(完整版)电流互感器末屏的工作原理及试验方法
电流互感器原理及测试方法
电流互感器原理及测试方法电流互感器(Current Transformer,简称CT)是一种用于测量高电流的电气设备,主要用于将高电流变换成较小电流,以便进行测量、保护和控制等操作。
本文将详细介绍电流互感器的工作原理和测试方法。
一、工作原理当高电流通过一次线圈时,会在磁芯内产生磁场。
由于磁芯的存在,磁场会集中在磁芯中,形成一条闭合磁通。
根据电磁感应定律,二次线圈中就会产生相应的电动势,从而在二次线圈上产生一定电流。
该电流与一次线圈中的电流成正比,即I2=(N2/N1)I1,其中I1为一次线圈中的电流,I2为二次线圈中的电流,N1为一次线圈的绕组数,N2为二次线圈的绕组数。
由于一次线圈中的电流较大,而二次线圈中的电流较小,因此通常将电流互感器的变比称为额定变比。
二、测试方法为了保证电流互感器的准确性和可靠性,需要对其进行定期的测试和校验。
下面将介绍电流互感器的测试方法。
1.直流短路方法直流短路方法是一种常用的检测电流互感器变化特性的方法。
具体操作步骤如下:(1)用直流电源将0.2~0.5倍额定电流加到电流互感器的一次绕组上;(2)记录电流互感器二次绕组上的电流值,并标定;(3)通过改变一次绕组上的电流,重复上述操作,记录多组数据;(4)根据测得的数据绘制电流互感器的变比特性曲线。
2.测量铭牌参数法测量铭牌参数法是通过测量和计算电流互感器的参数来进行测试的方法。
具体操作步骤如下:(1)根据电流互感器的铭牌参数,测量和记录其一次绕组和二次绕组的电流,电压和绕组数等参数;(2)通过计算,得到电流互感器的变比值和额定负荷等参数;(3)将测得的结果与标定的结果进行比较,看是否在允许范围内。
3.比值测试法比值测试法是通过测量电流互感器的比值误差来进行测试的方法。
具体操作步骤如下:(1)将标准电流与电流互感器的一次绕组相连接,将电流互感器的二次绕组接到比率变送器等测试设备上;(2)根据被测电流互感器的铭牌参数设置标准电流值,并记录;(3)测量电流互感器输出的电流值,并记录;(4)通过计算,得到电流互感器的比值误差,并与标准误差进行比较。
收藏丨电流互感器原理及测试方法
电流互感器是一种用于测量高电流的传感器,它基于电磁感应原理工作。
当一次侧电流通过互感器的绕组时,会在绕组中产生磁场,这个磁场的大小与一次侧电流成正比。
二次侧绕组绕在互感器的铁芯上,当磁场穿过二次侧绕组时,会在其中感应出一个小电流,这个电流的大小与一次侧电流成正比,且相位相差 90 度。
电流互感器的测试方法包括:
1. 绝缘电阻测试:使用绝缘电阻测试仪测量互感器的绝缘电阻,以确保其绝缘性能良好。
2. 变比测试:使用变比测试仪测量互感器的变比,以确保其变比精度符合要求。
3. 励磁特性测试:使用励磁特性测试仪测量互感器的励磁特性,以确保其在不同电流下的输出精度。
4. 误差测试:使用误差测试仪测量互感器的误差,以确保其测量精度符合要求。
5. 极性测试:使用极性测试仪测量互感器的极性,以确保其极性正确。
在测试电流互感器时,需要注意安全事项,如正确接地、避免触电等。
同时,需要根据互感器的型号和规格选择合适的测试仪器,并按照测试仪器的操作说明进行操作。
以上是对电流互感器原理及测试方法的简单介绍,希望对你有所帮助。
电流互感器原理及测试方法
局部放电测试
返回
使用仪器 无局放高电压试验变压器及测量装置( 无局放高电压试验变压器及测量装置(电压测量总 不确定度≤± ≤±3% 局部放电测量仪。 不确定度≤± %)、局部放电测量仪。 试验方法 局部放电试验可结合耐压试验进行,即在耐压60 60s 局部放电试验可结合耐压试验进行 , 即在耐压 60s 后 不将电压回零, 直接将电压降至局放测量电压停留30 30s 不将电压回零 , 直接将电压降至局放测量电压停留 30s 进行局放测量;如果单独进行局放试验, 进行局放测量;如果单独进行局放试验,则先将电压升 至预加电压, 停留10 10s 至预加电压 , 停留 10s 后 , 将电压降至局放测量电压停 30s进行局放测量。 留30s进行局放测量。 局部放电预加电压、 局部放电预加电压、测量电压及局放量限值 查表,必须正确地应用数据。区分不同的CT。 查表,必须正确地应用数据。区分不同的 。
电流互感器绝缘试验推荐程序
安全措施
为保证人身和设备安全,应严格遵守安全规程 DL408-91《电业安全工作规程(发电厂和变电 所电气部分)》中有关规定; 在进行绝缘电阻测量后应对试品放电; 在进行主绝缘及电容型套管末屏对地的tgδ及 电容量测量时应注意高压测试线对地绝缘问题; 进行交流耐压试验和局部放电测试等高电压试 验时,要求必须在试验设备及被试品周围设围 栏并有专人监护,负责升压的人要随时注意周 围的情况,一旦发现异常应立刻断开电源停止 试验,查明原因并排除后方可继续试验。
极性检查
返回
使用仪器 电池、指针式直流毫伏表(或指针式万用表直流毫伏档) 检查及判断方法 各二次绕组分别进行。 将指针式直流毫伏表的“+”、“-”输入端接在待检二次绕组的 端子上,方向必须正确:“+”端接在s1,“-”端接在s2或s3上; 将电池负极与CT一次绕组的L2端相连,从一次绕组L1端引一 根电线,用它在电池正极进行突然连通动作,此时指针式直流 毫伏表的指针应随之摆动,若向正方向摆动则表明被检二次绕 组为“减极性”,极性正确。反之则极性不正确。 注意事项 接线本身的正负方向必需正确;检查时应先将毫伏表放在直流 毫伏的一个较大档位,根据指针摆动的幅度对档位进行调整, 使得即能观察到明确的摆动又不超量程打表。电池连通后立即 断开以防电池放电过量。
电流互感器末屏的工作原理及试验方法
电流互感器末屏的工作原理及试验方法(故障攻关特色工作室)朔黄铁路原平分公司一、什么是电流互感器的电容屏及末屏?电容型电流互感器器身的一次绕组为“U”字型,导体根据额定电流的大小而有铝管、铜管等形式,一次绕组用绝缘纸缠绕,一般由数层绝缘纸绕制而成,绝缘纸之间有锡箔层,这些锡箔层即电容屏,其中,靠近一次绕组的屏称为“零屏”,最外层的电容屏称之为末屏,也称作“地屏”。
两两电容屏之间形成电容。
二、电流互感器内部为什么要设置电容屏?电容型电流互感器随着额定电压等级的提高,尤其是110KV及以上电压等级的电流互感器,其互感器缠绕一次绕组的绝缘纸厚度也越来越大,这就使绝缘内的电场强度越来越不均匀,而绝缘材料的耐电强度是有限的,电场强度不均匀后,某些局部绝缘所受的电场强度会超出本身耐电强度,绝缘整体的利用率就会降低,如果在绝缘纸中,设置一些电容屏,每两个电容屏与两屏之间的绝缘层就形成一个电容器,电容器的最内电极(零屏)与电流互感器一次绕组高压端连接,最外电极(末屏)与地连接时,整个电流互感器就构成一个高电压与地电位之间由多个电容器串联的电容器。
绝缘纸缠绕一次绕组为圆柱形同心圆结构,串联的每个电容器(相邻两个电容屏组成)都是一个圆柱形电容器,同等绝缘厚度下,电容屏设置越多,每个电容器的内极半径和外极半径之差就越小,内外电极表面的场强差别也就越小,若中间屏数量无限多,则各电容屏之间的场强差别趋近于零,但在实际的电流互感器中,电容屏数量是有限的,所以每个电容屏的场强也并不完全相等,但也起到了非常大的均匀场强的作用,这样就使内绝缘的各部分尽量场强分布一致,最大程度的利用绝缘材料。
三、电流互感器的末屏为什么一定要接地?电流互感器最外部的电容屏即末屏必须接地,如果末屏接地发生断裂或接触不良,末屏与地之间会形成一个电容,而这个电容远小于流互内部电容屏之间的电容,也就是说,首屏到末屏为数个容值一样的串联电容器,接地断裂或接触不良后,这个电路又串进一个容值很小的电容器。
电流互感器原理及测试方法
电容型CT主绝缘、末屏对地 tg及电容量测量 返回
使用仪器 升压装置、电容/介损电桥(或自动测量仪)及标准电容器(有的自动介 损测量仪内置10kV标准电容器和升压装置); 现场用测量仪应选择具有较好抗干扰能力的型号,并采用倒相、移相等 抗干扰措施。 测量方法 测量电容型CT的主绝缘时,二次绕组、外壳等应接地,末屏(或专用测 量端子)接测量仪信号端子,采用正接线测量,测量电压10kV;无专用 测量端子,无法进行正接线测量则用反接线。 当末屏对地绝阻低于1000M时应测量末屏对地的tg,测量电压2kV。 注意事项 试验时应记录环境温度、湿度。拆末屏接地线时要注意不要转动末屏结 构;测量完成后恢复末屏接地及二次绕组各端子的正确连接状态,避免 运行中CT二次绕组及末屏开路。
SF6绝缘CT的现场交接试验必做项目返回
按照《预防110kV-500kV互感器事故反措》规定的现场试验 项目及程序:
1、老炼 安装,检漏合格后充气至额定压力,静置1h后测微水和 老炼。 老炼程序:1.1 Un(10min) 0 1.0 Un(5min) 1.73 Un(3min) 0 【 Un指额定相对地电压】
电流互感器绝缘试验推荐程序
安全措施
为保证人身和设备安全,应严格遵守安全规程 DL408-91《电业安全工作规程(发电厂和变电 所电气部分)》中有关规定; 在进行绝缘电阻测量后应对试品放电; 在进行主绝缘及电容型套管末屏对地的tg及 电容量测量时应注意高压测试线对地绝缘问题; 进行交流耐压试验和局部放电测试等高电压试 验时,要求必须在试验设备及被试品周围设围 栏并有专人监护,负责升压的人要随时注意周 围的情况,一旦发现异常应立刻断开电源停止 试验,查明原因并排除后方可继续试验。
二次绕组的直流电阻测量
电流互感器的工作原理
电流互感器的工作原理电流互感器是一种测量电流的装置,常用于电力系统中。
它的工作原理基于电磁感应,通过互感作用将高电流转化为可以测量的较小电流。
本文将介绍电流互感器的工作原理以及相关应用。
一、引言电流互感器是电力系统中常见的测量设备。
它能够将高电流通过互感作用转化为可测量的小电流,以便进行电流的监测和检测。
电流互感器在电力系统中起着至关重要的作用,帮助实现电力负荷监控、电能计量和保护等功能。
二、电流互感器的结构电流互感器通常由铁芯、一次绕组、二次绕组和外壳等组成。
铁芯是互感器的主要部分,它由铁制成,具有良好的导磁性能。
一次绕组是将待测电流引入互感器的部分,而二次绕组是从互感器输出检测电流的部分。
外壳则用于保护互感器的内部结构。
三、电流互感器的工作原理电流互感器的工作原理基于法拉第电磁感应定律。
当一根导线中有电流通过时,会产生一个磁场。
当另一根导线靠近时,磁场会引起这根导线中的电流。
互感器利用这一原理实现高电流到小电流的转换。
具体来说,当待测电流通过一次绕组时,它在铁芯中产生一个磁场。
这个磁场会穿过二次绕组,并诱导出一个小电流。
由于二次绕组的匝数较少,所以输出的电流较小。
通过调整一次绕组和二次绕组的匝数比例,可以实现电流的准确测量。
四、电流互感器的应用电流互感器在电力系统中有着广泛的应用。
一方面,它们用于电能计量,帮助实现电力的精确计费和用电量的统计。
另一方面,电流互感器也被应用于电力保护系统中,用于检测电流异常和故障情况,从而及时采取保护措施,防止设备受损。
此外,电流互感器还广泛用于电力负荷监测和控制系统。
通过实时监测电流,可以对电力负荷进行合理分配,提高电力系统的运行效率。
五、电流互感器的优缺点电流互感器具有许多优点。
首先,它们能够将高电流转化为可测量的小电流,方便进行检测和测量。
其次,电流互感器具有较高的精度和可靠性,能够满足电力系统对电流测量的要求。
此外,它们还具有体积小、重量轻的特点,便于安装和维护。
电流互感器的工作原理
电流互感器的工作原理电流互感器是一种广泛应用于电力系统中的电力测量仪器。
它通过对电流的变换和测量,能够提供准确的电流信号,并将其传递给继电保护设备或仪表。
一、电流互感器的基本结构电流互感器主要由铁芯、一次绕组、二次绕组和防护外壳等部分组成。
1. 铁芯铁芯是电流互感器的核心部分,其主要用途是提供磁通通路,确保一次绕组和二次绕组之间能够有效地感应电磁感应。
2. 一次绕组一次绕组是电流互感器中负责承载被测电流的线圈,它与被测电流直接相连,并通过电流在其上产生的磁场来感应二次绕组。
3. 二次绕组二次绕组是电流互感器中负责输出测量信号的线圈,它与继电保护设备或仪表相连,将通过一次绕组感应的电磁场转换为相应的电流信号输出。
4. 防护外壳防护外壳是用来保护电流互感器内部结构的,通常由绝缘材料或金属材料制成,能够对内部零部件起到良好的保护作用。
二、电流互感器的工作原理电流互感器的工作原理基于法拉第电磁感应定律。
当一次绕组中的电流通过时,产生的磁场会穿过铁芯并感应到二次绕组中。
根据法拉第电磁感应定律,磁通的变化会在二次绕组中产生感应电动势。
根据电磁感应定律,感应电动势的大小与磁通的变化率成正比。
因此,如果被测电流越大,一次绕组中产生的磁通量就越大,感应到二次绕组的感应电动势也就越大。
为了保证电流互感器的准确性和安全性,在一次绕组和二次绕组之间需要有一个适当的变比关系。
这个变比通常由互感器的额定变比来确定。
例如,如果一个电流互感器的额定变比为1000:5,那么它将会将1000安培的一次电流变换为5安培的二次电流输出。
三、电流互感器的应用领域电流互感器在电力系统中有着广泛的应用。
它主要用于以下几个方面:1. 电流测量和保护电流互感器能够将高电流值变换为适合测量和保护装置的低电流值,有效降低了与高电流相关的测量和保护器件的成本和复杂度。
2. 功率测量和补偿电流互感器能够提供准确的电流信号,用于计算电路的有功功率、无功功率和视在功率。
电流互感器原理及测试方法
电流互感器原理及测试方法电流互感器是一种用于测量电流的装置,它通过电流变压器的原理来实现。
电流互感器主要由铁心、一次绕组、二次绕组和磁通计量装置组成。
其工作原理是将待测电流通过一次绕组,产生磁通,从而诱导出二次绕组中的电压信号,通过磁通计量装置来测量二次绕组中的电压信号,从而间接测量出一次绕组中的电流。
1.额定参数测试:包括额定一次电流、二次电流、额定频率、二次负载等参数的测试。
可以通过直接测量或利用仪器设备进行测试。
2.空载测试:将一次绕组接入待测电流,二次绕组不接入任何负载,通过测量二次绕组的电压信号,来判断电流互感器的空载性能。
3.比值测试:将一次绕组接入一定电流,测量二次绕组的电压信号,通过计算得到电流互感器的变比,进而判断电流互感器的准确性。
4.负载特性测试:将一次绕组接入一定电流,将二次绕组接入一定负载,通过测量二次绕组的电压信号和负载电流,计算得到电流互感器的负载特性,包括负载误差、相位角误差等。
5.温升测试:将一次绕组接入一定电流,通过一定时间的加热,测量电流互感器的温升情况,判断电流互感器的热稳定性。
6.绝缘测试:通过测量电流互感器的一次绕组与二次绕组之间的绝缘电阻,来判断电流互感器的绝缘性能。
7.阻抗测试:通过测量电流互感器的一次绕组和二次绕组之间的等效电阻和等效电感,来判断电流互感器的阻抗特性。
在进行电流互感器的测试时,需要使用专门的测试仪器和设备,如电流互感器测试装置、电压表、电流表、负载电阻等。
同时,还需要注意测试环境的稳定性和准确性,避免外界因素对测试结果的影响。
总之,电流互感器的测试方法主要包括额定参数测试、空载测试、比值测试、负载特性测试、温升测试、绝缘测试和阻抗测试等。
通过这些测试可以评估电流互感器的性能和准确性,确保其在实际应用中的可靠性和稳定性。
互感器试验原理及试验方法
互感器试验原理及试验方法互感器试验原理及试验方法主要涉及到电流互感器和电压互感器的试验。
电流互感器的试验原理是基于电磁感应定律进行工作的,与变压器相似。
在正常工作状态下,一、二次绕组上的压降很小,相当于一个短路状态的变压器,所以铁芯中的磁通也很小。
这时,一、二次绕组的磁势大小相等,方向相反,因此电流互感器一、二次之间的电流比与一、二次绕组的匝数成反比。
当端子的感应电势方向一致时,称为同名端。
如果在同名端通入同方向的直流电流,它们在铁芯中产生的磁通也是同方向的。
对于电流互感器的试验方法,主要有电流测量法和电压测量法。
电流测量法是在电流互感器一次侧输入一个电流,二次侧通过感应一次电流产生的磁通而产生二次电流。
而电压测量法是在电流互感器的二次侧输入一个电压,一次侧通过测量一次的感应电压得到变比。
电压互感器的试验原理与变压器相似,一次绕组(高压绕组)和二次绕组(低压绕组)绕在同一个铁芯上,铁芯中的磁通为Ф。
电压互感器进行励磁特性与励磁曲线试验时,一次绕组、二次绕组及辅助绕组均开路,非加压绕组尾端接地,特别是分级绝缘电压互感器一次绕组尾端更应注意接地,铁芯及外壳接地,二次绕组加压。
至于具体的试验方法,包括试验接线和试验步骤。
在试验前,应对电压互感器进行放电,并将高压侧尾端接地,拆除电压互感器一次、二次所有接线。
加压的开路,非加压绕组尾端、铁芯及外壳接地。
试验前应根据电压互感器最大容量计算出最大允许电流。
在试验过程中,应检查加压的二次绕组尾端不应接地,检查接线无误后提醒监护人注意监护。
合上电源开关,调节调压器缓慢升压,可按相关标准的要求施加试验电压,并读取点试验电压的电流。
读取电流后立即降压,电压降至零后切断电源,将被试品放电接地。
注意在任何试验电压下电流均不能超过最大允许电流。
电流互感器原理及测试方法
电容型CT主绝缘、末屏对地 tg及电容量测量 返回
试验结果判断依据: 主绝缘20℃时的tg值不应大于表1中数值,且与历年数据比较不应有显著变化。 油纸电容型绝缘的CT的tg一般不进行温度换算。 末屏对地的tg不大于2%; 复合外套干式电容型绝缘CT、SF6气体绝缘CT的tg值的限值参阅 其出厂技术条件;固体绝缘CT一般不进行tg测量。 当tg与出厂值或上一次测量值比较有明显变化或接近上述限值时,应综合分析tg与温度、电压的关系,必要时进行额定电压下的测量。当tg随温度升高明显变化,或试验电压由10kV升到Um/√3,tg增量超过0.3%时不应继续运行。 电容型CT的主绝缘电容量与出厂值或上一次测量值的相对差别超过5%时应查明原因。
单击此处添加副标题
202X
电流互感器原理及测试方法
电流互感器原理
为了保证电力系统安全经济运行,必须对电力设备的运行情况进行监视和测量.但一般的测量和保护装置不能直接接入一次高压设备,而需要将一次系统的大电流按比例变换成小电流,供给测量仪表和保护装置使用。
n2
铁芯线
极性检查 返回
变比检查 方法一:测量电流比 返回
变比检查 方法二:测量电压比 返回
励磁特性曲线 返回
励磁特性曲线 返回
与同类型CT励磁特性曲线、制造厂的特性曲线以及自身的历史数据比较,应无明显差异。
交流耐压试验 返回
使用仪器 高电压试验变压器及测量装置(电压测量总不确定度3%) 试验方法及试验结果判断依据: 一般采用50Hz交流耐压60s。应无内外绝缘闪络或击穿,一次绕组交流耐压值根据相应规程(见表2),二次绕组之间及对地交流耐压2kV(可用2500V兆欧表代替)。全部更换绕组绝缘后应按出厂值进行耐压。对于110kV以上高电压等级的CT的主绝缘现场交接试验时,可随所连断路器进行变频(一般30~300Hz)耐压试验。 注意事项 试验时应记录环境湿度,相对湿度超过75%时不应进行本试验; 升压设备的容量应足够,试验前应确认升压等设备功能正常; 充油设备试验前应保证被试设备有足够的静置时间:500kV设备静置时间大于72h,220kV设备静置时间大于48h,110kV及以下设备静置时间大于24h。 耐压试验后宜重复进行局部放电测试、介损/电容量测量。
电流互感器的工作原理
电流互感器的工作原理电流互感器是一种用来测量电流的装置,它通过感应电流产生的磁场来实现电流测量。
电流互感器通常被广泛应用于电力系统中,用来监测电流的大小和方向,保护设备和系统的安全运行。
那么,电流互感器的工作原理是怎样的呢?接下来,我们将详细介绍电流互感器的工作原理。
首先,电流互感器由铁芯和绕组组成。
铁芯通常采用硅钢片制成,它的作用是集中磁场线,提高磁通密度,从而增大感应电动势。
绕组则是绕在铁芯上的线圈,当有电流通过绕组时,就会在铁芯中产生磁场。
其次,当被测电流通过电流互感器的一侧绕组时,就在铁芯中产生了磁场。
这个磁场会穿过另一侧的绕组,从而在另一侧感应出电动势。
根据法拉第电磁感应定律,当磁通量发生变化时,就会在绕组中产生感应电动势。
因此,通过测量另一侧绕组中的感应电动势,就可以确定被测电流的大小。
此外,为了提高电流互感器的测量精度和线性度,通常会在绕组上加上补偿线圈。
补偿线圈的作用是抵消铁芯中的磁场对绕组的影响,从而使得绕组中感应出的电动势与被测电流成正比。
这样就可以实现电流互感器的线性输出,提高测量的准确性。
最后,需要注意的是,电流互感器在工作时需要考虑到一些因素的影响,比如温度、频率和外部磁场等。
这些因素都会对电流互感器的测量结果产生影响,因此在实际应用中需要进行相应的校准和修正,以确保测量的准确性和可靠性。
综上所述,电流互感器的工作原理是通过感应电流产生的磁场来实现电流测量。
它由铁芯和绕组组成,通过感应电动势来测量被测电流的大小。
为了提高测量精度和线性度,通常会在绕组上加上补偿线圈。
在实际应用中,需要考虑到温度、频率和外部磁场等因素的影响,进行相应的校准和修正。
希望通过本文的介绍,能够帮助大家更好地理解电流互感器的工作原理。
电流互感器 工作原理
电流互感器工作原理
电流互感器是一种用来测量、检测电流的传感器。
它主要通过电磁感应原理来实现对电流的测量。
其工作原理可概括为以下几个步骤:
1. 电流传导:电流互感器首先将待测电流引入传感器内部的一组线圈(称为一次线圈),通过这组线圈使电流在传感器内部流过。
2. 磁场感应:当通过一次线圈的电流发生变化时,根据安培环流定理,会在其周围产生一个磁场。
这个磁场的强度与电流的变化速度成正比。
3. 二次线圈感应:在电流互感器的另一组线圈(称为二次线圈)中,通过一次线圈所产生的磁场会引起二次线圈内感应电动势。
4. 信号放大:二次线圈中感应出的电动势经过放大器进行放大处理,以便能够得到可读取和处理的电流测量信号。
5. 输出信号:放大后的信号作为电流互感器的输出信号,通常通过电流互感器的输出端口输出,供后续的测量、控制或监测系统使用。
总的来说,电流互感器通过一次线圈将待测电流引入,并通过磁场感应原理将其转化为二次线圈内的感应电动势,最终输出成为可读取和处理的电流测量信号。
这种工作原理使得电流互
感器具有了测量电流非接触、高精度、低压降的特点,广泛应用于电力系统、工业设备等领域。
电流互感器原理及特性试验
电流互感器原理及特性试验一.电流互感器基本原理为保证电力系统的安全和经济运行,需要对电力系统及其中各电力设备的相关参数进行测量,以便对其进行必要的计量、监控和保护。
通常的测量和保护装置不能直接接到高电压大电流的电力回路上, 需将这些高电平的电力参数按比例变换成低电平的参数或信号,以供给测量仪器、仪表、继电保护和其他类似电器使用。
进行这种变换的变压器,通常称为互感器或仪用变压器。
互感器作为一种特殊的变压器,其特性与一般变压器有类似之处,但也有其特定的性能要求。
电流互感器(current transformer)简称CT,是将一次回路的大电流成正比的变换为二次小电流以供给测量仪器仪表继电保护及其他类似电器。
电流互感器的基本电路如图1-1 。
Z bIp 一次回路电流I s 二次回路电流Z ct 二次绕组阻抗Z b 负荷阻抗图1 电流互感器的基本电路电流互感器的一次绕组和二次绕组绕在同一闭合的铁心上,如果一次绕组带电而二次绕组开路,互感器成为一个带铁心的电抗器。
一次绕组中的电压降等于铁心磁通在该绕组中引起的电动势, 铁心磁通也在二次绕组中感应出相应的电动势。
如果二次绕组的回路通过一个阻抗形成闭合回路,则二次回路中将产生一个电流,此电流在铁心中产生磁通趋向于抵消一次绕组产生的磁通。
忽略误差时,二次回路电流与一次回路电流之比值等于一次绕组匝数与二次绕组匝数之比。
电流互感器的用途是实现被测电流值的变换,与普通变压器不同的是其输出容量很小。
一般不超过数十伏安。
一组电流互感器通常有多个铁心,即具有多个绕组,提供不同的用途。
中压的(如10KV级)某些类型互感器可能只有1~3个二次绕组。
而超高压的电流互感器的二次绕组可多达6~8个。
电流互感器的一次绕组通常串接于被测量的一次电路中,二次绕组通过导线或电缆串接仪表及继电保护等二次设备。
电流互感器二次电流在正常运行及规定的故障条件下,应与一次电流成正比,其比值和相位不超过规定值。
电流传感器的工作原理
电流传感器的工作原理引言概述:电流传感器是一种常见的电气测量设备,用于测量电路中的电流强度。
它广泛应用于工业控制、能源管理和电力系统等领域。
本文将详细介绍电流传感器的工作原理。
一、感应原理1.1 磁感应原理电流传感器利用磁感应原理测量电流。
当电流通过导线时,会在周围产生磁场。
电流传感器通过感应线圈或霍尔元件来检测这个磁场。
1.2 感应线圈感应线圈是电流传感器中常用的检测元件。
它由绕组和磁芯组成。
当电流通过被测导线时,感应线圈中的绕组将受到磁场的影响,从而产生感应电动势。
通过测量感应电动势的大小,可以确定电流的强度。
1.3 霍尔元件霍尔元件是另一种常用的电流传感器检测元件。
它利用霍尔效应来测量电流。
当电流通过霍尔元件时,霍尔元件中的霍尔传感器将受到磁场的作用,产生电压输出。
通过测量输出电压的大小,可以确定电流的强度。
二、工作原理2.1 线性关系电流传感器的工作原理基于电流和磁场之间的线性关系。
在一定范围内,电流和磁场的强度成正比。
因此,通过测量磁场的强度,可以间接测量电流的强度。
2.2 非接触式测量电流传感器的工作原理使其成为一种非接触式测量设备。
它不需要直接接触被测导线,减少了安装和维护的复杂性和风险。
2.3 高精度和低失真电流传感器的工作原理使其具有高精度和低失真的特点。
通过合理设计感应线圈或霍尔元件,可以实现对电流的准确测量,并减少测量过程中的失真。
三、应用领域3.1 工业控制电流传感器在工业控制中广泛应用。
它可以用于监测电机的运行状态、控制电力设备的输出、检测电路中的故障等。
3.2 能源管理电流传感器在能源管理中起到关键作用。
通过测量电路中的电流,可以准确计量能源的消耗,帮助企业进行能源管理和节能减排。
3.3 电力系统电流传感器在电力系统中扮演重要角色。
它用于监测输电线路中的电流、保护电力设备免受过载和短路等故障的影响,确保电力系统的安全稳定运行。
四、优势和局限性4.1 优势电流传感器具有非接触式测量、高精度、低失真等优势。
(完整版)电流互感器末屏的工作原理及试验方法
电流互感器末屏的工作原理及试验方法(故障攻关特色工作室)朔黄铁路原平分公司一、什么是电流互感器的电容屏及末屏?电容型电流互感器器身的一次绕组为“U”字型,导体根据额定电流的大小而有铝管、铜管等形式,一次绕组用绝缘纸缠绕,一般由数层绝缘纸绕制而成,绝缘纸之间有锡箔层,这些锡箔层即电容屏,其中,靠近一次绕组的屏称为“零屏”,最外层的电容屏称之为末屏,也称作“地屏”。
两两电容屏之间形成电容。
二、电流互感器内部为什么要设置电容屏?电容型电流互感器随着额定电压等级的提高,尤其是110KV及以上电压等级的电流互感器,其互感器缠绕一次绕组的绝缘纸厚度也越来越大,这就使绝缘内的电场强度越来越不均匀,而绝缘材料的耐电强度是有限的,电场强度不均匀后,某些局部绝缘所受的电场强度会超出本身耐电强度,绝缘整体的利用率就会降低,如果在绝缘纸中,设置一些电容屏,每两个电容屏与两屏之间的绝缘层就形成一个电容器,电容器的最内电极(零屏)与电流互感器一次绕组高压端连接,最外电极(末屏)与地连接时,整个电流互感器就构成一个高电压与地电位之间由多个电容器串联的电容器。
绝缘纸缠绕一次绕组为圆柱形同心圆结构,串联的每个电容器(相邻两个电容屏组成)都是一个圆柱形电容器,同等绝缘厚度下,电容屏设置越多,每个电容器的内极半径和外极半径之差就越小,内外电极表面的场强差别也就越小,若中间屏数量无限多,则各电容屏之间的场强差别趋近于零,但在实际的电流互感器中,电容屏数量是有限的,所以每个电容屏的场强也并不完全相等,但也起到了非常大的均匀场强的作用,这样就使内绝缘的各部分尽量场强分布一致,最大程度的利用绝缘材料。
三、电流互感器的末屏为什么一定要接地?电流互感器最外部的电容屏即末屏必须接地,如果末屏接地发生断裂或接触不良,末屏与地之间会形成一个电容,而这个电容远小于流互内部电容屏之间的电容,也就是说,首屏到末屏为数个容值一样的串联电容器,接地断裂或接触不良后,这个电路又串进一个容值很小的电容器。
正立式电流互感器(有末屏引出)测试方法研究
正立式电流互感器(有末屏引出)测试方法研究发表时间:2019-01-04T14:10:35.657Z 来源:《防护工程》2018年第28期作者:叶飞[导读] 根据《QGDW 1168-2013 输变电设备状态检修试验规程》,绝缘电阻、电容量和介质损耗因数是必做项目叶飞国网福建检修公司摘要:根据《QGDW 1168-2013 输变电设备状态检修试验规程》,绝缘电阻、电容量和介质损耗因数是必做项目。
绝缘电阻有两个测试项目,一次绕组的绝缘电阻和末屏对地的绝缘电阻,一次绕组的绝缘电阻包括一次绕组对二次绕组绝缘电阻和一次绕组对外壳绝缘电阻;末屏对地绝缘电阻的测量需采用屏蔽线。
电容量和介质损耗因数的测试,测试部位有一次对末屏和末屏对地,当末屏绝缘电阻不合格时,才需进行末屏对地的电容量和介质损耗因数的测试,有一次悬空、一次接地和一次屏蔽三种方法,一次屏蔽法是最准确的测试方法。
本文详细分析了两种型号的济南泛华介损仪一次屏蔽的原理。
关键词:绝缘电阻、电容量和介质损耗因数、一次悬空、一次接地、一次屏蔽1、引言电流互感器的结构较为简单,由相互绝缘的一次绕组、二次绕组、铁心以及构架、壳体、接线端子等组成。
其工作原理与变压器基本相同,一次绕组的匝数较少,直接串联于电源线路中,一次负荷电流通过一次绕组时,产生的交变磁通感应产生按比例减小的二次电流;二次绕组的匝数较多,与仪表、继电器、变送器等电流线圈的二次负荷串联形成闭合回路。
[1] 根据《QGDW 1168-2013 输变电设备状态检修试验规程》,绝缘电阻、电容量和介质损耗因数是必做项目,这两个项目是反映电流互感器是否受潮,能否安全运行的重要指标。
绝缘电阻有两个测试项目,一次绕组绝缘电阻和末屏对地的绝缘电阻,本文分析应该如何准确测量和现场测试时做法的可行性。
电容量和介质损耗因数的测试,测试部位有一次对末屏和末屏对地,一次对末屏的测试采用正接法。
当末屏绝缘电阻小于1000MΩ时,可通过测量末屏介质损耗因数作进一步判断,测量电压为2kV,末屏介损值通常要求小于0.015。
互感器原理、试验方法、运行维护及典型缺陷分析讲解
电流互感器的分类
按结构形式分
贯穿式:如单匝贯穿式电流互感器。 母线式:这种电流互感器适用于大电流的场合,例
如安装在发电机母线上,发动机母线就是互感器的 一次绕组。 套管式:安装在变压器或断路器套管的中间法兰处, 主绝缘是套管,一次绕组就是套管内的导电杆。这 种互感器的一次绕组也只有一匝。 正立式:二次绕组装在产品下部,产品重心较低, 是国内高压油浸式互感器的常用结构。 倒立式:二次绕组装在产品上部,重心较高,头部 较大,但一次绕组导体较短,瓷套较细,是近年来 比较新的结构。
15、保护电压互感器的高压熔断器,应按母线额定电压及 短路容量选择,熔丝电流不得随意加大。
16、电压互感器二次回路,除剩余电压绕组和另有专业规 定者外,应装设自动开关或熔断器。
17、电容式电压互感器系积木式结构,其电容分压器单元、 电磁装置,阻尼器等在出厂时,均通过调整误差后编号配 套,安装时不得相互调换。运行中如发生电容分压器等元 件损坏,更换后应注意重新调试互感器误差。互感器的阻 尼器必须接入,否则不得投入运行。
电流互感器的型号
产品型号均以汉语拼音字母表示,字母的代表 意义及排列顺序如下:
电流互感器的基本结构
LVB系列电流互感器为油浸纸绝缘、倒立式结 构(见图)。LVQB
一次绕组为贯穿式导电杆结构,导电杆截面大, 长度短,散热好。动、热稳定性能好,最大热 稳定电流值达63kA/3s(一次绕组串联时)。
4、 标准化、小型化作用:电力系统有不同的电压等 级,通过电压互感器一、二次绕组匝数的适当配置, 可以将不同的一次电压变换称较低的标准电压,一般 是100 V或 ,这样可以减小仪表和继电器的尺寸, 简化其规格,有利于仪表和继电器标准化小型化
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电流互感器末屏的工作原理及试验方法(故障攻关特色工作室)
朔黄铁路原平分公司
一、什么是电流互感器的电容屏及末屏?
电容型电流互感器器身的一次绕组为“U”字型,导体根据额定电流的大小而有铝管、铜管等形式,一次绕组用绝缘纸缠绕,一般由数层绝缘纸绕制而成,绝缘纸之间有锡箔层,这些锡箔层即电容屏,其中,靠近一次绕组的屏称为“零屏”,最外层的电容屏称之为末屏,也称作“地屏”。
两两电容屏之间形成电容。
二、电流互感器内部为什么要设置电容屏?
电容型电流互感器随着额定电压等级的提高,尤其是110KV及以上电压等级的电流互感器,其互感器缠绕一次绕组的绝缘纸厚度也越来越大,这就使绝缘内的电场强度越来越不均匀,而绝缘材料的耐电强度是有限的,电场强度不均匀后,某些局部绝缘所受的电场强度会超出本身耐电强度,绝缘整体的利用率就会降低,如果在绝缘纸中,设置一些电容屏,每两个电容屏与两屏之间的绝缘层就形成一个电容器,电容器的最内电极(零屏)与电流互感器一次绕组高压端连接,最外电极(末屏)与地连接时,整个电流互感器就构成一个高电压与地电位之间由多个电容器串联的电容器。
绝缘纸缠绕一次绕组为圆柱形同心圆结构,串联的每个电容器(相邻两个电容屏组成)都是一个圆柱形电容器,同等绝缘厚度下,电容屏设置越多,每个电容器的内极半径和外极半径之差就越小,内外电极表面的场强差别也就越小,若中间屏数量无限多,则各电容屏之间的场强差别趋近于零,但在实际的电流互感器中,电容屏数量是有限的,所以每个电容屏的场强也并不完全相等,但也起到了非常大
的均匀场强的作用,这样就使内绝缘的各部分尽量场强分布一致,最大程度的利用绝缘材料。
三、电流互感器的末屏为什么一定要接地?
电流互感器最外部的电容屏即末屏必须接地,如果末屏接地发生断裂或接触不良,末屏与地之间会形成一个电容,而这个电容远小于流互内部电容屏之间的电容,也就是说,首屏到末屏为数个容值一样的串联电容器,接地断裂或接触不良后,这个电路又串进一个容值很小的电容器。
容抗X=1/(2πfC),可见频率相同的情况下,电容器的容值与容抗成反比,所以在这个电路中,这个串进来的对地小电容容抗要远大于流互内部电容器。
而又由于串联电路,电流处处相等,所以电流互感器内各电容器的电量Q是相等的,Q=CU,所以对地小电容所分得的电压远远大于流互内部电容器。
这个末屏高电压会使电流互感器内部绝缘的电场强度分布极度不均匀,在电场力的作用下,内部绝缘的电荷会朝末屏聚集,场强集中后,周围固体介质会烧坏或炭化,也会使绝缘油分解出大量特征气体,从而使绝缘油色谱分析结果超标,也会对地发生火花放电。
如果末屏接地,电流互感器只存在电容屏组成的电容,则每个电容器电压均分,且末屏接地,导致末屏这个最外极的电容屏电势为零,而由于电容器两极板之间电荷一定是数量相等,极性相反,且只会从负极板经外部电路流向正极板放电,所以末屏这个极板的电荷并不会导入进地,即Q不变。
四、末屏介损试验的接线方法及原理
1、接线方法
目前修试工队介损测试仪器型号为保定斯瑞特SR9000型全自动抗干扰介损测试仪,测试方法如下:
1、电流互感器一次绕组短接,二次绕组短接接地。
2、末屏引出端接地连接甩开。
3、仪器HV高压屏蔽线(黄色电缆)接电流互感器一次绕组。
4、CX测试线(红色电缆)接末屏引出端。
4、仪器采用内接-正接(非接地试品)测试。
5、试验电压等级为2KV,测试正切值限值为2%(依据为GB50150-2006《电气装置安装工程电气设备交接试验标准》-9互感器-9.0.3第2条)。
2、接线原理
现场试验中,仪器接线的等效电路如下图所示。
其中: C主表示一次绕组对末屏的电容,C末表示末屏对地的电容,C杂表示一次绕组端部对外的杂散电容。
图中一次绕组短接接屏蔽线,由于屏蔽线和测试线的电压相同,所以图中C主相当于被短接; 另外,一次绕组对地的杂散电容产生的电流从屏蔽线流过而未通过电桥的测量电路,因此杂散电容被屏蔽掉。
所以一次绕组接屏蔽时所测的为真实的末屏对地介损和电容值,即:C X=C末,tanδX= tanδ末。