电磁感应中的电容器问题
剖析电磁感应中的电容器问题
难点挑战Җ㊀浙江㊀徐华兵㊀㊀电容器具有隔直流㊁通交流 的特点,可以理解为电容器具有 通变化的电流 的特点.实际教学中我们会发现学生对回路中电流变化的定量问题通常感觉难处理,本文就此类问题的解决办法进行剖析㊁归纳,以飨读者.1㊀电容器放电模型1 1㊀基础模型㊀图1如图1所示,电阻可忽略的光滑金属导轨与电动势为E 的电源相连,质量为m ㊁电阻为R的金属棒放在导轨上,一电容通过单刀双掷开关与导轨相连.先将开关扳向左侧给电容器充电,再将开关扳向右侧让电容器通过导体棒放电.1 2㊀电容器电压和电荷量变化规律当开关与左侧电源接触时,电容器充电,电容器两极板间获得一个恒定的电压,充电时间很短(数量级一般为10-6s ).稳定后电容器两端电压U =E ,电荷量Q 0=C U =C E .当开关与右侧导轨接触时,电容器通过金属棒放电,有电荷通过金属棒,棒在安培力的作用下向右加速运动.电容器两极板电荷量减少,电压减小;金属棒速度增加,感应电动势增加.当棒切割磁感线产生电动势与电容器两极板间电压相等时,棒匀速运动.电容器不再放电,两极板间电压恒定,此时电容器两极板间电压U =B l v m ,电荷量Q =C U =C B l v m .导体棒感应电动势㊁电荷量与时间关系图线如图2㊁3所示.图2㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀图31 3㊀导体棒的运动规律根据牛顿第二定律有B I l =m a ,通过棒的电流逐渐减小,棒的加速度逐渐减小,棒做加速度减小的加速运动,最终以某一最大速度v m 匀速运动.对棒应用动量定理有B I l Δt =m v m -0,即有B l (C E -C B l v m )=m v m -0,解得v m =B l C Em +B 2l 2C.1 4㊀电路中的能量转化规律放电过程,电容器储存的电场能减少,棒的动能增加,而系统整个过程中的总能量应守恒.棒获得的动能E k m =12m v 2m =m (B l C E)22(m +B 2l 2C )2.电容器减少的能量ΔE =12C E 2-12C (B L v m )2=C E 2(m 2+2m B 2l 2C )2(m +B 2l 2C )2.从能量表达式中可以看出,电容器减少的能量比棒获得的能量要多,多余的能量转化为整个回路产生的热量和回路向外辐射的电磁波.而回路产生的热量和电磁辐射能E 损=ΔE -E k m =C E 2(m 2+2m B 2l 2C )2(m +B 2l 2C )2-m (B l C E )22(m +B 2l 2C )2=C E 2m2(m +B 2l 2C ).1 5㊀典型例题剖析例1㊀电磁轨道炮利用电流和磁场的作用使炮弹获得超高速度,其原理可用来研制新武器和航天运载器.电磁轨道炮原理图如图4所示,图中直流电源电动势为E ,电容器的电容为C .2根固定于水平面内的光滑平行金属导轨间距为l ,电阻不计.炮弹可视为一质量为m ㊁电阻为R 的金属棒MN ,垂直放在2个导轨间处于静止状态,并与导轨良好接触.首先开关S 接1,使电容器完全充电.然后将S 接至2,导轨间存在垂直于导轨平面㊁磁感应强度大小为B 的匀强磁场(图中未画出),MN 开始向右加速运动.求:(1)磁场的方向;(2)MN 刚开始运动时加速度a 的大小;(3)MN 离开导轨后电容器上剩余的电荷量Q .图4当开关拨向2时,电容器通过金属棒放电,金属棒在磁场中做加速度减小的加速运动,当金属棒MN 两端的电压和电容器两极板间的电压相等时,金属棒达到最大速度.(1)由左手定则可以判断磁场方向应垂直于导轨平面向下.(2)电容器完全充电后,两极板间电压为E ,当开。
例析妙用动量定理解决电磁学中问题
例析妙用动量定理解决电磁学中问题摘要:自从2017年高考改革增加选修3-5模块为必考内容,众所周知动量是3-5的主要内容,而动量观点、能量观点与力学观点是解决动力学问题的三种途径。
如今动量变成必考模块,使学生的知识架构更加完善,在解题思维方面视野将更加开阔,总体来说对于学生解决物理问题还是有帮助的。
但通过平时教学发现大部分学生在运用动量定理解决有关电磁学问题是较薄弱的。
本文通过典例分析加深学生对动量定理在电磁学中运用的认识。
关键词:动量定理电磁感应冲量安培力洛伦兹力电容器1.动量定理解决叠加场中恒力(电场力、重力)与洛伦兹力作用下的运动问题在解决这类问题之前,先分析下运动电荷所受洛伦兹力的冲量,假设在xoy平面存在一垂直该平面的匀强磁场,磁感应强度为B,有一带电量为q的带电粒子,以速度v在磁场中做匀速圆周运动。
某时刻速度方向如图1所示。
分别将v、f正交分解,可知:在时间t内f沿x轴方向的冲量为:同理,f在y轴方向的冲量为:【例1】如图所示,某空间同时存在场强为E、方向竖直向下的匀强电场以及磁感应强度为B、方向垂直纸面向里的匀强磁场。
从该叠加场中某点P由静止释放一个带电粒子,质量为m,电量为+q(粒子受到的重力忽略不计),其运动轨迹如图中虚线所示。
求带电粒子在电、磁场中下落的最大高度H?解答:设小球运动到最低位置时速度最大为v,方向水平任意时刻v沿x轴正向、y轴负向的分速度分别为vx ,vy.。
与vy.对应的洛仑兹力水平分力方向沿x轴正向,小球由静止释放到最低点的过程中,在水平方向上,应用动量定理得:······①小球由静止释放到最低点的过程中,由动能定理得:······②联立①②可得:如果上例1中,重力不可忽略不计(已知重力加速度为g),实际上水平方向上动量定理①式不变,全程由动能定理得:·····③联立①③同样可得:1.动量定理解决电磁感应中电荷量相关问题根据电流的定义式,式中q是时间t内通过导体截面的电量;又欧姆定律,R是回路中的总电阻;结合电磁感应中可以得到安培力的冲量公式,此公式的特殊性决定了它在解题过程中的特殊应用。
电磁感应中的电容器问题
电磁感应中的电容器与金属棒相结合的问题黄德利山东省兖州一中272100摘要:部分导体做变速运动产生变化的电流时,高中阶段的闭合电路欧姆定律就无法列式计算,学生感觉无从下手,从而这一类的问题成为高三复习的难点。
通过最近全国各地的一模考试发现,这类问题在各地一模中均有体现。
关键词:电磁感应;电容器;金属棒电容器是一个储存电荷的容器,它可以进行无数次的充放电.在充放电的过程中,可以理解为变化的电流可以通过电容器。
因此,在一些含有电容器的电磁感应电路中,当一部分导体做变速运动产生变化的电流时,高中阶段的闭合电路欧姆定律就无法列式计算,学生感觉无从下手,从而这一类的问题成为高三复习的难点。
通过最近全国各地的一模考试发现,这类问题在各地一模中均有体现。
实际上这类问题,只要认真分析,寻找其中的规律,这类问题其实也很好解决。
下面通过几个例题对与电容器相关的问题分类解决。
一、金属棒做匀加速直线运动例1、。
如图所示,位于同一水平面的两根平行导轨间的距离是L,导线的左端连接一个耐压足够大的电容器,电容器的电容为C.放在导轨上的导体杆cd与导轨接触良好,cd杆在平行导轨平面的水平力作用下从静止开始匀加速运动,加速度为a,磁感强度为B的匀强磁场垂直轨道平面竖直向下,导轨足够长,不计导轨和连接电容器导线的电阻,导体杆的摩擦也可忽略.求从导体杆开始运动经过时间t电容器吸收的能量E=?解析:据题意,导体杆MN加速切割磁感线,产生的感应电动势且不断增大,电容器两极板间电压随着增大,储存的电能增加,同时由于电容器处于连续充电状态中,电路中有持续的充电电流,故导体杆受到向左的安培力.因电容器在时间t 内吸收的电能可以用克服安培力做的功来量度,所以弄清楚充电电流及安培力的变化规律,就成为解答本题的关键。
设某时刻导体杆切割磁感线的速度为v,产生的感应电动势为E,电容器所带的电荷量为q,两极板间的电压为u,则有:u=E=BLv,q=Cu=CBLv。
专题16 电磁感应中的电路问题(解析版)
专题十六 电磁感应中的电路问题基本知识点解决电磁感应电路问题的基本步骤:1.用法拉第电磁感应定律算出E 的大小,用楞次定律或右手定则确定感应电动势的方向:感应电流方向是电源内部电流的方向,从而确定电源正、负极,明确内阻r .2.根据“等效电源”和电路中其他各元件的连接方式画出等效电路图.3.根据E =Blv 或E =n ΔΦΔt结合闭合电路欧姆定律、串并联电路知识和电功率、焦耳定律等关系式联立求解.例题分析一、电磁感应中的简单电路问题例1 如图所示,足够长的平行光滑金属导轨水平放置,宽度L =0.4 m ,一端连接R =1 Ω的电阻,导轨所在空间存在竖直向下的匀强磁场,磁感应强度B =1 T 。
导体棒MN 放在导轨上,其长度恰好等于导轨间距,与导轨接触良好。
导轨和导体棒的电阻均可忽略不计。
在平行于导轨的拉力F 作用下,导体棒沿导轨向右匀速运动,速度v =5 m/s 。
(1)求感应电动势E 和感应电流I ;(2)若将MN 换为电阻r =1 Ω的导体棒,其他条件不变,求导体棒两端的电压U 。
(对应训练)如图所示,MN、PQ为平行光滑金属导轨(金属导轨电阻忽略不计),MN、PQ 相距L=50 cm,导体棒AB在两轨道间的电阻为r=1 Ω,且可以在MN、PQ上滑动,定值电阻R1=3 Ω,R2=6 Ω,整个装置放在磁感应强度为B=1.0 T的匀强磁场中,磁场方向垂直于整个导轨平面,现用外力F拉着AB棒向右以v=5 m/s的速度做匀速运动。
求:(1)导体棒AB产生的感应电动势E和AB棒上的感应电流方向;(2)导体棒AB两端的电压U AB。
二、电磁感应中的复杂电路问题例2如图所示,ab、cd为足够长、水平放置的光滑固定导轨,导体棒MN的长度为L=2 m,电阻r=1 Ω,有垂直abcd平面向下的匀强磁场,磁感强度B=1.5 T,定值电阻R1=4 Ω,R2=20 Ω,当导体棒MN以v=4 m/s的速度向左做匀速直线运动时,电流表的示数为0.45 A,灯泡L正常发光。
电磁感应中的例题
电磁感应中的电路问题1、如图所示,匀强磁场磁感应强度B=0.2T ,磁场宽度 L=3m , 一正方形金属框边长ab=r=1m ,每边电阻R=0.2 Q 金属框以v=10m/s 的速度匀速穿过磁场区,其平面始终保 持与磁感线方向垂直,求:⑴画出金属框穿过磁场区的过程中,金属框内感应电流 写出作图的依据)⑵画出两端电压U 随时间t 的变化图线.(要求写出作图的 a 一I 依据)J__Ib2、如图所示,两个电阻的阻值分别为 R 和2R,其余电阻不计,电容器电容量为 C,匀强磁场的磁感应强度为 B ,方向垂直纸面向里, 金属棒ab 、cd 的长度均为I,当棒ab 以速度 v 向左切割磁感线运动,棒 cd 以速度2v 向右切割磁感线运动时,电容器的电量为多大?哪一个极板带正电?X b3、()如图所示,两光滑平行金属导轨间距为导轨接触良好,整个装置处于垂直纸面向里的匀强磁场中,磁感应强度为 容为C,除电阻R 外,导轨和导线的电阻均不计•现给导线 右运动,当电路稳定后, MN 以速度v 向右做匀速运动,则A .电容器两端的电压为零B .电阻两端的电压为 BLvC .电容器所带电荷量为 CBLvD •为保持MN 匀速运动,需对其施加的拉力大小为 戌辛)如图所示,光滑导轨倾斜放置,其下端连接一个灯泡,匀强磁场垂直于导轨所在平面,当ab 棒下滑到稳定状态时,小灯泡获得的功率为 P 0,除灯泡外,其他电阻不计,:X XX Xd X Bx X XL X X X XX X XI 随时间t 的变化图线.(要求 J R XL,直导线 MN 垂直跨在导轨上,且与B ,电容器的电4、(L要使稳定状态灯泡的功率变为2P0,下列措施正确的是A .换一个电阻为原来一半的灯泡B .把磁感应强度 B增为原来的2倍C •换一根质量为原来的丿2倍的金属棒D •把导轨间的距离增大为原来的倍5、如图所示,电阻为2R 的金属环,沿直径装有一根长为 I ,电阻为R 的金属杆。
2025高考物理总复习电磁感应中的含电容器问题模型
此时电容器的电荷量q=CU=1×10-2 C。
(2)导体棒在 F1 作用下运动,根据牛顿第二定律可得 F1-mgsin α-BId=ma1
又有
Δ
I=
Δ
=
Δ
Δ
,a=
Δ
Δ
联立解得
1 - sin
a1=
=20
+ 2 2 2
由功能关系 W=E-E0 及 W=qU,结合 Q-U 关系图线,可知电容器所储存的电能
与其极板间的电压及电容间的关系式为
1
1
1
E= QU= CU·
U= CU2。
2
2
2
(2)当导体棒获得向右的初速度v0时,切割磁感线产生动生电动势给电容器
充电,设充电电流为I,则导体棒所受安培力大小为
FA=BIL,方向水平向左
恒力F1=0.54 N作用于导体棒,使导体棒从静止开始运动,经t时间后到达B
处,速度v=5 m/s。此时,突然将拉力方向变为沿导轨向下,大小变为F2,又经
2t时间后导体棒返回到初始位置A处,整个过程电容器未被击穿。求:
(1)导体棒运动到B处时,电容器C上的电荷量;
(2)t的大小;
(3)F的大小。
答案 (1)1×10-2 C (2)0.25 s (3)0.45 N
以恒定的加速度匀加速运动。
,所以杆
安=ma,a=
+ 2 2
典题1 如图所示,间距为L的平行光滑金属导轨水平固定,导轨平面处在竖
直向下、磁感应强度大小为B的匀强磁场中。导轨左端连接有电容为C的
平行板电容器,质量为m、电阻不可忽略的导体棒垂直导轨放置在导轨上,
含电容电路的电磁感应问题探析
轨 足够长 ,不 计 导 轨 和连 接 电容 器 导 线 的 电 阻 ,导 体
行导 轨 L 、L ,其 间距 d一0.5 rn,左 端 接 有 容 量 C一 2000 F的 电容.质量 一20 g,的导 体棒 可 在 导轨 上 无摩 擦 滑动 ,导 体棒 和 导 轨 的 电 阻 不 计.整 个 空 间 存 在着 垂 直导 轨所 在平 面 的 匀强 磁 场 ,磁 感 应 强 度 B一 2 T.现用 一沿 导轨 方 向 向右 的恒 力 F 一0.44 N 作 用 于导 体棒 ,使 导体 棒从 静 止开 始运 动 ,经 t时 间后 到达 B 处 ,速度 一5 in·s_。.此 时 ,突然 将拉 力方 向变 为 沿 导轨 向左 ,大 小变 为 F ,又经 2£时 间后 导 体棒 返 回到 初 始 位 置 A 处 ,整个 过程 电容器 未被 击 穿.求 :
A 3种 情形 下导 体棒 n6最 终均 做匀 速运 动 ; B 甲 、丙 中 ,a6棒 最 终 将 以 不 同 的速 度 做 匀 速
又 A'u—
g
一 gAt-
,
运动 ;乙 中 a6棒最 终静 止 ; C 甲 、丙 中 ,n6棒 最 终 将 以相 同 的速 度 做 匀 速
∑ △ 一g∑△£一 19 L ∑ A ,
到速 度为 零.在 丙 中,电源 为 n6棒 供 电 ,开 始 向右 运
◇ 江 苏 樊 杰
在 含 有 电容 器 的 导 体棒 切 割 磁 感 应 线 运 动 的 闭 合 电路 中 ,若 不 汁棒 的电 阻 ,给棒 一个 初 速 度 。或施
动 ,a6棒运 动 产生 感 应 电 流 方 向 与原 来 电流 同 向 ,a6 棒受 到安 培力作 用 ,做减 速 运 动 ,减 速 到 速 度 为零 后 , 受安 培力 作用 ,向左 加速 .当 a6棒 产 生 的感 应 电动 势 与 电源 电动势 相 等 时 ,n6棒 中无 电 流 ,不再 受力 做 匀 速运 动.故 B选择 正确 .
高考物理一轮复习学案电磁感应现象中的含容电路
电磁感应现象中的含容电路三种情况1. 导体棒有初速度2. 电容器有电量3. 导体棒有恒定外力 一.导体棒有初速度1.(导体棒有初速度)光滑U 型金属框架宽为L ,足够长,其上放一质量为m 的金属棒ab ,左端连接有一电容为C 的电容器,现给棒一个初速v 0,使棒始终垂直框架并沿框架运动,如图所示。
求导体棒的最终速度。
2.(电容器有电量)如图所示,足够长的两平行光滑水平直导轨的间距为L ,导轨电阻不计,垂直于导轨平面有磁感应强度大小为B 、方向竖直向上的匀强磁场;导轨左端接有电容为C 的电容器、开关S 和定值电阻R ;质量为m 的金属棒垂直于导轨静止放置,两导轨间金属棒的电阻为r 。
初始时开关S 断开,电容器两极板间的电压为U 。
闭合开关S ,金属棒运动,金属棒与导轨始终垂直且接触良好,下列说法正确的是( )A .闭合开关S 的瞬间,金属棒立刻开始向左运动B .闭合开关S 的瞬间,金属棒的加速度大小为BULmRC .金属棒与导轨接触的两点间的最小电压为零D .金属棒最终获得的速度大小为22BCULm B L C+3.(导体棒有恒定外力)如图所示,含电容 C 的金属导轨宽为 L,垂直放在磁感应强度为 B 的匀强磁场中,质量 为 m 的金属棒跨在导轨上,证明:在恒力 F 的作用下,做匀加速直线运动,且加速度CL B m F22a +=4.(多选)如图所示,宽为L 的水平光滑金属轨道上放置一根质量为m 的导体棒MN ,轨道左端通过一个单刀双掷开关与一个电容器和一个阻值为R 的电阻连接,匀强磁场的方向与轨道平面垂直,磁感应强度大小为B ,电容器的电容为C ,金属轨道和导体棒的电阻不计.现将开关拨向“1”,导体棒MN 在水平向右的恒力F 作用下由静止开始运动,经时间t 0后,将开关S 拨向“2”,再经时间t ,导体棒MN 恰好开始匀速向右运动.下列说法正确的是( ) A .开关拨向“1”时,金属棒做加速度逐渐减小的加速运动 B .t 0时刻电容器所带的电荷量为CBLFt 0m +CB 2L 2C .开关拨向“2”后,导体棒匀速运动的速率为FR B 2L 2D .开关拨向“2”后t 时间内,导体棒通过的位移为FR B 2L 2(t +mt 0m +CB 2L 2-mR B 2L2) 5(多选).如图甲所示,水平面上有两根足够长的光滑平行金属导轨MN 和PQ ,两导轨间距为l ,电阻均可忽略不计。
电磁感应双杆问题含电容器问题
电磁感应双杆问题+含电容器电路1. “双杆”在等宽导轨上向相反方向做匀速运动当两杆分别向相反方向运动时,相当于两 个电池正向串联。
2. “双杆”在等宽导轨上同向运动, 但一杆加速另一杆减速相当于两个电池反向串联。
3. “双杆”中两杆在等宽导轨上做同方向上的加速运动。
做加速运动,另一杆在安培力作用下做加速运动,最终两杆以同样加速度做匀加速直线运动。
4.“双杆”在不等宽导轨上同向运动。
“双杆”在不等宽导轨上同向运动时,两杆所受的 安培力不等大反向,所以不能利用动量守恒定律解题。
典型例题1.如图所示,间距为I 、电阻不计的两根平行金属导轨MN 、PQ (足够长)被固定在同一水平面内,质量均为 m 、电阻均为R 的两根相同导体棒 a 、b 垂直于导轨放在导轨上,一根轻 绳绕过定滑轮后沿两金属导轨的中线与a 棒连接,其下端悬挂一个质量为M 的物体C,整个装置放在方向竖直向上、磁感应强度大小为 B 的匀强磁场中。
开始时使 a 、b 、C 都处于静止状态,现释放 C,经过时间t , C 的速度为v1 、b 的速度为v2 。
不计一切摩擦,两 棒始终与导轨接触良好, 重力加速度为g ,求: (1) t 时刻C 的加速度值;(2) t 时刻a 、b 与导轨所组成的闭合回路消耗的总电功率。
当两杆分别沿相同方向运动时, “双杆”中的一杆在外力作用下3.两根足够长的固定的平行金属导轨位于同一水平面内, 两导轨间的距离为 放着两根导体棒 ab 和cd ,构成矩形回路,如图所示.两根导体棒的质量均为R 回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强 度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒 cd 静止,棒ab 有指向棒cd 的初速度V0.若两导体棒在运动中始终不接触,求: (1 )在运动中产生的焦耳热最多是多少.(2)当ab 棒的速度变为初速度的 3/4时,cd 棒的加速度是多少?以白为研究村奴.根据牛顿朗一定惮 T-R — ma 匚対冊咒对卑 槪ItTF 帧第-定律 Mg- 7- Ma 叹电以上并式解得£1=竺竺出辿土2<1;2X (M 斗眄解法-:单依时问内.通过《捽克服宜萍力做功.吧厂物体的■部分爲力势能转化为闭作 回跷的电能,価闭合0路电能的-邸勿以使4热的形」Ci"豺;L.拥-部分则转化为机棒的动能, 所IX /时刻闭合回路的电功率等于"榨必服安培ZH 故功的功率”船F ==护叫-5)心fj 棒可尊效为S 电机.b 捽町等谀为电功机 GJ 棒的感应电动势为 © = 叭闭合回路消範的总电功車为尸二理朕工①②⑥⑥删亠RH 诂=B 十⑹-6)心2R解法三飞合蹄稠加府为览雹丿办桂的机械功率为 冷=出5 =丹*厲」\用2R战闭合回路消耗的总电功率为/> =卩超+绻=时giJS2/f说明:在单位旳间」内.g 个系统的功能按系和能量转化关系如卜‘: 模型:导体棒等效为发电机和电动机, 发电机相当于闭合回路中的电源, 电动机相当于闭合回路中的用电元件2. (2003年全国理综卷)两根平行的金属导轨,固定在同一水平面上,磁感强度 B = 0.05T的匀强磁场与导轨所在平面垂直, 导轨的电阻很小,可忽略不计.导轨间的距离1= 0.20 m .两 根质量均为m = 0.10 kg 的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨 保持垂直,每根金属杆的电阻为R = 0.50 Q.在t = 0时刻,两杆都处于静止状态.现有一与导轨平行、大小为0.20 N 的恒力F 作用于金属杆甲上,使金属杆在导轨上滑动. 金属杆甲的加速度为 a = 1.37 m / s 2,问此时两金属杆的速度各为多少?经过 t = 5.0s ,L 导轨上面横 m ,电阻均为(3)4.两根相距d=0.20m 的平行金属长导轨固定在同一水平面内,并处于竖直方向的匀强磁场 中,磁场的磁感应强度 B=0.2T ,导轨上面横放着两条金属细杆, 杆的电阻为r=0.25 Q,回路中其余部分的电阻可不计 的作用下沿导轨朝相反方向匀速平移,速度大小都是 擦.(1 )求作用于每条金属细杆的拉力的大小 .(2)求两金属细杆在间距增加0.40m 的滑动过程中共产生的热量5.如图所示,在倾角为30°的斜面上,固定两条无限长的平行光滑导轨,一个匀强磁场垂直于斜面向上,磁感强度B = 0.4T ,导轨间距L = 0.5m 。
电磁感应与电容器的综合问题
龙源期刊网
电磁感应与电容器的综合问题
作者:梁小海
来源:《中学物理·高中》2014年第05期
电感应与电路规律的综合应用,是复习的重点也是难点,分析近年高考尤其是2013高考,可以得出命题规律:注重基础,突出能力,稳中发展,突显力电的主导地位.但是,含容电路问题学生较为陌生,本文就电磁感应与电容器的综合问题进行分析.
情景引入在图甲、乙、丙三图中,除导体棒ab可动外,其余部分均固定不动,甲图中的电容器C原来不带电.设导体棒、导轨和直流电源的电阻均可忽略,导体棒和导轨间的摩擦也不计.图中装置均在水平面内,且都处于方向垂直水平面(即纸面)向下的匀强磁场中,导轨足够长.今给导体棒ab一个向右的初速度v0,在甲、乙、丙三种情形下导体棒ab的最终运动状态
A.三种情形下导体棒ab最终均做匀速运动
B.甲、丙中,ab棒最终将以不同的速度做匀速运动;乙中,ab棒最终静止
C.甲、丙中,ab棒最终将以相同的速度做匀速运动;乙中,ab棒最终静止
D.三种情形下导体棒ab最终均静止
解析在图甲中,导体棒向右运动切割磁感线产生感应电流而使电容器充电,当电容器C
极板间电压与导体棒产生的感应电动势相等时,电路中没有电流, ab棒向右做匀速运动(图2甲);
在图乙中,导体棒向右运动切割磁感线产生感应电流,通过电阻R转化为内能,当ab棒的动能全部转化为内能时,ab棒静止(图2乙);
在图丙中,导体棒先受到向左的安培力作用做减速运动,速度减为零后再在安培力作用下向左做加速运动,当导体棒产 [LL]生的感应电动势与电源的电动势相等时,电路中没有电流,ab棒向左做匀速运动(图2丙).所以B项正确.。
电磁感应电路中的电容问题
电磁感应电路中的电容问题1.两相互平行且足够长的水平金属导轨MN、PQ放在竖直平面内,相距0.4m,左端接有平行板电容器,板间距离为0.2m,右端接滑动变阻器R。
水平匀强磁场磁感应强度为10T,垂直于导轨所在平面,整个装置均处于上述匀强磁场中,导体棒CD与金属导轨垂直且接触良好,棒的电阻为1Ω,其他电阻及摩擦不计。
现在用与2金属导轨平行,大小为2N的恒力F使棒从静止开始运动。
已知R的最大阻值为2Ω,g=10m/。
则:⑴滑动变阻器阻值取不同值时,导体棒处于稳定状态时拉力的功C率不一样,求导体棒处于稳定状态时拉力的最大功率。
MN⑵当滑动触头在滑动变阻器中点且导体棒处于稳定状态时,一个带电小球从平行板电容器左侧,以某一速度沿两板的正中间且平行R于两极板射入后,在两极板间恰好做匀速直线运动;当滑动触头位F于最下端且导体棒处于稳定状态时,该带电小球以同样的方式和速度射入,小球在两极板间恰好做匀速圆周运动,则小球的速度为多PQD 大。
解:(1)当棒达到匀速运动时,棒受到的安培力F1与外力F相平衡,即F=F1=BIL①(1分)此时棒产生的电动势E=BLv,则电路中的电流。
EBLvI==②(1分)R+rR+rF(R+r)由①②式得此时棒的速度V=③(1分)B2L2F2(R+r)拉力功率P=FV=④(1分)B2L2由④式知回路的总电阻越大时,拉力功率越大,当R=2Ω时,拉力功率最大,Pm=0.75(W)(1分)(2)当触头滑到中点即R=1Ω时,由③式知棒匀速运动的速度F(R+r)v1==0.25(m/)(1分)B2L2导体棒产生的感应电动势E1=BLv1=10某0.4某0.25=1(V)(1分)E1R电容器两极板间电压U1==0.5(V)(1分)R+r由于棒在平行板间做匀速直线运动,则小球必带正电,此时小球受力情况如图所示,设小球的入射速度为v0,由平衡条件知:F+f=GU1即q+qv0B=mg⑤(2分)d当滑头滑至下端即R=2Ω时,棒的速度F(R+r)3V2=22=(m/)(1分)BL8导体棒产生的感应电动势E2=BLV2=1.5伏(1分)E2R电容器两极板间的电压U2==1伏(1分)R+r由于小球在平行板间做匀速圆周运动,电场力与重力平衡,于是:U2q=mg⑥(2分)dU2—U1联立⑤⑥并代入数值解得v0==0.25(m/)(1分)Bd2小球作圆周运动时洛仑兹力提供向心力,有v02qv0B=m⑦(2分)r联立⑥⑦解得小球作圆周运动的半径为r=0.0125m(2分)2、如图所示,光滑的平行导轨P、Q相距l=1m,处在同一水平面中,导轨的左端接有如图所示的电路,其中水平放置的电容器两极板相距d=10mm,定值电阻R1=R3=8Ω,R2=2Ω,导轨的电阻不计,磁感强度B=0.4T的匀强磁场竖直向下穿过导轨面,当金属棒ab沿导轨向右匀速运动(开关S断开)时,电容器两极之间质量m=1某10-14kg,带电量q=-1某10-15C的微粒恰好静止不动;当S闭合时,微粒的加速度a=7m/2向下做匀加速运动,取g=10m/2,求:(1)金属棒所运动的速度多大?电阻多大?(2)S闭合后,使金属棒ab做匀速运动的外力的功率多大?解答:(1)带电微粒在电容器两极间静止时,受向上的电场力和向下的重力而平衡,根据平衡条件有mgqU1,dmgd1014100.1解得电容器两极间电压为:U11Vq1015由于微粒带负电,可知上板电势较高,由于S断开,R3上无电流,R1、R2上电压等于U1,可知电路中的感应电流,即通过R1、R2的电流强度为:I1U10.1AR1R2根据闭合电路欧姆定律,可知ab切割磁感线运动产生的感应电动势为:EU1I1r(1)S闭合时,带电微粒向下做匀加速运动,根据牛顿第二定律有:mgq 可以求得S闭合时电容器两板间的电压为:U2U2madm(ga)d0.3V q这是电路中的电流为:I2=U20.15AR2R1R3R2r)(2)R1R3根据闭合电路欧姆定律有:EI2(将已知量代入(1)(2)式,可求得:E1.2V,r2由E=BLv得:vE3m/BL(2)S闭合时,通过ab电流I2=0.15A,ab所受磁场力为FBBI2L0.06N,ab的速度v=3m/做匀速运动,所受外力与磁场力FB大小相等,方向相反,即F=0.06N,方向向右,则外力功率为P=Fv=0.06某3w=0.18w3.如图所示,在水平方向与纸面垂直的足够大的匀强磁场中,有一足够长的U形金属框架abcd以v1=2m/的速度向右做切割磁感线运动,在框架abcd上下两板内产生一个匀强电场.有一个带电油滴以水平速度v2从P 点(ap=L/2)向左射入框架内做匀速圆周运动(g=10m/2).求:23(1)油滴必须带什么性质的电荷,油滴做匀速圆周运动的周期是多少(2)为使油滴不跟框架壁相碰,油滴速度v2与框架宽度L的比值v2/L 应满足什么条件(3)为使油滴不离开电场,并且能够在框架内完整地运动一周,速度v2要满足什么条件解:油滴应带负电.由于框架左边作切割磁感线运动,使上下两板间产生电压U=BLvbV1LU两板间电场强度E=L=Bv1由油滴做匀速圆周运动的条件得mg=qE=qBv1cmg2m2v12qvqBg5∴B=1油滴运动的周期T=2mv2mv2qv1v1v2v2qBv2mqmggRRBq(2)∵g2v1v2Lv24v油滴不跟框架壁相碰应满足条件2R<L/2即g<2∴L<1=1.25-1(3)油滴顺时针做圆周运动,若v2的水平速度大小等于v1时未脱离电场,则以后不再会脱离.设当油滴转至其线速度方向与竖直方向的夹角为θ时油滴速度v2的水平分量大小等于v1,油滴刚好运动至框架右边缘,(如图所示)则V2inθ=v133R22V2t=v1t>RcoθV1V1θV231v13vin122vv2v221>v2coθ即2>∴v14、如图所示,在虚线框内有一磁感应强度为B的匀强磁场,在磁场中的PQ和MN是两条光滑的平行金属导轨,其电阻不计,两导轨间距离为L,它们都与水平面成α角.已知匀强磁场的方向与导轨所在平面垂直,放置在导轨上的金属棒ab与导轨垂直,其质量为m,电阻为r.在导轨的一端接着阻值为R的电阻器C、D为竖直放置的,间距为d的平行板电容器,两板间的JK是与水平面成θ角的一条绝缘光滑直导轨。
含电容器电磁感应问题的模型化处理
含电容器电磁感应问题的模型化处理作者:魏建辉来源:《数理化学习·高一二版》2013年第01期对法拉第电磁感应定律、楞次定律这一部分,要理解其确切含义及与其他知识的联系,能够进行叙述和解释,并能在实际问题的分析、综合、推理和判断等过程中运用.这一要求比较高,难度也比较大,另外要求能和其他知识联系去解决综合性的问题.电容器对学生来说本身就是一个容易忽视的知识点,对于电容器充放电过程的电流计算,学生更是无从下手.对于“电磁感应+电容器”问题的处理对学生来说就难度更大了.但如果认真分析,寻找其中的规律,我们会发现这类问题其实也不难解决.下面以一道例题来说明这一问题.图1例1 平行水平长直导轨间的距离为L,左端接一耐高压的电容器C,轻质导体杆cd与导轨接触良好,如图1所示,在水平力作用下以加速度a从静止匀加速运动,匀强磁场B竖直向下,不计摩擦与电阻,求:(1)所加水平外力F与时间t的关系?(2)在t秒时间内有多少能量转化为电场能?解析:(1)对于导体棒cd,由于做匀加速运动,则有: vt=at由E=BLV可知:E=BLat.对于电容器,由C=QU可知:Q=CU=CBLat对于闭合回路,由I=Qt可知: I=CBLa对于导体棒,由T安=BIL可知: F安=B2L2Ca①由牛顿第二定律可知:F外-F安=maF外=(m+B2L2C)a因此对于外力F来说,是一个恒力的外力,不随时间变化.(2)对于导体棒cd,克服安培力做多少功,就应有多少能量转化为电能,则有:W安=-F安x②x=12at2③由①②③式得: W安=B2L2a2t2C2.所以在t秒内转化为电能的多少是: E=B2L2a2t2C2.反思:由本题可知:只要导体棒速度均匀变化(a恒定),感应电动势就均匀变化,电容器的带电量就均匀变化,回路中的电流就恒定不变(I=CBLa),导体棒所受安培力就恒定不变(F外=(m+B2L2C)a),外力就恒定不变.反之,只要导体棒受恒定外力,导体棒必做匀变速运动,且加速度为a=F外m+B2L2C;如果外力不恒定,则导体棒做非匀变速运动;如果不受外力,则导体棒匀速运动或静止.图2提升:对于本题可总结为“电磁感应+电容器”模型,模型特点:回路中只有电容器,没有电阻,磁场恒定,导体棒恒定.利用此模型可以轻松解决以下几个问题.例2 如图2所示,电容为C的电容器与竖直放置的金属导轨EFGH相连,一起置于垂直纸面向里,磁感应强度为B的匀强磁场中,金属棒ab因受约束被垂直固定于金属导轨上,且金属棒ab的质量为m、电阻为R,金属导轨的宽度为L,现解除约束让金属棒ab从静止开始沿导轨下滑,不计金属棒与金属导轨间的摩擦,求金属棒下落的加速度.分析:根据以上模型可知,导体棒ab所受重力恒定不变,所以ab将做匀加速直线运动,加速度a为 a=mgm+B2L2C.图3例3 如图3所示,MN、PQ为相距L的光滑平行导轨,导轨平面与水平面夹角为θ,导轨处于磁感应强度为B、方向垂直于导轨平面向上的匀强磁场中,在两导轨的M、P两端间接有一电容为C耐压很高的电容器,质量为m的导体棒由静止开始下滑,回路电阻不计,求ab下滑的加速度?分析:导体棒ab所受下滑力恒定不变,所以ab将做匀加速直线运动,加速度a为mgsinθm+B2L2C.图4例4 如图4所示,处于匀强磁场中的两根足够长且电阻不计的平行金属导轨相距L,导轨平面与水平面重合,左端用导线连接电容为C的电容器(能承受的电压足够大).已知匀强磁场的磁感应强度大小为B、方向竖直向上.一质量为m、电阻不计的直金属棒垂直放在两导轨上,一根绝缘的、足够长的轻绳一端与棒的中点连接,另一端跨过定滑轮挂一质量也为m的重物.现从静止释放重物并通过轻绳水平拖动金属棒运动(金属棒始终与导轨垂直并保持良好接触,不计滑轮质量和所有摩擦).求重物从静止开始下落过程中的加速度?分析:对于导体棒与重物所组成的系统来说,所受动力恒定不变,所以将做匀加速直线运动,加速度a=mg2m+B2L2C.郑州市第二十四中学(450007)。
电容器的等效质量
关键词:电容器;等效质量;动量;导体棒切割;感应电动
势;稳定;焦耳热
看到这个题目,你会不会发自内心一阵讶异:电容器,怎么
还有等效质量?容我慢慢道来。
我们先来看这样一道题目。质量
M
× × × × × × ×
为 m 的导体棒放置在水平固定的光滑 × × × × × × ×
产生的焦耳热。
这道题目是比较简单的。标准解题步骤为:
最终稳定时,两导体棒共速,速度为 v。对系统列动量守恒
定律和能量守恒定律:
mv0=(B 2 L2 C+m)v;
mv 0 2 ( B 2 L2 C + m ) v2
=
+ Q;
2
2
B 2 L2 Cmv 0 2
mv 0
解得 v=
Q=
。
2 2 ,
2 ( m + B 2 L2 C )
评价与润色是读写教学的最后环节。教师根据概要写作
的基本特征采纳 5C 原则:完整,简明,连贯,正确和不抄原文;
采用自评、互评和教师评价多种方式引导学生多角度反思概要
的内容、结构和语言等。
在学生自评和互评之后,教师随机抽取一篇学生习作和自
己的习作,同时呈现出来,组织学生进行评析,并提出个人观
点。通过将两篇习作对比和评价,促进师生交流,分享老师在
段落之间的逻辑联系也是语篇连贯的重要方面。教师通
过四个问题,让学生来发现段落和段落之间的关系。通过阅读
后学生发现,第一部分其实是反映现状的,第二部分是关于存
在问题的,第三部分是关于如何克服问题和改变现状的,最后
一部分是展望未来的。第一、第二部分之间存在转折关系。通
电学篇电容与电容器电磁感应定律电磁波的特性
电学篇电容与电容器电磁感应定律电磁波的特性电学篇:电容与电容器、电磁感应定律及电磁波的特性电容与电容器电容是电学中的一个重要概念,它用来描述电路中存储电荷的能力。
在电路中,我们经常使用电容器来储存电荷。
电容器是由两个导体板和介质组成的装置,通常用来将电能转换成电场能量,或者将电场能量转换成电能。
电容器的电容量可以用电容来表示,电容的单位是法拉(F)。
一个电容为1法拉的电容器,当其两个导体板上的电势差为1伏特时,储存的电荷量为1库仑。
电容的大小取决于电容器的几何形状和介质的性质。
电容器可以分为两类:电解电容器和固体电容器。
电解电容器利用电解质溶液的导电性质,而固体电容器则使用了各种固体介质如氧化铝等。
电容器的主要特点是能够储存电荷和释放电荷的能力,其内部结构是由金属导体(通常是铝箔)和绝缘层(介质)构成的。
当电容器连接到电源时,金属导体上积累正负电荷,形成电场。
在电容器中存储的电荷量与电容器的电容量成正比。
电磁感应定律电磁感应定律是由物理学家法拉第提出的,用来描述磁场与电流之间的相互作用。
它有两种形式,即法拉第第一电磁感应定律和法拉第第二电磁感应定律。
法拉第第一电磁感应定律指出,当磁场发生变化时,会在电路中引起感应电动势。
这个电动势的大小与磁场的变化率成正比。
换句话说,当磁场的磁通量发生变化时,电路中就会产生感应电动势。
法拉第第二电磁感应定律则进一步阐述了感应电动势与电流及磁场的关系。
它表明,感应电动势的大小等于电路中的电流与磁场的变化率的乘积。
电磁波的特性电磁波是由电场和磁场相互作用而产生的一种能量传递方式。
电磁波包括了广泛的频率范围,从长波的无线电波到短波的紫外线和γ射线等。
根据波长或频率的不同,电磁波可以分为不同的成分,包括射电波、微波、红外线、可见光、紫外线、X射线和γ射线。
电磁波的特性在很大程度上取决于其波长和频率。
较长波长的电磁波一般穿透力强,可以在物体中传播较远,如无线电波。
较短波长的电磁波则更容易被物体吸收,如紫外线和X射线。
专题:电磁感应现象中有关电容器类问题及问题详解
专题:电磁感应现象中有关电容器类问题1、电磁轨道炮利用电流和磁场的作用使炮弹获得超高速度,其原理可用来研制新武器和航天运载器。
电磁轨道炮示意如图,图中直流电源电动势为E,电容器的电容为C。
两根固定于水平面的光滑平行金属导轨间距为L,电阻不计。
炮弹可视为一质量为m、电阻为R的金属棒MN,垂直放在两导轨间处于静止状态,并与导轨良好接触。
首先开关S接1,使电容器完全充电。
然后将S接至2,导轨间存在垂直于导轨平面、磁感应强度大小为B的匀强磁场(图中未画出),MN开始向右加速运动。
当MN上的感应电动势与电容器两极板间的电压相等时,回路中电流为零,MN达到最大速度,之后离开导轨。
问:(1)磁场的方向;(2)MN刚开始运动时加速度a的大小;(3)MN离开导轨后的最大速度v m的大小。
试题分析:(1)根据通过MN电流的方向,结合左手定则得出磁场的方向.(2)根据欧姆定律得出MN刚开始运动时的电流,结合安培力公式,根据牛顿第二定律得出MN刚开始运动时加速度a的大小.(3)开关S接2后,MN开始向右加速运动,速度达到最大值时,根据电动势和电荷量的关系,以及动量定理求出MN离开导轨后最大速度.解:(1)电容器上端带正电,通过MN的电流方向向下,由于MN向右运动,根据左手定则知,磁场方向垂直于导轨平面向下.2、一对无限长平行导轨位于竖直平面,轨道上串联一电容器C(开始未充电).另一根质量为m 的金属棒ab 可沿导轨下滑,导轨宽度为L ,在讨论的空间围有磁感应强度为B 、方向垂直整个导轨平面的匀强磁场,整个系统的电阻可以忽略,ab 棒由静止开始下滑,求它下滑h 高度时的速度v.解:设ab 棒下滑过程中某一瞬时加速度为a i ,则经过一微小的时间间隔Δt ,其速度的增加量为Δv=a i ·Δt.棒中产生的感应电动势的增加量为:ΔE=BL Δv=BLa i ·Δt电容器的极板间电势差的增加量为:ΔU i =ΔE=BLa i ·Δt电容器电荷量的增加量为:ΔQ=C ·ΔU=CBLa i ·Δt电路中的充电电流为:I=tQ ∆∆=CBLa i ab 棒所受的安培力为:F=BLI=CB 2L 2a i由牛顿第二定律得:mg-F=ma i ,即mg-CB 2L 2a i =ma i ,所以,a i =22L CB m mg +,可见,棒的加速度与时间无关,是一个常量,即棒ab 向下做匀加速直线运动.所以要求的速度为v=2222LCB m mgh ah +=.3、如图所示,处于匀强磁场中的两根足够长且电阻不计的平行金属导轨相距L ,导轨平面与水平面重合,左端用导线连接电容为C 的电容器(能承受的电压足够大).已知匀强磁场的磁感应强度大小为B 、方向竖直向上.一质量为m 、电阻不计的直金属棒垂直放在两导轨上,一根绝缘的、足够长的轻绳一端与棒的中点连接,另一端跨过定滑轮挂一质量为m 的重物.现从静止释放重物并通过轻绳水平拖动金属棒运动(金属棒始终与导轨垂直并保持良好接触,不计滑轮质量和所有摩擦).求:(1)若某时刻金属棒速度为v ,则电容器两端的电压多大?(2)求证:金属棒的运动是匀加速直线运动;(3)当重物从静止开始下落一定高度时,电容器带电量为Q ,则这个高度h 多大?解:(1)电容器两端的电压U 等于导体棒上的电动势E ,有:U=E=BLv(2)金属棒速度从v 增大到v+△v 的过程中,用时△t (△t →0),加速度为a ,有:电容器两端的电压为:U=BLv电容器所带电量为:式中各量都是恒量,加速度保持不变,故金属棒的运动是匀加速直线运动.(3)由于金属棒做匀加速直线运动,且电路中电流恒定4、如图所示,有一间距为L且与水平方向成θ角的光滑平行轨道,轨道上端接有电容器和定值电阻,S为单刀双掷开关,空间存在垂直轨道平面向上的匀强0磁场,磁感应强度为B。
动量观点在电磁感应中的应用ppt(含电容器)
一、单杆+电容+初速度
1.电路特点 导体棒相当于电源;电容器被充电.
v0
2.电流的特点
导体棒相当于电源; F安为阻力,棒减速, E减小
有I感
I Blv UC R
I感渐小
电容器被充电。 UC渐大,阻碍电流
3.当a运渐B动小lv特=的U点减C时速,运I=动0,,最F安终=做0,匀棒匀v0 速v运动。
I
CBlF m CB2l2
(3)导体棒受安培力恒定:
FB
CB2l 2F m CB2l 2
v v0
(4)导体棒克服安培力做的功等于 电容器储存的电能:
证明
W克B
1 C(Blv)2 2
O
F
t
4.几种变化: (1)导轨不光滑
(2)恒力的提供方式不同
FB
h
mmgg
B
B
Fቤተ መጻሕፍቲ ባይዱ
F
(3)电路的变化
F
练习:
F
导体棒为发电棒;电容器被充电。
2.三个基本关系
导体棒受到的安培力为: FB BIl
导体棒加速度可表示为: 回路中的电流可表示为:
a F FB m
I Q CE CBlv CBla t t t
3.四个重要结论:
(1)导体棒做初速度为零 匀加速运动:
a
m
F CB2l
2
(2)回路中的电流恒定:
速运动。
4.最终特征 匀速运动
v
但此时电容器带电量不为零 O
t
5.最终速度
v0
电容器充电量: q CU
最终导体棒的感应电动
势等于电容两端电压: U Blv
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电磁感应中的电容器与金属棒相结合的问题
黄德利山东省兖州一中272100
摘要:部分导体做变速运动产生变化的电流时,高中阶段的闭合电路欧姆定律就无法列式计算,学生感觉无从下手,从而这一类的问题成为高三复习的难点。
通过最近全国各地的一模考试发现,这类问题在各地一模中均有体现。
关键词:电磁感应;电容器;金属棒
电容器是一个储存电荷的容器,它可以进行无数次的充放电。
在充放电的过程中,可以理解为变化的电流可以通过电容器。
因此,在一些含有电容器的电磁感应电路中,当一部分导体做变速运动产生变化的电流时,高中阶段的闭合电路欧姆定律就无法列式计算,学生感觉无从下手,从而这一类的问题成为高三复习的难点。
通过最近全国各地的一模考试发现,这类问题在各地一模中均有体现。
实际上这类问题,只要认真分析,寻找其中的规律,这类问题其实也很好解决。
下面通过几个例题对与电容器相关的问题分类解决。
一、金属棒做匀加速直线运动
例1、.如图所示,位于同一水平面的两根平行导轨间的距离是L,导线的左端连接一个耐压足够大的电容器,电容器的电容为C。
放在
导轨上的导体杆cd与导轨接触良好,cd杆在平行导轨
平面的水平力作用下从静止开始匀加速运动,加速度为
a,磁感强度为B的匀强磁场垂直轨道平面竖直向下,导
轨足够长,不计导轨和连接电容器导线的电阻,导体杆
的摩擦也可忽略。
求从导体杆开始运动经过时间t电容
器吸收的能量E=?
解析:据题意,导体杆MN加速切割磁感线,产生的感应电动势且不断增大,电容器两极板间电压随着增大,储存的电能增加,同时由于电容器处于连续充电状态中,电路中有持续的充电电流,故导体杆受到向左的安培力。
因电容器在时间t内吸收的电能可以用克服安培力做的功来量度,所以弄清楚充电电流及安培力的变化规律,就成为解答本题的关键。
设某时刻导体杆切割磁感线的速度为v,产生的感应电动势为E,电容器所带的电荷量为q,两极板间的电压为u,则有:u=E=BLv,q=Cu=CBLv。
设经过一个很短的时间间隔Δt,速度的变化量为Δv,则电容器带电量的变化量为:
Δq=CBLΔv。
在时间Δt内充电电流的平均值可表示为:
i==CBLa
式中a表示Δt内导体杆运动的平均加速度。
若把Δt取得足够小,那么i和a 就分别趋近于该时刻的充电电流的瞬时值及加速度的瞬时值。
于是,杆MN所受
=BiL=CB2L2a。
安培力的瞬时值可表示为:F
安
上式表明:安培力的瞬时值与加速度成正比。
将安培力瞬时值表达式代入牛顿第二定律,F-CB2L2a=ma。
由此解得a=。
由上式不难看出:加速度a是恒定的,杆MN做匀加速直线运动,进而推知:充电电流是恒定电流,安培力是恒力。
因时间t内,杆MN的位移为:s=at2=
故杆MN克服安培力做的功可表示为:
·s=,电容器在时间t内吸收的电能E=W,可用上式表示。
W=F
安
二、金属棒在恒定外力下的直线运动
例2、如图,两条平行导轨所在平面与水平地面的夹角为θ,间距为L。
导轨上
端接有一平行板电容器,电容为C。
导轨
处于匀强磁场中,磁感应强度大小为B,
方向垂直于导轨平面。
在导轨上放置一
质量为m的金属棒,棒可沿导轨下滑,
且在下滑过程中保持与导轨垂直并良好
接触。
已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g。
忽略所有电阻。
让金属棒从导轨上端由静止开始下滑,求:
(1)电容器极板上积累的电荷量与金属棒速度大小的关系;
(2)金属棒的速度大小随时间变化的关系。
解析:(1)设金属棒下滑的速度大小为v,则感应电动势为①
平行板电容器两极板之间的电势差为U=E②
设此时电容器极板上积累的电荷量为Q,按定义有③联立①②③式得④
(2)设金属棒的速度大小为v时经历的时间为t,通过金属棒的电流为i。
金属棒受到的磁场的作用力方向沿导轨向上,大小为⑤
设在时间间隔(t,t+Δt)内流经金属棒的电荷量为ΔQ,按定义有
⑥
ΔQ也是平行板电容器极板在时间间隔(t,t+Δt)内增加的电荷量。
由4式得⑦
式中Δv为金属棒的速度变化量,按定义有⑧
金属棒所受到的摩擦力方向斜向上,大小为⑨
式中N是金属棒对导轨的正压力的大小,有⑩
金属棒在时刻t的加速度方向沿斜面向下,设其大小为a,根据牛顿第二定律有
联立⑤至11式得
由上式及题设可知,金属棒做初速度为零的匀加速运动,t时刻金属棒的速度大小为
三、
通过上面例题可以看出,电磁感应与电容器的综合问题,涉及电磁感应、电容、电流强度、安培力、牛顿定律、匀变速直线运动规律等多方面物理知识,综合性较强.此类题的关键是电容器充电电流与运动的关系,求这两者关系思维跨越较大,考查了综合能力和分析论证能力,有较高的区分度,体现了较强的选拔性。