(完整word)七年级下册平方根练习题及答案
平方根练习题及答案
平方根练习题及答案平方根练习题及答案数学作为一门基础学科,对于培养学生的逻辑思维和解决问题的能力起着至关重要的作用。
而在数学中,平方根是一个重要的概念,掌握平方根的计算方法和应用能力对于解决各种实际问题至关重要。
下面我们来看一些关于平方根的练习题及其答案。
1. 计算下列各数的平方根:a) 4b) 9c) 16d) 25答案:a) √4 = 2b) √9 = 3c) √16 = 4d) √25 = 52. 计算下列各数的平方根:a) 36b) 49c) 64d) 81答案:a) √36 = 6b) √49 = 7c) √64 = 8d) √81 = 93. 计算下列各数的平方根:a) 100b) 121c) 144d) 169答案:a) √100 = 10b) √121 = 11c) √144 = 12d) √169 = 13通过以上练习题,我们可以看到计算平方根的方法其实非常简单。
对于一个正数n,它的平方根就是使得x² = n成立的正数x。
我们可以通过试探法或者使用计算器来计算平方根。
当然,在实际问题中,我们通常会使用计算器或者数学软件来计算平方根,但是对于基础的练习题,我们还是应该掌握手算的方法。
除了计算平方根,我们还可以通过平方根的性质来解决一些实际问题。
比如,在几何学中,我们可以利用平方根来计算直角三角形的斜边长。
根据勾股定理,直角三角形的两条直角边的平方和等于斜边的平方。
如果我们已知两条直角边的长度,我们就可以通过平方根来计算斜边的长度。
另外,在物理学中,平方根也经常被用来计算速度、加速度等物理量。
例如,当我们已知一个物体匀加速运动的加速度和时间时,我们可以通过平方根来计算物体的位移。
这些实际问题的解决离不开对平方根的理解和应用。
总之,平方根作为数学中的一个重要概念,不仅仅是一种计算方法,更是一种解决实际问题的工具。
通过练习题的训练,我们可以提高对平方根的计算能力和应用能力,为解决更加复杂的问题打下坚实的基础。
人教版初中数学七年级下册第六章《6.1平方根》同步练习题(含答案)
《平方根》同步练习1 课堂作业1.9的算术平方根是()A.-3B.±3C.3D2.一个数的算术平方根不可能是()A.正数B.负数C.分数D.非负数3的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间4.144的算术平方根是________;(-5)2的算术平方根是________;181的算术平方根是________.5.求下列各数的算术平方根:(1)0.64;(2)9116;(3)2.56;(4)0.6.求下列各式的值:(2).课后作业7() A.-3B.3C.-9D.98() A.-2B.±2CD.29.下列说法正确的是() A.7是49的算术平方根B.±4是16的算术平方根C.-6是(-6)2的算术平方根D.0.01是0.1的算术平方根10.下列运算正确的是()A.(5)5=--=B1 12 =C33 2244 =+=D0.5=±11.一个自然数的算术平方根为a,则和这个自然数相邻的下一个自然数是() A.a+1B.a2+1CD112.用“>”或“<”连接下列各式:(2)(3)4-.13.若172.≈,22.84≈,则217________≈,________≈0.02284≈,则x =________.14.邻居张大爷家有一块正方形的花圃,面积为289m 2,张大爷要在花圃的四周围上栅栏,则至少需要栅栏的长度为________.15.求下列各式的值:16.小玉想用一张面积为900cm 2的正方形纸片,沿着边的方向裁出一张面积为560cm 2的长方形纸片,使它的长、宽之比为2︰1,但不知是否能裁出来.小芳看见了说:“很明显,一定能用一张面积大的纸片裁出一张面积小的纸片.”你同意小芳的观点吗?小玉能用这张正方形纸片裁出符合要求的长方形纸片吗?答案[课堂作业]1.C2.B 3.C4.12 5 195.(1)0.8 (2)54 (3)1.6 (4)0 6.(1)147 (2)-3(3)9(4)45[课后作业]7.B8.C9.A10.B11.B12.(1)>(2)>(3)>13.0.2284228.40.000521714.68m15.(1)17(2)0.8(3)216.设长方形纸片的长为2xcm,宽为xcm.由题意,得2x·x=560,解得x=280>256,16>.∴2x>32,即裁出的长方形纸片的长大于32cm.而已知正方形纸片的面积为900cm2,则边长只有30cm,因此,我不同意小芳的观点小玉不能用这张正方形纸片裁出符合要求的长方形纸片《平方根》同步练习2课堂作业1.下列各数中,没有平方根的是()A.(-3)2B.0C.1 8D.-632.求449的平方根,下列运算过程正确的是()A4 49 =B.27 =±C2 7 =D.2 7 =3.若x的一个平方根,则另一个平方根是________,x是________.4.2.25的平方根是________;19的平方根是________;1625的平方根是________.5.求下列各数的平方根:(1)196;(2)0.16;(3)25 169;(4)729.6.有一个边长为11cm的正方形和一个长15cm、宽5cm的长方形,要做一个面积为这两个图形的面积之和的正方形,则该正方形的边长应为多少?课后作业7.下列各式正确的是()A3=-B.3=-C3=±D3=±8.下列说法正确的是()A.14是0.5的一个平方根B.正数有两个平方根,且这两个平方根之和等于0C.72的平方根是7D.负数有一个平方根9()A.±3B.3C.±9D.910.若a是(-3)2的平方根,b的一个平方根是2,则a+b的值为________.11.若一个正数的两个平方根分别是2a-2和a-4,则a的值是________.12.求下列各式的值:(1);(2);(4)13.求下列各式中x的值:(1)3x2=75;(2)292(1)8x-=;(3)2(x2+1)=5.38.14.已知2a-1的平方根是±3,3a+b-1的算术平方根是4,求a+2b的值.15.为了促进全民健身活动的开展,改善居民的生活质量,某居民小区决定在一块面积为905m2的正方形空地上建一个篮球场.已知篮球场的面积是420m2,长是宽的2815倍,篮球场的四周必须留出1m宽的空地.请你计算一下,能否按规定在这块空地上建一个篮球场.答案[课堂作业]1.D2.B3 54.±1.513±45±5.(1)±14(2)±0.4(3)513±(4)53±6.设该正方形的边长为xcm.由题意,得x2=11×11+15×5=196.∵x>0,∴14x==.∴该正方形的边长应为14cm[课后作业]7.B8.B9.A10.1或711.212.(1)±30(2)-1.7(3)7 4(4)±1113.(1)x =±5 (2)14x =或74x = (3)x =±1.314.由题意,得2a -1=(±3)2,3a +b -1=42,解得a =5,b =2.∴a +2b =5+2×2=915.设篮球场的宽为xm ,那么长为28m 15x .由题意,得2842015x x = .∴x 2=225.∵x >0,∴15x ==.又∵228(2)90090515x +=<,∴能按规定在这块空地上建一个篮球场 《平方根》同步练习3同步练习:一、基础训练1.若一个偶数的立方根比2大,算术平方根比4小,则这个数是_______.2.下列计算不正确的是( )A ±2B 9C =0.4D 63.下列说法中不正确的是( )A .9的算术平方根是3B 2C .27的立方根是±3D .立方根等于-1的实数是-14 )A .±8B .±4C .±2 D5.-18的平方的立方根是( ) A .4 B .18 C .-14 D .146_______;9的立方根是_______.7______________(保留4个有效数字)8.求下列各数的平方根.(1)100;(2)0;(3)925;(4)1;(5)11549;(6)0.09.9.计算:(1)(2(3(4二、能力训练10.一个自然数的算术平方根是x,则它后面一个数的算术平方根是()A.x+1B.x2+1C1D11.若2m-4与3m-1是同一个数的平方根,则m的值是()A.-3B.1C.-3或1D.-112.已知x,y(y-3)2=0,则xy的值是()A.4B.-4C.94D.-94参考答案1.13.10,12,14 点拨:23<这个数<42,即8<这个数<16.2.A 2.3.C4.C =4,故4的平方根为±2.5.D 点拨:(-18)2=164,故164的立方根为14.6.±237.6.403,12.61 8.(1)±10 (2)0 (3)±35 (4)±1 (5)±87 (6)±0.3 9.(1)-3 (2)-2 (3)14(4)±0.510.D 点拨:这个自然数是x 2,所以它后面的一个数是x 2+1,则x 2+1.12.B 点拨:3x +4=0且y -3=0.。
(完整版)初一下册数学平方根练习题(含答案).doc
平方根练习题姓名: _______________ 班级: _______________ 考号: _______________一、填空题1、已知 m的平方根是2a-9 和 5a-12 ,则 m的值是 ________.2、对于任意不相等的两个数a, b,定义一种运算※如下:a※ b=,如 3※ 2=.那么12※ 4=.3、实数 a 在数轴上的位置如图所示,化简:。
4、已知:,则x+y的算术平方根为_____________ .二、选择题5、已知:是整数,则满足条件的最小正整数为()A. 2 B .3C . 4D . 56、若,,且,则的值为()A. -1 或 11 B . -1 或 -11 C .1 D .117、点 P, 则点 P 所在象限为 ().A. 第一象限B.第二象限C.第三象限 D 第四象限 .8、的平方根是A.9 B . C . D . 39、一个正方形的面积是15,估计它的边长大小在()A. 2 与 3 之间 B . 3 与 4 之间 C . 4 与 5 之间D. 5 与 6 之间三、简答题10、已知的平方根是±3,的算术平方根是4,求的平方根11、如图,实数、在数轴上的位置,化简.12、如果一个正数m的两个平方根分别是2a- 3 和a- 9,求 2m- 2 的值.四、计算题13、已知与的小数部分分别是a、 b,求 ab 的值.14、设都是实数,且满足,求式子的算术平方根.15、参考答案一、填空题1、 92、 1/23、 14、 5二、选择题5、 D6、 D7、 D8、 C9、 B三、简答题10、⋯2分⋯..4分⋯⋯6分果.8分11、解 : 由可知 :,, ∴. 2 分∴原式 = 5 分= 6 分=.7 分12、∵一个正数的两个平方根分是2a- 3 和a-9,∴(2 a- 3)+( a- 9)=0 ,解得a= 4 ,∴ 个正数(2 a-3) 2 =52 =25,∴ 2 m- 2=2× 25- 2= 48 ;四、计算题13、解 : 因为,所以的小数部分是,的小数部分是14、解:由题意得,,解得,所以,所以的算术平方根为.15、原式 =+2+4﹣ 4=;。
最新人教版初中七年级下册数学《平方根》同步练习题
《平方根》同步测试(第1课时)一、选择题1.9的算术平方根是( ).A. 3 B.±3 C.81 D.±81考查目的:本题考查算术平方根的概念.答案:A.解析:根据算术平方根的概念,因为,所以9算术平方根为3.故答案选A.2.已知,则=( ).A.0. 5 B.±0.5 C.0.0625 D.±0.0625考查目的:考查算术平方根的概念和符号表示.答案:C.解析:符号表示的算术平方根.因为算术平方根等于0.25的数是0.0625,即,所以.3.(2010?贺州)的算术平方根是( ).A.±2 B.2 C.±4 D.4考查目的:本题考查算术平方根的概念和符号表示.答案:B.解析:表示16的算术平方根.因此本题应先求“=?”,再求“?”的算术平方根.由于,4的算术平方根是2,故答案选B.二、填空题4.一个面积为0.64m的正方形桌面,它的边长是.考查目的:本题考查运用算术平方根的概念解决问题.答案:0.8m.解析:因为正方形的面积为边长的平方,所以边长是面积的算术平方根,故边长为.5.算术平方根等于它的相反数的数是______.考查目的:本题考查算术平方根的性质.答案:0.解析:因为算术平方根一定是非负数(0和正数),所以算术平方根等于它的相反数的数是一定是非正数(0和负数).既是非负数,又是非正数的数只有0,故算术平方根等于它相反数的数是0.6.请你观察思考下列计算过程:因为,所以;同样:因为,所以;…,由此猜想=__________.考查目的:本题考查运用算术平方根概念探究规律.答案:111111111.解析:观察过程:“因为,所以;同样:因为,所以;…”可发现:算术平方根全由1组成,1的个数与被开方数的中间的数字相同.由此猜想=111111111.三、解答题7.“欲穷千里目,更上一层楼,”说的是登得高看得远,如图,若观测点的高度为,观测者视线能达到的最远距离为,则=,其中是地球半径(通常取6400km).小丽站在海边一块岩石上,眼睛离海平面的高度为20m,她观测到远处一艘船刚露出海平面,求此时的值.考查目的:本题考查算术平方根的应用.答案:16km.解析:根据题意,将,代入=,得=16(km).8.(1)计算:①,②,③,④;(2)观察你计算的结果,用你发现的规律直接写出下面式子的值:.考查目的:本题考查算术平方根的求法以及分析结果发现规律的能力.答案:(1)①1,②3,③6,④10;(2)406.解析:(1)根据算术平方根的求法,可得:①,②,③,④;(2)分析①②③④的结果,可发现:①=1,②=3=1+2,③=6=1+2+3,④=10=1+2+3+4.所以=1+2+3+4+…+28=406.《平方根》同步测试(第2课时)一、选择题1.估计的值在( ).A.2与3之间 B.3与4之间 C.4与5之间 D.5与6之间考查目的:本题考查用有理数估计一个带算术平方根符号的(无理)数的大致范围.答案:B.解析:解题的关键是找出10在哪两个连续整数的平方之间.因为,,所以3<<4,故在3与4之间.答案选B.2.是的( ).A.10倍B.100倍C.1000倍 D.10000倍考查目的:本题考查被开方数的变化与算术平方根的变化之间的规律的应用.答案:A.解析:根据被开方数的变化与算术平方根的变化之间的规律“被开方数的小数点向左或向右移动位,它的算术平方根的小数点就相应地向左或向右移动位(为正整数)”解答.因为110是1.1的小数点向右移动2位,所以的小数点相应的向右移动1位,就得到的值,即是的10倍.3.下列关于的说法错误的是( ).A.1<<2 B.1.7<<1.8 C. D.是一个无限不循环小数考查目的:本题考查无限不循环小数的概念以及用有理数估计无理数的大小.答案:C.解析:因为,,所以1<<2,即选项A正确;因为,,所以1.7<<1.8,即选项B正确;因为是一个无限不循环小数,而1.732是一个有限小数,所以选项C错误,选项D正确.故答案选C.二、填空题4.若将边长为1的五个正方形拼成图1的形状,然后将图1按斜线剪开,再将剪开后的图形拼成图2所示的正方形,那么图1中剪开的斜线的长是_______.考查目的:本题考查运用算术平方根解决问题.答案:.解析:由于每个小正方形面积为1,所以图1的面积为5.剪开后拼成图2的正方形的面积也是5,边长是.因为图1中剪开的斜线的长就是图2正方形的边长,所以图1中剪开的斜线的长是.5.已知,则约是_______.考查目的:本题考查被开方数的变化与算术平方根的变化之间的规律,以及算术平方根的符号表示.答案:0.0735.解析:由于被开方数0.005403是由54.03小数点向左移动四位得到的,则0.005403的算术平方根就是54.03的算术平方根的小数点向左移动两位得到,即.故答案选B.6.已知,为两个连续整数,且<<,则.考查目的:本题考查用有理数估计一个(带算术平方根符号的)无理数的大致范围.答案:5.解析:因为,,所以2<<3,对比已知条件,可得,,所以.三、解答题7.根据下表回答下列问题:28.028.128.228.328.428.528.628.728.8784.00789.61795.24800.89806.56812.25817.96823.69829.44(1)795.24的算术平方根是;(2)≈;(3)在哪两个数之间?考查目的:本题考查算术平方根的概念,以及用文字语言、符号语言表示算术平方根的能力和估算能力.答案:(1)28.2;(2)28.7;(3)28.4与28.5之间.解析:可根据算术平方根的定义解答,但需要一定的估算能力.(1)从表中可直接看出795.24的算术平方根是28.2;(2)表示823.7的算术平方根,表中平方数最接近823.7数是823.69,而,所以≈28.7;(3)因为 806.56<810<812.25,所以28.4<<28.5.8.某农场有一块长30米,宽20米的场地,要在这块场地上建一个正方形鱼池,使它的面积为场地面积的一半,问能否建成?若能建成,请你估计鱼池的边长为多少?(精确到0.1米)考查目的:本题考查估计算术平方根的大小的实际应用.答案:能,约17.3米.解析:设鱼池的边长为米,则,,<20,故能建成.因为,,所以17.3<<17.4,且与17.3更接近,所以可以估计鱼池的边长为17.3米.《平方根》同步测试(第3课时)一、选择题1.“16的平方根是±4”用数学式子表示正确的是( ).A.=±4 B.±=±4 C.=4 D.- =-4考查目的:本题考查平方根的符号表示.答案:B.解析:“16的平方根”用符号表示是“”,因此“16的平方根是±4”用符号表示是“”.故答案选B.2.下列命题中,正确的个数有( ).①=±3;②2的平方根是4;③的平方根是±1.A.0个 B.1个 C.2个 D.3个考查目的:本题考查平方根的概念,以及平方根与算术平方根的区别.答案:B.解析:因为,所以①错误;因为2的平方根是,所以②错误;因为=1,1的平方根是±1,所以③正确,故答案选B.3.如果一个正数的平方根为和,则这个正数为( ).A.25 B.36 C.49 D.64考查目的:本题考查平方根的定义以及相反数的概念.答案:C.解析:由平方根的定义可知,和是一对相反数,即,解这个方程得.当时,,,所以这个正数为.故答案选C.二、填空题4.已知=,则20.14的平方根为__________(用含的代数式表示).考查目的:本题考查平方根与算术平方根之间的区别,以及被开方数的变化与算术平方根的变化之间的规律.答案:.解析:因为20.14是2014的小数点向右移动2位得到的,所以应由小数点向右移动1位得到.根据可得,所以20.13的平方根为.5.如果的平方根等于±2,那么=______.考查目的:本题考查平方根与算术平方根的概念以及它们之间的区别.答案:16.解析:根据平方根的定义,可知,4的平方根等于±2,所以;再根据算术平方根的定义,可知,算术平方根等于4的数是16.故答案应填16.6.若和是数的平方根,则=______.考查目的:本题考查平方根概念的运用.答案:256或576.解析:本题没有说明和是否为数的不同的平方根,所以有两种情况.当+=0时,解得,所以,,所以;当=时,解得,则,故答案为256或576.(注意本题与“数的平方根是和”的区别)三、解答题7.如图所示是计算机程序计算,(1)若开始输入,则最后输出= ;(2)若输出的值为22,则输入的值= .考查目的:本题考查平方运算与开平方运算是互逆运算.答案:(1)-2;(2)±3.解析:(1);(2)根据题意,可得,整理得,.8.已知正数的两个平方根分别是、.请计算代数式的值.考查目的:本题考查平方根的概念和性质.答案:0.解析:由平方根的性质:正数有两个平方根,它们互为相反数.可得;由平方根的概念和性质,可得,所以.。
平方根与立方根练习题及答案
平方根与立方根练习题及答案平方根与立方根练习题及答案数字是数学世界中最基本的元素,它们无处不在,无论是日常生活还是学术研究都离不开数字的存在。
其中,平方根和立方根是我们常见的数学概念之一。
平方根表示一个数的平方等于该数的正平方根,而立方根则表示一个数的立方等于该数的正立方根。
在这篇文章中,我们将介绍一些关于平方根和立方根的练习题,并提供相应的答案。
练习题一:求平方根1. 求下列数的平方根:a) 4b) 9c) 16d) 25e) 36答案:a) 2b) 3c) 4d) 5e) 6解析:对于一个数的平方根,我们需要找到一个数,使得这个数的平方等于给定的数。
例如,对于4来说,2的平方等于4,所以4的平方根为2。
同样地,9的平方根为3,16的平方根为4,25的平方根为5,36的平方根为6。
练习题二:求立方根2. 求下列数的立方根:a) 8b) 27c) 64d) 125e) 216答案:a) 2b) 3c) 4d) 5e) 6解析:与求平方根类似,对于一个数的立方根,我们需要找到一个数,使得这个数的立方等于给定的数。
例如,对于8来说,2的立方等于8,所以8的立方根为2。
同样地,27的立方根为3,64的立方根为4,125的立方根为5,216的立方根为6。
练习题三:混合练习3. 求下列数的平方根和立方根:a) 1b) 64c) 100d) 729e) 1000答案:a) 平方根为1,立方根为1b) 平方根为8,立方根为4c) 平方根为10,立方根为5d) 平方根为27,立方根为9e) 平方根为31.62(保留两位小数),立方根为10解析:有些数既有平方根又有立方根,我们可以通过前面的求解方法得到它们的值。
例如,对于1来说,1的平方根和立方根都为1;对于64来说,64的平方根为8,立方根为4;对于100来说,100的平方根为10,立方根为5;对于729来说,729的平方根为27,立方根为9;对于1000来说,1000的平方根为31.62(保留两位小数),立方根为10。
七年级下册数学同步练习题库:平方根(计算题:一般)
平方根(计算题:一般)1、如果9的算术平方根是a,b的绝对值是4,求a-b的值.2、求下列各数的平方根.(1)6.25;(2);(3);(4)(-2)4.3、我们已经学过完全平方公式,知道所有的非负数都可以看作是一个数的平方,如,那么,我们可以利用这种思想方法和完全平方公式来计算下面的题:例:求的算术平方根.解:∴的算术平方根是.你看明白了吗?请根据上面的方法化简:(3)4、计算:(1)(2)(3)+-(4)5、计算:﹣22++(3﹣π)0﹣|﹣3|6、求下列各式中的x的值,(1)(2)(3)7、计算:(1)()2+﹣(2)++﹣|1﹣|+.8、求下列各式的值(1)﹣﹣(2)﹣12+(﹣2)3×.9、(1)++(2)(﹣)2﹣|1﹣|+﹣5(3)求x值:(3x+1)2=16(4)(x﹣2)3﹣1=﹣28.10、求下列式中的x的值.3(2x+1)2=27.11、计算:|﹣3|﹣(5﹣π)0+.12、计算:(1)(2)13、(1)计算:|﹣3|+(π+1)0﹣;(2)已知:(x+1)2=16,求x.14、计算:(1);(2);(3);(4);(5);(6)(结果保留3个有效数字)15、(2015秋•宝应县月考)计算:(1)()2+﹣(π﹣3.14)0+;(2)(2x﹣1)2﹣1=8.16、(1)计算:;(2)求中x的值.(3)÷(4)17、计算:(1);(2)解方程:9x2-121=0.18、计算(1);(2);(3);(4).19、计算:(﹣1)2015+﹣20150﹣(﹣)﹣2.20、计算:(﹣1)2013+﹣|﹣2|+(2013﹣π)0﹣﹣.21、(7分)计算:.22、计算:23、若,求2x+5的算术平方根.24、如果,求x+y的值.25、求下列各式中x的值.(1)(x+1)2=49;(2)25x2-64=0(x<0).26、求下列各数的平方根.(1)6.25;(2);(3);(4)(-2)4.27、如果,求x+y的值.28、已知2a-1的算术平方根是3,3a+b-1的算术平方根是4,求ab的值.29、已知3x-4是25的算术平方根,求x的值.30、求下列各数的算术平方根:(1)900;(2)1;(3);31、若(a-1)2+|b-9|=0,求的平方根.32、如图所示,在长和宽分别是、的矩形纸片的四个角都剪去一个边长为的小正方形.(1)用、、表示纸片剩余部分的面积;(2)当,,且剪去部分的面积等于剩余部分的面积时,求正方形的边长的值.33、计算:34、已知,则的整数部分是多少?如果设的小数部分为b,那么b是多少?35、一个正数a的平方根是3x-4与2-x,则a是多少?36、物体从高处自由下落,下落的高度h与下落时间t之间的关系可用公式表示,其中g=10米/秒2,若物体下落的高度是180米,则下落的时间是多少秒?37、用计算器计算,,,.(1)根据计算结果猜想(填“>”“<”或“=”);(2)由此你可发现什么规律?把你所发现的规律用含n的式子(n为大于1的整数)表示出来.38、用计算器计算:≈________.(结果保留三个有效数字)39、若△ABC的三边长分别是a、b、c,且a与b满足,求c的取值范围.40、求下列各数的算术平方根:(1)900;(2)1;(3);41、求下列各式中x的值:(1)169x2=100;(2)x2-3=0;(3)(x+1)2=81.42、如果a为正整数,为整数,求a可能的所有取值.43、若,求2x+5的算术平方根.44、若(a-1)2+|b-9|=0,求的平方根.45、计算:(10分)(1)已知:(x+2)2=25,求x;(2)计算:46、计算:参考答案1、72、±2.5,,,±43、(1)(2)(3)4、(1)-1.6 (2)±15 (3) 1 (4)5、-46、(1)、x=;(2)、x=1;(3)、x=8或x=-47、﹣10;﹣2+.8、(1)原式=0;(2)原式=﹣39、(1)原式=9﹣3+=6;(2)原式=2﹣+1+2﹣5=5﹣6;(3)x=1或x=﹣;(4)x=﹣1.10、x=1或x=-2.11、712、(1)、=7,=-7;(2)、5.13、(1)4;(2)x=3或x=﹣5.14、(1);(2)-17;(3)-9;(4)2;(5)-36;(6)37.9.15、(1)0;(2)x1=2,x2=﹣1.16、(1)3;(2)x= 8或-2;(3);(4).17、(1)-1;(2).18、(1);(2);(3);(4).19、﹣4.20、原式=2.21、﹣1.22、23、324、1325、(1)6或-8(2)26、(1)±2.5(2)(3)(4)±427、1328、1029、330、(1)30(2)1(3)31、±332、(1);(2)33、634、35、136、637、(1)> (2)(n为大于1的整数).38、0.46439、1<c<340、(1)30,(2)1,(3)41、(1).(2).(3) x=8或x=-1042、a所有可能取的值为5、10、13、14.43、44、±345、(1)3,-7 (2)46、.【解析】1、因为9的算术平方根是3,所以a=3.因为|b|=4,所以b=4或-4.所以当a=3,b=4时,a-b=-1;当a=3,b=-4时,a-b=7.2、(1)因为(±2.5)2=6.25,所以6.25的平方根是±2.5.(2)因为,所以的平方根是,即.(3)因为,所以的平方根是.(4)因为(±4)2=(-2)4,所以(-2)4的平方根是±4.3、试题分析:仿照例题直接利用完全平方公式开平方得出即可.利用中所求代入进而得出答案.仿照例题分别化简各二次根式,进而求出即可.试题解析:4、试题分析:根据平方根和立方根的意义解方程即可.试题解析:(1)=(2)=(3)=-3+3+1=1(4)==-3-++=考点:立方根与平方根5、试题分析:分别进行乘方、二次根式、零指数幂和绝对值的化简等运算,然后合并求解.试题解析:﹣22++(3﹣π)0﹣|﹣3|=﹣4+2+1﹣3=﹣4考点:实数的运算6、试题分析:(1)、首先根据等式的性质得出,然后根据平方根的性质得出x的值;(2)、首先根据等式的性质得出的值,然后根据立方根的计算法则得出答案;(3)、首先根据题意得出,然后根据平方根的性质得出x-2=6,从而求出x的值.试题解析:(1)、解得:x=(2)、=8 x+1=2 解得:x=1(3)、 x-2= 6 解得:x=8或x=-4考点:解方程7、试题分析:(1)原式利用算术平方根及立方根定义计算即可得到结果;(2)原式利用立方根定义,以及绝对值的代数意义化简,合并即可得到结果.解:(1)原式=9﹣4﹣15=﹣10;(2)原式=﹣1﹣2+﹣+1+=﹣2+.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.8、试题分析:(1)原式利用平方根、立方根定义计算即可得到结果;(2)原式利用乘方的意义,平方根、立方根定义,以及乘法法则计算即可得到结果.解:(1)原式=3﹣6+3=0;(2)原式=﹣1﹣1﹣1=﹣3.9、试题分析:(1)原式利用平方根、立方根定义计算即可得到结果;(2)原式利用二次根式性质,平方根定义,绝对值的代数意义化简,合并即可得到结果;(3)方程利用平方根定义开方即可求出x的值;(4)方程整理后,利用立方根定义开立方即可求出x的值.解:(1)原式=9﹣3+=6;(2)原式=2﹣+1+2﹣5=5﹣6;(3)开方得:3x+1=4或3x+1=﹣4,解得:x=1或x=﹣;(4)方程整理得:(x﹣2)3=﹣27,开立方得:x﹣2=﹣3,解得:x=﹣1.10、试题分析:先两边都除以3,再根据平方根的定义进行求解.试题解析:(2x+1)2="9"2x+1=±3.2x+1=3或2x+1=-3x=1或x=-2.考点:平方根.11、试题分析:首先根据绝对值、0次幂以及二次根式的计算法则求出各式的值,然后进行求和. 试题解析:原式=3﹣1+5=7.考点:有理数的计算12、试题分析:(1)、利用直接开平方法进行求解;(2)、首先根据算术平方根以及立方根的计算法则求出各式的值,然后进行有理数的加减法计算.试题解析:(1)、=49 解得:=7,=-7(2)、原式=3-(-4)-2=5.考点:(1)、解一元二次方程;(2)、根式的计算.13、试题分析:(1)原式第一项利用绝对值的代数意义化简,第二项利用零指数幂法则计算,第三项利用算术平方根定义计算,最后一项利用立方根定义计算即可得到结果;(2)方程利用平方根定义开方即可求出x的值.解:(1)原式=3+1﹣2+2=4;(2)开方得:x+1=4或x+1=﹣4,解得:x=3或x=﹣5.考点:实数的运算;平方根;零指数幂.14、试题分析:(1)因为的平方等于0.09,据此求值;(2)先计算根号下的运算,然后根据平方根的定义求值;(3)因为-9的立方等于-729,据此求值;(4),根据去绝对值的法则化去代数式中的绝对值符号,然后进行合并;(5)首先计算乘方和开方部分,然后按照有理数的运算法则进行计算;(6)先应用乘法分配律去掉小括号,再化去中括号,进行合并,然后取的近似值,得出结果.试题解析:(1);(2);(3);(4)=2;(5)==-32-1-3=-36;(6)==37.9.考点:实数的运算.15、试题分析:(1)分别根据数的乘方及开方法则、0指数幂的运算法则分别计算出各数,再根据实数混合运算的法则进行计算即可.(2)直接利用开方法求出x的值即可.解:(1)原式=2+3﹣1﹣4=0;(2)原方程可化为(2x﹣1)2=9,两边开方得,2x﹣1=±3,解得x1=2,x2=﹣1.考点:实数的运算;平方根;零指数幂.16、试题分析:(1)由零指数幂和负整数指数幂的意义得到原式=4﹣2+1,然后进行加减运算;(2)先变形得到,然后由平方根的定义求解;(3)先由二次根式的乘除法法则进行计算,然后利用二次根式的性质化简后合并即可;(4)先把变成,再由,即可得到结论.试题解析:(1)原式=4﹣2+1=3;(2),∴x-3=±5,∴x= 8或-2;(3)原式==;(4)原式====.考点:1.实数的运算;2.平方根;3.零指数幂;4.负整数指数幂;5.二次根式的混合运算.17、试题分析:(1)先根据平方根和立方根的定义、去绝对值的法则、零指数幂法则对原式进行化简,再进行合并;(2)通过移项得到的值,再通过开平方得到x的值.试题解析:解:(1)原式=3+-1-2-1=-1;(2)移项,得9x2=121,,所以x=.考点:实数的运算;开平方的应用.18、试题分析:(1)方程利用平方根定义开方即可求出解;(2)方程利用立方根定义开方即可求出解;(3)利用算术平方根和立方根的定义开方,再进行加减计算,即可解答;(4)先分别求出立方根和算术平方根,再进行有理数的计算.试题解析:解:(1),,开方得:;(2)方程变形得:,开立方得:x﹣3=3,解得:x=6;(3)原式==;(4)原式==.考点:1.立方根;2.平方根.19、试题分析:首先按照顺序进行计算,然后熟练掌握乘方运算法则、立方根化简、零指数幂、负整数指数幂运算法则是正确解题的关键.试题解析:-1的奇数次方是-1,8的立方根是2,任何不是0的数的0次幂都等于1,∴原式=﹣1+2﹣1﹣4=-4.考点:1.实数的运算;2.零指数幂;3.负整数指数幂.20、试题分析:分别利用乘方的意义,二次根式性质化简,零指数幂,负整数指数幂,最立方根定义计算出各项的结果后在合并即可.试题解析:解:原式=﹣1+3﹣2+1﹣3+4=2.考点:绝对值;零指数幂;负整数指数幂;立方根;实数的运算.21、试题分析:利用负整数指数幂、零指数幂、二次根式性质、特殊角的三角函数值分别进行计算即可.试题解析:原式=﹣3﹣4+5+1=﹣1.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.22、试题分析:原式= =.考点:实数的计算23、∵,∴x+2=4,∴x=2,∴2x+5=9.∴.24、由题意可知解得x=3.把x=3代入原式,得y=10,所以x+y=3+10=13.25、(1)∵(x+1)2=49,∴x+1=±7,∴x=6或x=-8.(2)∵25x2-64=0,∴25x2=64,∴或(不合题意舍去).∴.26、(1)因为(±2.5)2=6.25,所以6.25的平方根是±2.5.(2)因为,所以的平方根是,即.(3)因为,所以的平方根是.(4)因为(±4)2=(-2)4,所以(-2)4的平方根是±4.27、由题意可知解得x=3.把x=3代入原式,得y=10,所以x+y=3+10=13.28、由题意知2a-1=9,解得a=5.3a+b-1=16,解得b=2,所以ab=5×2=10.29、因为25的算术平方根是5,所以3x-4=5,解得x=3.所以x的值为3.30、(1)因为302=900,所以900的算术平方根是30,即.(2)因为12=1,所以1的算术平方根是1,即.(3)因为,所以的算术平方根是,即.31、由题意得a=1,b=9,所以.因为(±3)2=9,所以的平方根是±3.32、(1)根据题意可知纸片剩余部分的面积=矩形的面积-四个小正方形的面积;(2)根据剪去部分的面积等于剩余部分的面积列方程,然后解方程即可.试题解析:(1).(2)依题意.即:∵x取正数答:正方形的边长是.点睛:本题主要考查用字母表示数或式子的能力. 解题的关健在于要把握好题中的数量关系:纸片剩余部分的面积=矩形纸片面积-4小正方形的面积,即可得出第(1)的结果,在第(2)问中,利用“剪去部分的面积=剩余部分的面积”列方程,并用平方根的定义进行求解,同时注意答案要符合题意.33、试题分析:=3,=4,任何不是零的数的零次幂等于1,=2.试题解析:原式=3+4+1-2=6.考点:无理数的计算.34、由,知的整数部分是5,小数部分.35、根据题意,得3x-4+2-x=0,∴x=1,∴3x-4=3×1-4=-1,∴a=(3x-4)2=1.36、由题意知,所以t2=36,解得t=6.答:下落的时间是6秒.37、(1)>.(2)(n为大于1的整数).(详解:借助计算器可知,根据这一结果,猜想.进而推断出一般结论)38、用计算器计算,所以.39、∵,∴a=1,b=2.又2-1<c<2+1,∴1<c<3.40、(1)因为302=900,所以900的算术平方根是30,即.(2)因为12=1,所以1的算术平方根是1,即.(3)因为,所以的算术平方根是,即.41、(1)∵169x2=100,∴,∴,∴.(2)∵x2-3=0,∴x2=3,∴.(3)∵(x+1)2=81,∴,∴x+1=±9,∴x=8或x=-10.42、∵,且为整数,a为正整数,∴或1或2或3.∴当a=14时,;当a=13时,;当a=10时,;当a=5时,.故a所有可能取的值为5、10、13、14.43、∵,∴x+2=4,∴x=2,∴2x+5=9.∴.44、由题意得a=1,b=9,所以.因为(±3)2=9,所以的平方根是±3.45、试题分析:(1)根据平方根的意义可先求出x+2的值,然后可求出x的值;(2)先将各根式化简,然后进行有理数的加减即可.试题解析:(1)因为(x+2)2=25,所以,所以;(2)=4-2+=.考点:1.平方根;2.二次根式;3.三次根式.46、试题分析:根据负整数指数幂、二次根式、零次幂、特殊角的三角函数值的意义进行计算即可求出代数式的值.试题解析:考点:1.负整数指数幂;2.二次根式;3.零次幂;4.特殊角的三角函数值.。
七年级下册数学同步练习题库:平方根(计算题:较易)
平方根(计算题:较易)1、(9分)计算:.2、求下列各式中的值.(1);(2).3、计算:.4、计算:﹣3×(﹣2)25、计算:6、计算(﹣2)﹣1﹣+(﹣3)0.7、求下列各式的值:①;②;③;④.8、计算:﹣3×(﹣2)2.9、计算:﹣++.10、计算:(1)﹣+()2(2)﹣2.11、计算:﹣|2﹣|﹣.12、计算:13、计算:﹣()2+.14、(1)计算:(2)求(x-2)3=27中x的值.15、计算下列各题(1)(﹣1)+(﹣8)﹣(﹣7)(2).16、(2015秋•连城县期末)计算:(﹣1)2016﹣﹣|﹣5|+.17、(2015秋•常州期末)计算:+π0﹣|1﹣|+.18、计算:﹣+(﹣1)2016.19、(2015秋•重庆校级期中)(1)﹣+﹣(2)﹣()﹣2+(1﹣)0﹣(3)++﹣(4)(﹣)×(﹣2)2﹣+.20、(2015秋•永嘉县校级期中)计算:(1)1+(﹣5)(2)(3)(4).21、计算:22、计算:.23、计算:.24、计算下列各题(1)(2)25、计算:(1) (2)26、(2012•莆田)计算:|﹣2|+﹣(﹣1)2.27、计算:(1)(2)28、计算(1)()×(-36);(2)-22×(-)+8÷(-2)2(3).29、计算:.30、计算31、(7分)计算:.32、计算:.33、(6分)计算:(1)(2)34、计算:= .35、计算:.36、|5|+(-)-2+--(-1)0.37、计算:38、(8分).计算:(1)(2)39、计算:40、计算(12分)(1)-26-(-5)2÷(-1);(2);(3)-2(-)+│-7│41、(每小题4分,共12分)(1);(2);(3).42、(本题共有2小题,每小题4分,共8分)(1)计算:+-;(2)已知:(x-1)2=9,求x的值.43、(8分)(1)计算:.(2)已知,求的值.44、计算:45、计算题.(每题4分,共8分)(1)计算:-()-2+(-1)0;(2) + +.46、计算:(-1)2+--︱-5︱47、计算(本题16分)(1)-7+3+(-6)-(-7)(2)(3)(4)48、-.49、(15分)计算(1)(2)(3)(4)50、计算:(每小题4分,共8分.)(1)求的值:.(2)计算:;51、计算:(每小题4分,共8分.)(1)求的值:.(2)计算:;52、(本题6分)计算:(1)(2)53、(本题4分)计算54、(1)解方程:①②55、求下列各式中的(1)(2)56、计算题(1)(2)57、(本题满分10分)(1)求式中x的值:(2)计算:58、计算(1)(4分)(2)解方程:(4分)59、求下列各式中的的值:(1)(2)(1)(2)61、(本题6分)计算:(1)(2)62、(本题2分×3=6分)求下列各式中的值.①②③63、求下列各式中的值(每小题4分,共8分)(1)(2)64、计算(每小题4分,共8分)(1)(2)65、(本题8分)计算(1)(2)66、(本题8分)求下列各式中的x(1)(2)(1)求的值:.(2)计算:;68、计算(9分)(1)(2)(3)69、计算下列各题:(每题3分,共6分;必须写出必要的解题过程)(1)(2)70、参考答案1、2、 (1);(2)x=4.3、3.4、-105、26、-1;7、(1)=1.2.(2)﹣=﹣0.3.(3)=103=1000.(4)=.8、﹣10.9、2.10、(1)4;(2)3.11、2+.12、5-213、﹣1.414、(1)3;(2)5.15、(1)﹣2;(2)7.16、﹣5.17、7﹣.18、19、(1)原式=﹣6++3=﹣;(2)原式=3﹣4+1﹣2=﹣3;(3)原式=6+3+﹣5=﹣2;(4)原式=﹣×4++=﹣2+1=﹣1.20、(1)原式=1﹣5=﹣4;(2)原式=﹣﹣=﹣;(3)原式=﹣21+20﹣6﹣27+20=﹣7;(4)原式=7+(﹣3)﹣2=7﹣3﹣2=7﹣5=2.21、-2.22、7.23、3.24、(1)-11(2)1125、(1) -4, (2)26、327、(1)4;(2)-1-.28、(1)-29;(2)4;(3)-2.29、-130、-10831、32、1.33、(1)-(2)-34、.35、-2.36、9.37、-8.38、1+;8.39、140、(1)-1;(2);(3)-1541、(1)0;(2);(3).42、(1)4;(2)x=4或x=-2.43、(1)、-10;(2)、x=-144、5.45、(1)2;(2)46、047、(1)—3 (2)80 (3)0 (4)948、-249、见解析50、(1)或;(2).51、(1)或;(2).52、(1)8;(2).53、54、x=-3;(2)或.55、(1);(2).56、(1)-5;(2)3+.57、(1)或;(2).58、(1)2 (2)259、(1) x= .(2)9.60、(1)-3;(2)-48.61、见解析62、①②③63、(1);(2).64、(1)4;(2).65、(1)7,(2)66、(1);(2)67、(1)x1=6,x2=-6;(2).68、(1)(2)-7(3)-169、(1);(2).70、20.【解析】1、试题分析:先利用算术平方根和立方根以及绝对值的性质对每一个式子进行化简,最后合并即可.试题解析:原式= =.考点: 实数的运算2、试题分析:(1)利用平方根的定义解方程即可;(2)利用立方根的定义解方程即可.试题解析:(1)(2)x-2=2x=4.3、试题分析:分别进行绝对值的化简、零指数幂、二次根式的化简等运算,然后合并.试题解析:原式=2﹣1+2=3.考点:实数的运算;零指数幂.4、试题分析:首先根据平方根以及平方的计算法则求出各式的值,然后进行做差.试题解析:原式=2-3×4=2-12=-10.考点:实数的计算5、试题分析:首先根据平方根和立方根的计算法则求出各式的值,然后进行求和.试题解析:原式=4-3-+=2考点:(1)、平方根的计算;(3)、立方根的计算6、试题分析:原式第一项利用负整数指数幂法则计算,第二项利用算术平方根定义计算,最后一项利用零指数幂法则计算即可得到结果.解:原式=﹣﹣+1=﹣2+1=﹣1.考点:实数的运算;零指数幂;负整数指数幂.7、试题分析:(1)根据算术平方根定义求出即可;(2)根据立方根定义求出即可;(3)根据算术平方根定义求出即可;(4)根据算术平方根定义求出即可.解:(1)=1.2.(2)﹣=﹣0.3.(3)=103=1000.(4)=.考点:立方根;算术平方根.8、试题分析:原式利用算术平方根定义,以及乘方的意义计算即可得到结果.解:原式=2﹣12=﹣10.考点:实数的运算.9、试题分析:原式利用平方根、立方根的定义计算即可得到结果.解:原式=4﹣3﹣+=5﹣3=2.考点:实数的运算.10、试题分析:(1)原式利用平方根、立方根定义计算即可得到结果;(2)原式利用同分母分数的加法逆运算计算,即可得到结果.解:(1)原式=3﹣2+3=4;(2)原式=4+1﹣2=5﹣2=3.考点:实数的运算.11、试题分析:先化简二次根式、绝对值,再进行计算即可.解:原式=2﹣2++2=2+.考点:实数的运算.12、试题分析:首先根据二次根式、0次幂和负指数次幂的计算法则得出值,然后进行实数的加减法计算.试题解析:原式=2+2-2+1=5-2.考点:实数的计算.13、试题分析:原式利用二次根式性质,平方根及立方根定义计算即可得到结果.解:原式=2﹣0.4﹣3=﹣1.4.考点:实数的运算.14、试题分析:(1)原式第一项利用算术平方根定义计算,第二项利用零指数幂法则计算,最后一项利用负整数指数幂法则计算即可得到结果;(2)方程利用立方根定义开立方即可求出x的值.试题解析:(1)原式=4+1-2=3;(2)开立方得:x-2=3,解得:x=5.考点:1.实数的运算;2.立方根;3.零指数幂;4.负整数指数幂.15、试题分析:(1)先去括号,然后合并求解;(2)分别求出平方根和立方根,然后合并.解:(1)原式=﹣1﹣8+7=﹣2;(2)原式=5+2=7.考点:实数的运算.16、试题分析:原式第一项利用乘方的意义计算,第二项利用算术平方根定义计算,第三项利用绝对值的代数意义化简,最后一项利用立方根的定义计算即可得到结果.解:原式=1﹣3﹣5+2=﹣5.考点:实数的运算.17、试题分析:分别进行开方、零指数幂、绝对值的化简、开立方等运算,然后合并.解:原式=3+1﹣+1+2=7﹣.考点:实数的运算;零指数幂.18、试题分析:原式第一项利用立方根定义计算,第二项利用算术平方根定义计算,第三项利用绝对值的代数意义化简,最后一项利用乘方的意义计算即可得到结果.解:原式=2﹣3++1=.考点:实数的运算.19、试题分析:(1)原式利用算术平方根及立方根定义计算即可得到结果;(2)原式第一、四项化为最简二次根式,第二项利用负整数指数幂法则计算,第三项利用零指数幂法则计算即可得到结果;(3)原式各项化为最简二次根式,合并即可得到结果;(4)原式利用平方根、立方根定义计算即可得到结果.解:(1)原式=﹣6++3=﹣;(2)原式=3﹣4+1﹣2=﹣3;(3)原式=6+3+﹣5=﹣2;(4)原式=﹣×4++=﹣2+1=﹣1.考点:实数的运算;零指数幂;负整数指数幂.20、试题分析:(1)原式利用异号两数相加的法则计算即可得到结果;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(3)原式利用乘法分配律计算即可得到结果;(4)原式利用算术平方根及立方根定义计算即可得到结果.解:(1)原式=1﹣5=﹣4;(2)原式=﹣﹣=﹣;(3)原式=﹣21+20﹣6﹣27+20=﹣7;(4)原式=7+(﹣3)﹣2=7﹣3﹣2=7﹣5=2.考点:实数的运算.21、试题分析:先分别计算算术平方根和立方根,然后再进行计算即可求得答案.试题解析:原式=4-3-3=-2.考点:实数的运算.22、试题分析:先根据数的开方法则分别计算出各数,再根据实数混合运算的法则进行计算即可.试题解析:原式=3+2+4×=5+2=7.考点:实数的运算.23、试题分析:分别计算各项后再进行加减运算即可求得结果.试题解析:原式=3-2+-2+4=3.考点:实数的混合运算.24、试题分析:(1)先算开方,再把除法变成乘法,最后算减法;(2)先算乘方,然后第二项利用分配律计算,最后算加减法即可.试题解析:(1)=5-8×2=-11(2)考点:实数的计算.25、试题分析:(1)先算乘方,再算除法,最后算加减;(2)先算开方,再算加减.试题解析:(1) =-9+4+1=-4;(2) =.考点:有理数的计算.26、试题分析:本题涉及绝对值、乘方、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解:原式=2+2﹣1=3.考点:实数的运算.27、试题分析:按照实数的运算法则进行计算即可.试题解析:(1)原式=6+3-5=4;(2)原式=-4+1+2-=-1-.考点:实数的运算.28、试题分析:(1)利用税法对加法的分配律进行计算即可;(2)先算乘方,再算乘除,最后算加减即可;(3)先进行开方和绝对值运算,最后算加减.试题解析:(1)原式=36×+36×()+36×()=28-30-27=-29;(2)原式=-4×(-)+8÷4=2+2=4;(3)原式=-1+2-3=-2.考点:1.有理数的混合运算;2.实数的运算.29、试题分析:先计算出,,合并同类根式即可得出结论.试题解析:解:=-3+2-=-1考点:二次根式的计算30、试题分析:先利用乘方的意义及二次根式性质化简第一项,再利用立方根定义及绝对值的代数意义化简第二项,最后利用零指数幂法则计算最后一项即可.试题解析:原式=﹣27×4﹣2×+1=﹣108﹣1+1=﹣108.考点:实数的运算;零指数幂.31、试题分析:先将所给的各式的值计算或化简,然后计算即可试题解析:考点:1.实数的运算;2.负整数指数幂.32、试题分析:原式第一项利用零指数幂法则计算,第二项利用算术平方根定义计算,第三项利用乘方的意义化简,第四项利用绝对值的代数意义化简,最后一项利用负整数指数幂法则计算即可得到结果.试题解析:原式=1-3+1-2+4=1.考点:1.实数的运算;2.零指数幂;3.负整数指数幂.33、试题分析:(1)先将各式化简,然后计算即可;(2)先利用立方根及算术平方根将各式化简,然后计算即可得到结果.试题解析:(1)原式=﹣9+3﹣+6=﹣;(2)原式=8﹣9﹣1+ =﹣.考点:实数的运算.34、试题分析:先将各个式子化简求值,然后合并即可.试题解析:原式==.考点:实数的混合运算.35、试题分析:分别根据零次幂、算术平方根、有理数的乘方、负整数指数幂的意义进行计算即可.试题解析:原式=1+2-1-4=-2.考点:实数的混合运算.36、试题分析:原式利用绝对值的代数意义,零指数幂、负整数指数幂法则,以及平方根、立方根定义计算即可得到结果.试题解析:原式=5+4+3-2-1=9.考点:1.实数的运算;2.零指数幂;3.负整数指数幂.37、试题分析:先分别计算绝对值、负整数指数幂、特殊角三角函数值、零次幂,然后再进行加减运算. 试题解析:原式===-8.考点:实数的混合运算.38、试题分析:根据立方根、算术平方根以及绝对值的计算法则将各式进行计算,然后求和.试题解析:(1)原式=3-(2-)=1+(2)、原式=4+3-(-1)=8考点:实数的计算.39、试题分析:首先根据0次幂、负指数次幂、二次根式、负指数次幂的计算法则分别求出各式的值,然后进行有理数的计算.试题解析:原式=1-3+1-2+4=1考点:实数的计算40、试题分析:根据实数混合运算的法则运算即可。
开根号练习题
开根号练习题在数学中,开根号是一种常见的运算方法,用于求解一个数的平方根。
开根号的概念广泛应用于不同领域的数学问题中。
为了帮助大家更好地理解和掌握开根号的运算方法,下面将给出一些开根号的练习题,供大家进行实践和训练。
练习题一:简单的平方根1. 求解√25。
根据平方根的定义,寻找一个数的平方根等价于求解一个数的平方等于该数的问题。
因此,我们可以通过计算来解答该题。
答案:√25 = 5。
2. 求解√144。
同样地,我们可以使用计算来求解这道题。
答案:√144 = 12。
练习题二:复杂的平方根1. 求解√50。
当遇到无法完全开根的情况时,我们可以将该数进行因式分解,然后尝试将某些因子提取出来,再进行开根运算。
答案:√50 = √(25 × 2) = √25 × √2 = 5√2。
2. 求解√98。
同样地,我们可以尝试对该数进行因式分解。
答案:√98 = √(49 × 2) = √49 × √2 = 7√2。
练习题三:含有小数的平方根1. 求解√8。
当我们遇到含有小数的平方根时,可以尝试将该数进行简化。
答案:√8 = √(4 × 2) = √4 × √2 = 2√2。
2. 求解√18。
同样地,我们可以尝试将该数进行简化。
答案:√18 = √(9 × 2) = √9 × √2 = 3√2。
练习题四:含有变量的平方根1. 求解√(x^2 + 6x + 9)。
对于含有变量的平方根,我们需要利用平方公式或其他方法来进行求解。
在这道题中,我们可以利用完全平方公式进行推导。
答案:√(x^2 + 6x + 9) = √(x + 3)^2 = x + 3。
2. 求解√(4y^2 + 8y + 4)。
同样地,我们可以利用完全平方公式来简化这个平方根。
答案:√(4y^2 + 8y + 4) = √(2y + 2)^2 = 2y + 2。
练习题五:复杂的平方根运算1. 求解√(5 + 2√6)。
人教版七年级数学下册《6.1 平方根》巩固练习题及答案
人教版七年级数学下册《6.1 平方根》巩固练习题及答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.14的平方根是()A.12B.±12C.2 D.士22.√3表示的意义是()A.3的立方根B.3的平方根C.3的算术平方根D.3的平方3.16的算术平方根是()A.16 B.4 C.﹣4 D.±4 4.2x−4有平方根,则x满足的条件是()A.x<2B.x>2C.x≤2D.x≥25.计算√425的结果等于()A.±25B.25C.−25D.166256.已知√2023−n是正整数,则实数n的最大值为()A.2022 B.2023 C.2024 D.2025 7.某中学要修建一个面积约为80平方米的正方形花圃,它的边长大约是()A.8.7米B.8.8米C.8.9米D.9.0米8.若2m−4与3m−1是同一个数两个不同的平方根,则m为()A.−3B.3 C.−1D.1 二、填空题9.√16的算术平方根是.10.若一个数的平方等于964,则这个数是.11.比较大小:√224.(填“>”,“<”或“=”)12.已知√102.01=10.1,则√1.0201=.13.已知一个正数的两个不同的平方根分别是2a+1和3-4a,则a=.三、解答题14.已知a,b是正数m的两个平方根,且3a+2b=2,求a,b值,及m的值.15.已知√25=x,√y=2,z是9的算术平方根,求2x+y−z的算术平方根.16.已知2a−1的平方根是±3,a+3b−1的算术平方根是4.(1)求a、b的值;(2)求ab+5的平方根.参考答案1.B2.C3.B4.D5.B6.A7.C8.D9.210.38或−3811.>12.1.0113.214.解:因为a ,b 是正数m 的两个平方根,可得:a =−b把a =−b 代入3a +2b =2,−3b +2b =2解得:b =−2所以a =2所以m =4.15.解:∵√25=x∴x =5;∵√y =2∴y =4;∵z 是9的算术平方根∴z =3;∴2x +y −z =2×5+4−3=11∴2x +y −z 的算术平方根是√11.16.(1)解:∵2a −1的平方根是±3,a +3b −1的算术平方根是4. ∴2a −1=9,a +3b −1=16解得a =5,b =4.(2)解:当a =5,b =4时,ab+5=25 ,而25的平方根为±√25=±5 即ab+5的平方根是±5.。
沪科版数学七年级下册 6.1 平方根、立方根同步练习(word版含答案)
平方根、立方根【基础巩固】1.64的平方根是( ). A .±8 B .±4C .±2D .2.9的算术平方根是( ).A .±3B .3C .-3D 3.下列语句正确的是( ). A .一个数的平方根一定有两个B .一个非负数的非负平方根一定是它的算术平方根C .一个正数的平方根一定是它的算术平方根D .一个非零数的负的平方根是它的算术平方根4.一个自然数的算术平方根是x ,则它后面一个自然数的算术平方根是( ).A .x +1B .x 2+1C 1 D5.如果某数的一个平方根是-6,那么这个数为__________. 6.用计算器计算:,,,…,请你猜测999999+1999n n n ⨯个个个的结果为__________.【能力提升】7.若2m -4与3m -1是同一个数的平方根,则m 为( ). A .-3 B .1 C .-3或1 D .-181πx -的值是( ). A .11π- B .11π+C .11π- D .无法确定9.一个正方体的体积变为原来的8倍,它的棱长变为原来的__________倍;体积变为原来的27倍,它的棱长变为原来的__________倍;体积变为原来的 1 000倍,它的棱长变为原来的__________倍;体积变为原来的n 倍,它的棱长变为原来的__________倍.10.若|a -2|0,则a 2-b =__________. 11.求下列各式的值:;;12.已知一个正数的平方根是3x -2和5x -14,请你求出这个正数.13.一个长方体容器长20 cm ,宽15 cm ,在这个容器内放一立方体铁块,盛满水取出铁块后,水面下降了5 cm ,求这个立方体铁块的棱长.(精确到0.01 cm)参考答案1.答案:A2.答案:B 解析:∵32=9,∴9的算术平方根是3. 3.答案:B4.答案:D 解析:这个自然数是x 2,于是它后面的一个数是x 2+1,则x 2+1的算术平方根是.5.答案:36 解析:因为(-6)2=36,所以这个数为36.6.答案:10n解析:由计算器易算出:,=100=102,1 000=103999999+1999n n n ⨯个个个=10n .7. 答案:C 解析:本题分为两种情况:(1)可能这两个平方根相等,即2m -4=3m -1,解得m =-3;(2)可能两个平方根互为相反数,即(2m -4)+(3m -1)=0,解得m =1.故选C.8.答案:A 解析:0≥0,所以x =π,所以原式=π11=1ππ--.9.答案:2 3 10解析:设原来的正方体的体积是1,则其棱长为1,变化后的正方体的体积为8,所以棱长为原来的2倍,同样的方法可得体积变为27倍,1 000倍,n 倍时,它们的棱长变为原来的3倍,1010.答案:1 解析:由|a -2|0,得a -2=0,b -3=0,解得a =2,b =3.因此a 2-b =1.11.答案:解:=12+13=25.455=343⨯.=5÷0.2=25.171244-+=-1. 12. 答案:解:根据平方根的性质可知,正数的两个平方根互为相反数,于是(3x -2)+(5x -14)=0,解得x =2, 即这个正数的两个平方根为4和-4. 故这个正数为16.13. 答案:解:设立方体的棱长为x cm ,根据题意,可得x 3=20×15×5,即x 3=1 500,所以x .利用计算器,可算得x ≈11.45(cm). 故这个立方体铁块的棱长约为11.45cm.。
2021-2022学年人教版七年级数学下册 平方根练习(Word版含答案)
6.1 平方根一、单选题1 )A .±2B .±4C .2D .42.实数4的平方根是( )AB .±4C .4D .±23.若实数a 的相反数是﹣4,则a 倒数的算术平方根是( )A.12 B .2 C D .24.已知50a -=,那么a b -=( )A .2B .3C .-2D .85 )A .36的平方根B .6的平方根C .36的算术平方根D .6的算术平方根6.下列运算正确的是( )A 13B =﹣6C 5D ±37.下列说法:①36的平方根是6;4=±;①0.1是0.01的平方根;①81的算术平方根是9±.其中正确的说法有( )A .0个B .1个C .2个D .3个8.正方形的边长为cm a ,它的面积与长为96cm ,宽为12cm 的矩形的面积相等,则a 的值为( )A .B .36C .D .249.已知a 、b 表示表中两个相邻的数,且a b ,则a =( )A .17.4B .17.5C .17.6D .17.7二、填空题10.若x 2=7,则实数x =_____.11(y ﹣1)2=0,则(x +y )2021等于_____.12.若一个正数的平方根是2a -+和21a -,则a 是___.13.在做浮力实验时,小华用一根细线将一圆柱体铁块拴住,完全浸入盛满水的溢水杯中,并用量筒量得从溢水杯中溢出的水的体积为60立方厘米,小华又将铁块从溢水杯中拿出来,量得溢水杯的水位下降了0.8厘米,则溢水杯内部的底面半径为______厘米(π取3).三、解答题14.(12|2|3--.(2)解方程:2312x =15.已知一个数m 的两个不相等的平方根分别为a +2和3a -6.(1)求a 的值;(2)求这个数m .16.已知21a -的一个平方根是3,31a b +-的一个平方根是4-,求2+a b 的平方根.17.一个底为正方形的水池的容积是486m 3,池深1.5m ,求这个水池的底边长.答案1.A2.D3.A4.A5.C6.C7.B8.C9.C10.711.-112.-113.514.(1)-5;(2)x =±2 15.(1)a =1(2)916.2+a b 的平方根为3± 17.这个水池的底边长为18m .。
平方根练习题及答案
平方根练习题及答案一、选择题1. 以下哪个数的平方根是正数?A. 9B. -9C. 0D. 16答案:A2. √64的值等于多少?A. 8B. -8C. 64D. 4答案:A3. √(-4)²的值等于多少?A. -4B. 4C. 8D. 16答案:B4. 如果√x = 5,那么x的值是:A. 25B. 5C. -25D. 125答案:A5. √(2x²)等于多少?A. x√2B. 2√xC. √2xD. 2x答案:A二、填空题6. √9 = _______。
答案:37. √(-3)² = _______。
答案:38. 如果√y = 7,那么y = _______。
答案:499. √(4a²) = _______。
答案:2|a|10. √(100) = _______。
答案:10三、计算题11. 计算√(25 +8√2)。
答案:首先计算25 + 8√2 = (3√2)² + 2×3√2 + 1 = (3√2 + 1)²,所以√(25 + 8√2) = 3√2 + 1。
12. 计算√(49 - 28)。
答案:首先计算49 - 28 = 21,然后√21 = √(3×7) = √3 × √7。
13. 计算√(3x² - 6x + 3)。
答案:首先观察表达式3x² - 6x + 3 = 3(x² - 2x + 1) = 3(x - 1)²,所以√(3x² - 6x + 3) = √3(x - 1)² = √3|x - 1|。
四、应用题14. 一个正方形的面积是25平方厘米,求这个正方形的边长。
答案:设正方形的边长为a厘米,根据面积公式,a² = 25,所以a = √25 = 5厘米。
15. 一个圆的面积是πr²,如果圆的面积是100π平方厘米,求半径r。
平方根练习题答案
平方根练习题答案一、填空题1. √9 = 32. √16 = 43. √25 = 54. √36 = 65. √49 = 76. √64 = 87. √81 = 98. √100 = 109. √121 = 1110. √144 = 12二、选择题1. 答案:D解析:√121 = 11,选项D中与这个结果相符。
2. 答案:A解析:√64 = 8,选项A中与这个结果相符。
3. 答案:C解析:√169 = 13,选项C中与这个结果相符。
4. 答案:B解析:√256 = 16,选项B中与这个结果相符。
5. 答案:D解析:√400 = 20,选项D中与这个结果相符。
6. 答案:C解析:√625 = 25,选项C中与这个结果相符。
7. 答案:A解析:√900 = 30,选项A中与这个结果相符。
8. 答案:B解析:√1089 = 33,选项B中与这个结果相符。
9. 答案:C解析:√1369 = 37,选项C中与这个结果相符。
10. 答案:D解析:√1600 = 40,选项D中与这个结果相符。
三、解答题1. 答案:√196 = 14解析:通过对196的因数进行分解,可以得到14的平方,因此√196 = 14。
2. 答案:√62500 = 250解析:62500可以分解为250的平方,因此√62500 = 250。
3. 答案:√3249 = 57解析:通过对3249的因数进行分解,可以得到57的平方,因此√3249 = 57。
4. 答案:√60025 = 245解析:60025可以分解为245的平方,因此√60025 = 245。
5. 答案:√1000000 = 1000解析:1000000可以分解为1000的平方,因此√1000000 = 1000。
6. 答案:√1444 = 38解析:通过对1444的因数进行分解,可以得到38的平方,因此√1444 = 38。
7. 答案:√8649 = 93解析:通过对8649的因数进行分解,可以得到93的平方,因此√8649 = 93。
初一下册数学平方根练习题(含答案)
平方根演习题姓名:_______________班级:_______________考号:_______________一.填空题1.已知m的平方根是2a-9和5a-12,则m的值是________.2.对于随意率性不相等的两个数a,b,界说一种运算※如下:a※b =,如3※2=.那么12※4= .3.实数a在数轴上的地位如图所示,化简:.4.已知:,则x+y的算术平方根为_____________.二.选择题5.已知:是整数,则知足前提的最小正整数为()A.2 B.3C .4D.56.若,,且,则的值为( )A.-1或11 B.-1或-11 C. 1 D.117.点P,则点P地点象限为( ).B. 第二象限C. 第三象限 D第四象限.8.的平方根是A.9 B. C. D.39.一个正方形的面积是15,估量它的边长大小在()A.2与3之间 B.3与4之间 C.4与5之间D.5与6之间三.简答题10. 已知的平方根是±3,的算术平方根是4,求的平方根11.如图,实数.在数轴上的地位,化简.12.假如一个正数m的两个平方根分离是2a-3和a-9,求2m-2的值.四.盘算题13.已知与的小数部分分离是a.b,求ab的值.14.设都是实数,且知足,求式子的算术平方根.15.参考答案一.填空题1.92.1/23.14.5二.选择题5.D6. D7.D8.C9.B三.简答题10.…2分…..4分……6分成果 .8分11.解:由图可知: ,,∴. 2分∴原式= 5分= 6分=.7分12.∵一个正数的两个平方根分离是2a-3和a-9,∴(2a-3)+(a-9)=0,解得a= 4,∴这个正数为(2a-3) 2=52=25,∴2m-2=2×25-2= 48;四.盘算题13.解:因为,所以的小数部分是,的小数部分是14.解:由题意得,,解得,所以,所以的算术平方根为.15.原式=+2+4﹣4=;。
七年级下册数学同步练习题库:平方根(简答题:一般)
平方根(简答题:一般)1、解下列方程.(1)(2)2、()计算:.()求下列方程中的:①.②.3、如果a、b、c是△ABC的三边,满足(b-3)2 +(a-5)2+│c-4│= 0,求△ABC的周长.4、已知互为相反数,求的平方根.5、已知一个正数的平方根是a+3和2a-18,求这个正数的立方根.6、如果a是100的算术平方根,b为125的立方根,求的平方根.7、已知M=是m+3的算术平方根,N=是n﹣2的立方根,试求M﹣N的值.8、长方形内有两个相邻的正方形,面积分别为4、2,求阴影部分的面积.9、观察下图,每个小正方形的边长均为1,(1)图中阴影部分的面积是多少?边长是多少?(2)边长的值在哪两个整数之间.(3)把边长在数轴上表示出来.10、已知,满足=0,解关于的方程.11、如图,有5个边长为1的小正方形组成的纸片,可以把它剪拼成一个正方形.(1) 拼成的正方形的面积是,边长是;(2) 在数轴上作出表示、的点;(3) 你能把这十个小正方形组成的图形纸,剪开并拼成一个大正方形吗?若能,在图中画出拼接后的正方形,并求边长,若不能,请说明理由.12、已知实数满足。
(1)求的平方根;(2)求的值.13、求下列各式中的x:①x2+5="7" ;②(x﹣1)+64=0.14、已知3m-2的算术平方根是2,2n-m-8的立方根是﹣2,求m2﹣n2的平方根.15、求下列各式中的x.(1)25(x+1)2=16;(2) (x-1)3=1.16、如果与|y+1|互为相反数,求x﹣y的平方根.17、已知:与互为相反数,求(x+y)2016的平方根.18、计算与求值:(1);(2)求的值19、若与互为相反数,求6x+y的平方根.20、已知2|2a-4|+=0,求a+b-ab的值.21、已知x,y为实数,且+=(x+y)2,求x-y的值.22、若x,y为实数,且y>++2,化简:.23、已知2b+1的平方根为±3,3a+2b﹣1的算术平方根为4,求a+2b的平方根。
初一数学 七年级下册数学平方根练习题
初一数学七年级下册数学平方
根练习题
注意事项
1、可打印的资料为电子版(无水印),可以在电脑和手机上观看和编辑,也可以打印在A4纸上,需要的家长可以加王老师个人:dyedu1005
2、只有标题上写明可打印的资料才有电子版,上分享过的资料比较多,需要哪篇文章下的资料请告诉我那篇文章的完整标题
3、资料是存在百度网盘中的,新疆地区会屏蔽百度网盘的链接
4、资料分付费资料和免费资料,文章中写有价格的是付费资料,没写价格的是免费资料
5、由于咨询的人比较多,一次禁止索要多份资料(可隔日再次索要)。
如果需要的资料比较多,可以15元打包之前一个月的资料,也可以15元包月,后续一个月内上每次更新的可打印资料都会直接发送到您的网盘上
6、由于需要休息和整理资料,晚上和周末不看不回消息,有需求的可以给我留言,看到后会回复
- END -
▲长按上方添加王老师个人
推荐阅读:
690分学霸的时间表曝光!每天比别人多玩2小时,成绩却比人高50分!
霍金去世!生命有限,但科学与奋斗无限!缅怀,自勉!
还在为给孩子报班烦恼?国家出手啦,看代表委员谈如何治理校外培训机构 | 两会热点
我如何让数学差的女儿考了第一!非常好的教子经验,果断转了
告诉孩子:读书时偷的懒,要用一辈子来还(深度好文)。
(完整word版)七年级数学平方根与立方根试题
七下数学平方根与立方根练习题姓名: 一、选择题1 若 x2 a ,则( )A 、x>0B 、x >0C 、a>0D 、a >02、一个数若有两个不同的平方根,则这两个平方根的和为( )A 、大于0B 、等于0C 、小于0D 、不能确定3、一个正方形的边长为 a ,面积为b ,则( )A 、a 是b 的平方根B 、a 是b 的的算术平方根C 、a .. b24、 若a >0,则4a 的算术平方根是( )A 、2aB 、土 2aC 、.. 2aD 、| 2a |5、 若正数a 的算术平方根比它本身大,则() A 、0<a<1 B 、a>0 C 、a<1D 、a>16、若n 为正整数,则2n 1 1等于( )A 、-1B 、1C 、土 1D 、2n +19下列说法:①一个数的平方根一定有两个;②一个正数的平方根一定是它的算术平方根; ③负数没有立方根.其中正确的个数有()A , 0个B , 1个C , 2个 10若一个数的平方根与它的立方根完全相同,则这个数是()A ,1B ,— 1 C ,0 11,若x 使(x —1) 2= 4成立,则x 的值是()A , 3B , — 1C , 3 或—112•如果a 是负数,那么a 2的平方根是().A. a B14.下列说法中正确的是()..a 2 .7、若 a<0,则 等于 ()2a111AB 、 —C 、 ± —D 、02 228、若 x-5能开偶次方,则x 的取值范围是()A 、x > 0B 、x>5C 、x > 5D 、x < 5D , 3个D,± 1, 0D , ± 2a Ca D .aD 、b .. a13•使得有意义的a 有().A. 0 个 B1个C •无数个D .以上都不对A.若 a 0 ,则•. a 2 0B x 是实数,且x 2 a ,则a 015.若一个数的平方根是C. 「x有意义时,x 0D . 0.1的平方根是0.018,则这个数的立方根是().、填空16有平方根的个数是23、 144的算术平方根是 _________ , .16的平方根是 ____________ ; 24、 3 27 = _________ ,. 64的立方根是 ___________ ;25、 7的平方根为 ______________ , 1.21 = ___________ ;26、 一个数的平方是 9,则这个数是 _________ ,一个数的立方根是 1,则这个数是 __________ 27、 平方数是它本身的数是 _____________ ;平方数是它的相反数的数是 ________________ ; 28、 当 x= __________ 时, 3x 1有意义;当 x= _______________ 时,3 5x 2 有意义; 29、 若 x 4 16,贝U x= ______ ;若 3n 81 ,贝V n= ____________ ; 30、 若仮 Vx ,贝U x= ___________ ;若 Vx 2 x ,贝V x __________ ;31、若x1 |y2 | 0,则 x+y= --- ;32、 计算:1 252 27 一 3—— :.12 8 =3 \ 93 I 6433、 代数式3 -.a b 的最大值为 ,这是a,b 的关系:A. 2 16.若 (5)2,b 3 (5)3,则 a b 的所有可能值为(). A. 0 10.0 或 10.0 或 10 17.若 n 的大小关系是).A. m •不能确定18 .27的立方根与 、、81的平方根之和是).A. 0.—12 或 6 D.0 或一619 .若 a , b 满足|3 a 11(b 22) 0,则ab 等于().A. 220 .下列各式中无论 x 为任何数都没有意义的是( ).A.'一 7x B.1999x 3 C . .. 0.1x 2 1 D . 3 6x 2 521、.. ( 4)2的平方根是2522、在下列各数中 0,4a 23是—5 —(1)3,的平方根.2 2(5) ,x35、若3(4 k)3k 4,则k的值为_____________37、若正数m的平方根是5a三、解答题38、求下列X的值:1 和a 19,则m = _______(5 ) ^(x 1)3 8 02 (6 ) 125(x 2)334336、若n 、10 n 1 , m .8 m 1 , 其中m、n为整数,则m n (1)(x 1)2324 0 (2) 125 —8x3= 064(x 3)2 9 0 (4) (4x 1)2225 (7) 3( 1)2 3_8 |1 - 31(10)「25 F 厉34、若3 X 33,则x5_________ ,若3ixi 6,则x1 2 x39•已知31 2x与33y 2互为相反数,求代数式的值.y40.已知x a b M是M的立方根,y 3厂6是x的相反数,且M 3a 7 ,请你求出x 的平方根.41.若y X2 4.4 X2,求2x y 的值.x 242•已知Vx 4,且(y 2x 1)24z~3 0,求x y z的值.43、已知:x —2的平方根是土2, 2 x +y+7的立方根是3,求x 2+ y 2的平方根.44、若y 2x 1 1 2x 1,求x y的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(4)× (10)√
(5)√ (6)× (11)× (12)√
(1)±3;3 (2)±
(3)-
(4)3;
(5)m≥ ;m=3 (6)a≥2 且 a≠3
(7)立方根;-64 (8)x 为任意实数 (9) ± 3.选择题:
(10)-a
(1)B (2)D (3)D (4)C (5)A (6)A 4.求 x 的值:
C.实数; D.无理
数;
E.有理数.
60.和数轴上的点成一一对应关系的数是 [
]A.无理数; B.有理数; C.实数;
D.自
然数.
61.数轴上全部的点表示的数是
[
]A.有理数; B.无理数; C.实数.
63.和数轴上的点是一一对应的数是
[
]A.自然数;
B.整数; C.有理
数;
D.实数.
A.1 个;
B.2 个; C.3 个;
65.不论 x,y 为什么实数,x2+y2+40-2x+12y 的值总是 [
数.
A.2; B.3; C.4;
D.5.
D.5 个. ]A.正数;
B.负数; C.0; D.非负
数为 [
]
A.1;
B.是一个无理数; C.3;
D.无法确定.
A.n 为正整数,a 为实数; B.n 为正整数,a 为非负数;C.n 为奇数,a 为实数; D.n 为偶数,a 为非负数.
(1)x=±5 (2)x=-
5.x= ,y= ,xy= 。 答案:1、D 2、D 3、D 4、C 5、C 6、D 7、C 8、A 9、B 10、A
8
七年级下册平方根练习题及窃案 (一)填空 1.16 的平方根是________.
3.49 的平方根是____.
5.4 的平方根是_______
7.81 的平方根是________. 8.25 的算术平方根是_________.
9.49 的算术平方根是_________.]
11.62 的平方根是______.
B.485.8; C.48.58;
D.4.858.
A.0.04858;
B.485.8; C.0.0004858;
D.48580.
74.a,b 是两个实数,在数轴上的位置如图 10-1 所示,下面正确的命题是
3
[
]
A.a 与 b 互为相反数; B.a+b<0; C.-a<0; D.b-a<0.
一、填空、1.144 的平方根是________.
)2.12.3=(
)2.
(二)计算 16.求 0.000169 的平方根.
20.求 0.0064 的平方根. 22.求 0.000125 的立方根. 23.求 0.216 的立方根.
1.求下列各数的平方根,算术平方根: (1)121 (2)0.0049 (3) 2. 求下列各式中的 x: (1)49x2=169 (2) 9(3x-2)2=(-7)2 (3)
67.C 72.C
68.A 73.A
69.D 74.B
70.D
15.-1.提示:由非负数和为零的性质可知 x+1=0,x+y=0,所以 x=-1,y=1,所以 2x+y=-2+1=-1. (二)计算
(三)在实数范围内分解因式
7
1.判断正误:
(1)× (2)× (7)√ (8)× 2.填空:
(3)× (9)√
(4)4
(5)|a|2
=11 (4) 27(x-3)3=-64
3.判断正误: (1) 的平方根是±3。( ) (2)
=± 。( )(3)16 的平方根是 4。( )
(4)任何数的算术平方根都是正数。( )(5) 是 3 的算术平方根。( )(6)若 a2=b2,则 a=b。(
)
(7)若 a=b,则 a2=b2。( ) (8)729 的立方根是±9( )(9)-8 的立方根是-2。( )
12.0.0196 的算术平方根是________.13.4 的算术平方根是________; 9 的平方根是________.
14.64 的算术平方根是________.15.36 的平方根是________;
4.41 的算术平方根是_______.
18.4 的平方根是____, 4 的算术平方根是___. 19.256 的平方根是____.
(5)如果 a<0,那么 a 的立方根是( )(A)
(B)
=-6 (C)-
=-5 (D)
=±
(C)-
(D)±
(6)下列各题运算过程和结果都正确的是( )(A)
(B)
=2× =
(C)
=7+ =7 (D)
=a+b
4.求下列各式中 x 的值:(1)4x2-100=0 (2)64(x+1)3+27=0 5.如果
(5)当m=______时,
有意义;当m=______时,
值为0。(6)当 a 为______时,式子
(7) 是4的______,一个数的立方根是-4,这个数是______。 (8)当x为______时,
有意义。
有意义。
(9)已知 x2=11,则 x=______。
(10)当 a<0 时,
= ______。
[.实数.
54.和数轴上的点一一对应的数是
[
]
A.有理数;
B.无理数; C.实数;
D.不存在这样的数.
55.全体小数所在的集合是
[
]
A.分数集合;
B.有理数集合; C.无理数集合; D.实数集合.
56.下列三个命题:(1)两个无理数的和一定是无理数;(2)两个无理数的积一定是无理数;
(3)一个有理数与一个无理数的和一定是无理数.其中真命题是
[
]
A.(1),(2)和(3); B.(1)和(3);C.只有(1);D.只有(3).
A.4;
B.3; C.6;
D.5.
数是
[
]
2
A.2360;
B.236
C.23.6;
D.2.36.
59.数轴上全部的点表示的数是 [
]A.自然数 B.整数;
练习题(二)
5.-216000 的立方根是________.6.-64000 的立方根是_________.
8.0 的平方根有_______个,其根值是_______.9.正数 a 的平方根有_______个,即为_______.
10.负数有没有平方根?_______.理由_______.11.25=(
+|6y-5|=0,求 xy 的值。
选择题 1.等式
成立的条件是( ) A、a 是任意实数 B、a>0 C、a<0 D、a≥0
2.一个自然数的算术平方根是x,则下一个自然数的算术平方根是( ) A、x+1 B、x2+1 C、 3.在实数范围内下列判断正确的是( )
+1 D、
A、若|m|=|n|,则 m=n B,若 a2>b2,则 a>bC、若( )2=|b|,则 a=b D、若
______. 37.与数轴上的点一一对应的数是________.38.________统称整数;有理数和无理数统称_________.
0.1010010001…各数中,属于有理数的有________;属于无理数的有________. 40.把下列各数中的无理数填在表示无理数集合的大括号里:
{
}
无理数集合: 1
自测题答案 (一)填空
23.-2,2
24.4
25.5
26.3;4
(二)选择 46.B 51.B 56.D 61.C
47.D 52.D 57.B 66.A
48.C 53.D 58.D 63.D
49.C 54.C 59.C 64.B
6
50.C 55.D 60.C 65.A
66.B 71.D (一)填空
[
]
D.4 个.
A.-36;
B.36;
50.下列语句中,正确的是
C.±6;
D.±36.
[
]
是
[
]
51.0
A.最小的有理数; B.绝对值最小的实数;C.最小的自然数; D.最小的整数.
52.以下四种命题,正确的命题是
[
]
A.0 是自然数;
B.0 是正数; C.0 是无理数;
D.0 是整数.
53.和数轴上的点一一对应的数为
7. 的平方根是( )A、±2;B、2;C、± ;D、 5
8. 的算术平方根是( )A ;B、
; C、 ; D、
9.下列各式中,无意义的一个是( )A、 ; B、 ; C、 10.若 =0,则( ) A、x=2;B、x>2;C、x<2;D、x为任意数
; D、
(三)在实数范围内分解因式 75.x2-5.76.x4-4.77.x3-3x.78.x2+2xy+y2-7.79.x4-12x2+11.80.x2-2x-9.
41.绝对值最小的实数是________.
44.无限不循环小数叫做________数.45.在实数范围内分解因式:2x3+x2-6x-3=________. (二)选择
46.36 的平方根是
[
]
48.在实数范围内,数 0,7,-81,(-5)2 中,有平方根的有
A.1 个;
B.2 个; C.3 个;
69.下列命题中,真命题是
[
] A.绝对值最小的实数不存在; B.无理数在数轴上的对应点
不存在;
C.与本身的平方根相等的实数不存在; D.最大的负数不存在.
A.0.0140;