光伏建筑一体化(一)-完整版

合集下载

光伏建筑一体化上课讲义

光伏建筑一体化上课讲义

光伏建筑一体化将光伏技术引入到建筑中全球气候变化的潜在威胁,日益增长的能源需求,化石能源不可避免的枯竭,使得人类对可再生能源的需求越来越迫切。

与此同时,建筑能耗在工业国家中已经占到了20%-30%,因此越来越需要在建筑设计中考虑能耗和环境。

传统的节能建筑考虑了隔热、采暖、通风、温室、光照设计等方面,但光伏发电主动式地产生高品位能量,与建筑完美结合,提供了一种可持续建筑的新理念。

什么是光伏建筑一体化光伏建筑一体化(BIPV)是将建筑和光伏发电结合的一种理念。

这种发电系统既能够发电,又是建筑的一部分。

BIPV系统的标准构件是光伏组件(PV Module)。

太阳光照射在太阳电池上产生光生伏打效应,产生直流电。

太阳电池连接起来并封装在不同的材料上构成组件。

组件通过电气的串并联方式连接成光伏方阵。

光伏方阵输出的直流电经过逆变器转变为交流电并入电网。

光伏组件可以通过多种方式集成到建筑中。

最简单的将光伏组件直接安装在建筑的外表,但是这只是屋顶的光伏发电。

我们认为光伏建筑一体化,需要将光伏组件融合到建筑中,成为建筑的整体结构的一部分。

当光伏组件放在建筑的背景下,将不仅仅从能量的角度考虑。

因为光伏组件的特性也可以作为多功能的建筑因素,提供电能和控制采光,使建筑引进新的设计理念。

建筑一体化的光伏组件(BIPV module)可以代替传统的建筑材料,降低光伏发电的成本。

它并不占用额外的空间,在人口稠密的城市也能使用。

它可以做到发电就地使用,减少能量运输的损耗。

电网电能的需求高时,通常恰好是用电高峰,它可以起到调节电网的作用。

设计良好的一体化系统也能够提高市场的接受程度,为业主塑造良好的社会形象,是太阳能利用的最佳形式。

光伏组件没有机械运动部件,不会对建筑结构造成问题,维护成本低。

光伏组件已经证明可以正常工作至少30年以上。

光伏组件是模块化的技术,可以根据实际需要设计光伏方阵面积。

光伏技术基本到处都是可以使用,组件也容易运输和装载。

建筑光伏发电一体化方案

建筑光伏发电一体化方案

建筑光伏发电一体化方案1 太阳能光电建筑介绍1.1太阳能光电建筑的应用太阳能光电建筑是指将光伏发电与建筑物相结合,在建筑物的外围结构表面上布设光伏器件产生电力,从而使“建筑物产生绿色能源”。

光伏与建筑的结合有如下两种方式,都可以通过并网逆变器、控制装置与公共电网联接起来组成并网发电系统。

(1)一种是建筑与光伏系统相结合(如图1),把封装好的的光伏组件(平板或曲面板)安装在居民住宅或建筑物的屋顶上,组成光伏发电系统;(2)另外一种是建筑与光伏器件相结合(如图2),是将光伏器件与建筑材料集成化,用光伏器件直接代替建筑材料,即光伏建筑一体化(BIPV),如将太阳光伏电池制作成光伏玻璃幕墙、太阳能电池瓦等,这样不仅可开发和应用新能源,还可与装饰美化合为一体,达到节能环保效果,是今后的发展光伏建筑一体化的趋势。

图1 合肥某产业基地500KW光伏发电系统图2 国家发改委办公楼100KW光伏发电系统1.2太阳能光电建筑的优点从建筑、技术和经济角度来看,太阳能光电建筑有以下诸多优点:(1)可以有效地利用建筑物屋顶和幕墙,无需占用宝贵的土地资源,这对于土地昂贵的城市建筑尤其重要;(2)可原地发电、原地用电,在一定距离范围内可以节省电站送电网的投资。

对于联网户用系统,光伏阵列所发电力既可供给本建筑物负载使用,也可送入电网;(3)能有效地减少建筑能耗,实现建筑节能。

光伏并网发电系统在白天阳光照射时发电,该时段也是电网用电高峰期,从而舒缓高峰电力需求;(4)光伏组件一般安装在建筑的屋顶及墙的南立面上直接吸收太阳能,因此建筑集成光伏发电系统不仅提供了电力,而且还降低了墙面及屋顶的温升;(5)并网光伏发电系统没有噪音、没有污染物排放、不消耗任何燃料,具有绿色环保概念,可增加楼盘的综合品质。

1.3光伏与建筑结合的几种安装方式财政补贴将重点支持太阳能光电建筑一体化安装且发电主要用于解决建筑用能的项目,从项目类型上主要包括三类:一是建材型,指将太阳能电池与瓦、砖、卷材、玻璃等建筑材料复合在一起成为不可分割的建筑构件或建筑材料,如光伏瓦、光伏砖、光伏屋面卷材、玻璃光伏幕墙、光伏采光顶等;二是构件型,指与建筑构件组合在一起或独立成为建筑构件的光伏构件,如以标准普通光伏组件或根据建筑要求定制的光伏组件构成雨篷构件、遮阳构件等;三是与屋顶、墙面结合安装型,指在平屋顶上安装、坡屋面上顺坡架空安装以及在墙面上与墙面平行安装等形式。

光伏建筑一体化(一)

光伏建筑一体化(一)


这类系统与独立光伏系统相 比有如下特点。
B、独立光伏系统中光 伏方阵所发出的有效电 能要受蓄电池荷电状态 的限制,在蓄电池额定 容量充满后,光伏方阵 所发出的多余电力就只 能白白浪费,而且蓄电 池的自放电和充电过程 都要损耗部分电能,而 并网系统随时可从电网 中存取,可以充分利用 光伏方阵所发的电能。
BAPV
与建筑相结合的光伏系 统,可以作为独立电源 供电或者并网的方式供 电,而并网发电是当今 光伏应用的新趋势。
将现成的平板光伏组件安装在住房 或建筑物的屋顶或外墙,引出端经 过控制器及逆变器与公共电网相连 接,由光伏方阵及电网并联向用户 供电,这就形成了户用并网光伏系 统。
由于其全部或基本不用蓄电池,造 价大大降低,并且除了发电以外还 具有调峰、环保和代替某些建材的 多种功能,因而是光伏发电步入商 业应用并逐步发展成为基本电源之 一的重要方式。
独立发电系统示意图
并网发电系统示意图
简单直流光伏 水泵系统
大型光伏并网电站
独立发电系统示意图
并网发电系统示意图
独立发电系统
并网发电系统
BIPV系统根据安装形式主要分为两种形式:光伏屋顶结构(PVROOF)和光伏墙结构(PV-WALL)两种形式。
BIPV形式 1 2 3 4 5 6 7 8 光伏采光顶(天窗) 光伏屋顶 光伏幕墙(透明幕 墙) 光伏幕墙(非透明 幕墙) 光伏遮阳板(有采 光要求) 光伏遮阳板(无采 光要求) 屋顶光伏方阵 墙面光伏方阵 光伏组件 光伏玻璃组件 光伏屋面瓦 光伏玻璃组件 (透明) 光伏玻璃组件 (非透明) 光伏玻璃组件 (透明) 光伏玻璃组件 (非透明) 普通光伏电池 普通光伏电池 建筑要求 建筑效果、结构强度、采 光、遮风挡雨 建筑效果、结构强度、遮 风挡雨 建筑效果、结构强度、采 光、遮风挡雨 建筑效果、结构强度、遮 风挡雨 建筑效果、结构强度、采 光 建筑效果、结构强度、 建筑效果 建筑效果 类型 集成 集成 集成 集成 集成 集成 结合 结合

光伏建筑一体化简介介绍

光伏建筑一体化简介介绍
发展
近年来,随着全球气候变化和环境问题日益严重,光伏建筑一体化得到了更广泛的应用和推广。各国政府出台了 一系列政策鼓励光伏建筑一体化的建设和应用,同时,科研机构和企业也在不断研发新的技术和产品,推动光伏 建筑一体化的进一步发展。
光伏建筑一体化的应用领域
住宅建筑
家庭住宅是光伏建筑一体化的重要应用领域。通 过在屋顶、外墙、窗户等部位安装光伏组件,家 庭住宅可以实现自给自足的能源供应,降低能源 成本。
概念
光伏建筑一体化通过将光伏组件与建筑结构、材料和系统相结合,实现建筑外 观、功能和能源需求的统一,为绿色建筑和可持续发展提供了一种有效的解决 方案。
光伏建筑一体化的历史与发展
历史
光伏建筑一体化的发展可以追溯到20世纪70年代的石油危机时期,当时人们开始意识到能源危机并开始寻求可再 生能源的解决方案。随着光伏技术的不断进步和成本降低,光伏建筑一体化逐渐成为一种可行的建筑解决方案。
通过在建筑物上安装太阳能板,可以减少 电费支出,并在长期运营中获得回报。
美化建筑外观
灵活性
光伏板可以设计成各种形状和颜色,与建 筑物的外观完美融合,提升建筑的整体美 感。
光伏建筑一体化适用于各种类型的建筑, 无论是住宅、商业还是工业建筑,都能灵 活地应用。
光伏建筑一体化的挑战
成本问题
虽然长期运营可以获得经济效益,但初期的 投资成本较高,可能会阻碍其推广。
02
光伏建筑一体化的技术实现
光伏组件的选择与设计
01
02
03
高效能
选择高效能的光伏组件, 能够提高发电效率,降低 成本。
耐久性
考虑光伏组件的使用寿命 ,选择耐久性强的材料, 确保长期稳定的发电效果 。
适应性

第一次课 光伏建筑一体化介绍

第一次课 光伏建筑一体化介绍
明确产权 不能破坏建筑自身性能(载荷、电力安全、防水等) 避免遮挡
预留检修通道
光伏建筑一体化介绍
2、BIPV
设计要点 说明 如:光伏幕墙抗风压、平面内变形等要达到要求; 光伏屋顶抗冰雹、气密性、水密性等要达到要求 如:线缆尽量隐蔽;接线盒小型化、多样化 如:光伏系统直流侧应设置必要的触电警示和防止 触电的安全措施 如:采用CIGS、非晶硅、CdTe等薄膜电池 如:使用直流负载电器;光伏保温材料一体化集成 ;光伏电致变色一体化集成;PV-LED一体化集成
安装在屋顶和墙壁等外围护结构的光伏阵列,在吸收太阳能转化为电能
的同时,还大大降低了建筑外围护结构表面的综合温度,减少了墙体得热 和室内空调冷负荷。
光伏建筑一体化介绍
一、定义
光伏建筑一体化是指将太阳能光伏发电系统与建筑相结合的技术。
太阳电池结构图
二、应用类型 根据光伏发电系统与建筑结合方式的不同,可将光伏建筑 一体化分为两种类型: 1、BAPV (Building Attached Photovoltaic) 其特点为:封装好的光伏组件作为附加构件依附于现有建 筑上,建筑作为载体,仅起支撑作用。 2、BIPV(Building Integrated Photovoltaic) 其特点为:光伏组件以一种建筑材料成为建筑物不可分割 的一部分。
为什么需要光伏建筑一体化?
光伏与建筑结合可以减少建筑对化石能源的消耗; 对城镇用电能起到积极的调峰作用;
光伏与建筑结合可就地安装,就地发电,就地上网,不需要另外架设输
电线路; 光伏与建筑结合,安装在屋顶或墙面上光伏发电没有噪声,没有排放,不消耗任何燃料,不会给人们的生活带 来任何不便,几乎所有建筑物都可以与建筑光伏构件结合;
满足建材要求 满足建筑美观要求 电气安全 选择弱光性能好的组件产品

光伏建筑一体化

光伏建筑一体化

光伏建筑一体化光伏建筑一体化是指将光伏发电系统与建筑物的设计、建造和运营相结合,将光伏发电设备整合到建筑物的外立面、屋顶、遮阳设施等部位,使建筑物具备发电功能,同时保持建筑的美观和功能。

光伏建筑一体化的具体实现方式包括以下几个方面:1. 外立面光伏建筑一体化:将光伏组件安装在建筑物的外墙表面,利用太阳能将光能转化为电能。

这种方式可以利用建筑物的立面空间,实现光伏发电和建筑外观的有机结合。

2. 屋顶光伏建筑一体化:将光伏组件安装在建筑物的屋顶上,利用太阳能进行发电。

这种方式可以最大限度地利用建筑物的屋顶空间,将其转化为发电设备的安装面。

3. 遮阳光伏建筑一体化:将光伏组件安装在建筑物的遮阳设施上,如阳台、雨棚、遮阳板等。

这种方式可以实现遮阳和发电的双重功能,兼顾建筑物的舒适性和能源利用。

4. 窗户光伏建筑一体化:将光伏组件嵌入建筑物的窗户中,利用太阳能进行发电。

这种方式可以利用建筑物的窗户面积,实现发电和采光的双重效果。

光伏建筑一体化的优势包括:1. 节约土地资源:将光伏发电系统整合到建筑物中,不需要额外的土地或场地,节约了土地资源的利用。

2. 提高建筑能源利用效率:光伏建筑一体化可以将太阳能直接转化为电能,提高建筑的能源利用效率,降低能源消耗。

3. 美化建筑外观:光伏组件可以与建筑外观进行有机结合,不仅实现了发电功能,还可以美化建筑物的外观。

4. 减少建筑物的碳排放:光伏发电是一种清洁能源,使用光伏建筑一体化可以减少建筑物的碳排放,降低对环境的影响。

总之,光伏建筑一体化是将光伏发电系统与建筑物相结合,实现发电和建筑功能的有机融合。

它是可持续发展和绿色建筑的重要组成部分,具有广阔的应用前景。

光伏建筑一体化简介演示

光伏建筑一体化简介演示

政府政策
政府将出台更多支持可再生能源发展 的政策,为光伏建筑一体化的发展提 供政策保障。
技术研发支持
政府将加大对光伏建筑一体化技术研 发的支持力度,推动技术创新和产业 升级。
财政支持
政府将加大对光伏建筑一体化的财政 支持力度,提供税收优惠、补贴等措 施。
04
光伏建筑一体化案例分析
光伏建筑一体化案例分析
• 光伏建筑一体化(BIPV)是一种将太阳能光伏发电 系统集成到建筑中的技术,旨在实现绿色、可持续 的能源供应。通过将光伏组件与建筑结构相结合, BIPV技术不仅可以提供可再生能源,还可以降低建 筑能耗和碳排放。
06
未来展望与总结
未来发展方向与趋势
技术创新
绿色建筑
随着光伏技术的不断进步,光伏建筑一体 化将朝着更高效率、更低成本的方向发展 。
政策支持
政府应加大对光伏建筑一体化的政策支持力度,制定更加优惠的税收 政策、补贴政策等,促进产业发展。
技术研发
鼓励企业加大技术研发投入,提高光伏组件的转换效率和可靠性,降 低成本。
市场推广
加强光伏建筑一体化的市场推广力度,提高公众认知度和接受度,推 动市场需求增长。
国际合作
加强国际合作,引进国外先进技术和管理经验,共同推动光伏建筑一 体化的发展。
• 光伏建筑一体化(BIPV)是一种将太阳能光伏发电系统集成到 建筑上的技术,旨在实现建筑物的能源自给自足和减少碳排放 。通过将光伏发电与建筑设计相结合,BIPV技术不仅可以提高 建筑的能效,还可以为建筑物提供可再生能源。
05
光伏建筑一体化面临的挑战与 解决方案
光伏建筑一体化面临的挑战与解决方案
总结与致谢
• 本文对光伏建筑一体化进行了简要介绍和演示,探讨了其发 展现状和未来趋势。通过深入分析,提出了对行业的启示和 建议。希望通过本文的介绍,能对光伏建筑一体化的发展和 应用起到一定的推动作用。在此,感谢各位专家、学者和读 者的关注和支持。

光伏建筑一体化PPT精选文档

光伏建筑一体化PPT精选文档

将现成的平板光伏组件安装在住房 或建筑物的屋顶或外墙,引出端经 过控制器及逆变器与公共电网相连 接,由光伏方阵及电网并联向用户 供电,这就形成了户用并网光伏系 统。
由于其全部或基本不用蓄电池,造 价大大降低,并且除了发电以外还 具有调峰、环保和代替某些建材的 多种功能,因而是光伏发电步入商 业应用并逐步发展成为基本电源之 一的重要方式。
并网发电系统就是光伏系统与公共电网相 连,光伏发电系统产生的电除自己使用外, 还可向公共电网输出。
11
光伏发电系统简介
独立发电系统示意图
并网发电系统示意图
简单直流光伏 水泵系统
大型光伏并网电站
12
光伏发电系统简介
独立发电系统示意图
并网发电系统示意图
13
光伏发电系统简介
独立发电系统
并网发电系统
7
屋顶光伏方阵
普通光伏电池
建筑效果
8
墙面光伏方阵
普通光伏电池
建筑效果
类型 集成 集成 集成 集成 集成 集成 结合 结合
BAPV
15
光伏与建筑物结合(BIPV)的主 要形式
16
二、光伏与建筑物结合的特点与建筑相结合的光伏系 统,可以作为独立电源 供电或者并网的方式供 电,而并网发电是当今 光伏应用的新趋势。
作为独立电源系统外,已经开始进入联网
户用和商业建筑领域。
进入90年代后,随着常规发电成本的上升
和人们对环境保护的日益重视,一些国家
纷纷实施、推广太阳能屋顶计划,比较著
名的有德国十万屋顶计划、美国百万屋顶
计划以及日本的新阳光计划等。
你认为这个 观点对吗?
“光伏发电与建筑集成化”(BAPV/BIPV)
14

光伏建筑一体化(BIPV)

光伏建筑一体化(BIPV)

BIPV目录[隐藏]BIPV主要的安装形式BIPV的定义BIPV的优势BIPV在国外的发展现状BIPV在国内的发展动态BIPV的发展方向BIPV建筑设计中需注意的几个问题BIPV主要的安装形式BIPV的定义BIPV的优势BIPV在国外的发展现状BIPV在国内的发展动态BIPV的发展方向BIPV建筑设计中需注意的几个问题[编辑本段]BIPV主要的安装形式光伏建筑一体化(BIPV)主要的安装形式有以下几种:立面平屋顶坡屋顶遮阳[编辑本段]BIPV的定义BIPV即Building Integrated PV,PV即Photovoltaic。

BIPV(光伏建筑一体化)技术是将太阳能发电(光伏)产品集成到建筑上的技术。

光伏建筑—体化(BIPV)不同于光伏系统附着在建筑上(BAPV:Building Attached PV)的形式。

现代化社会中,人们对舒适的建筑热环境的追求越来越高,导致建筑采暖和空调的能耗日益增长。

在发达国家,建筑用能已占全国总能耗的30%—40%,对经济发展形成了一定的制约作用。

[编辑本段]BIPV的优势1. 能够满足建筑美学的要求BIPV建筑首先是一个建筑,它是建筑师的艺术品,其成功与否关键一点就是建筑物的外观效果。

在BIPV建筑中,我们可通过相关设计将接线盒、旁路二极管、连接线等隐藏在幕墙结构中。

这样既可防阳光直射和雨水侵蚀,又不会影响建筑物的外观效果,达到与建筑物的完美结合,实现建筑大师们的构想。

2. 能够满足建筑物的采光要求对建筑物来说光线就是灵魂,其对光影的要求甚高。

BIPV建筑是采用光面超白钢化玻璃制作的双面玻璃组件,能够通过调整电池片的排布或采用穿孔硅电池片来达到特定的透光率,即使是在大楼的观光处也能满足光线通透的要求。

当然,光伏组件透光率越大,电池片的排布就越稀,其发电功率也会越小。

3. 能够满足建筑的安全性能要求BIPV组件不仅需要满足光伏组件的性能要求,同时要满足幕墙的三性实验要求和建筑物安全性能要求,因此需要有比普通组件更高的力学性能和采用不同的结构方式。

光伏建筑一体化

光伏建筑一体化

光伏建筑一体化第1章太阳能光伏与建筑一体化应用现状及趋势1.1我国的太阳能资源分析中国的疆界,南从北纬4°附近西沙群岛的曾母暗沙以南起,北到北纬53°31´黑龙江省漠河以北的黑龙江心,西自东经73°40´附近的帕米尔高原起,东到东经135°05´的黑龙江和乌苏里江的汇流处,土地辽阔,幅员广大。

中国的国土面积,从南到北,自西至东,距离都在5000km以上,总面积达960万平方公里,为世界陆地总面积的7%,居世界第3位。

在中国广阔富饶的土地上,有着十分丰富的太阳能资源。

全国各地太阳年辐射总量为3340r-J8400MJ/m2,中值为5852MJ/m2。

从中国太阳年辐射总量的分布来看,青海、新疆、宁夏南部、甘肃、内蒙古南部、山西北部、陕西北部、辽宁、河北东南部、山东东南部、河南东南部、吉林西部、云南中部和西南部、广东东南部、福建东南部、海南岛东部和西部以及台湾省的西南部等广大地区的太阳辐射总量很大。

尤其是青藏高原地区最大,这里平均海拔高度在4000m以上,大气层薄而清洁,透明度好,纬度低,日照时间长。

例如人们称为"日光城"的拉萨市,1961r-J1970年的平均值,年平均日照时间为3005.7h,相对日照为68%,年平均晴天为108.5d、阴天为98.8d,年平均云量为4.8,年太阳总辐射量为8160MJ/m2,比全国其他省区和同纬度的地区都高。

全国以四川和贵州两省及重庆市的太阳年辐射总量最小,尤其是四川盆地,那里雨多、雾多、晴天较少。

例如素有"雾都"之称的重庆市,年平均日照时数仅为1152.2h,相对日照为26%,年平均晴天为24.7d、阴天达244.6d,年平均云量高达8.4。

其他地区的太阳年辐射总量居中。

中国太阳能资源分布的主要特点有:①太阳能的高值中心和低值中心都处在北纬22°- 35°这一带,青藏高原是高值中心,四川盆地是低值中心;②太阳年辐射总量,西部地区高于东部地区,而且除内蒙古和新疆两个自治区外,基本上是南部低于北部;③由于南方多数地区云多雨多,在北纬30°-40°地区,太阳能的分布情况与一般的太阳能随纬度而变化的规律相反,太阳能不是随着纬度的增加而减少,而是随着纬度的升高而增长。

太阳能光伏建筑一体化(BIPV)

太阳能光伏建筑一体化(BIPV)

太阳能光伏建筑一体化-BIPVBuilding Integrated Photovoltaic一、B IPV的基本概念1 Basic Concepts(一)、BIPV的定义1.1 Definition所谓太阳能光伏建筑一体化是将太阳能利用设施与建筑有机结合。

BIPV is a solar energy utilization mode which is combined with buildings.从光伏方阵与建筑墙面、屋顶的结合来看,主要为光电采光顶和光电幕墙,前者是将光伏方阵作为建筑材料结构的功能部分,包括用太阳电池组件取代传统的屋顶覆盖层或替代屋顶保温层等;后者仅把特制的光伏组件作为建材的一部分,是在完整的建筑物上增加光伏方阵。

BIPV can be divided into photoelectric lighting roof and photoelectric wall. The former uses the solar cells array as structure material and solar modules replace traditional roof facing or roof heat preservation layer; the latter adds the solar cells array which is used as part of construct material to integral buildings.屋顶系统墙面系统Roof system Wall system 而光伏组件与建筑的集成来讲,主要有光电幕墙、光电采光顶、光电遮阳板等形式,这种集成既消除了太阳能对建筑物形象的影响,又避免了重复投资,降低了成本。

There are several integrated patterns between photovoltaic modules and buildings named photoelectric lighting roof, photoelectric wall, photoelectric sun visor and so on. Each of them not only reduces the cost but also keep the image of buildings.光电幕墙光电采光顶photoelectric wall photoelectric lighting roof公交站光伏遮阳顶photoelectric sun visor of bus station光伏建筑一体化是光伏系统依赖或依附于建筑的一种新能源利用形式,其主体是建筑,客体是光伏系统。

光伏建筑一体化技术

光伏建筑一体化技术

光伏建筑一体化技术
光伏建筑一体化技术是将太阳能光伏发电技术与建筑一体化设计相结合的一种技术。

光伏建筑一体化技术的目的是将太阳能光伏发电系统与建筑物的外观、结构和功能相融合,使得光伏发电系统不再是单纯的设备安装在建筑物上,而是成为建筑物的一部分。

光伏建筑一体化技术可以分为两种类型:一种是光伏外立面技术,即将太阳能电池板安装在建筑物的外立面上,形成太阳能电池板外墙,既可以保护建筑物,又能够发电;另一种是光伏屋顶技术,即将太阳能电池板安装在建筑物的屋顶上,利用建筑物的屋顶空间进行太阳能发电。

光伏建筑一体化技术的优势包括:一是可以降低建筑物的能耗,减少对传统能源的依赖;二是可以提供建筑物的自给自足能源,增加建筑物的能源可持续性;三是可以美化建筑物的外观,增加建筑物的艺术价值;四是可以利用建筑物的外墙和屋顶空间,增加光伏发电系统的容量。

然而,光伏建筑一体化技术还存在一些挑战和限制。

首先是成本问题,光伏建筑一体化技术相对于传统建筑技术来说成本较高,需要进一步降低成本才能推广应用。

其次是技术难题,光伏建筑一体化技术需要解决太阳能电池板和建筑物外观、结构的协调性问题。

最后是市场认可问题,尽管光伏建筑一体化技术具有广阔的前景,但市场对于这种新型技术的认可度还需要提高。

总之,光伏建筑一体化技术是未来能源发展的方向之一,通过将太阳能光伏发电技术与建筑一体化设计相结合,可以实现建筑物的节能减排和能源自给自足,具有重要的经济和环境意义。

光伏建筑一体化

光伏建筑一体化
第一类是光伏方阵与建筑的结合。这种方式是将光伏方阵依附于建筑物上,建筑物作为光伏方阵载体,起支 承作用。
第二类是光伏方阵与建筑的集成。这种方式是光伏组件以一种建筑材料的形式出现,光伏方阵成为建筑不可 分割的一部分。
光伏方阵与建筑的结合(即第一类)是一种常用的形式。2008年奥运会体育赛事的国家游泳中心和国家体育 馆等奥运场馆中,采用的就是光伏方阵与建筑结合的太阳能光伏并网发电系统,这些系统年发电量可达70万千瓦 时,相当于节约标煤170吨,减少二氧化碳排放570吨。
普通光伏组件的连接线一般外露在组件下方,BIPV建筑中光伏组件的连接线要求全部隐藏在幕墙结构中。
在设计BIPV建筑时要考虑电池板本身的电压、电流是否方便光伏系统设备选型,但是建筑物的外立面有可能 是一些大小、形式不一的几何图形组成,这会造成组件间的电压、电流不同,这个时候可以考虑对建筑立面进行 分区及调整分格,使BIPV组件接近标准组件电学性能,也可以采用不同尺寸的电池片来满足分格的要求,以最大 限度地满足建筑物外立面效果。另外,还可以将少数边角上的电池片不连接入电路,以满足电学要求。
一个建筑物的成功与否,关键一点就是建筑物的外观效果,有时候细微的不协调都是不能容忍。但普通光伏 组件的接线盒一般粘在电池板背面,接线盒较大,很容易破坏建筑物的整体协调感,通常不为建筑师所接受,因 此BIPV建筑中要求将接线盒省去或隐藏起来,这时的旁路二极管没有了接线盒的保护,要考虑采用其他方法来保 护它,需要将旁路二极管和连接线隐藏在幕墙结构中。比如将旁路二极管放在幕墙骨架结构中,以防阳光直射和 雨水侵蚀。
光伏幕墙,光伏幕墙要符合BIPV要求:除发电功能外,要满足幕墙所有功能要求:包括外部维护、透明度、 力学、美学、安全等,组件成本高,光伏性能偏低;要与建筑物同时设计、同时施工和安装,光伏系统工程进度受 建筑总体进度制约;光伏阵列偏离最佳安装角度,输出功率偏低;发电成本高;为建筑提升社会价值,带来绿色概 念的效果。

太阳能光伏建筑一体化[]

太阳能光伏建筑一体化[]

太阳能光伏建筑一体化(一)前言1. 1金融危机促进发展新能源-太阳能光伏建筑一体化2008年世界金融危机使全球资产面临重新溢价,金融版图随之悄然改写,与之相伴的还有国际油价的跌宕起伏。

伴随金融危机恐慌心理的蔓延,影响金融危机的因素扩大。

能源安全,作为世界各国政府密切关注及深入研究的课题亦被提上议事日程,世界各国从保护国家安全角度,制定和调整本国的能源战略。

为了对付世界性的能源、环境、金融等危机的影响,各国政府高度重视可再生清洁新能源,并把太阳能发电作为首选发展方向。

美国奥巴马新政府将新能源列为振兴经济、化解危机的重要对策;美国迫切需要寻找替代传统能源的战略发展方向,将更多地向太阳能等新能源技术投资,奥巴马指出:“能够获得廉价而且清洁的能源的国家,将在未来的经济竞争中胜出,这是美国能够赢得未来的经济竞争的道路。

”2009年5月27日,美国总统奥巴马在拉斯韦加斯的内利斯空军基地视察太阳能电池板。

(图1.1),美国总统奥巴马提出的经济刺激计划中,首要的就是发展光伏发电能源,力图恢复美国在能源技术方面的国际领先地位,并使光伏发电可再生能源成为美国经济复苏的“发动机”。

图1.1 2009年5月27日,奥巴马在拉斯韦加斯空军基地视察太阳能电池板德国、西班牙、意大利、法国等多个欧盟国家及日本相继出台新政策,强化部署发展太阳能产业;中东产油国纷纷把传统能源产业利润转投太阳能光伏产业;印度、印尼等发展中国家开始出台实质性的扶持光伏产业发展新政策。

特别引人瞩目的是2009年3月19、20日,胡锦涛总书记等中央领导联袂参加“2009中国国际节能减排和新能源科技博览会”,反复强调:“要大力推进节能减排,积极开发新能源”;温家宝总理在广东调研时已明确强调“太阳能电池是可再生能源、清洁能源发展的重要载体,也是我国电力工业、能源工业的重要方向”。

之后,国家财政部、住房和城乡建设部又于3月23日发出《关于加快推进太阳能光电建筑应用的实施意见》(财政部财建[2009]128号),财政部同步印发《太阳能光电建筑应用财政补助资金管理暂行办法》(财建[2009]129号)、《关于印发太阳能光电建筑应用示范项目申报指南的通知》(财办建[2009]34号),(简称三文件)推出了大幅度补贴示范性光伏发电项目的政策。

建筑光伏一体化技术

建筑光伏一体化技术

建筑光伏一体化技术光伏建筑一体化技术(BIPV),光伏发电第一部分建筑物光伏一体化技术第一章光伏建筑发电系统简介1 光伏建筑一体化(BIPV)提出了“建筑物产生能源”的新概念,,即通过建筑物,主要是屋顶和墙面与光伏发电集成起来,使建筑物自身利用绿色、环保的太阳能资源生产电力。

2光伏就是光转变成电的光生伏特的意思。

在光照条件下,光伏材料吸收光能后,在材料两端产生电动势,这种现象叫做光伏效应。

3光投射到光伏材料上存在反射、吸收和投射三种可能。

材料对于光的吸收量取决于材料的吸收系数和材料厚度。

4许多个太阳能电池连接起来,装配成一大块的太阳能电池板,简称光伏板。

5世界上所有的材料物质都可以分为固体、液体和气体,其中固体又可分为导体和绝缘体。

有一种材料,在低温下是绝缘体,在加入杂质、得到能量或者加热时就变成导体,这种材料叫做半导体。

带正电性质(有较高空穴浓度)的材料叫做p型半导体,带负电性质(有较高的电子浓度)的半导体叫n型半导体。

6用于太阳能电池的半导体材料有单晶体、多晶体和非晶体三种形式。

单晶体:整块晶片只有一个晶粒。

晶粒内的院子有次序的排列着,不存在晶粒便捷。

多晶体:一块晶片含有许多晶粒,晶粒之间存在边界。

非晶体:原子结构没有长序,材料含有未饱和的或悬浮的键。

7外加电压对pn结的影响:1)无外加电场:外界断路时,pn结无外加电场,只有自建电场,pn结处于平衡状态,带电粒子的飘移电流等于带电粒子的扩散电流,外电路没有电流。

2)外加正向电压:p型区一侧外接正极,外加电场与自建电场方向相反,pn结的电场减少,由于耗尽区内的电阻率大大的高于耗尽区外,外加电压几乎全部落在耗尽区,正向偏压下,电子从n型区注入p-n结耗尽区,流经p型区,通过外接电路再流入n型区与空穴复合;空穴从p型区注入p-n结耗尽区,流经n型区跟电子复合,外电路有电流,电流大小随着外加正向电压的大小而变。

3)外接反向电压:p型区一侧外接负极,外加电场与自建电场的方向相同,p-n结的电场增大,p型区产生的电子会加速漂移过p-n结耗尽区到n型区;n型区产生的空穴会加速飘移过p-n结耗尽区到p型区,外电路没有电流,但电压很高。

建筑光伏一体化技术

建筑光伏一体化技术

建筑光伏一体化技术光伏建筑一体化技术(BIPV),光伏发电第一部分建筑物光伏一体化技术第一章光伏建筑发电系统简介1 光伏建筑一体化(BIPV)提出了“建筑物产生能源”的新概念,,即通过建筑物,主要是屋顶和墙面与光伏发电集成起来,使建筑物自身利用绿色、环保的太阳能资源生产电力。

2光伏就是光转变成电的光生伏特的意思。

在光照条件下,光伏材料吸收光能后,在材料两端产生电动势,这种现象叫做光伏效应。

3光投射到光伏材料上存在反射、吸收和投射三种可能。

材料对于光的吸收量取决于材料的吸收系数和材料厚度。

4许多个太阳能电池连接起来,装配成一大块的太阳能电池板,简称光伏板。

5世界上所有的材料物质都可以分为固体、液体和气体,其中固体又可分为导体和绝缘体。

有一种材料,在低温下是绝缘体,在加入杂质、得到能量或者加热时就变成导体,这种材料叫做半导体。

带正电性质(有较高空穴浓度)的材料叫做p型半导体,带负电性质(有较高的电子浓度)的半导体叫n型半导体。

6用于太阳能电池的半导体材料有单晶体、多晶体和非晶体三种形式。

单晶体:整块晶片只有一个晶粒。

晶粒内的院子有次序的排列着,不存在晶粒便捷。

多晶体:一块晶片含有许多晶粒,晶粒之间存在边界。

非晶体:原子结构没有长序,材料含有未饱和的或悬浮的键。

7外加电压对pn结的影响:1)无外加电场:外界断路时,pn结无外加电场,只有自建电场,pn结处于平衡状态,带电粒子的飘移电流等于带电粒子的扩散电流,外电路没有电流。

2)外加正向电压:p型区一侧外接正极,外加电场与自建电场方向相反,pn结的电场减少,由于耗尽区内的电阻率大大的高于耗尽区外,外加电压几乎全部落在耗尽区,正向偏压下,电子从n型区注入p-n结耗尽区,流经p型区,通过外接电路再流入n型区与空穴复合;空穴从p型区注入p-n结耗尽区,流经n型区跟电子复合,外电路有电流,电流大小随着外加正向电压的大小而变。

3)外接反向电压:p型区一侧外接负极,外加电场与自建电场的方向相同,p-n结的电场增大,p型区产生的电子会加速漂移过p-n结耗尽区到n型区;n型区产生的空穴会加速飘移过p-n结耗尽区到p型区,外电路没有电流,但电压很高。

光伏建筑一体化

光伏建筑一体化

光伏建筑一体化技术目前光伏系统在建筑上的应用主要有两种方式,即BAPV(附着在建筑上的光伏系统)和BIPV(光伏建筑一体化)。

BIPV光伏建筑一体化,将光伏产品集成到建筑物上。

单晶硅双玻璃光伏组件作为一种建筑材料应用在建筑上,集发电、隔音、隔热、安全和装饰功能为一身,使建筑物本身成为一个新型功能性建筑。

随着人们对绿色建筑认识的加深,BIPV光伏建筑一体化将逐步取代常规BAPV的应用。

BIPV光伏系统,直接将太阳能电池与屋面建筑玻璃结合在一起,不仅避免了重复建设,节省了材料,而且减少了安装工序,也无需额外用地或增建其他设施。

既增加了屋面的透光性能,又起到装饰和遮阳的双重作用。

在节约能源的同时,最大限度地体现建筑美学,践行绿色设计理念。

太阳能光伏组件的选择光伏发电系统主要由一系列的单晶硅双玻璃光伏组件构成,将光伏组件作为一种新型建材使用,是建筑物不可分割的一部分。

而光伏组件的核心部件就是太阳能电池,它是一种利用光生伏特效应将太阳光能直接转换成电能的元件。

光电转换效率和制造成本是制约太阳能电池发展的两个重要问题。

目前太阳能电池均是以硅材料制造,可分为:单晶硅电池、多晶硅电池和非晶硅薄膜电池。

晶体硅太阳能电池发展最早,技术成熟,性能稳定,占太阳能电池总产量的90%,其高光电转换效率是非晶硅太阳能电池无法比拟的。

而单晶硅具有比多晶硅更高的光电转换效率,技术更成熟,颜色均匀稳定无色差、无花纹,市场份额更大,应用更广。

根据目前市场现状,由于硅材料的价格的大幅下降,晶体硅价格已基本接近非晶硅价格,因此,采用高效单晶硅太阳能电池具有更好的技术优势和品质保证。

太阳能光伏组件的成本分析目前单晶硅电池价格和非晶硅电池价格已基本相同。

但由于单晶硅电池光电转换率较高,非晶硅电池光电转换率较低,单位面积下单晶硅电池功率能达到非晶硅电池的2倍以上。

在总功率相同时,所需要的非晶硅电池面积将远大于单晶硅电池面积。

如再计入光伏组件合成合成时所使用的其他材料,单晶硅组件的单价将低于非晶硅组件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档