时,由于相对论效应的影响,牛顿第二定律需要进行修正。

此外,在微观尺度下,量子力学的规律也可能取代牛顿第二定律。

总结:牛顿第二定律是经典力学中的一个基本定律,描述了物体的运动与受力之间的关系。

它的应用范围广泛,并在物理学和工程学中发挥着重要作用。

系统的牛顿第二定律及应用

系统的牛顿第二定律及应用

系统的牛顿第二定律及应用一、系统的牛顿第二定律若将系统受到的每一个外力,系统内每一物体的加速度均沿正交坐标系的x轴与y轴分解,则系统的牛顿第二定律的数学表达式如下:F1x+F2x+…=m1a1x+m2a2x+…F1y+F2y+…=m1a1y+m2a2y+…与采用隔离法、分别对每一物体应用牛顿第二定律求解不同的是,应用系统的牛顿第二定律解题时将使得系统内物体间的相互作用力变成内力,因而可以减少不必求解的物理量的个数,导致所列方程数减少,从而达到简化求解的目的,并能给人以一种赏心悦目的感觉,现通过实例分析与求解,说明系统的牛顿第二定律的具体应用,并力图帮助大家领略到应用系统的牛顿第二定律求解的优势。

二、系统的牛顿第二定律的应用1、求系统所受到的外力例1 在图1中,A为电磁铁,C为胶木秤盘,A和C(包括支架)的总质量为M。

B为铁片,质量为m。

整个装置用轻绳悬挂于O点。

当电磁铁通电,铁片被吸引上升的过程,轻绳上的拉力F的大小为()A、F=MgB、Mg<F<(m+M)gC、F=(m+M)gD、F>(m+M)g分析与解以A、B、C系统为研究对象,它受到的外力为竖直向下的重力(m+M)g,绳对系统竖直向上的拉力F(电磁铁A与铁片B间的相互引力为内力)。

A、C的加速度为0,铁片上升时向上的加速度不为0。

若以竖直向上方向为正向,设某时刻铁片B向上的加速度为a,则由系统的牛顿第二定律得F-(m+M)g=ma∴F=(m+M)g+ma>(m+M)g因此,应选正确答案D。

例2 如图2所8示,一根长为l的轻杆,两端各固定一个质量均为m 的小球A和B。

若轻杆以它的中点O为轴在竖直平面内转动,求轻杆转到竖直位置时,杆对轴的作用力。

分析与解取小球A、B及杆为研究对象,它受到竖直向下的重力2mg,轴对它竖直向上的弹力N.A、B在最低点与最高点时向心加速度恰为反向。

若取竖直向上方向为正向,由系统的牛顿第二定律得:N-2mg=maA +maB∵aA =-aB∴N=2mg由牛顿第三定律知杆对轴的弹力大小为2mg,方向竖直向下。

系统牛二定律

系统牛二定律

系统中牛顿第二定律及其在整体法中的应用一、创新拓展 若系统由2个物体组成,两物体受到的外力分别为F1,F2,两物体的质量分别为m1,m2,对应的加速度分别为a1,a2,. 该系统受到的合外力为F,则对两个物体用牛顿第二定律有:F1=m 1 a 1 , F 2= m 2 a 2, 上式两边相加得:F 1+F 2=m 1 a 1+ m 2 a 2 即F= m 1 a 1+ m 2 a 2 这就是系统中的牛顿第二定律的数学表达式,其表述为:系统受到的合外力等于系统内各物体的质量与其加速度乘积的矢量和。

其正交分解的表达式为:F x =m 1 a 1x +m 2 a 2x ;F y =m 1 a 1y +m 2 a 2y . 若系统内有n 个物体,则系统中的牛顿第二第律的数学表达式为:F =m 1 a 1 +m 2 a 2 +…+m n a n 或正交分解式为F x =m 1 a 1x +m 2 a 2x +…+m n a nx ; F y =m 1 a 1y +m 2 a 2y +…+m n a ny二、应用范例整体法是物理中常用的一种思维方法。

它是将几个物体看作一个整体来作为研究对象即系统,这样就暂时回避了这些物体间的相互作用的内力,只考虑整体受到的外力,整体法列出的方程数目较少,解题变的简明快捷。

但运用整体法的条件是暂不求物体间的相互作用力,各个物体的加速度要相同,没有相对运动。

当各个物体的加速度不相同时,运用整体法求解就遇到了困难。

由于系统中的牛顿第二定律对系统中的物体无论有无相对运动,都可以求解,不受各个物体的加速度一定相同的限制。

对于由多个物体组成的系统,如果所求问题暂不涉及或不涉及系统内的作用力,系统中只有一个物体有加速度,而其它物体无加速度(静止或匀速),或者多个物体的加速度在同一直线上,不会出现繁琐的矢量运算时,可以运用系统中的牛顿第二定律求解。

故系统中的牛顿第二定律在原整体法的基础上使解题的范围扩大,给整体法赋予了新的生命力,对于解答多体动力学问题,简单方便,迅速准确,能起到出奇制胜的效果。

关于系统牛顿第二定律的应用

关于系统牛顿第二定律的应用

精心整理关于系统牛顿第二定律的应用眉山中学 邓学军牛顿第二定律是动力学的核心内容,它深刻揭示了物体产生的加速度与其质量、所受到的力之间的定量关系,在科研、生产、实际生活中有着极其广泛的应用。

本文就牛顿第二定律在物理解题中的应用作些分析总结,以加深学生对该定律的认识与理解,从而达到熟练应用的效果目的。

对于连接体问题,牛顿第二定律应用于系统,主要表现在以下两方面:其一,系统内各物体的加速度相同。

则表达式为:F =(m 1+m 2+…)a ,这种情况往往以整个系统为研究对象,分析系统的合外力,求出共同的加速度。

例1.质量为m 1、m 2的两个物体用一轻质细绳连接,现对m 1施加一个外力F ,在如下几种情况下运动,试求绳上的拉力大小。

⑴m 1⑵m 1⑶m 1对m 2⑷m 1对m 2⑸m 1对m 2解得:T =212m F m m + 其二,系统内各物体的加速度不同。

这种题目较难,牛顿第二定律的基本表达式为:1122F m a m a =++,这是一个矢量表达式,可以分为以下几种情形:⒈系统中只有一个物体有加速度,其余物体均静止或作匀速运动。

例2.如图示,斜面体M 始终处于静止状态,当物体m 沿斜面下滑时,下列说法正确的是:A .匀速下滑时,M 对地面的压力等于(M +m )gB .加速下滑时,M 对地面的压力小于(M +m )gC.减速下滑时,M对地面的压力大于(M+m)gD.M对地面的压力始终等于(M+m)g分析:F N-(M+m)g=ma y。

若a y向上则选C;若a y向下则选B;若a y等于0则选C例3.如图示,一个箱子放在水平地面上,箱内有一固定的竖直杆,在杆上套着一个环,箱和环的质量为M,环的质量为m,。

已知环沿着杆正匀加速下滑,加速度为a(a<g)。

则此时箱对地面的压力为:A.MgB.(M+m)gC.(M+m)g-maD.(M+m)g+ma分析:同上题。

选C所以小a=量为m。

物块m3从解析:对系统:在水平方向,F合=ma x+M·0=F,如果a x水平向左,则压力F也向左,B处有挤压;如果a x水平向右,则压力F也向右,A处有挤压;如果a x等于零,则F=0,A、B两处均没有挤压;选D。

牛顿第二定律的系统表达式及应用一中

牛顿第二定律的系统表达式及应用一中

牛顿第二定律的系统表达式一、整体法和隔离法处理加速度相同的连接体问题 1.加速度相同的连接体的动力学方程:F 合 = (m 1+m 2+……)a分量表达式: F x = (m 1+m 2+……)a xF y = (m 1+m 2+……)a y2. 应用情境:已知加速度求整体所受外力或者已知整体受力求整体加速度。

例1、如图,在水平面上有一个质量为M 的楔形木块A ,其斜面倾角为α,一质量为m 的木块B 放在A 的斜面上。

现对A 施以水平推力F , 恰使B 与A 不发生相对滑动,忽略一切摩擦,则B 对 A 的压力大小为( BD )A 、 mgcos αB 、mg/cos αC 、FM/(M+m)cos αD 、Fm/(M+m)sin α★题型特点:隔离法与整体法的灵活应用。

★解法特点:本题最佳方法是先对整体列牛顿第二定律求出整体加速度,再隔离B 受力分析得出A 、B 之间的压力。

省去了对木楔受力分析(受力较烦),达到了简化问题的目的。

例2.质量分别为m 1、m 2、m 3、m 4的四个物体彼此用轻绳连接,放在光滑的桌面上,拉力F 1、F 2分别水平地加在m 1、m 4上,如图所示。

求物体系的加速度a 和连接m 2、m 3轻绳的张力F 。

(F 1>F 2)例3、两个物体A 和B ,质量分别为m 1和m 2,互相接触放在光滑水平面上,如图所示,对物体A 施以水平的推力F ,则物体A 对B 的作用力等于 ( ) A .F FαABFF F3、B 解析:首先确定研究对象,先选整体,求出A 、B 共同的加速度,再单独研究B ,B 在A 施加的弹力作用下加速运动,根据牛顿第二定律列方程求解.将m 1、m 2看做一个整体,其合外力为F ,由牛顿第二定律知,F=(m 1+m 2)a ,再以m 2为研究对象,受力分析如右图所示,由牛顿第二定律可得:F 12=m 2a ,以上两式联立可得:F 12= ,B 正确.例4、在粗糙水平面上有一个三角形木块a ,在它的两个粗糙斜面上分别放有质量为m 1和m 2的两个木块b 和c ,如图1所示,已知m 1>m 2,三木块均处于静止,则粗糙地面对于三角形木块( D ) A .有摩擦力作用,摩擦力的方向水平向右。

牛顿第二定律的内容、表述方式及应用

牛顿第二定律的内容、表述方式及应用

牛顿第二定律的内容、表述方式及应用一、牛顿第二定律的内容牛顿第二定律是经典力学中的基本定律,通常表述为:一个物体的加速度与作用在它上面的外力成正比,与它的质量成反比,加速度的方向与外力的方向相同。

牛顿第二定律可以用数学公式表示为:[ F = ma ]其中,( F ) 表示作用在物体上的外力,( m ) 表示物体的质量,( a ) 表示物体的加速度。

二、牛顿第二定律的表述方式牛顿第二定律的表述方式可以从以下几个方面来理解:1. 力的作用牛顿第二定律说明了力对物体的作用效果,即力能够改变物体的运动状态。

这种改变表现为物体速度的变化,即加速度。

2. 力的量度牛顿第二定律表明,力是使物体产生加速度的原因,加速度的大小取决于作用力的大小。

因此,力可以作为物体运动状态改变的量度。

3. 质量的量度牛顿第二定律还表明,物体的质量越大,它对作用力的反应越迟钝。

也就是说,质量是物体抵抗运动状态改变的量度。

4. 作用力和反作用力牛顿第二定律只描述了作用力对物体加速度的影响,而没有直接涉及反作用力。

但根据牛顿第三定律,作用力和反作用力大小相等、方向相反。

因此,在考虑物体受到的合外力时,应同时考虑作用力和反作用力。

三、牛顿第二定律的应用牛顿第二定律在日常生活和科学研究中有着广泛的应用,以下是一些典型的例子:1. 运动物体的控制在体育运动中,运动员通过施加不同大小的力来控制物体的运动状态,如投掷、击打、踢球等。

了解牛顿第二定律可以帮助运动员更好地掌握运动技巧。

2. 机械设计在机械设计中,工程师需要根据牛顿第二定律来计算和选择合适的零件和材料,以确保机器正常工作。

例如,在设计汽车刹车系统时,需要根据汽车质量和刹车力来计算刹车距离。

3. 碰撞分析在碰撞分析中,牛顿第二定律可以帮助研究人员预测和评估碰撞过程中物体的加速度和速度变化。

这对于交通事故的调查和防范具有重要意义。

4. 火箭发射在火箭发射过程中,牛顿第二定律起到了关键作用。

牛顿第二定律数学表达式

牛顿第二定律数学表达式

牛顿第二定律数学表达式
1、牛顿第二定律数学表达式:物体的加速度跟物体所受的合外
力F成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。

2、公式是:F=ma
3、牛顿第二定律的适用范围
(1)只适用于低速运动的物体(与光速比速度较低)。

(2)只适用于宏观物体,牛顿第二定律不适用于微观原子。

(3)参照系应为惯性系。

牛顿第二定律的特点:
⑴因果性:力是产生加速度的原因。

若不存在力,则没有加速度。

⑵矢量性:力和加速度都是矢量,物体加速度方向由物体所受合外力的方向决定。

牛顿第二定律数学表达式∑F=ma中,等号不仅表
示左右两边数值相等,也表示方向一致,即物体加速度方向与所受合外力方向相同。

根据他的矢量性可以用正交分解法将力合成或分解。

⑶瞬时性:当物体(质量一定)所受外力发生突然变化时,作为由力决定的加速度的大小或方向也要同时发生突变;当合外力为零时,加速度同时为零,加速度与合外力保持一一对应关系。

牛顿第二定律是一个瞬时对应的规律,表明了力的瞬间效应。

⑷相对性:自然界中存在着一种坐标系,在这种坐标系中,当物体不受力时将保持匀速直线运动或静止状态,这样的坐标系叫惯性参
照系。

地面和相对于地面静止或作匀速直线运动的物体可以看作是惯性参照系,牛顿定律只在惯性参照系中才成立。

⑸独立性:物体所受各力产生的加速度,互不干扰,而物体的实际加速度则是每一个力产生加速度的矢量和,分力和分加速度在各个方向上的分量关系,也遵循牛顿第二定律。

⑹同一性:a与F与同一物体某一状态相对应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

牛顿第二定律的系统表达式一、整体法和隔离法处理加速度相同的连接体问题1.加速度相同的连接体的动力学方程:F合 = (m1+m2+……)a分量表达式:Fx = (m1+m2+……)axFy = (m1+m2+……)ay2. 应用情境:已知加速度求整体所受外力或者已知整体受力求整体加速度。

例1、如图,在水平面上有一个质量为M的楔形木块A,其斜面倾角为α,一质量为m的木块B放在A的斜面上。

现对A施以水平推力F,恰使B与A不发生相对滑动,忽略一切摩擦,则B对A的压力大小为( BD )A 、 mgcosα B、mg/cosαC、FM/(M+m)cosαD、Fm/(M+m)sinα★题型特点:隔离法与整体法的灵活应用。

★解法特点:本题最佳方法是先对整体列牛顿第二定律求出整体加速度,再隔离B受力分析得出A、B之间的压力。

省去了对木楔受力分析(受力较烦),达到了简化问题的目的。

例2.质量分别为m1、m2、m3、m4的四个物体彼此用轻绳连接,放在光滑的桌面上,拉力F1、F2分别水平地加在m1、m4上,如图所示。

求物体系的加速度a和连接m2、m3轻绳的张力F。

(F1>F2)例3、两个物体A和B,质量分别为m1和m2,互相接触放在光滑水平面上,如图所示,对物体A施以水平的推力F,则物体A对B的作用力等于 ( )A.F FF F3、B 解析:首先确定研究对象,先选整体,求出A、B共同的加速度,再单独研究B,B 在A施加的弹力作用下加速运动,根据牛顿第二定律列方程求解.将m1、m2看做一个整体,其合外力为F,由牛顿第二定律知,F=(m1+m2)a,再以m2为研究对象,受力分析如右图所示,由牛顿第二定律可得:F12=m2a,以上两式联立可得:F12= ,B正确.例4、在粗糙水平面上有一个三角形木块a,在它的两个粗糙斜面上分别放有质量为m1和m2的两个木块b和c,如图1所示,已知m1>m2,三木块均处于静止,则粗糙地面对于三角形木块( D )A.有摩擦力作用,摩擦力的方向水平向右。

B.有摩擦力作用,摩擦力的方向水平向左。

C.有摩擦力作用,组摩擦力的方向不能确定。

D.没有摩擦力的作用。

二、对加速度不同的连接体应用牛顿第二定律1.加速度不同的连接体的动力学方程:bcaF 合 = m 1 a 1 +m 2 a 2 +……分量表达式: F x = m 1 a 1x +m 2 a 2x +……F y = m 1 a 1y +m 2 a 2y +……2. 应用情境:对已知系统内各物体的加速度,求某个外力,或已知系统内的各物体受外力情况,求某个物体的加速度。

例1、(2004,全国理综四)如图,在倾角为α的固定光滑斜面上,有一用绳子拴着的长木板,木板上站着一只猫。

已知木板的质量是猫的质量的2倍。

当绳子突然断开时,猫立即沿着板向上跑,以保持其相对斜面的位置不变。

则此时木板沿斜面下滑的加速度为( C )A .gsin α/2B .gsin αC .3gsin α/2D .2gsin α解析:设猫的质量为m ,则木板的质量为2m.先取猫为研究对象,因猫对地静止,所以木板对猫必有沿着斜面向上的作用力,大小为F =mgsinα;再以木板为研究对象,由牛顿第三定律,猫对木板必有沿斜面向下的作用力F ,据牛顿第二定律对木板列方程有F +2mgsinα=2ma ,a =32gsinα.答案:C例2.如图所示,有一只质量为m 的猫,竖直跳上一根用细绳悬挂起来的质量为M 的长木柱上。

当它跳上木柱后,细绳断裂,此时猫要与地面保持不变的高度,在此过程中,木柱对地的加速度为______________。

2. 答案 a =M +mMg 竖直向下甲 乙解析 由于小猫对地的高度不变,故小猫下落的加速度为零小猫受力如右图甲所示,由牛顿第二定律得:F f -mg =0由牛顿第三定律知,小猫对杆的摩擦力F f ′的方向向下,木杆受力情况如上图乙所示,由牛顿第二定律可知:F f ′+Mg =Ma ,由①②式可知,杆的下落加速度为 a =M +m M g ,方向竖直向下.例3.如图所示为杂技“顶竿”表演,一人站在地上,肩上扛一质量为M 的竖直竹竿,当竿上一质量为m 的人以加速度a 加速下滑时,竿对地面上的人的压力大小为( )A .(M +m )g -maB .(M +m )g +maC .(M +m )gD .(M -m )g解析:当竿上一质量为m 的人以加速度a 加速下滑时,竿与人所组成的系统处于失重状态,竿对地面上的人的压力大小为(M +m )g -ma .本题也可分步求解,对m 有:mg -F f =ma ;对M 有:Mg +F f ′=F N ,由牛顿第三定律得F f 与F f ′大小相等,同样可得F N =(M +m )g -ma ,故选项A 正确.答案:A例4、(2003年辽宁)如图所示,质量为M 的楔形木块放在水平桌面上,它的顶角为90°,两底角为α和β。

a 、b 为两个位于斜面上的质量均为m 的小木块,已知所有的接触面都是光滑的,现发现a 、b 沿斜面下滑,而楔形木块不动,这时楔形木块对水平桌面的压力等于( )A .Mg mg +B .2Mg mg +C .(sin sin )Mg mg αβ++D .(cos cos )Mg mg αβ++★解析:取a 为研究对象,受到重力和支持力的作用,则加速度沿斜面向下,设大小为1a ,由牛顿第二定律得:1sin mg ma α= ⇒ 1sin a g α= 同理,b 的加速度也沿斜面向下,大小为:2sin a g β=。

将1a 和2a 沿水平方向和竖直方向进行分解,a 、b 竖直方向的分加速度分别为2212sin sin y y a g a g αβ==再取a 、b 和楔形木块的组成的整体作为研究对象,仅在竖直方向受到重力和桌面支持力N F ,由牛顿第二定律得22(2)sin sin N M m g F mg mg αβ+-=+又o90αβ+=,所以sin cos αβ=则(2)N M m g F mg +-= ⇒ N F Mg mg =+ 选择A例题5. 如图所示,质量为M 的劈块,其左右劈面的倾角分别为θ1=30°θ2=45°,质量分ab αβM别为m 1=3kg 和m 2=2.0kg 的两物块,同时分别从左右劈面的顶端从静止开始下滑,劈块始终与水平面保持相对静止,各相互接触面之间的动摩擦因数均为μ=,求两物块下滑过程中(m 1和m 2均未达到底端)劈块受到地面的摩擦力。

(g=10m/s 2)★解析:取向左为正098.2cos )cos sin (cos )cos sin (22221111-=---=θμθθθμθθg g m g g m f 说明方向向右四、巩固训练1.如图所示,质量为M 的框架放在水平地面上,一轻弹簧上端固定在框架上,下端固定一个质量为m 的小球,小球上下振动时,框架始终没有跳起,当框架对地面压力为零瞬间,小球的加速度大小为( )A .g g C .0g解析:弹簧的弹力与框架的重力平衡,故小球受的合外力为(M +m )g .对m 由牛顿第二定律得:(M +m )g =ma ,所以该瞬间a =M +mmg . 答案:D2、如图所示,A 为电磁铁挂在支架C 上,放到台秤的托盘中,在它的正下方有一铁块B ,铁块静止时,台秤的示数为G ,当电磁铁通电,铁块被吸引上升的过程中,台秤的示数将 ( A )A. 变大B. 变小C. 大于G ,但是恒量D. 先变大后变小3、 如图所示的装置中,重4N 的物块被平行于斜面的细线拴在斜面上端的小柱上,整个装置保持静止,斜面的倾角为30°,被固定在测力计上。

如果物块与斜面间无摩擦,装置稳定以后,当细线被烧断物块正下滑时,与稳定时比较,测力计的读数( C )A. 增加4NB. 增加3NC. 减少1ND. 不变4. 如图所示,质量M=10kg 的斜面体,其斜面倾角θ=370,小物体质量m=1kg ,当小物体由静止释放时,滑下S=1.4m 后获得速度V=1.4m/s ,这过程斜面体处于静止状态,求水平面对斜面体的支持力和静摩擦力(取g=10m/s 2)★解析:N2= f2=5. 如图,倾角为θ的斜面与水平面间、斜面与质量为m 的木块间的动摩擦因数均为μ,木块由静止开始沿斜面加速下滑时斜面始终保持静止。

求水平面给斜面的摩擦力大小和方向。

★解析:以斜面和木块整体为研究对象,水平方向仅受静摩擦力作用,而整体中只有木块的加速度有水平方向的分量。

可以先求出木块的加速度()θμθcos sin -=g a ,再在水平方向对质点组用牛顿第二定律,很容易得到:θθμθcos )cos (sin-=mg F f如果给出斜面的质量M ,本题还可以求出这时水平面对斜面的支持力大小为:F N =Mg +mg (cos α+μsin α)sin θ这个值小于静止时水平面对斜面的支持力。

6. 如图所示,质量为M 的平板小车放在倾角为θ的光滑斜面上(斜面固定),一质量为m 的人在车上沿平板向下运动时,车恰好静止,求人的加速度。

★解析:以人、车整体为研究对象,根据系统牛顿运动定律求解。

由系统牛顿第二定律得: (M+m)gsinθ=ma 解得人的加速度为a=θsin )(g mm M + 7. 如图所示,在托盘测力计放一个重力为5N 的斜木块,斜木块的斜面倾角为37°现将一个重力为5N 的小铁块无摩擦地从斜面上滑下,在小铁块下滑的过程中,测力计的示数为(取g=10m/s 2)( ) A . B .7N C .D .10N8. 如图所示,A 为电磁铁,C 为胶木秤盘,电磁铁A 和秤盘C (包括支架)的总质量为M ,B 为铁片,质量为m ,整个装置用轻绳悬挂于O 点。

当电磁铁通电,铁片被吸引上升的过程中,轻绳中拉力F 的大小为( )A .mg F =B .()g m M F Mg +<<C .()g m M F +=D .()g m M F +>★解析:以A 、B 、C 组成的系统为研究对象,A 、C 静止,铁片B 由静止被吸引加速上升。

则系统的重心加速上升,系统处于超重状态,故轻绳的拉力()g m M F +>,正确答案为D9. 如图所示,质量为M 的木箱放在水平面上,木箱中的立杆上套着一个质量为m 的小球,开始时小球在杆的顶端,由静止释放后,小球沿杆下滑的加速度为重力加速度的21,即a =21g ,则小球在下滑的过程中,木箱对地面的压力为多少 解法一:(隔离法)取小球m 为研究对象,受重力mg 、摩擦力F f ,据牛顿第二定律得:mg -F f =ma ①取木箱M 为研究对象,受重力Mg 、地面支持力F N 及小球给予的摩擦力F f ′ 据物体平衡条件得:F N -F f ′-Mg =0② 且F f =F f ′③由①②③式得F N =22mM +g 由牛顿第三定律知,木箱对地面的压力大小为F N ′=F N =22mM +g 解法二:(整体法)对于“一动一静”连接体,也可选取整体为研究对象,依牛顿第二定律列式: (mg +Mg )-F N =ma +M ×0 故木箱所受支持力:F N =22m M +,则木箱对地面压力F N ′=F N =22mM +g10. 如图所示,A 为电磁铁,C 为胶木秤盘,A 和C (包括支架)的总质量为M ,B为铁片,C O质量为m,整个装置用轻绳悬挂于O点.当电磁铁通电,铁片被吸引上升的过程中,轻绳上拉力F的大小为=mg<F<(M+m)g =(M+m)g >(M+m)g答案:D11. 如图所示,质量为M的框架放在水平地面上,一个轻质弹簧固定在框架上,下端拴一个质量为m的小球,当小球上下振动时,框架始终没有跳起,在框架对地面的压力为零的瞬间,小球加速度大小为( D )A.g B.()M m gm-C.0 D.()M m gm+。

相关文档
最新文档