数学:11《分类加法计数原理与分步乘法计数原理》测试(新人教a版选修2—3)1.doc
高中数学人教A版选修2-3 基本计数原理例题和练习

基本计数原理(1)分类加法计数原理:做一件事情,完成它有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有m n种不同的方法.那么完成这件事情共有N=m1+m2 +……+m n种不同的方法。
(2)分步乘法计数原理:做一件事情,完成它需要n个步骤,做第一个步骤有m1种不同的方法,做第二个步骤有m2种不同的方法……做第n个步骤有m n种不同的方法,那么完成这件事情共有N= m1 ×m2 ×……× m n种不同的方法。
计数问题是数学中的重要研究对象,解决计数问题,其基本方法是列举法、列表法、树形图法等:其中级方法是分类加法原理和分步乘法原理:其高级方法是排列组合,基本计数原理是连接初级方法和高级方法的“桥梁”,是核心的方法,是解决计数问题的最重要的方法,而排列组合问题的方法:①特殊元素、特殊位置优先法。
②间接法。
③相邻问题捆绑法。
④不相邻(相间)问题插空法。
⑤有序问题组合法。
⑥选取问题先选后排法。
⑦至多至少问题间接法。
⑧相同元素分组可采用隔板法。
⑨分组问题等。
[例1]用0, 1, ..9十个数字,可以组成有重复数字的三位数的个数为()。
A.243B.252C.261D.279[解析]0,1, 2,…,9共能组成9×10×10=900 (个)三位数,其中无重复数字的三位数有9×9×8=648 (个),∴有重复数字的三位数有900-648=252 (个)。
故选B。
[注意]三位数一定要保证最高位不为0.[例2] 6名同学排成一排照相,要求同学甲既不站在最左边又不站在最右边,共有()种不同站法。
[解析]法一: (位置分析法)先从其他5人中安排2人站在最左边和最右边,再安排余下4人的位置,分为两步:第1步,从除甲外的5人中选2人站在最左边和最右边,有25A 种站法:第2步,余下4人(含甲)站在剩下的4个位置上,有44A 种站法。
新人教A版选修(2-3)1.1《分类加法计数原理与分步乘法计数原理》word单元测试

《§1.1分类加法计数原理与分步乘法计数原理》跟踪练习姓名:__________________ 得分:__________ 一、选择题(将答案填入右方表格内每小题5分共40分)1.某乒乓球队里有男队员6人,女队员5人,从中选取男、女队员各一人组成混合双打队,不同的组队总数有( ) A .11 B .30 C .56D .652.现有6名同学去听同时进行的5个课外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是( ) A .56B .65C.5×6×5×4×3×22D .6×5×4×3×23.某学生在书店发现四本好书,决定至少买其中的一本,则购买方式有( ) A .4种 B .6种 C .15种D .12种4.某地政府召集5家企业的负责人开会,其中甲企业有2人到会,其余4家企业各有1人到会,会上有3人发言,则这3人来自3家不同企业的可能情况的种数为( ) A .14 B .16 C .20D .485.在一次运动会上有四项比赛的冠军在甲、乙、丙三人中产生,那么不同的夺冠情况共有( )A.24B.34C.43D.46.甲、乙、丙三个电台,分别有3、4、4人,新年中彼此祝贺,每两个电台的人都彼此一一通话,那么他们一共要通话( ) A .40次 B .48次 C .36次 D .24次。
7.编号为A ,B ,C ,D ,E 的五个小球放在如图所示五个盒子中。
要求每个盒子只能放一个小球,且A 不能放1,2号,B 必须放在与A 放法有( )种A.42B.36C.32D.308.一只青蛙在三角形ABC 的三个顶点之间跳动,若此青蛙从A 点起跳,跳4次后仍回到A 点,则此青蛙不同的跳法的种数是( ) A .4B .5C .6D .7二、填空题(每小题5分,共20分)9.某班元旦晚会原定的5个节目已排成节目单,开演前又增加了2个新节目,如果将这两个节目插入原节目单中,那么不同的插法的种数为________.10.电子计算机的输入纸带每排有8个穿孔位置,每个穿孔位置可穿孔或不穿孔,则每排可产生_________种不同的信息.11.从集合{1,2,3}和{1,4,5,6}中各取1个元素作为点的坐标,则在直角坐标系中能确定不同点的个数________个.12.三边长均为整数,且最大边长为11的三角形有________个.三、解答题(每小题8分,共40分)13.某校高二共有三个班,其各班人数如下表:(1)(2)从1班、2班男生中或从3班女生中选一名学生任学生会生活部部长,有多少种不同的选法?14.将下图中A,B,C,D,E各区域染色,要求每块区域只染一种颜色,相邻区域颜色不同,现有5种颜色可供选择,共有几种染色方案?15.如图,电路中共有7个电阻与一个电灯A ,若灯A 不亮,分析因电阻断路的可能性共有多少种情况.AB C E D16. 如图是某汽车维修公司的维修点分布图,公司在年初分配给A、B、C、D四个维修点的某种配件各50件.在使用前发现需将A、B、C、D四个维修点的这批配件分别调整为40、45、54、61件,但调整只能在相邻维修点之间进行,那么要完成上述调整,最少的调动件次(n个配件从一个维修点调整到相邻维修点的调动件次为n)为多少次?17.已知集合{},,,,,,,是平面上的点,a b M=---M P a b321012(),.∈(1)(),可表示平面上多少个不同的点?P a b(2)(),可表示多少个坐标轴上的点?P a b附:参考答案一、选择题1—4,BACB,5—8,CADC二、填空题9、42,10、256,11、23,12、36三、解答题13、解:(1)从三个班中任选一名学生,可分三类:第1类,从1班任选一名学生,有50种不同选法;第2类,从2班任选一名学生,有60种不同选法;第3类,从3班任选一名学生,有55种不同选法.由分类加法计数原理知,不同的选法共有N=50+60+55=165(种)(2)由题设知共有三类:第1类,从1班男生中任选一名学生,有30种不同选法;第2类,从2班男生中任选一名学生,有30种不同选法;第3类,从3班女生中任选一名学生,有20种不同选法;15、解:每个电阻都有断路与通路两种状态,图中从上到下的三条支线路,分别记为支线 a、b、c,支线 a,b 中至少有一个电阻断路情况都有 22 -1=3 种,支线 c 中至少有一个电阻断路的情况有 23―1=7 种,每条支线至少有一个电阻断路,灯 A 就不亮,因此灯 A 不亮的情况共有3×3×7=63 种情况16、解:依题意知,A点余10件,B点余5件,C点缺4件,D点缺11件.而调整只能在相邻维修点之间进行,故应从A调整10件到D,从B调整5件到C,从C调整1件到D,这就能使得调动件次最少,最少的调动件次为:10+5+1=16次.17、解:(1)完成这件事分为两个步骤:a的取法有6种,b的取法也有6种,∴P点个数为N=6×6=36(个);(2)根据分类加法计数原理,分为三类:①x轴上(不含原点)有5个点;②y轴上(不含原点)有5个点;③既在x轴,又在y轴上的点,即原点也适合,∴共有N=5+5+1=11(个).。
人教版A版高中数学选修2-3课后习题解答

第一章 计数原理1.1分类加法计数原理与分步乘法计数原理 练习(P6) 1、(1)要完成的“一件事情”是“选出1人完成工作”,不同的选法种数是5+4=9;(2)要完成的“一件事情”是“从A 村经B 村到C 村去”,不同路线条数是3×2=6. 2、(1)要完成的“一件事情”是“选出1人参加活动”,不同的选法种数是3+5+4=12;(2)要完成的“一件事情”是“从3个年级的学生中各选1人参加活动”,不同选法种数是3×5×4=60.3、因为要确定的是这名同学的专业选择,并不要考虑学校的差异, 所以应当是6+4-1=9(种)可能的专业选择. 练习(P10)1、要完成的“一件事情”是“得到展开式的一项”.由于每一项都是i j k a b c 的形式,所以可以分三步完成:第一步,取i a ,有3种方法;第二步,取j b ,有3种方法;第三步,取k c ,有5种方法. 根据分步乘法计数原理,展开式共有3×3×5=45(项).2、要完成的“一件事情”是“确定一个电话号码的后四位”. 分四步完成,每一步都是从0~9这10个数字中取一个,共有10×10×10×10=10000(个).3、要完成的“一件事情”是“从5名同学中选出正、副组长各1名”. 第一步选正组长,有5种方法;第二步选副组长,有4种方法. 共有选法5×4=20(种).4、要完成的“一件事情”是“从6个门中的一个进入并从另一个门出去”. 分两步完成:先从6个门中选一个进入,再从其余5个门中选一个出去. 共有进出方法6×5=30(种). 习题1.1 A 组(P12) 1、“一件事情”是“买一台某型号的电视机”. 不同的选法有4+7=11(种). 2、“一件事情”是“从甲地经乙地或经丙地到丁地去”. 所以是“先分类,后分步”,不同的路线共有2×3+4×2=14(条). 3、对于第一问,“一件事情”是“构成一个分数”. 由于1,5,9,13是奇数,4,8,12,16是偶数,所以1,5,9,13中任意一个为分子,都可以与4,8,12,16中的任意一个构成分数. 因此可以分两步来构成分数:第一步,选分子,有4种选法;第二步,选分母,也有4种选法. 共有不同的分数4×4=16(个). 对于第二问,“一件事情”是“构成一个真分数”. 分四类:分子为1时,分母可以从4,8,12,16中任选一个,有4个;分子为5时,分母可以从8,12,16中选一个,有3个;分子为9时,分母从12,16中选一个,有2个;分子为13时,分母只能选16,有1个. 所以共有真分数4+3+2+1=10(个). 4、“一件事情”是“接通线路”. 根据电路的有关知识,容易得到不同的接通线路有3+1+2×2=8(条).5、(1)“一件事情”是“用坐标确定一个点”. 由于横、纵坐标可以相同,因此可以分两步完成:第一步,从A 中选横坐标,有6个选择;第二步,从A 中选纵坐标,也有6个选择. 所以共有坐标6×6=36(个). (2)“一件事情”是“确定一条直线的方程”. 由于斜率不同截距不同、斜率不同截距相同、斜率相同截距不同的直线都是互不相同的,因此可分两步完成:第一步,取斜率,有4种取法;第二步,取截距,有4种取法. 所以共有直线4×4=16(条).习题1.1 B 组(P13) 1、“一件事情”是“组成一个四位数字号码”. 由于数字可以重复,最后一个只能在0~5这六个数字中拨,所以有号码10×10×10×6=6000(个). 2、(1)“一件事情”是“4名学生分别参加3个运动队中的一个,每人限报一个,可以报同一个运动队”. 应该是人选运动队,所以不同报法种数是43.(2)“一件事情”是“3个班分别从5个风景点中选择一处游览”. 应该是人选风景点,故不同的选法种数是35. 1.2排列与组合 练习(P20)1、(1),,,,,,,,,,,ab ac ad ba bc bd ca cb cd da db dc ;(2),,,,,,,,,,,,,,,,,,,ab ac ad ae ba bc bd be ca cb cd ce da db dc de ea eb ec ed .2、(1)4151514131232760A =⨯⨯⨯=; (2)777!5040A ==; (3)4288287652871568A A -=⨯⨯⨯-⨯⨯=; (4)87121277121255A A A A ==.3、4、(1)略. (2)876777787677778788A A A A A A A -+=-+=.5、3560A =(种). 6、3424A =(种). 练习(P25) 1、(1)甲、乙, 甲、丙, 甲、丁, 乙、丙, 乙、丁, 丙、丁;(2)2、ABC ∆,ABD ∆,ACD ∆,BCD ∆.3、3620C =(种). 4、246C =(个). 5、(1)26651512C ⨯==⨯; (2)3887656123C ⨯⨯==⨯⨯;(3)3276351520C C -=-=; (4)328532356210148C C -=⨯-⨯=. 6、()1111(1)!!11(1)![(1)(1)]!!!m m n n m m n n C C n n m n m m n m +++++=⋅==++++-+- 习题1.2 A 组(P27) 1、(1)325454560412348A A +=⨯+⨯=; (2)12344444412242464A A A A +++=+++=.2、(1)315455C =; (2)19732002001313400C C ==; (3)346827C C ÷=; (4)22211(1)(1)(1)22n n n n nn nn n n n CCCC n -++--⋅=⋅=+⋅=.3、(1)12111(1)n n n n n n n n n n n n A A n A A nA n A +-+--=+-==;(2)(1)!!(1)!!(1)!!(1)!!!n n n k n n k n k k k k ++-⋅-+-==-. 4、由于4列火车各不相同,所以停放的方法与顺序有关,有481680A =(种)不同的停法.5、4424A =. 6、由于书架是单层的,所以问题相当于20个元素的全排列,有2020A 种不同的排法.7、可以分三步完成:第一步,安排4个音乐节目,共有44A 种排法;第二步,安排舞蹈节目,共有33A 种排法;第三步,安排曲艺节目,共有22A 种排法. 所以不同的排法有432432288A A A ⋅⋅=(种). 8、由于n 个不同元素的全排列共有!n 个,而!n n ≥,所以由n 个不同的数值可以以不同的顺序形成其余的每一行,并且任意两行的顺序都不同. 为使每一行都不重复,m 可以取的最大值是!n . 9、(1)由于圆上的任意3点不共线,圆的弦的端点没有顺序,所以共可以画21045C =(条)不同的弦;(2)由于三角形的顶点没有顺序,所以可以画的圆内接三角形有310120C =(个).10、(1)凸五边形有5个顶点,任意2个顶点的连线段中,除凸五边形的边外都是对角线,所以共有对角线2555C -=(条);(2)同(1)的理由,可得对角线为2(3) 2n n nC n --=(条).说明:本题采用间接法更方便.11、由于四张人民币的面值都不相同,组成的面值与顺序无关,所以可以分为四类面值,分别由1张、2张、3张、4张人民币组成,共有不同的面值1234 444415C C C C+++=(种).12、(1)由“三个不共线的点确定一个平面”,所确定的平面与点的顺序无关,所以共可确定的平面数是3856C=;(2)由于四面体由四个顶点唯一确定,而与四个点的顺序无关,所以共可确定的四面体个数是410210C=.13、(1)由于选出的人没有地位差异,所以是组合问题,不同的方法数是3510C=. (2)由于礼物互不相同,与分送的顺序有关系,所以是排列问题,不同方法数是3560A=;(3)由于5个人中每个人都有3中选择,而且选择的时间对别人没有影响,所以是一个“可重复排列”问题,不同方法数是53243=;(4)由于只要取出元素,而不必考虑顺序,所以可以分两步取元素:第一步,从集合A中取,有m种取法;第二步,从集合B中取,有n种取法. 所以共有取法mn 种.说明:第(3)题是“可重复排列”问题,但可以用分步乘法计数原理解决.14、由于只要选出要做的题目即可,所以是组合问题,另外,可以分三步分别从第1,2,3题中选题,不同的选法种数有32143224C C C⋅⋅=.15、由于选出的人的地位没有差异,所以是组合问题.(1)225460C C⋅=;(2)其余2人可以从剩下的7人中任意选择,所以共有2721C=(种)选法;(3)用间接法,在9人选4人的选法中,把男甲和女乙都不在内的去掉,就得到符合条件的选法数为449791C C-=;如果采用直接法,则可分为3类:只含男甲;只含女乙;同时含男甲女乙,得到符合条件的方法数为33277791C C C++=;(4)用间接法,在9人选4人的选法中,把只有男生和只有女生的情况排除掉,得到选法总数为444954120C C C--=.也可以用直接法,分别按照含男生1,2,3人分类,得到符合条件的选法数为132231 545454120C C C C C C++=.16、按照去的人数分类,去的人数分别为1,2,3,4,5,6,而去的人大家没有地位差异,所以不同的去法有12345666666663C C C C C C +++++=(种). 17、(1)31981274196C =; (2)142198124234110C C ⋅=; (3)51982410141734C =; (4)解法1:3141982198125508306C C C =⋅=. 解法2:55200198125508306C C -=. 说明:解答本题时,要注意区分“恰有”“至少有”等词.习题1.2 B 组(P28)1、容易知道,在737C 注彩票中可以有一个一等奖.在解决第2问时,可分别计算37选6及37选8中的一等奖的中奖机会,它们分别是637112324784C =和8371138608020C =. 要将一等奖的机会提高到16000000以上且不超过1500000,即375000006000000nC ≤<, 用计算机可得,6n =,或31n =.所以可在37个数中取6个或31个.2、可以按照I ,II ,III ,IV 的顺序分别着色:分别有5,4,3,3种方法,所以着色种数有5×4×3×3=180(种).3、“先取元素后排列”,分三步完成:第一步,从1,3,5,7,9中取3个数,有35C 种取法;第二步,从2,4,6,8中取2个数,有24C 种取法;第三步,将取出的5个数全排列,有55A 种排法. 共有符合条件的五位数3255457200C C A ⋅⋅=(个). 4、由于甲和乙都没有得冠军,所以冠军是其余3人中的一个,有13A 种可能;乙不是最差的,所以是第2,3,4名中的一种有13A 种可能;上述位置确定后,甲连同其他2人可任意排列,有33A 种排法. 所以名次排列的可能情况的种数是11333354A A A ⋅⋅=.5、等式两边都是两个数相乘,可以想到分步乘法计数原理,于是可得如下分步取组合的方法.在n 个人中选择m 个人搞卫生工作,其中k 个人擦窗,m k -个人拖地,共有多少种不同的选取人员的方法?解法1:利用分步计数原理,先从n 个人中选m 个人,然后从选出的m 个人中再选出k 个人擦窗,剩余的人拖地,这样有m knm C C 种不同的选取人员的方法; 解法2:直接从n 个人中选k 个人擦窗,然后在剩下的n k -个人中选m k -个人拖地,这样,由分步计数原理得,共有k m knn k C C --种不同的人员选择方法. 所以,k m k m knn k n m C C C C --=成立. 说明:经常引导学生从一个排列组合的运算结果或等式出发,构造一个实际问题加以解释,有助于学生对问题的深入理解,检查结果,纠正错误. 1.3二项式定理 练习(P31)1、7652433425677213535217p p q p q p q p q p q pq q +++++++.2、2424236(2)(3)2160T C a b a b =⋅=.3、231(1)(2n rr r n rrr r nn r T C C x --+-=⋅=.4、D . 理由是5105555511010(1)T C x C x -+=-=-. 练习(P35)1、(1)当n 是偶数时,最大值2nn C ;当n 是奇数时,最大值12n nC-.(2)1311111111*********C C C +++=⋅=. (3)12.2、∵0122kn n nn n n n C C C C C ++++++=, 0213n n n n C C C C ++=++∴012knn n n n nC C C C C ++++++0213()()n n n n C C C C =+++++022()2n n n C C =++=∴021222nn n nnnC C C -+++==. 3、略.习题1.3 A 组(P36)1、(1)011222(1)(1)(1)(1)n n n r n rr nn n n n n n C P C P P C P P C P P C P ---+-+-++-++-;(2)0122222nn n nnn n n n C C C C ++++. 2、(1)9965432(9368412612684a a a a a b a a a b =+++2369a b ()27311357752222222172135701682241281283282x x x x x x x x ----=-+-+-+-.3、(1)552(1(122010x x +=++; (2)11114412222(23)(23)192432x x x x x x ---+--=+.4、(1)前4项分别是1,30x -,2420x ,33640x -; (2)91482099520T a b =-; (3)7924T =;(4)展开式的中间两项分别为8T ,9T ,其中78711815((6435T C x y =-=-87811915((6435T C x y =-=5、(1)含51x的项是第6项,它的系数是5510163()28C -=-; (2)常数项是第6项,5105561012()2522T C -=⋅-=-.6、(1)2221221()(1)r n r r r r n rr n n T C x C xx --+=-=- 6、(1)2221221()(1)r n r r r r n rr n n T C x C xx--+=-=- 由220n r -=得r n =,即21()n x x-的展开式中常数项是12(1)n r n nT C +=-(2)!(1)!!nn n n =- 12345(21)2(1)!!nn nn n ⋅⋅⋅⋅⋅⋅-⋅=-…[135(21)][2462](1)!!n n n n n ⋅⋅⋅⋅-⋅⋅⋅⋅=-……[135(21)]2!(1)!!n nn n n n ⋅⋅⋅⋅-⋅⋅=-…135(21)(2)!nn n ⋅⋅⋅⋅-=-…(2)2(1)n x +的展开式共有21n +项,所以中间一项是12135(21)(2)!n nn n n n T C x x n +⋅⋅⋅⋅-==…7、略.8、展开式的第4项与第8项的二项式系数分别是3n C 与7n C ,由37n n n C C -=,得37n =-,即10n =.所以,这两个二项式系数分别是310C 与710C ,即120.习题1.3 B 组(P37)1、(1)∵1122221(1)111n n n n n n n n n n n n C n C n C n C n ----+-=++++++- 1122222n n n n nn n n C n C n C n n ---=+++++2213242(1)n n n n nn n n n C n C n C ----=+++++∴(1)1n n +-能被2n 整除; (2)∵1010991(1001)1-=--1019288291010101010010010010010011C C C C =-⋅+⋅++⋅-⋅+- 1019288210101010010010010010100C C C =-⋅+⋅++⋅-⨯ 1711521381010101000(101010101)C C C =-⋅+⋅++⋅-∴10991-能被1000整除.2、由0112211(21)222(1)2(1)n n n n n n n nnn n n n C C C C C -----=⋅-⋅+⋅++-⋅⋅+-,得112211222(1)2(1)1n n n n n n nn n C C C -----⋅+⋅++-⋅⋅+-=.第一章 复习参考题A 组(P40)1、(1)2n ;说明:这里的“一件事情”是“得到展开式中的一项”. 由于项的形式是i j a b ,而,i j 都有n 种取法. (2)3276525C C ⋅=;(3)1545480A A ⋅=,或2454480A A ⋅=;说明:第一种方法是先考虑有限制的这名歌手的出场位置,第二种方法是先考虑有限制的两个位置.(4)45C ;说明:因为足球票无座,所以与顺序无关,是组合问题. (5)53;说明:对于每一名同学来说,有3种讲座选择,而且允许5名同学听同一个讲座,因此是一个“有重复排列”问题,可以用分步乘法原理解答.(6)54;说明:对角线的条数等于连接正十二边形中任意两个顶点的线段的条数212C ,减去其中的正十二边形的边12条:21212111212542C ⨯-=-=.(7)第1n +项.说明:展开式共有21n +项,且各系数与相应的二项式系数相同.2、(1)1234566666661956A A A A A A +++++=;说明:只要数字是1,2,3,4,5,6中的,而且数字是不重复的一位数、二位数、三位数、四位数、五位数和六位数都符合要求.(2)552240A =.说明:只有首位数是6和5的六位数才符合要求. 3、(1)3856C =; (2)1234555530C C C C +++=.4、468898C C +=. 说明:所请的人的地位没有差异,所以是组合问题. 按照“其中两位同学是否都请”为标准分为两类.5、(1)2(1)2n n n C -=; 说明:任意两条直线都有交点,而且交点各不相同. (2)2(1)2n n n C -=. 说明:任意两个平面都有一条交线,而且交线互不相同.6、(1)59764446024C =; (2)23397442320C C ⋅=; (3)2332397397446976C C C C ⋅+⋅=.7、34533453103680A A A A ⋅⋅⋅=.说明:由于不同类型的书不能分开,所以可以将它们看成一个整体,相当于是3个元素的全排列. 但同类书之间可以交换顺序,所以可以分步对它们进行全排列.8、(1)226x -;说明:第三项是含2x 的项,其系数是22112244553(23)(2)26C C C C ⋅+⋅-⨯+--.(2)18118(9)(rr r r T C x -+=,由题意有1802rr --= 解得12r =,1318564T =;(3)由题意得98102n n n C C C =+,即2!!!9!(9)!8!(8)!10!(10)!n n n n n n ⋅=+---化简得2373220n n -+=,解得14n =,23n =;(4)解法1:设1r T +'是10(1)x -展开式的第1r +项,由题意知,所求展开式中4x 的系数为41T +',31T +'与21T +'的系数之和. 444110()T C x +'=-,333110()T C x +'=-,222110()T C x +'=-,因此,4x 的系数432101010135C C C =-+=. 解法2:原式39(1)(1)x x =-- 3223344999(1)(19)x x C x C x C x =--+-++因此,4x 的系数499135C =+=.9、5555559(561)9+=-+5515454555556565619C C =-⋅++⋅-+551545455555656568C C =-⋅++⋅+由于551545455555656568C C -⋅++⋅+中各项都能被8整除,因此55559+也能被8整除.第一章 复习参考题B 组(P41)1、(1)121121n n n C C -++==,即1(1)212n n +⋅=,解得6n =; (2)1144244224192A A A ⋅⋅=⨯⨯=;说明:先排有特殊要求的,再排其他的. (3)433333⨯⨯⨯=,34444⨯⨯=;说明:根据映射定义,只要集合A 中任意一个元素在集合B可以相同,所以是“有重复排列”问题.(4)2426106500000A ⨯=; (5)481258C -=; 说明:在从正方体的8个顶点中任取4个的所有种数48C 中, 排除四点共面的12种情况,即正方体表面上的6种四点共面的情况,以及如右图中ABC D ''这样的四点共面的其他 6种情况,因此三棱锥的个数为481258C -=(6)1或1-.说明:令1x =,这时(12)n x -的值就是展开式中各项系数的和,其值是1,(12)(1)1n n n n -⎧-=-=⎨⎩是奇数,是偶数2、(1)先从1,3,5中选1个数放在末位,有13A 种情况;再从除0以外的4个数中选1个数放在首位,有14A 种情况;然后将剩余的数进行全排列,有44A 种情况. 所以能组成的六位奇数个数为114344288A A A ⋅⋅=. (2)解法1:由0,1,2,3,4,5组成的所有没有重复数字的正整数的个数是1555A A ⋅,其中不大于201345的正整数的个数,当首位数字是2时,只有201345这1个;当首位数字是1时,有55A 个. 因此,所求的正整数的个数是155555(1)479A A A ⋅-+=.解法2:由0,1,2,3,4,5组成的没有重复数字的正整数中,大于201345的数分为以下几种情况:前4位数字为2013,只有201354,个数为1;同理,前3位数字为201,个数为1222A A ⋅;前2位数字为20,个数为1333A A ⋅;首位数字为2,个数为1444A A ⋅;首位数字为3,4,5中的一个,个数为1535A A ⋅;根据分类计数原理,所求的正整数的个数是12131415223344351479A A A A A A A A +⋅+⋅+⋅+⋅=.3、(1)分别从两组平行线中各取两条平行线,便可构成一个平行四边形,所以可以构成的平行四边形个数为221(1)(1)4m n C mn m n ⋅=--; (2)分别从三组平行平面中各取两个平行平面,便可构成一个平行六面体,所以可以构成的平行六面体个数为2221(1)(1)(1)8m n l C C C mnl m n l ⋅⋅=---. 4、(1)先排不能放在最后的那道工序,有14A 种排法;再排其余的4道工序,有44A 种排法. 根据分步乘法计数原理,排列加工顺序的方法共有144496A A ⋅=(种);(2)先排不能放在最前和最后的那两道工序,有23A 种排法;再排其余的3道工序,有33A 种排法,根据分步乘法计数原理,排列加工顺序的方法共有233336A A ⋅=(种).5、解法1:由等比数列求和公式得33342(1)(1)(1)(1)(1)n n x x x x x x+++-+++++++=, 上述等式右边分子的两个二项式中含2x 项的系数分别是33n C +,33C ,因此它们的差23333(611)6n n n n C C +++-=,就是所求展开式中含2x 项的系数. 解法2:原式中含2x 项的系数分别是23C ,24C ,…,22n C +,因此它们的和就是所求展开式中含2x 项的系数. 与复习参考题B 组第2题同理,可得22223334233(611)6n n n n n C C C C C +++++++=-= 第二章 随机变量及其分布2.1离散型随机变量及其分布列练习(P45)1、(1)能用离散型随机变量表示. 可能的取值为2,3,4,5,6,7,8,9,10,11,12.(2)能用离散型随机变量表示. 可能的取值为0,1,2,3,4,5. (3)不能用离散型随机变量表示.说明:本题的目的是检验学生是否理解离散型随机变量的含义. 在(3)中,实际值与规定值之差可能的取值是在0附近的实数,既不是有限个值,也不是可数个值.2、可以举的例子很多,这里给出几个例子:例1 某公共汽车站一分钟内等车的人数;例2 某城市一年内下雨的天数;例3 一位跳水运动员在比赛时所得的分数; 例4 某人的手机在1天内接收到电话的次数.说明:本题希望学生能观察生活中的随机现象,知道哪些量是随机变量,哪些随机变量又是离散型随机变量.练习(P49)1说明:这是一个两点分布的例子,投中看作试验成功,没投中看作试验失败. 通过这样的例子可以使学生理解两点分布是一个很常用的概率模型,实际中大量存在. 虽然离散型随机变量的分布列可以用解析式的形式表示,但当分布列中的各个概率是以数值的形式给出时,通常用列表的方式表示分布列更为方便. 2、抛掷一枚质地均匀的硬币两次,其全部可能的结果为{正正,正反,反正,反反}. 正面向上次数X 是一个离散型随机变量,1(0)({})0.254P X P ====反反 2(1)({}{})0.54P X P ====正反反正 1(2)({})0.25P X P ====正正 因此X 的分布列为说明:这个离散型随机变量虽然简单,但却是帮助学生理解随机变量含义的一个很好的例子. 试验的全部可能的结果为{正正,正反,反正,反反},随机量X 的取值范围为{0,1,2},对应关系为正正→2 正反→1 反正→1 反反→0在这个例子中,对应于1的试验结果有两个,即“正反”和“反正”,因此用随机变量X 不能表示随机事件{正反}. 这说明对于一个具体的随机变量而言,有时它不能表示所有的随机事件.可以通过让学生们分析下面的推理过程存在的问题,进一步巩固古典概型的知识. 如果把X 所有取值看成是全体基本事件,即{0,1,2}Ω=.根据古典概型计算概率的公式有 1(1)({1})3P X P ===. 这与解答的结果相矛盾. 原因是这里的概率模型不是古典概型,因此上面式中的最后一个等号不成立. 详细解释下:虽然Ω中只含有3个基本事件,但是出现这3个基本事件不是等可能的,因此不能用古典概型计算概率的公式来计算事件发生的概率.3、设抽出的5张牌中包含A 牌的张数为X ,则X 服从超几何分布,其分布列为 5448552()i i C C P X i C -==,i =0,1,2,3,4. 因此抽出的5张牌中至少3张A 的概率为(3)(3)(4)0.002P X P X P X ≥==+=≈.说明:从52张牌任意取出5张,这5张牌中包含A 的个数X 是一个离散型随机变量. 把52张牌看成是52件产品,把牌A 看成次品,则X 就成为从含有四件次品的52件产品中任意抽取5件中的次品数,因此X 服从超几何分布.本题的目的是让学生熟悉超几何分布模型,体会超几何分布在不同问题背景下的表现形式. 当让本题也可以用古典概型去解决,但不如直接用超几何分布简单. 另外,在解题中分布列是用解析式表达的,优点是书写简单,一目了然.4、两点分布的例子:掷一枚质地均匀的硬币出现正面的次数X 服从两点分布;射击一次命中目标的次数服从两点分布.超几何分布的例子:假设某鱼池中仅有鲤鱼和鲑鱼两种鱼,其中鲤鱼200条,鲑鱼40条,从鱼池中任意取出5条鱼,这5条鱼包含鲑鱼的条数X 服从超几何分布.说明:通过让学生举例子的方式,帮助学生理解这两个概率模型.习题2.1 A 组(P49)1、(1)能用离散型随机变量表示.设能遇到的红灯个数为X ,它可能的取值为0,1,2,3,4,5.事件{X =0}表示5个路口遇到的都不是红灯;事件{X =1}表示5个路口其中有1个路口遇到红灯,其他4个路口都不是红灯;事件{X =2}表示5个路口其中有2个路口遇到红灯,其他3个路口都不是红灯;事件{X =3}表示5个路口其中有3个路口遇到红灯,剩下2个路口都不是红灯;事件{X =4}表示5个路口其中有4个路口遇到红灯,另外1个路口都不是红灯;事件{X =5}表示5个路口全部都遇到红灯.(2)能用离散型随机变量表示.定义 12345X ⎧⎪⎪⎪=⎨⎪⎪⎪⎩,成绩不及格,成绩及格,成绩中,成绩良,成绩优则X 是一个离散型随机变量,可能的取值为1,2,3,4,5.事件{X =1}表示该同学取得的成绩为不及格;事件{X =2}表示该同学取得的成绩为及格;事件{X =3}表示该同学取得的成绩为中;事件{X =4}表示该同学取得的成绩为良;事件{X =5}表示该同学取得的成绩为优.说明:本题是考查学生是否理解离散型随机变量的含义. 在(2)中,需要学生建立一个对应关系,因为随机变量的取值一定是实数,但这个对应关系不是唯一的,只要是从五个等级到实数的意义映射即可.2、某同学跑1 km 所用时间X 不是一个离散型随机变量. 如果我们只关心该同学是否能够取得优秀成绩,可以定义如下的随机变量:01km 4min 11km 4minY >⎧=⎨≤⎩,跑所用的时间,跑所用的时间 它是离散型随机变量,且仅取两个值:0或1.事件{1}Y =表示该同学跑1 km 所用时间小于等于4 min ,能够取得优秀成绩;事件{0}Y =表示该同学跑1 km 所用时间大于4 min ,不能够取得优秀成绩.说明:考查学生在一个随机现象中能否根据关心的问题不同定义不同的随机变量,以简化问题的解答. 可以与教科书中电灯泡的寿命的例子对比,基本思想是一致的.3、一般不能. 比如掷一枚质地均匀的硬币两次,用随机变量X 表示出现正面的次数,则不能用随机变量X 表示随机事件{第1次出现正面且第2次出现反面}和{第1次出现反面且第2次出现正面}. 因为{X =1}={第1次出现正面且第2次出现反面}∪{第1次出现反面且第2次出现正面},所以这两个事件不能分别用随机变量X 表示.说明:一个随机变量是与一个事件域相对应的,一个事件域一般是由部分事件组成,但要满足一定的条件. 对离散型随机变量,如果它取某个值是由几个随机变量组成,则这几个随机事件就不能用随机变量表示,比如从一批产品中依次取出几个产品,用X 表示取出的产品中次品的个数,这时我们不能用X 表示随机事件{第i 次取出次品,其他均为合格品}.4、不正确,因为取所有值的概率和不等于1.说明:考查学生对分布列的两个条件的理解,每个概率不小于0,其和等于1,即 (1)0i p ≥,1,2,,i n =; (2)11ni i p ==∑.5、射击成绩优秀可以用事件{X ≥8}表示,因此射击优秀的概率为P {X ≥8}=(8)(9)(10)0.280.290.220.79P X P X P X =+=+==++=说明:本题知识点是用随机变量表示随机事件,并通过分布列计算随机事件的概率.6、用X 表示该班被选中的人数,则X 服从超几何分布,其分布列为104261030()i i C C P X i C -==, i =0,1,2,3,4. 该班恰有2名同学被选到的概率为 2842610304!26!1902!2!8!18!(2)0.31230!60910!20!C C P X C ⨯⨯⨯====≈⨯. 说明:本题与49页练习的第3题类似,希望学生在不同背景下能看出超几何分布模型.习题2.1 B 组(P49)1、(1)设随机抽出的3篇课文中该同学能背诵的 篇数为X ,则X 是一个离散型随机变量,它可能的取值为0,1,2,3,且X 服从超几何分布,分布列为即(2112(2)(2)(3)0.667263P X P X P X ≥==+==+==. 说明:本题是为了让学生熟悉超几何分布模型,并能用该模型解决实际问题.2、用X 表示所购买彩票上与选出的7个基本号码相同的号码的个数,则X 服从超几何分布,其分布列为 7729736()i i C C P X i C -==, i =0,1,2,3,4,5,6,7. 至少中三等奖的概率为52617072972972977736363697(5)0.00192752C C C C C C P X C C C ≥=++=≈. 说明:与上题类似同样是用超几何分布解决实际问题,从此题的结算结果可以看出至少中三等奖的概率近似为1/1000.2.2二项分布及其应用练习(P54)1、设第1次抽到A 的事件为B ,第2次抽到A 的事件为C ,则第1次和第2次都抽到A 的事件为BC .解法1:在第1次抽到A 的条件下,扑克牌中仅剩下51张牌,其中有3张A ,所以在第1次抽到A 的条件下第2次也抽到A 的概率为3()51P C B =. 解法2:在第1次抽到A 的条件下第2次也抽到A 的概率为()433()()45151n BC P C B n B ⨯===⨯. 解法3:在第1次抽到A 的条件下第2次也抽到A 的概率为43()35251()451()515251P BC P C B P B ⨯⨯===⨯⨯. 说明:解法1是利用缩小基本事件范围的方法计算条件概率,即分析在第1次抽到A 的条件下第2次抽取一张牌的随机试验的所有可能结果,利用古典概型计算概率的公式直接得到结果. 解法2实际上是在原来的基本事件范围内通过事件的计数来计算条件概率. 第3种方法是利用条件概率的定义来计算. 这里可以让学生体会从不同角度求解条件概率的特点.2、设第1次抽出次品的时间为B ,第2次抽出正品的事件为C ,则第1次抽出次品且第2次抽出正品的事件为BC .解法1:在第1次抽出次品的条件下,剩下的99件产品中有4件次品,所以在第1次抽出次品的条件下第2次抽出正品的概率为95()99P C B =. 解法2:在第1次抽出次品的条件下第2次抽出正品的概率为()59595()()59999n BC P C B n B ⨯===⨯. 解法3:在第1次抽出次品的条件下第2次抽出正品的概率为595()9510099()599()9910099P BC P C B P B ⨯⨯===⨯⨯. 说明:与上题类似,可以用不同方法计算条件概率.3、例1 箱中3张奖券中只有1张能中奖,现分别由3人无放回地任意抽取,在已知第一个人抽到奖券的条件下,第二个人抽到奖券的概率或第三个人抽到奖券的概率,均为条件概率,它们都是0.例2 某班有45名同学,其中20名男生,25名女生,依次从全班同学中任选两名同学代表班级参加知识竞赛,在第1名同学是女生的条件下,第2名同学也是女生的概率.说明:这样的例子很多,学生举例的过程可以帮助学生理解条件概率的含义. 练习(P55)1、利用古典概型计算的公式,可以求得()0.5P A =,()0.5P B =,()0.5P C =,()0.25P AB =,()0.25P BC =,()0.25P AC =,可以验证()()()P AB P A P B =,()()()P BC P B P C =,()()()P AC P A P C =.所以根据事件相互独立的定义,有事件A 与B 相互独立,事件B 与C 相互独立,事件A 与C 相互独立.说明:本题中事件A 与B 相互独立比较显然,因为抛掷的两枚硬币之间是互不影响的. 但事件B 与C 相互独立,事件A 与C 相互独立不显然,需要利用定义验证, 从该习题可以看出,事件之间是否独立有时根据实际含义就可做出判断,但有时仅根据实际含义是不能判断,需要用独立性的定义判断.2、(1)先摸出1个白球不放回的条件下,口袋中剩下3个球,其中仅有1个白球,所以在先摸出1个白球不放回的条件下,再摸出1个白球的概率是1/3.(2)先摸出1个白球后放回的条件下,口袋中仍然有4个球,其中有2个白球,所以在先摸出1个白球后放回的条件下,再摸出1个白球的概率是1/2.说明:此题的目的是希望学生体会有放回摸球与无放回摸球的区别,在有放回摸球中第2次摸到白球的概率不受第1次摸球结果的影响,而在无放回摸球中第2次摸到白球的概率受第1次摸球结果的影响.3、设在元旦期间甲地降雨的事件为A ,乙地降雨的事件为B .(1)甲、乙两地都降雨的事件为AB ,所以甲、乙两地都降雨的概率为()()()0.20.30.06P AB P A P B ==⨯= (2)甲、乙两地都不降雨的事件为AB ,所以甲、乙两地都不降雨的概率为 ()()()0.80.70.56P AB P A P B ==⨯= (3)其中至少一个地方降雨的事件为()()()AB AB AB ,由于事件AB ,AB 和AB 两两互斥,根据概率加法公式和相互独立事件的定义,其中至少一个地方降雨的概率为()()()0.060.20.70.80.30.44P AB P AB P AB ++=+⨯+⨯=.说明:与例3类似,利用事件独立性和概率的性质计算事件的概率,需要学生复习《数学3(必修)》中学过的概率性质.4、因为()()A AB AB =,而事件AB 与事件AB 互斥,利用概率的性质得到()()()P A P AB P AB =+所以()()()P AB P A P AB =-.又因为事件A 与B 相互独立.故 ()()()()()(1())()()P AB P A P A P B P A P B P A P B =-=-=..类似可证明A 与B ,A 与B .。
人教A版选修2-3数学:1.1《分类加法计数原理与分步乘法计数原理》测试2(新人教A版选修2—3).docx

高中数学学习材料马鸣风萧萧*整理制作1.1分类加法计数原理与分步乘法计数原理测试题一、选择题1.从集合{ 0,1,2,3,4,5,6}中任取两个互不相等的数a ,b 组成复数a bi +,其中虚数有( )A .30个B .42个C .36个D .35个答案:C2.把10个苹果分成三堆,要求每堆至少1个,至多5个,则不同的分法共有( )A .4种B .5种C .6种D .7种答案:A3.如图,用4种不同的颜色涂入图中的矩形A ,B ,C ,D 中,要求相邻的矩形涂色不同,则不同的涂法有( )A .72种B .48种C .24种D .12种答案:A4.教学大楼共有五层,每层均有两个楼梯,由一层到五层的走法有( )A .10种B .52种 C.25种 D.42种答案:D5.已知集合{}{}023A B x x ab a b A ===∈,,,,,|,则B 的子集的个数是( ) A.4B.8 C.16 D.15答案:C6.三边长均为正整数,且最大边长为11的三角形的个数为()A.25 B.26 C.36 D.37答案:C二、填空题7.平面内有7个点,其中有5个点在一条直线上,此外无三点共线,经过这7个点可连成不同直线的条数是.答案:128.圆周上有2n个等分点(1n>),以其中三个点为顶点的直角三角形的个数为.答案:2(1)n n-9.电子计算机的输入纸带每排有8个穿孔位置,每个穿孔位置可穿孔或不穿孔,则每排可产生种不同的信息.答案:25610.椭圆221x ym n+=的焦点在y轴上,且{}{}123451234567m n∈∈,,,,,,,,,,,,则这样的椭圆的个数为.答案:2011.已知集合{}123A,,Ü,且A中至少有一个奇数,则满足条件的集合A分别是.答案:{}{}{}{}{}13122313,,,,,,,12.整数630的正约数(包括1和630)共有个.答案:24三、解答题13.用0,1,2,3,4,5六个数字组成无重复数字的四位数,比3410大的四位数有多少个?解:本题可以从高位到低位进行分类.(1)千位数字比3大.(2)千位数字为3:①百位数字比4大;②百位数字为4:1°十位数字比1大;2°十位数字为1→个位数字比0大.所以比3410大的四位数共有2×5×4×3+4×3+2×3+2=140(个).14.有红、黄、蓝三种颜色旗子各(3)n n>面,任取其中三面,升上旗杆组成纵列信号,可以有多少种不同的信号?若所升旗子中不允许有三面相同颜色的旗子,可以有多少种不同的信号?若所升旗子颜色各不相同,有多少种不同的信号?解:1N=3×3×3=27种;227324N=-=种;33216N=⨯⨯=种.15.某出版社的7名工人中,有3人只会排版,2人只会印刷,还有2人既会排版又会印刷,现从7人中安排2人排版,2人印刷,有几种不同的安排方法.解:首先分类的标准要正确,可以选择“只会排版”、“只会印刷”、“既会排版又会印刷”中的一个作为分类的标准.下面选择“既会排版又会印刷”作为分类的标准,按照被选出的人数,可将问题分为三类:第一类:2人全不被选出,即从只会排版的3人中选2人,有3种选法;只会印刷的2人全被选出,有1种选法,由分步计数原理知共有3×1=3种选法.第二类:2人中被选出一人,有2种选法.若此人去排版,则再从会排版的3人中选1人,有3种选法,只会印刷的2人全被选出,有1种选法,由分步计数原理知共有2×3×1=6种选法;若此人去印刷,则再从会印刷的2人中选1人,有2种选法,从会排版的3人中选2人,有3种选法,由分步计数原理知共有2×3×2=12种选法;再由分类计数原理知共有6+12=18种选法.第三类:2人全被选出,同理共有16种选法.所以共有3+18+16=37种选法.。
高中数学《分类加法计数原理与分步乘法计数原理》同步练习1 新人教A版选修2-3

1.1 分类加法计数原理与分步乘法计数原理一.选择题:1.已知x∈{2,3,7},y∈{-31,-24,4},则x·y可以表示不同值的个数是(A)1+1=2 (B)1+1+1=3 (C)2×3=6 (D)3×3=92.某学生去书店买书,发现三本好书,决定至少买一本,则不同的买法种数为(A)3 (B)6 (C)7 (D)93.某电话号码为168×××××,若后面的五个数字都由6或8组成,则这种电话号码一共有(A)20个(B)25个(C)32个(D)60个4.现在有4件不同款式的上衣和三件不同颜色的长裤,如果一条长裤和一件上衣配成一套,某人要配一套衣服,则不同的选法数为(A)7 (B)64 (C)12 (D)815.如图:甲——不同的路线的走法有()。
(A)2种(B)8种(C)12种(D)16种6.5个高中应届毕业生报考3所重点院校,每人报且仅报一所院校,则不同的报名方法共有()种。
(A)35(B)53(C)15 (D)6二.填空题:7.5名男生,4名女生,(1)若从中派一人出黑板报,共有种不同的派法;(2)若男女各派一人共同写黑板报,共有种不同的派法。
8.A={1,2,3,4},B={5,6,7},则从A到B的映射有个。
9.某镇有三家旅店,现有5名旅客住店,则不同的投宿方法有种。
10.三位正整数全部印出,“0”这个铅字需要用个。
11.直线l上有7个点,直线m上有8个点,则通过这些点中的两点最多有条直线。
12.事件A发生导致事件B发生,若A发生的方式有m种,B发生的方式有n种,则A、B 相继发生的方式有种。
参考答案基础卷1.D 2.C 3.C 4.C 5.D 6.A7.9;20 8.819.243 10.18011.58 12.mn。
1.1 分类加法计数原理与分步乘法计数原理 同步课时训练高二下学期数学人教A版选修2-3

1.1 分类加法计数原理与分步乘法计数原理——高二数学人教A版2-3同步课时训练1.为帮助某贫困山区的基层村镇完成脱贫任务,某单位要从5名领导和6名科员中选出4名人员去某基层村镇做帮扶工作,要求选出人员中至少要有2名领导,且必须有科员参加,则不同的选法种数是( )A.210B.360C.420D.7202.绿水青山就是金山银山,浙江省对“五水共治”工作落实很到位,效果非常好.现从含有甲的5位志愿者中选出4位到江西,湖北和安徽三个省市宣传,每个省市至少一个志愿者.若甲不去安徽,其余志愿者没有条件限制,共有多少种不同的安排方法( )A.228B.132C.180D.963.某日,甲、乙、丙三个单位被系统随机预约到A,B,C三家医院接种疫苗且每个单位只能被随机预约到一家医院,每家医院每日至多接待两个单位.已知A医院接种的是只需要打一针的腺病毒载体疫苗,B医院接种的是需要打两针的灭活疫苗,C医院接种的是需要打三针的重组蛋白疫苗,则甲单位不接种需要打三针的重组蛋白疫苗的预约方案种数为( )A.27B.24C.18D.164.现有5幅不同的油画,2幅不同的国画,7幅不同的水彩画,从这些画中选一幅布置房间,则不同的选法共有( )A.7种B.9种C.14种D.70种5.某大学食堂备有6种荤菜、5种素菜、3种汤,现要配成一荤一素一汤的套餐,则可以配成不同套餐的种数为( )A.30B.14C.33D.906.某旅行社共有5名专业导游,其中3人会英语,3人会日语,若在同一天要接待3个不同的外国旅游团,其中有2个旅游团要安排会英语的导游,1个旅游团要安排会日语的导游,则不同的安排方法种数有( )A.12B.13C.14D.157.某校高一年级有四个班,四位老师各教一个班的数学在该年级某次数学考试中,要求每位数学老师均不在本班监考,则不同的安排监考的方法种数为( )A.8B.9C.12D.248.旅游体验师小李受某网站邀请,决定在甲、乙、丙、丁这四个景区进行体验式旅游.已知他不能最先去甲景区旅游,不能最后去乙景区和丁景区旅游,则他可选的旅游路线数为( )A.24B.18C.16D.109.某学校为了迎接市春季运动会,从由5名男生和4名女生组成的田径运动队中选出4人参加比赛,要求男、女生都有,则男生甲与女生乙至少有1人入选的选法种数为( )A.85B.86C.91D.9010.某同学有7本不同的书,其中语文书2本、英语书2本、数学书3本.现在该同学把这7本书放到书架上排成一排,要求2本语文书相邻、2本英语书相邻、3本数学书中任意2本不相邻,则不同的排法种数为( )A.12B.24C.48D.72011.现有5种不同颜色要对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法种数为_________.12.从甲地去乙地有3班火车,从乙地去丙地有2班轮船,则从甲地去丙地可选择的旅行方式有______种13.某公司招聘5名员工.分给下属的甲、乙两个部门.其中2名英语翻译人员不能分给同一部门.另3名电脑编程人员不能都分给同一部门,则不同的分配方案种数是________.14.某车间有11名工人,其中5名是钳工,4名是车工,另外2名既能当车工又能当钳工.现要在这11名工人里选派4名针工和4名车工修理一台机床,有多少种不同的选派方法?15.甲、乙、丙、丁4名同学争夺数学、物理、化学3门学科知识竞赛的冠军,且每门学科只有1名冠军产生,则不同的冠军获得情况有多少种?答案以及解析1.答案:A解析:求不同的选法种数可以有两类办法,选出的4人中有2名领导,有2256C C 种方法;有3名领导,有3156C C 种方法,由分类加法计数原理得:22315656C C C C 1015106210+=⨯+⨯=,所以不同的选法种数是210,A 正确. 故选:A. 2.答案:B解析:4人去3个省份,且每个省至少一个人则必会有两人去同一省份, 若抽取的4人中不含甲,在这四人中任意取两人进行捆绑,则共有2343C A 36⋅=种,②若4人中含有甲,则在剩余的4人中抽取3人,共有34C 4=种,接下来若甲和另1人去同一省份,则共有112322C C A 12⋅⋅=种,若甲单独一人去一个省份,则共有()212322C C A 12+=种,根据加法和乘法原理可得共有,此类情况共有()4121296⨯+=种 综上共有3696132+=种. 故选:B. 3.答案:D解析:由题意,甲单位不接种需要打三针的重组蛋白疫苗,即甲不可预约C 医院,则甲可预约A ,B 两家医院,①若甲预约A 医院,乙预约A 医院,则丙可预约B ,C 医院,共2种情况; ②若甲预约A 医院,乙预约B 或C 医院,则丙可预约A ,B ,C 医院,共236⨯=种情况;③若甲预约B 医院,乙预约A 或C 医院,则丙可预约A ,B ,C 医院,共236⨯=种情况;④若甲预约B 医院,乙预约医院,则丙可预约A ,C 医院,共2种情况, 所以甲单位不接种需要打三针的重组蛋白疫苗的预约方案种数为266216+++=种. 故选:D. 4.答案:C 解析:分为三类:从国画中选,有2种不同的选法;从油画中选,有5种不同的选法;从水彩画中选,有7种不同的选法,根据分类加法计数原理,共有52714++=(种)不同的选法; 故选:C. 5.答案:D解析:因为备有6种素菜,5种荤菜,3种汤,所以素菜有6种选法,荤菜有5种选法,汤菜有3种选法,所以要配成一荤一素一汤的套餐,则可以配制出不同的套餐有65390⨯⨯=种 故选:D. 6.答案:C解析:由题意知有1名导游既会英语又会日语,记甲为既会英语又会日语的导游,按照甲是否被安排到需要会英语的旅游团可分为两类: 第一类,甲被安排到需要会英语的旅游团,则可分两步进行:第一步,从会英语的另外2人中选出1人,有2种选法,将选出的人和甲安排到2个需要会英语的旅游团,有2种安排方法,所以有224⨯=种安排方法; 第二步,从会日语的另外2人中选出1人安排到需要会日语的旅游团,共2种选法.故此时共有428⨯=种安排方法;第二类,甲没有被安排到需要会英语的旅游团,则可分两步进行:第一步,将会英语的另外2人安排到需要会英语的旅游团,有2种安排方法; 第二步,从会日语的3人(包括甲)中选出1人安排到需要会日语的旅游团,有3种选法.故此时共有236⨯=种选法.综上,不同的安排方法种数为8614+=. 故选:C. 7.答案:B解析:设四个班分别是A 、B 、C 、D ,对应的数学老师分别是a 、b 、c 、d. 让a 老师先选,可从B 、C 、D 班中选一个,有3种选法,不妨假设a 老师选的是B ,则b 老师从剩下的三个班级中任选一个,有3种选法,剩下的两位老师都只有1种选法.由分步乘法计数原理,知共有33119⨯⨯⨯=种不同的安排方法. 故选:B. 8.答案:D解析:小李可选的旅游路线分两种情况:①最后去甲景区旅游,则可选的路线有33A 种;②不最后去甲景区旅游,则可选的路线有1222C A ⨯种.所以小李可选的旅游路线数为312322A C A 10+⨯=.9.答案:B解析:方法一(直接法)由题意,可分三类考虑:第一类,男生甲入选,女生乙不入选的选法种数为1221334343C C C C C 31++=;第二类,男生甲不入选,女生乙入选的选法种数为1221343434C C C C C 34++=;第三类,男生甲入选,女生乙入选的选法种数为27C 21=.所以男生甲与女生乙至少有1人入选的选法种数为31342186++=.方法二(间接法)从5名男生和4名女生中任意选出4人,男、女生都有的选法种数为444954C C C 120--=;男、女生都有,且男生甲与女生乙都没有入选的选法种数为4474C C 34-=.所以男生甲与女生乙至少有1人入选的选法种数为1203486-=.10.答案:C解析:先将2本语文书看成一个元素,2本英语书看成一个元素,然后排成一排,有22A 种不同的排法,再将3本数学书插到这2个元素形成的3个空隙中,有33A 种不同的排法,再排2本语文书,有22A 种不同的排法,最后排2本英语书,有22A 种不同的排法.根据分步乘法计数原理,得共有23222322A A A A 48=种不同的排法.故选C. 11.答案:180解析:按A ,B ,C ,D 顺序着色, A 区块有5种着色方案, B 区块有4种着色方案, C 区块有3种着色方案, D 区块有3种着色方案,故不同的着色方法种数为5433180⨯⨯⨯=, 故答案为:180. 12.答案:6解析:由分步计数的乘法原理,从甲地去丙地可选择的旅行方式有326⨯=种. 故答案为:6. 13.答案:12 解析:由题意可得,①甲部门要2个电脑编程人员,则有3种情况;2名英语翻译人员的分配方法有2种,根据分步乘法计数原理,分配方案共有326⨯= (种).②甲部门要1个电脑编程人员,则有3种情况;2名英语翻译人员的分配 方法有2种.根据分步乘法计数原理,分配方案共有326⨯= (种).由分类加法计数原理,可得不同的分配方案共有6612+= (种). 14.答案:设既能当车工又能当钳工的2名工人为A ,B .A ,B 都不在内的选派方法有4454C C 5=(种); A ,B 都在内且当钳工的选派方法有224254C C C 10=(种); A ,B 都在内且当车工的选派方法有242254C C C 30=(种);A ,B 都在内,且一人当钳工,另一人当车工的选派方法有233254AC C 80=(种); A ,B 有一人在内且当钳工的选派方法有l 34254C C C 20=(种); A ,B 有一人在内且当车工的选派方法有143254C C C 40=(种).所以不同的选派方法共有51030802040185+++++=(种).15.答案:可先举例说出其中的一种情况,如数学、物理、化学3门学科知识竞赛的冠军分别是甲、甲、丙,可见研究的对象是“3门学科”,只有3门学科各产生1名冠军,才完成了这件事,而4名同学不一定每人都能获得冠军,故完成这件事分三步. 第1步,产生第1个学科冠军,它一定被其中1名同学获得,有4种不同的获得情况;第2步,产生第2个学科冠军,因为夺得第1个学科冠军的同学还可以去争夺第2个学科的冠军,所以第2个学科冠军也是由4名同学去争夺,有4种不同的获得情况; 第3步,同理,产生第3个学科冠军,也有4种不同的获得情况. 由分步乘法计数原理知,共有3444464⨯⨯==种不同的冠军获得情况.。
1.1分类加法计数原理与分步乘法计数原理(高中数学人教A选修2-3)

故任选一名学生任学生会主席的选法共有50+60+55=165 种不同的方法.
(2)选一名学生任学生会体育部长有三类不同的选法. 第一类:从高二(1)班男生中选有30种不同的方法; 第二类:从高二(2)班男生中选有30种不同的方法; 第三类:从高二(3)班女生中选有20种不同的方法.
2.分步计数原理针对的是“分步”问题, 各个步骤中的方法相互依存,只有各 个步骤都完成才算做完这件事.
两个计数原理
分类加法计数原理 分步乘法计数原理
相同点 用来计算“完成一件事”的方法种数
分类完成类类相加 分步完成 步步相乘
每类方案中的每一 每步_依__次__完__成__才
不同点 种完方成法这都 件能 事_独__立___
两类
能
26种 10种
26+10=36种
假如你从南宁到北海,
可以坐直达客车或直达火车,
客车每天有3个班次,火车每天有2个班次,
请问你共有多少种不同的走法客?车1
北海
南宁
客车2
客车3
火车1 火车2 分析:完成从南宁到北海这件事有2类方案, 所以,从从南宁到北海共有3+ 2= 5种方法.
问题1:你能否发现这两个问题有什么共同特征? 1、都是要完成一件事 2、用任何一类方法都能直接完成这件事 3、都是采用加法运算
物理学
法学
汉语言文学
工程学
பைடு நூலகம்
韩语
如果这名同学只能选一个专业,那么他共有多少种 选择呢? N=5+4+5=14(种)
数学:1.1《分类加法计数原理与分步乘法计数原理》课件(新人教A版选修2-3)

示,其中字节是计算机中数据存储的最小计量单位,
每个字节由8个二进制位构成.问:
(1)一个字节(8位)最多可以表示多少个不同的字符?
(2)计算机汉字国际码(GB码)包含了6 763个汉字,
一个汉字为一个字符,要对这些汉字进行编码,每个汉
字至少要用多少个字节表示?
256个
2个
第七页,编辑于星期日:十一点 四十分。
例4 计算机编程人员在编写好程序以后需 要对程序进行测试,程序员需要知道到底有 多少条执行路径(即程序从开始到结束的路 线),以便知道需要提供多少个测试数据.一 般地,一个程序模块由许多子模块组成.如图 所示是一个具有许多执行路径的程序模块. (1)这个程序模块有多少条执行路径; (2)为了减少测试时间,程序员需要设法减 少测试次数,你能帮助程序员设计一个测试 方法,以减少测试次数吗?
分类加法计数原理与 分步乘法计数原理的应用
(习题课)
第一课时
第一页,编辑于星期日:十一点 四十分。
知识回顾
1.分类加法计数原理: 完成一件事有两类不同方案,在第1类方 案中有m种不同的方法,在第2类方案中有 n 种不同的方法,那么完成这件事共有N =m+n种不同的方法.
第二页,编辑于星期日:十一点 四十分。
最多可以给1053个程序命名
第五页,编辑于星期日:十一点 四十分。
例2 核糖核酸(RNA)分子是在生物细胞中 发现的化学成分,一个RNA分子是一个有着数 百个甚至数千个位置的长链,长链中每一个位 置上都由一种称为碱基的化学成分所占据.总 共有4种不同的碱基,分别用A,C,G,U表示. 在一个RNA分子中,各种碱基能够以任意次序 出现,所以在任意一个位置上的碱基与其他位 置上的碱基无关.假设有一类RNA分子由100个 碱基组成,那么能有多少个不同的RNA分子?
最新整理数学:1.1《分类加法计数原理与分步乘法计数原理》测试(新人教A版选修2—3).doc

1. 1 分类加法计数原理与分步乘法计数原理综合卷一. 选择题:1.一个三层书架,分别放置语文书12本,数学书14本,英语书11本,从中取出一本,则不同的取法共有( )(A ) 37种 (B ) 1848种 (C ) 3种 (D ) 6种2.一个三层书架,分别放置语文书12本,数学书14本,英语书11本,从中取出语文、数学、英语各一本,则不同的取法共有( ) (A ) 37种 (B ) 1848种 (C ) 3种 (D ) 6种3.某商业大厦有东南西3个大门,楼内东西两侧各有2个楼梯,从楼外到二楼的不同走法种数是( )(A ) 5 (B )7 (C )10 (D )124.用1、2、3、4四个数字可以排成不含重复数字的四位数有( )(A )265个 (B )232个 (C )128个 (D )24个5.用1、2、3、4四个数字可排成必须含有重复数字的四位数有( )(A )265个 (B )232个 (C )128个 (D )24个6.3科老师都布置了作业,在同一时刻4名学生都做作业的可能情况有( )(A )43种 (B )34种 (C )4×3×2种 (D ) 1×2×3种7.把4张同样的参观券分给5个代表,每人最多分一张,参观券全部分完,则不同的分法共有( )(A )120种 (B )1024种 (C )625种 (D )5种8.已知集合M={l ,-2,3},N={-4,5,6,7},从两个集合中各取一个元素作为点的坐标,则这样的坐标在直角坐标系中可表示第一、二象限内不同的点的个数是( )(A )18 (B )17 (C )16 (D )109.三边长均为整数,且最大边为11的三角形的个数为( )(A )25 (B )36 (C )26 (D )3710.如图,某城市中,M 、N 两地有整齐的道路网,若规定只能向东或向北两个 方向沿途中路线前进,则从M 到N 不同的走法共有( )(A )25 (B )15 (C )13 (D )10二.填空题:11.某书店有不同年级的语文、数学、英语练习册各10本,买其中一种有 种方法;买其中两种有 种方法.12.大小不等的两个正方形玩具,分别在各面上标有数字1,2,3,4,5,6,则向上的面标着的两个数字之积不少于20的情形有 种.13.从1,2,3,4,7,9中任取不相同的两个数,分别作为对数的底数和真数, 可得到 个不同的对数值.14.在连结正八边形的三个顶点组成的三角形中,与正八边形有公共边的有 个.15.某班宣传小组要出一期向英雄学习的专刊,现有红、黄、白、绿、蓝五种颜色的粉笔供选用,要求在黑板中A 、B 、C 、D 每一部分只写一种颜色,如图所示,相邻两块颜色不同,则不同颜色的书写方法共有 种.三.解答题:16.现由某校高一年级四个班学生34人,其中一、二、三、四班分别为7人、8 人、9人、10人,他们自愿组成数学课外小组.(1)选其中一人为负责人,有多少种不同的选法?(2)每班选一名组长,有多少种不同的选法?(3)推选二人做中心发言,这二人需来自不同的班级,有多少种不同的选法? 17.4名同学分别报名参加足球队,蓝球队、乒乓球队,每人限报其中一个运动 队,不同的报名方法有几种?[探究与提高]1.甲、乙两个正整数的最大公约数为60,求甲、乙两数的公约数共有多个?2.从{-3,-2,-1,0,l,2,3}中,任取3个不同的数作为抛物线方程y=ax2+bx+c(a≠0)的系数,如果抛物线过原点,且顶点在第一象限,这样的抛物线共有多少条?3.电视台在“欢乐今宵”节目中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的群众来信,甲信箱中有30封,乙信箱中有20封.现由主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有多少种不同的结果?综合卷1.A 2.B 3.D 4.D 5.B 6.B 7.D 8.B 9.B 10.B11.30;300 12.513.17 14.40 15.180。
最新整理数学:1.1《分类加法计数原理与分步乘法计数原理》测试(新人教A版选修2—3)1.doc

1. 1分类加法计数原理与分步乘法计数原理测试题一、选择题1.一件工作可以用2种方法完成,有3人会用第1种方法完成,另外5人会用第2种方法完成,从中选出1人来完成这件工作,不同选法的种数是( )A.8 B.15 C.16 D.30答案:A2.从甲地去乙地有3班火车,从乙地去丙地有2班轮船,则从甲地去丙地可选择的旅行方式有( )A.5种 B.6种 C.7种 D.8种答案:B3.如图所示为一电路图,从A 到B 共有( )条不同的线路可通电( )A.1 B.2 C.3 D.4答案:D4.由数字0,1,2,3,4可组成无重复数字的两位数的个数是( ) A.25 B.20 C.16 D.12答案:C5.李芳有4件不同颜色的衬衣,3件不同花样的裙子,另有两套不同样式的连衣裙.“五一”节需选择一套服装参加歌舞演出,则李芳有( )种不同的选择方式( ) A.24 B.14 C.10 D.9答案:B6.设A ,B 是两个非空集合,定义{}()A B a b a A b B *=∈∈,,|,若{}{}0121234P Q ==,,,,,,,则P *Q 中元素的个数是( )A.4 B.7 C.12 D.16答案:C二、填空题7.商店里有15种上衣,18种裤子,某人要买一件上衣或一条裤子,共有 种不同的选法;要买上衣,裤子各一件,共有 种不同的选法.答案:33,2708.十字路口来往的车辆,如果不允许回头,共有 种行车路线.答案:129.已知{}{}0341278a b ∈∈,,,,,,,则方程22()()25x a y b -+-=表示不同的圆的个数是 .答案:1210.多项式123124534()()()()a a a b b a a b b ++++++··展开后共有 项. 答案:1011.如图,从A →C ,有 种不同走法.答案:612.将三封信投入4个邮箱,不同的投法有 种.答案:34三、解答题13.一个口袋内装有5个小球,另一个口袋内装有4个小球,所有这些小球的颜色互不相同.(1)从两个口袋内任取一个小球,有多少种不同的取法?(2)从两个口袋内各取一个小球,有多少种不同的取法?解:(1)549N =+=种;(2)5420N=⨯=种.14.某校学生会由高一年级5人,高二年级6人,高三年级4人组成.(1)选其中1人为学生会主席,有多少种不同的选法?(2)若每年级选1人为校学生会常委,有多少种不同的选法?(3)若要选出不同年级的两人参加市里组织的活动,有多少种不同的选法?解:(1)56415N=++=种;(2)564120N=⨯⨯=种;(3)56644574N=⨯+⨯+⨯=种15.已知集合{},,,,,,,是平面上的点,a b M=---M P a b321012(),.∈(1)()P a b,可表示平面上多少个不同的点?(2)(),可表示多少个坐标轴上的点?P a b解:(1)完成这件事分为两个步骤:a的取法有6种,b的取法也有6种,∴P点个数为N=6×6=36(个);(2)根据分类加法计数原理,分为三类:①x轴上(不含原点)有5个点;②y轴上(不含原点)有5个点;③既在x轴,又在y轴上的点,即原点也适合,∴共有N=5+5+1=11(个).。
人教新课标A版 选修2-3 1.1分类加法计数原理与分步乘法计数原理A卷

人教新课标A版选修2-3 1.1分类加法计数原理与分步乘法计数原理A卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)如图所示是某个区域的街道示意图(每个小矩形的边表示街道),则从A到B的最短线路有()条A . 24B . 60C . 84D . 120【考点】2. (2分) (2020高二下·吉林期中) 8名同学争夺3项冠军,获得冠军的可能性有()A .B .C .D .【考点】3. (2分)某电视台连续播放5个不同的广告,其中有3个不同的商业广告和2个不同的奥运宣传广告,要求最后播放的必须是奥运宣传广告,且两个奥运宣传广告不能连续播放,则不同的播放方式有()A . 120种B . 48种C . 36种D . 18种【考点】4. (2分) (2019高二下·蓝田期末) 完成一项工作,有两种方法,有5个人只会用第一种方法,另外有4个人只会用第二种方法,从这9个人中选1个人完成这项工作,则不同的选法共有()A . 5种B . 4种C . 9种D . 20种【考点】5. (2分)将3个不同的小球放入4个盒子中,则不同放法种数有()A . 81B . 64C . 12D . 14【考点】6. (2分) (2020高三上·松原月考) 有3名男生和5名女生站成一排照相,如果男生不排在最左边且两两不相邻,则不同的排法有()A . 种B . 种C . 种D . 种【考点】7. (2分)一排7个座位,甲、乙两人就座,要求甲与乙之间至少有一个空位,则不同的坐法种数是()A . 30B . 28C . 42D . 16【考点】8. (2分) 5位同学报名参加两个课外活动小组,每位同学限报其中的一个小组,则不同的报名方法共有()A . 10种B . 25种C . 20种D . 32种【考点】9. (2分) (2017高三上·嘉兴期中) 某校的A、B、C、D四位同学准备从三门选修课中各选一门,若要求每门选修课至少有一人选修,且A,B不选修同一门课,则不同的选法有()A . 36种B . 72种C . 30种D . 66种【考点】10. (2分)从一架钢琴挑出的十个音键中,分别选择3个,4个,5个,…,10个键同时按下,可发出和弦,若有一个音键不同,则发出不同的和弦,则这样的不同的和弦种数是()A . 512B . 968C . 1013D . 1024【考点】11. (2分)身穿红、黄两种颜色衣服的各有2人,现将这4人排成一行,要求穿相同颜色衣服的人不能相邻,则不同的排法共有()A . 4种B . 6种C . 8种D . 12种【考点】12. (2分)若m,n均为非负整数,在做m+n 的加法时各位均不进位(例如:134+3802=3936)则称(m,n)为“简单的”有序数对,而m+n 称为有序数对(m,n)的值,那么值为1942的“简单的”有序对的个数是()A . 150B . 300C . 480D . 600【考点】二、填空题 (共6题;共6分)13. (1分) (2020高二下·湖州月考) 某医院从8名内科医生中选派4名同时去4个武汉四家医院进行支援,每个医院1名医生,其中甲和乙不能都去,甲和丙只能都去或都不去,则不同的选派方案有________.(用数字作答)【考点】14. (1分) (2019高二下·上海期末) 有4张分别标有数字1,2,3,4的红色卡片和4张分别标有数字1,2,3,4的蓝色卡片,从这8张卡片中取出4张卡片排成一行.如果取出的4张卡片所标数字之和等于10,则不同的排法共有________种(用数字作答).【考点】15. (1分)(2019·金华模拟) 位同学分成组,参加个不同的志愿者活动,每组至少人,其中甲乙人不能分在同一组,则不同的分配方案有________种.(用数字作答)【考点】16. (1分)如图,将网格中的三条线段沿网格线上下或左右平移,组成一个首尾相连的三角形,则三条线段一共至少需要移动________ 格【考点】17. (1分) (2020高三上·广州月考) 广东省2021年的新高考按照“ ”的模式设置,“3”为全国统一高考的语文、数学、外语3门必考科目;“1”由考生在物理、历史2门中选考1门科目;“2”由考生在思想政治、地理、化学、生物学4门中选考2门科目.则甲,乙两名考生在选考科目中恰有两门科目相同的方法数为________.【考点】18. (1分)(2020·杨浦期末) 己知六个函数:① ;② ;③ ;④ ;⑤;⑥ ,从中任选三个函数,则其中既有奇函数又有偶函数的选法共有________种.【考点】三、解答题 (共5题;共55分)19. (10分) (2016高二下·故城期中) 有五张卡片,它们的正、反面分别写着0与1,2与3,4与5,6与7,8与9,将其中任意三张并排放在一起组成三位数,共可组成多少个不同的三位数?【考点】20. (10分) (2020高二下·阳江期中) 某工厂生产的10件产品中,有8件合格品、2件不合格品,合格品与不合格品在外观上没有区别.从这10件产品中任意抽检2件,计算:(1)抽出的2件产品恰好都是合格品的抽法有多少种?(2)抽出的2件产品至多有1件不合格品的抽法有多少种?(3)如果抽检的2件产品都是不合格品,那么这批产品将被退货,求这批产品被退货的概率.【考点】21. (10分) (2017高二下·南通期中) 4名男同学和3名女同学站成一排照相,计算下列情况各有多少种不同的站法?(1)男生甲必须站在两端;(2)两名女生乙和丙不相邻;(3)女生乙不站在两端,且女生丙不站在正中间.【考点】22. (10分) (2016高二下·辽宁期中) 现有0,1,2,3,4,5六个数字.(1)用所给数字能够组成多少个四位数?(2)用所给数字可以组成多少个没有重复数字的五位数?(3)用所给数字可以组成多少个没有重复数字且比3142大的数?(最后结果均用数字作答)【考点】23. (15分) (2019高二下·金山期末) 男生4人和女生3人排成一排拍照留念.(1)有多少种不同的排法(结果用数值表示)?(2)要求两端都不排女生,有多少种不同的排法(结果用数值表示)?(3)求甲乙两人相邻的概率.(结果用最简分数表示)【考点】参考答案一、单选题 (共12题;共24分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:答案:11-1、考点:解析:答案:12-1、考点:解析:二、填空题 (共6题;共6分)答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:三、解答题 (共5题;共55分)答案:19-1、考点:解析:答案:20-1、答案:20-2、答案:20-3、考点:解析:答案:21-1、答案:21-2、答案:21-3、考点:解析:答案:22-1、答案:22-2、答案:22-3、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:。
高中数学 1.1 分类加法计数原理与分步乘法计数原理课后知能检测 新人教A版选修23

【课堂新坐标】(教师用书)2013-2014学年高中数学 1.1 分类加法计数原理与分步乘法计数原理课后知能检测新人教A版选修2-3一、选择题1.某小组有8名男生,4名女生,要从中选出一名当组长,不同的选法有( ) A.32种B.9种C.12种D.20种【解析】由分类加法计数原理知,不同的选法有N=8+4=12种.【答案】 C2.将5封信投入3个邮筒,不同的投法共有( )A.53种B.35种C.8种D.15种【解析】每封信均有3种不同的投法,所以依次把5封信投完,共有3×3×3×3×3=35种投法.【答案】 B3.三人踢毽子,互相传递,每人每次只能踢一下.由甲开始踢,经过4次传递后,毽子又被踢回甲,则不同的传递方式共有( )A.4种B.5种C.6种D.12种【解析】若甲先传给乙,则有甲→乙→甲→乙→甲,甲→乙→甲→丙→甲,甲→乙→丙→乙→甲3种不同的传法;同理,甲先传给丙也有3种不同的传法,故共有6种不同的传法.【答案】 C4.(2013·滨州高二检测)甲、乙两人从4门课程中各选修2门,则甲、乙所选的课程中恰有1门相同的选法有( )A.6种B.12种C.24种D.30种【解析】分步完成.首先甲、乙两人从4门课程中同选1门,有4种方法,其次甲从剩下的3门课程中任选1门,有3种方法,最后乙从剩下的2门课程中任选1门,有2种方法,于是,甲、乙所选的课程中恰有1门相同的选法共有4×3×2=24(种).【答案】 C5.(2013·山东高考)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( )A.243 B.252C.261 D.279【解析】0,1,2,…,9共能组成9×10×10=900(个)三位数,其中无重复数字的三位数有9×9×8=648(个),∴有重复数字的三位数有900-648=252(个).【答案】 B二、填空题6.为了准备晚饭,小张找出了3种冷冻蔬菜、5种罐装蔬菜和4种不同的新鲜蔬菜.如果晚饭时小张只吃1种蔬菜,那么不同的选择种数为________.【解析】由分类加法计数原理,N=3+5+4=12.【答案】127.直线方程Ax+By=0,若从0,1,3,5,7,8这6个数字中每次取两个不同的数作为A、B的值,则可表示________条不同的直线.【解析】若A或B中有一个为零时,有2条;当AB≠0时有5×4=20条,故共有20+2=22条不同的直线.【答案】228.5名乒乓球队员中,有2名老队员和3名新队员.现从中选出3名队员参加团体比赛,则入选的3名队员中至少有一名老队员的选法有________种.(用数字作答) 【解析】分为两类完成,两名老队员、一名新队员时,有3种选法;两名新队员、一名老队员时,有2×3=6种选法,即共有9种不同选法.【答案】9三、解答题9.某高中毕业生填报志愿时,了解到甲、乙两所大学有自己感兴趣的专业,具体情况如下:如果这名同学只能选择一所大学的一个专业,那么他的专业选择共有多少种?【解】由图表可知,分两类,第一类:甲所大学有5个专业,共有5种专业选择方法;第二类:乙所大学有3个专业,共有3种专业选择方法.由分类加法计数原理知,这名同学可能的专业选择有N=5+3=8(种).10.已知集合M={-3,-2,-1,0,1,2},P(a,b)(a,b∈M)表示平面上的点,问:(1)P可表示平面上多少个不同的点?(2)P可表示平面上多少个第二象限的点?【解】(1)确定平面上的点P(a,b)可分两步完成:第1步先确定a的值,共有6种方法;第2步确定b的值,也有6种方法.根据分步乘法计数原理得到平面上点的个数为6×6=36.(2)确定第二象限的点,可分两步完成:第1步确定a,由于a<0,所以有3种确定方法;第2步确定b,由于b>0,所以有2种确定方法.由分步乘法计数原理得到第二象限的点的个数为3×2=6.11.若直线方程Ax+By=0中的A,B可以从0,1,2,3,5这五个数字中任取两个不同的数字,则方程所表示的不同直线共有多少条?【解】分两类完成.第1类,当A或B中有一个为0时,表示的直线为x=0或y=0,共2条.第2类,当A,B不为0时,直线Ax+By=0被确定需分两步完成.第1步,确定A的值,有4种不同的方法;第2步,确定B的值,有3种不同的方法.由分步乘法计数原理知,共可确定4×3=12条直线.由分类加法计数原理知,方程所表示的不同直线共有2+12=14条.。
高中数学 1.1.1 分类加法计数原理与分步乘法计数原理课堂达标·效果检测 新人教A版选修23

高中数学 1.1.1 分类加法计数原理与分步乘法计数原理课堂达标·效果检测新人教A版选修231.(2014·潍坊高二检测)某一数学问题可用综合法和分析法两种方法证明,有5名同学只会用综合法证明,有3名同学只会用分析法证明,现从这些同学中任选一名同学证明这个问题,不同的选法种数为( ) A.8 B.15 C.18 D.20【解析】选A.可从5名只会用综合法证明的同学中任选一名,有5种选法,也可从只会用分析法证明的3名同学中任选一名,有3种选法,由分类加法计数原理知,共有5+3=8种不同的选法.2.某学生去书店,发现3本好书,决定至少买其中一本,则购买方式共有( )A.3种B.6种C.7种D.9种【解析】选C.分3类:买1本书,买2本书和买3本书.各类的购买方式依次有3种、3种和1种,故购买方式共有3+3+1=7种.3.若x∈1,2,3,y∈6,7,8,9,用(x,y)表示点的坐标,则不同的点的个数为( )A.7B.4C.3D.12【解析】选D.x的取法有3种,y的取法有4种,不同的(x,y)共有3×4=12(个).4.如图,从A→C有_______________种不同的走法.【解析】分为两类:不过B点有2种走法,过B点有2×2=4种走法,共有4+2=6种走法.答案:65.某电视台连续播放6个广告,其中有3个不同的商业广告、2个不同的世博会宣传广告、1个公益广告,要求最后播放的不能是商业广告,且世博会宣传广告与公益广告不能连续播放,2个世博会宣传广告也不能连续播放,则有多少种不同的播放方式?【解析】用1,2,3,4,5,6表示广告的播放顺序,则完成这件事有3类方法.第一类:宣传广告与公益广告的播放顺序是2,4,6.分6步完成这件事,共有3×3×2×2×1×1=36种不同的播放方式.第二类:宣传广告与公益广告的播放顺序是1,4,6,分6步完成这件事,共有3×3×2×2×1×1=36种不同的播放方式.第三类:宣传广告与公益广告的播放顺序是1,3,6,同样分6步完成这件事,共有3×3×2×2×1×1=36种不同的播放方式.由分类加法计数原理得:6个广告不同的播放方式有36+36+36=108种.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1・1分类加法计数原理与分步乘法计数原理测试题一、选择题1. 一件工作可以用2种方法完成,有3人会用第1种方法完成,另外5人一会用第2种方法完成, 从中选出1人来完成这件工作,不同选法的种数是( )・A. 8B. 15C. 16D. 30答案:A2.从甲地去乙地有3班火车,从乙地去丙地有2班轮船,则从甲地去丙地可选择的旅行方式有 ( )A. 5种B. 6种C. 7种D. 8种答案:B1, 2, 3, 4可组成无重复数字的两位数的个数是( B. 20 C. 16 D. 12 答案:C 5.李芳有4件不同颜色的衬衣,3件不同花样的裙子,另有两套不同样式的连衣裙.“五一”节 需选择一套服装参加歌舞演出, A. .24 B. 14则李芳冇( )种不同的选择方式( D. 9 )C. .10 答案:B6.设儿〃是两个非空集合,定义A :,b) a E A, bE ,若 P 二 = {0,1,2}, e = {1,2,3,4}, 则体0中元索的个数是()A. 4B. 7C. 12D. 16 答案:C二、填空题7.商店里冇15种上衣,18种裤子,某人要买一件上衣或一条裤子,共冇 _______ 种不同的选法; 要买上衣,裤子各一件,共有 ______ 种不同的选法.答案:33, 2708.十字路口来往的车辆,如果不允许回头,共有 ________ 种行车路线.)条不同的线路可通电( )A. 1B. 2C. 34.由数字0, A. 253.如图所示为一电路图,从弭到〃共冇(答案:D9.已知{0,3,4},呢{127,8},则方程(x-a)2+(y-fe)2 =25表示不同的圆的个数是答案:1210.__________________________________________________________________ 多项式(q +色+dj・(b] +乞)+ (。
4 +他)・(仇+仿)展开后共有___________________________ 项.答案:1011.___________________________ 如图,从A-C,有种不同走法,.12.将三封信投入4个邮箱,不同的投法有__________种.答案:6答案:43三、解答题13.一个口袋内装有5个小球,另一个口袋内装有4个小球,所有这些小球的颜色互不相同. (1)从两个口袋内任取一个小球,有多少种不同的取法?• (2)从两个口袋内各取一个小球,有多少种不同的取法?解:(1) N = 5 + 4 = 9 种;(2) N = 5x4 = 20种.14.某校学生会由高一年级5人,高二年级6人,高三年级>1人组成.(1)选其中1人为学生会主席,有多少种不同的选法?(2)若每年级选1人为校学牛会常委,有多少种不同的选法?(3)若要选出不同年级的两人参加市里组织的活动,有多少种不同的选法?解:(1) N = 5 + 6 + 4 = 15 种;.(2)N = 5x6x4 = 120种;(3) 2 = 5x6 + 6x4 + 4x5 = 74种15.己知集合M ={-3,-2,-1,0,1,2}, P(a, b)是平面上的点,a, be M .(1)P(a, b)可表示平面上多少个不同的点?(2)P(a, b)可表示多少个坐标轴上一的点?解:(1)完成这件事分为两个步骤:自的取法有6种,方的取法也有6种, ・・・戶点个数为^6X 6=36(个);(2)根据分类加法计数原理,分为三类:①x轴上(不含原点)有5个点;②y轴上(不含原点)有5个点;③既在/轴,又在y轴上的点,即原点也适合,・•・共冇从5+5+1=41 (个).赠:我的写字心得体会从小开始练习写字,几年来我认认真真地按老师的要求去练习写字。
以前练习写字,大多是在印有田字格或米字格的练习本上进行。
教材中田字格或米字格里的范字我都认真仿写,其难度较大。
我写起来标准难以掌握,不是靠上了,就是靠下了;不是偏左,就是偏右。
后来在老师的指导下,我练习写字时,一开始观察字的笔画偏旁在格子中的位置,做到心中有数,然后才进行仿写,并要求把字尽量写大,要写满格子。
这样写的好处有两个:一是培养我读帖习惯,可以从整体布局上纠正我不能把字写在格子正确位置上的毛病;二是促使我习惯写大字,这样指关节、腕关节运动幅度大,能增强手指、手腕的灵活性,有利于他们写字水平的持续提高。
这使我意识到,写字必须做到以下几点:一、提高对练字重要性的认识。
写字不仅能培养我们认真、细心的良好习惯,勤奋、刻苦的精神,健康、高雅的情趣,还能促进自己的注意力、观察力、意志力、审美力的发展。
二、能使我的写字姿势得到训练。
握笔姿势和坐姿是否正确,不但会影响字的美观和书写的速度,而且会影响自己的视力和身体的正常发育。
写字时随时提醒自己写字时要做到“三个一”(眼离书本一尺远,胸离书桌一拳远,手离笔尖一寸远)。
有意识地注意纠正自己的姿势,并持之以恒。
逐渐地,这样就能保持正确、良好的写字姿三、做好进行自我评价。
及时进行自评可以增强自己的兴趣和积极性,找出自己的缺点。
在自我评价后,要找爸爸妈妈进行检查和督导,让大人谈谈哪些字写得好,好在哪里;哪些字写得不好,为什么没有写好。
和家长共同评价、交流写字积极性会更高。
四、在家长的鼓励和表扬下认真练习。
练字是需要长时间坚持的,有时会觉得进步很慢,因而想弃练字。
这时,我们要知道自己的练习是有成绩的,字是有明显进步的。
这样,就会体会到成就感,也就会坚持练下去。
在老师的帮助下,自己的努力下我的写字水平也提高了许- 灿中心小学每周例会主题:教师谈课改体会(2016-2017学年第二学期)《“问题学生”应如何正确引》主讲人:2017 年1 月15 H内容每个学校,每个班级,都存在着一些学习成绩和品德行为都比较差的学生。
我们叫这样的学生为问题学生。
问题学生的形成原因是多方面的。
针对这样的学生我们大部分老师的态度是恨铁不成钢。
轻则表情严肃,不苟言笑,用我们的严厉维护着〃师道尊严〃,问题学生在班级里虽然不多,但他会经常给你找事、惹事z如果做不好问题学生的转化工作z许多时候我们的教育教学工作都会很难开展,班级的其他同学也会受到他们的不良影响。
而我们的教育是面向全体学生的,不能因为他们是问题学生而轻言放弃。
每个孩子身上都蕴藏着他独特的个人潜力,教育的责任是把它发掘出来,并且发扬光大,以不断提升他的生命意义。
因此正确对待问题学生是班主任工作的_门艺术z也是班级工作的重要人物之一。
那么如何正确对待班级中的问题学生呢?我认为应该从以下几个方面着手:—、分析原因,对症下药每一个学生的生活条件和生活环境都是不一样的,因此形成的问题也是各种各样的。
作为老师,我们必须科学、合理、全面的分析不健康心理的症结,有的放矢,对症下药,及时与家长和学校的心理辅导老师沟通、交流,制定合理、切实可行的对策,这样才能取得好的转化与治疗作用。
二、真诚相待,用爱感化教育是一门爱的艺术,没有爱就没有教育,也就没有问题学生的转化。
爰是一种巨大的力量,爱能使坚冰化水,顽石成玉,能使受伤的幼小心灵能到治疗。
那么用怎样的方式去管理班级才是真诚相待,用爰感化呢?我认为应该做到以下几点:L多民主,少强制。
要求我们要充分调动学生的积极性和主动性,引导学生制定规章制度、进行民主评议、换选班干部和处理班级事件,而不是单从班主任的主观愿望出发,强行这样做或那样做。
2.多激励,少批评。
要求我们要善于发现学生自身优点、长处,培养学生的自尊心、自信心、上进心,通过发扬优点来克服缺点;要善于用英雄模范、先进人物的事迹来激励学生积极向上”而不是一味地批评和处罚。
3多引导z少说教。
要求我们不单要告诉学生什么是对什么是错,还要告诉学生为什么,并具体指导学生去做。
有时还需要班主任亲自示范z手把手地教4.多用情,少用气。
要求我们对待犯错误的学生,要以情感人,亲切和蔼,心平气和,而不应怒气冲天,训斥指责,或者有意冷淡疏远。
努力创造一个和谐、宽松、民主、平等的学习氛围,使每个学生能轻松,愉快地学习,能充分调动每个学生学习的积极性,主动去学习是我们努力的目标。
三、给予自信,努力感化有问题为的学生由于常常受到教师的批评、指责,同学们的取笑、歧视,其心理总是比较心虚、敏感的,对教师和周围的同学也存有戒心。
要消除这些有过错行为的学生的恐惧心理和敌对情绪”应设法给予他们自信”谅解他们的过错,信任他能改正过来,从根本上改变同他们的关系。
如果师生关系不融洽,学生对老师不抱有信任感,那么无论你怎么做,也难以收到预期的效果。
老师在教育该类学生时,要让他们感到老师理解他,与他们有共同的感受,也可以直接向这些学生说明〃过去的事情就算了,好坏看今后的表现〃。
如果发现该学生的兴趣所在,就让他做力所能及的工作;发现该学生的优点,哪怕是一点小小的成绩,也应在大家面前肯定,鼓励他。
也可以用日记或者作文的方式去帮助、感化他。
只要真诚付出,只要努力过,就一定会得到我们想要的回报。
但要真正取得效果z需要经过一走的时间z毕竟这是一项深入细致的思想工作。
我们在给予学生自信的同时,也要给予自己信心,坚信这些有过问题行为的学生,是完全能够改正的。
多念他们的优点,少想他们的缺点;多说他们的可爱,少想他们的不足,那你就会发现学生越来越可爱,越来越听话了。
〃冰冻三尺非一日之寒〃,矫正过错行为也不是一次两次教育就可以解决问题的。
学生的一错再错并不是简单的重复,也不能认为是学生的屡教不改,这是变化中的新错误。
这项细水长流的工作具有长期性、复杂性、反复性的特点。
教师认识到这一点,就能放宽自己,满怀热情,培养和陶冶小学生的的道德情感, 稳定和强化良好的行为习惯。
总之,一口气吃不成胖子,对学生的教育也非一朝一夕之功,一个好老师,应当有足够的耐心,等待每一个学生的每一次进步,并为学生的每一次进步感到由衷的高兴,不管进步是大还是小。
14。