《函数的极值与导数》ppt课件

合集下载

1.3.2函数的极值与导数(上课)

1.3.2函数的极值与导数(上课)

3 (a (2) f ( x)= ax + 2bx + c ≠ 0)
/ 2
f (1) = a + b + c = 5
{
.
f / (1) = 3a + 2b + c = 0 f / (2) = 12a + 4b + c=0
a = 2, b = −9, c = 12
注意: 注意:数形结合以及函数与方程思想的应用
1 3 x -4x+4 3
+
-
28 3
o -2
4 − 3
2 + x
求可导函数f(x)极值的 步骤: 极值的 步骤: 求可导函数
(1) 确定函数的定义域; 确定函数的定义域 (2)求导数 ’(x); 求导数f 求导数 ; (3)求方程 ’(x)=0的根; 求方程f 的根; 求方程 ) 的根 (4)把定义域划分为部分区间,并列成表格 把定义域划分为部分区间 把定义域划分为部分区间, 检查f 在方程根左右的符号—— 检查 ’(x)在方程根左右的符号 在方程根左右的符号 •如果左正右负(+ ~ -), 如果左正右负 如果左正右负( ), 那么f(x)在这个根处取得极大值; 在这个根处取得极大 那么 在这个根处取得极 •如果左负右正(- ~ +), 如果左负右正 如果左负右正( ), 那么f(x)在这个根处取得极小值; 在这个根处取得极小 那么 在这个根处取得极
28 3
(-2,2) ↘
2 0
极小值 − 4
3
(2,+∞) ∞ + ↗
28 因此,当 时有极大值,并且 因此 当x=-2时有极大值 并且 极大值= 3 ; 时有极大值 并且,y 4 时有极小值,并且 而,当x=2时有极小值 并且 极小值= − 3 . 当 时有极小值 并且,y

高中数学选修1课件1-3.3.2函数的极值与导数

高中数学选修1课件1-3.3.2函数的极值与导数

4 e2
单调递减
因此,x=0 是函数 f(x)的极小值点,极小值为 f(0)=0;x=2
是函数 f(x)的极大值点,极大值为 f(2)=e42.
状元随笔
(1)求函数极值时要遵循定义域优先的原则,如第(1)小题,若 忽略了定义域,则列表时易将区间(0,e)错写成区间(-∞,e).(2) 求函数的极值时,先确定导数值为零的点,然后根据极值的定义求 解.
f′(x)

0

0

f(x) 单调递增 16 单调递减 -16 单调递增
从表中可以看出,当 x=-2 时,函数有极大值 f(-2)=16.
当 x=2 时,函数有极小值 f(2)=-16.
(2)函数 f(x)的定义域为 R,
f′(x)=2x2x+2+11-24x2=-2x-x21+1x+2 1.
令 f′(x)=0,得 x=-1 或 x=1.
因为 y=ln x 在(0,+∞)内单调递增,y=1x在(0,+∞)内单调 递减,所以 f′(x)单调递增.
又 f′(1)=-1<0,f′(2)=ln 2-12=ln 42-1>0, 故存在唯一 x0∈(1,2),使得 f′(x0)=0. 又当 x<x0 时,f′(x)<0,f(x)单调递减; 当 x>x0 时,f′(x)>0,f(x)单调递增. 因此,f(x)存在唯一的极值点.
A.1,-3 B.1,3 C.-1,3 D.-1,-3
解析:∵f′(x)=3ax2+b,∴f′(1)=3a+b=0.① 又当 x=1 时有极值-2,∴a+b=-2.② 联立①②解得ab= =1-,3. 答案:A
4.函数 y=3x3-9x+5 的极大值为________.

3.3导数与函数的极值最值课件高三数学一轮复习2

3.3导数与函数的极值最值课件高三数学一轮复习2

提醒:(1)极值反映了函数在某一点附近的大小情况,刻画的是函数的局部性质.极 值点是函数在区间内部的点,不会是端点.
(2)对于可导函数f(x),f ′(x0)=0是函数f(x)在x=x0处有极值的必要不充分条件. 例如f(x)=x3,f′(0)=0,但x=0不是极值点. (3)极大值(或极小值)可能不止一个,可能没有,极大值不一定大于极小值.
提醒:(1)极值是一个局部性概念,反映的是函数在某个点附近的大小情况,并不意 味它在函数的整个定义域内最大或最小;最值是一个整体性的概念,函数的最值是比较 某个区间内的所有函数值得出的.
(2)若函数在开区间(a,b)内的极值点只有一个,则相应极值点为函数最值点. (3)若函数在闭区间[a,b]的最值点不是端点,则最值点必为极值点. (4)连续函数的极值个数不确定,而函数在某一闭区间上的最大和最小值是唯一的.
②若 a<0,要使函数 f(x)在 x=a 处取得极大值,则需 f(x)在a+32b,a上单调递增,在 (a,+∞)上单调递减,此时需满足 a>a+32b,得 b<a<0,∴a2<ab.
综上可知,a2<ab,故选 D.
3.(角度 2)已知函数 f(x)=x3+6lnx,f ′(x)为 f(x)的导函数.求函数 g(x)=f(x)-f ′(x) +9的单调区间和极值.
3 值点,则实数 a 的取值范围是____-__∞__,__-__14_∪___14_,__+__∞__ ___.
【解析】
(1) 因 为
f′(x)

3x2

6mx

n




f′-1=0, f-1=0,

3-6m+n=0, -1+3m-n+m2=0,

人教选修1-1A 函数的极值与导数 ppt21

人教选修1-1A 函数的极值与导数 ppt21

3.思考: 观察下图,当t=t0时高度h最大,
那么函数 h(t)在此点的导数是多少呢? 此点附近的图象有什么特点?相应地,导数 的符号有什么变化规律?
关注用导数本质及其几何意义解决问题
二、新课讲解——函数的极值:
1. 观察右下图为函数y=2x3-6x2+7的图象,
从图象我们可以看出下面的结论: 函数在X=0的函数值比它附 近所有各点的函数值都大,我 们说f(0)是函数的一个极大值; 函数在X=2的函数值比它附近 所有各点的函数值都小,我们 说f(2)是函数的一个极小值。
又f(1)=10,故1+a+b+a2=10.②
a4 a 3 . 由①、②解得 或 b 11 b 3 2 当a=-3,b=3时, f ( x) 3( x 1) 0 ,此时f(x)在x=1处无
极值,不合题意. f ( x) 3 x 2 8 x 11 (3 x 11)( x 1). 当a=4,b=-11时, -3/11<x<1时, f ( x ) 0 ;x>1时, f ( x ) 0 ,此时x=1是极 值点. 从而所求的解为a=4,b=-11.
b 11 b 3 2 当a=-3,b=3时, f ( x) 3( x 1) 0 ,此时f(x)在x=1处无
-3/11<x<1时, f ( x ) 0 ;x>1时, f ( x ) 0 ,此时x=1是极 值点. 从而所求的解为a=4,b=-11.
例3:已知函数f(x)=-x3+ax2+b.
因此导数为零的点仅是该点为极值点的必 要条件,其充分条件是在这点两侧的导数异号.
一般地,求函数y=f(x)的极值的方法是: 解方程f/(x)=0.当f/(x)=0时:

函数的极值与导数 课件

函数的极值与导数 课件
互动 1 满足 f′(x0)=0 的点 x0 是函数 f(x)的极值点吗? 【解析】 不一定,必须再加上 x0 左右导数的符号相反,才能 断定函数在 x0 处取得极值.
互动 2 函数 y=f(x)在给定区间(a,b)内一定有极值点吗? 【解析】 不一定.若函数 y=f(x)在区间(a,b)内是单调函数, 就没有极值点.
例 2 求下列函数的极值: (1)f(x)=x3-12x; (2)f(x)=sinx(1+cosx)(0<x<2π);
(3)f(x)= 2x -2. x2+1
【思路分析】
求f(x)的定义域 → 求f′(x) →
解方程f′(x)=0 → 列表分析 → 结论
【解析】 (1)函数 f(x)的定义域为 R;
思考题 2 求下列函数的极值: (1)f(x)=x3-3x2-9x+5; (2)f(x)=lnxx.
【解析】 (1)f′(x)=3x2-6x-9.
解方程 3x2-6x-9=0,得 x=-1 或 x=3.
当 x 变化时,f′(x)与 f(x)的变化情况如下表:
x
(-∞,-1) -1 (-1,3)
3
【解析】 (1)∵f(x)=2x2-ekxx+k, ∴f′(x)=-2x2+(ke+x 4)x-2k. ∵f(x)无极值,∴f′(x)≥0 或 f′(x)≤0 恒成立. ∵ex>0,∴f′(x)与 g(x)=-2x2+(k+4)x-2k 同号. ∵g(x)的二次项系数为-2, ∴g(x)≤0 恒成立,令 Δ=(k+4)2-16k=(k-4)2≤0,则 k= 4. ∴当 k=4 时,f(x)无极值.
【解析】 以 d、e 两点为例,y=f(x)在点 x=d 处的函数值 f(d)比它在点 x=d 附近其他点的函数值都小,f′(d)=0;在 x=d 的附近的左侧 f′(x)<0,右侧 f′(x)>0.类似地函数 y=f(x)在点 x =e 的函数值 f(e)比它在 x=e 附近其他点的函数值都大,f′(e) =0;在 x=e 附近的左侧 f′(x)>0,右侧 f′(x)<0.

《函数的极值问题》课件

《函数的极值问题》课件

在物理问题中的应用
总结词
极值理论在物理领域的应用也十分广泛 ,它可以帮助我们解释各种物理现象, 预测物质的运动规律。
VS
ቤተ መጻሕፍቲ ባይዱ
详细描述
在物理学中,许多物理现象都可以通过极 值理论来解释,如物体下落、弹性碰撞、 电磁波传播等。通过分析这些现象对应的 物理函数,我们可以找到它们的极值点, 从而理解物质的运动规律和相互作用机制 。
05
极值的应用
Chapter
在最优化问题中的应用
总结词
极值理论是解决最优化问题的关键工具之一,它可以帮助我 们找到函数在某个区间内的最大值或最小值。
详细描述
在许多实际应用中,如工程设计、生产计划、金融投资等, 我们经常需要找到某个目标函数的最优解,即最大值或最小 值。通过分析函数的极值点,我们可以确定这些最优解的位 置,从而为实际问题的解决提供指导。
证明极值第一充分条件的关键在于理解导数的定义 和性质,以及函数极值的定义。首先,根据导数的 定义,如果函数在某一点的导数为零,那么函数在 该点可能取得极值。然后,根据函数极值的定义, 如果函数在某一点的导数在其两侧变号,那么函数 在该点一定取得极值。这两个条件共同构成了极值 的第一充分条件。
定理应用
在经济问题中的应用
总结词
极值理论在经济领域的应用十分广泛,它可以帮助我们分析各种经济指标的变化趋势, 预测未来的经济走势。
详细描述
在经济学中,许多经济指标都是随着时间变化的函数,如GDP、CPI、利率等。通过分 析这些指标的极值点,我们可以了解经济活动的周期性变化规律,从而为政策制定和投
资决策提供依据。
03
极值的第二充分条件
Chapter
定理表述

人教版高中数学选修2-2 函数的导数与极值 PPT课件

人教版高中数学选修2-2 函数的导数与极值  PPT课件
注2:极大值可能小于极小值,极小值可能大于 极大值.
2015-1-4 5
三、函数极值点的必要与充分条件
由费马定理易得函数取得极值的必要条件,
1、(必要条件) 设 f ( x ) 在点 x 处具有导数, 且 0 在 x0 处取得极值,那末必定 f ' ( x0 ) 0 .
(即 方程 f ( x ) 0 的 实根 )叫 注1: 使 导数 为 零的 点 做 函数 f ( x ) 的 驻点 .
点, 注2: 可导函数 f ( x ) 的极值点必定是它的驻 但函数的驻点却不一定 是极值点.
例如,
2015-1-4
y x ,
3
y x 0 0, 但x 0不是极值点.
6
y
f ( x ) 0
f ( x ) 0
y f ( x ) 0
f ( x ) 0
o
x0
x
o
x0
因此,存在着点 x 1的一个去心邻域,对此 去心邻域内的 任何点 x, f ( x ) f (1)均成立 ; 存在着点 x 2的一个去心邻域,对此 去心邻域内的 任何点 x, f ( x ) f (2)均成立 ;
2015-1-4 2
一般地
y
y f ( x)
ax
y
1
o
x2
x3
x4
必有最大值和最小值呢? 已知下面两个函数和它们的图象. 1 x (0 x 1), (2) g( x ) x , x (0,1). ( 1) f ( x ) 0 ( x 1);
ห้องสมุดไป่ตู้
函数 f ( x )定义在闭区间 a, b 上且在 a, b上连续是使得 f ( x ) 有最大值与最小值的充分条件而非必要条件.

(新课标)高中数学《3.3.2-函数的极值与导数》课件-新人教A版选修1-1

(新课标)高中数学《3.3.2-函数的极值与导数》课件-新人教A版选修1-1
第17页,共29页。
规律方法 已知函数极值情况,逆向应用确定函数的解析式, 进而研究函数性质时注意两点: (1)常根据极值点处导数为 0 和极值两个条件列方程组,利用待 定系数法求解. (2)因为导数值等于零不是此点为极值点的充要条件,所以利用 待定系数法求解后必须验证根的合理性.
第18页,共29页。
第22页,共29页。
如图(1),此时曲线 f(x)与 x 轴恰有两个交点,即方程 f(x)=0 恰 好有两个实数根,所以 a+2=0,a=-2.(10 分) 如图(2),当极小值等于 0 时,有极大值大于 0,此时曲线 f(x) 与 x 轴恰有两个交点,即方程 f(x)=0 恰好有两个实数根,所以 a-2=0,a=2.综上,当 a=2,或 a=-2 时方程恰有两个实数 根.(12 分)
第8页,共29页。
2.极值点与导数的关系 (1)可导函数的极值点一定是导数为 0 的点,但导数为 0 的点不 一定是函数的极值点. (2)导数为 0 的点可能是函数的极值点,如 y=x2,y′(0)=0,x =0 是极小值.导数为 0 的点也可能不是函数的极值点,如 y =x3,y′(0)=0,x=0 不是极值点.
第23页,共29页。
【题后反思】 用求导的方法确定方程根的个数是一种很有效的 方法,它是通过函数的变化情况,运用数形结合的思想来确定 函数的图象与 x 轴的交点个数.
第24页,共29页。
【变式 3】 设函数 f(x)=x3-6x+5,x∈R. (1)求函数 f(x)的单调区间和极值; (2)若关于 x 的方程 f(x)=a 有三个不同的实数根,求实数 a 的取 值范围. 解 (1)f′(x)=3x2-6,令 f′(x)=0, 解得 x=- 2或 x= 2. 因为当 x> 2或 x<- 2时,f′(x)>0; 当- 2<x< 2时,f′(x)<0, 所以 f(x)的单调递增区间为(-∞,- 2),( 2,+∞); 单调递减区间为(- 2, 2).

《导数定义与极限》课件

《导数定义与极限》课件

利用导数求函数的极值
总结词
利用导数等于0的点,确定函数的极值点。
详细描述
如果函数在某点的导数等于0,且该点两侧 的导数符号相反,则该点为函数的极值点。
利用导数求曲线的切线方程
要点一
总结词
要点二
详细描述
利用导数求曲线在某点的切线斜率。
函数在某点的导数值即为该点处切线的斜率。再根据点斜 式方程,结合切点坐标,即可求出切线方程。
详细描述
在物理学中,导数常用于描述物体的运动状态和变化规律。例如,物体的速度和加速度可以通过对时间求导来获 得。导数在物理学的各个领域都有着广泛的应用。
02 导数的计算
导数的四则运算
总结词
掌握导数的四则运算规则,包括加、减、乘、除等运算。
详细描述
导数的四则运算法则是导数计算的基础,包括加法、减法、乘法和除法等运算。这些运算法则可以帮 助我们简化复杂的导数表达式,从而更好地理解和分析函数的单调性、极值等性质。
详细描述
极限是研究函数的重要工具,通过研究函数在不同点处的极限行为,我们可以了解函数的性质,如连 续性、可导性、单调性等。例如,利用极限研究函数的连续性和间断点,或者利用极限研究函数的极 值和最值等。
谢谢聆听
无穷小与无穷大的关系
无穷小是无穷大的反义词,两者在一定条件 下可以相互转化。
06 极限的应用
利用极限证明等式或不等式
总结词
通过极限,我们可以证明一些数学中的等式或不等式 。
详细描述
在数学中,有些等式或不等式可能难以直接证明,但通 过求极限,我们可以得到一些有用的性质和结论,从而 证明这些等式或不等式。例如,利用极限证明一些函数 的等价无穷小关系,或者利用极限证明函数的单调性等 。

第3讲导数与函数的极值最值课件共83张PPT

第3讲导数与函数的极值最值课件共83张PPT

2.导数与函数的最值 (1)函数 f(x)在[a,b]上有最值的条件 如果在区间[a,b]上函数 y=f(x)的图象是一条 07 ___连__续__不__断___的曲线, 那么它必有最大值和最小值. (2)求 y=f(x)在[a,b]上的最大(小)值的步骤 ①求函数 y=f(x)在(a,b)上的 08 _极__值___. ②将函数 y=f(x)的各极值与 09 __端__点__处__的__函__数__值__f(_a_)_,__f(_b_)_比较,其中 10 __最__大__的一个是最大值, 11 _最__小___的一个是最小值.
即 2x+y-13=0.

(2)显然 t≠0,因为 y=f(x)在点(t,12-t2)处的切线方程为 y-(12-t2)=
-2t(x-t),

x=0,得
y=t2+12,令
y=0,得
t2+12 x= 2t ,
所以 S(t)=12×(t2+12)·t2+2|t1| 2.
不妨设 t>0(t<0 时,结果一样),
例 1 (2021·南昌摸底考试)设函数 f(x)在 R 上可导,其导函数为 f′(x), 且函数 y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是( )
A.函数 f(x)有极大值 f(2)和极小值 f(1) B.函数 f(x)有极大值 f(-2)和极小值 f(1) C.函数 f(x)有极大值 f(2)和极小值 f(-2) D.函数 f(x)有极大值 f(-2)和极小值 f(2)
单调递减,所以 x=1 是 f(x)的极大值点.②若 a<0,由 f′(x)=0,得 x=1
或 x=-1a.因为 x=1 是 f(x)的极大值点,所以-1a>1,解得-1<a<0.综合①②

函数的极值ppt课件

函数的极值ppt课件


四 、不含参数的函数求极值
变式训练 求下列函数的极值:
(1)f(x)=x²e-×;
[解析](1)函数f(X) 的定义域为R,
f(x)=2xe-×+x²·e-×.(-x)'=2xe-×-x²e-×=x(2-x)e-×.
令f'(x)=0,得x(2-x)e-×=0,解得x=0 或x=2. 当x变化时,f'(x),f(x) 的变化情况如表所示:
2.对极值概念的再理解 (1 )极值是一个局部概念,极值只是某个点的函数值,与它附近点的函数值比较它是 最大值或最小值,但并不意味着它在函数的整个定义域内是最大值或最小值;
(2 ) 一个函数在某区间上或定义域内的极大值或极小值可以不止一个; (3)函数的极大值与极小值之间无确定的大小关系; (4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点; (5)单调函数一定没有极值.
e
f'(x)

0
f(x)
1
e
故当- 时,函数(x)取得极大值,且极大值为

(e,+0)

3求含参函数的极值
例2 已知函数f(x)=x-aln x(a∈R) ,求函数f(x)的极值.
①当a ≤0时,f(x)>0, 函数f(x)为(0,+0)上的增函数,函数f(x)无极值; ②当a>0 时,令f'(x)=0, 解得x=a,
课堂小结
y
f'(x₀)=0
f'(x)>0
f'(x)<0
y
f'(x <0
f'(x,)=0 f(x)
>0
a Xo b

高考数学总复习函数的极值与导数PPT课件

高考数学总复习函数的极值与导数PPT课件
互动 1 满足 f′(x0)=0 的点 x0 是函数 f(x)的极值点吗? 【解析】 不一定,必须再加上 x0 左右导数的符号相反,才能 断定函数在 x0 处取得极值.
互动 2 函数 y=f(x)在给定区间(a,b)内一定有极值点吗? 【解析】 不一定.若函数 y=f(x)在区间(a,b)内是单调函数, 就没有极值点.
(3)已知函数 y=|x2-2|x|-3|的图像如图所示,由图像指出该 函数的极值.
【解析】 由图像可知:当 x=±3 时,函数取极小值 0;当 x =0 时,函数取极小值 3;当 x=±1 时,函数取极大值 4.
注:这个函数有五个极值点,其中三个极小值点处的导数均不 存在.
题型二 利用导数求极值
令 f′(x)=0,得 cosx=12或 cosx=-1.
π

当 0<x<2π时,x1= 3 ,x2=π,x3= 3 .
当 x 在区间(0,2π)内变化时,f′(x),f(x)的变化情况如下表:
x f′(x)
f(x)
π (0, 3 )

π 3
0 极大值
33 4
π ( 3 ,π)

π
5π (π, 3 )
要点 2 极大值:(对可导函数) 如图,若 b 为极大值点,f(b)为极大值,则必须满足: ①f(b)≥f(x0)(f(x0)表示 f(x)在 x=b 附近的函数值); ②f′(b)=0; ③在 x=b 附近的左侧,f′(x)>0,函数单调递增; 在 x=b 附近的右侧,f′(x)<0,函数单调递减.
题型一 根据图像求极值
例 1 如图观察,函数 y=f(x)在 d、e、f、g、h、i 等点处的 函数值与这些点附近的函数值有什么关系?y=f(x)在这些点处 的导数值是多少?在这些点附近,y=f(x)的导数的符号有什么规 律?

函数的极值 课件(第1课时)

 函数的极值 课件(第1课时)

知识点 1 极值点与极值 (1)极小值点与极小值 若函数 y=f (x)在点 x=a 的函数值 f (a)比它在点 x=a 附近其他 点的函数值都小,f ′(a)=_0,而且在点 x=a 附近的左侧__f_′(_x_)_<__0___, 右侧__f_′_(x_)_>__0___,就把点 a 叫做函数 y=f (x)的极小值点,f __(_a_) _叫 做函数 y=f (x)的极小值.
A.y=x3 B.y=x2+1 C.y=|x| D.y=2x BC [对于 A,y′=3x2≥0,∴y=x3 单调递增,无极值;对于 B, y′=2x,x>0 时 y′>0,x<0 时 y′<0,∴x=0 为极值点;对于 C,根 据图象,在(0,+∞)上单调递增,在(-∞,0)上单调递减,∴C 符合; 对于 D,y=2x 单调递增,无极值.故选 BC.]
第五章 一元函数的导数及其应用
5.3 导数在研究函数中的应用 5.3.2 函数的极值与最大(小)值
第1课时 函数的极值
学习任务
核心素养
1.了解极大值、极小值的概念.(难 1.通过极值点与极值概念的
点) 学习,培养数学抽象的核心
2.了解函数在某点取得极值的必 素养.
要条件和充分条件.(重点、易混 2.借助函数极值的求法,提
x (-∞,-1) -1 (-1,3) 3 (3,+∞)
y′

0

0

y

极大值 ↘ 极小值

∴当 x=-1 时,函数 y=f (x)有极大值,且 f (-1)=10; 当 x=3 时,函数 y=f (x)有极小值,且 f (3)=-22.
(2)y′=3x2(x-5)2+2x3(x-5) =5x2(x-3)(x-5). 令 y′=0,即 5x2(x-3)(x-5)=0, 解得 x1=0,x2=3,x3=5.当 x 变化时,y′与 y 的变化情况如下 表:

函数的极值与导数

函数的极值与导数

极大值 和_______ 极小值 统称为极值. 极值点,_______
练习1:指出下图中的极大值、极小值、极 值点、极值
y y=f(x) P(x1,f(x1)) Q(x2,f(x2)) o a x1 x2 x3 b x
4
2、上图的左右端点是极值点吗?极值点 在图像的什么地方出现? 3、一个函数只有一个极大值和一个极小 值吗?它的极大值一定大于它的极小值吗?
• 1.理解极大值、极小值的概念. • 2.会用导数求最高次幂不超过三次的 多项式函数的极大值、极小值. 重点: 利用导数求函数的极大值、极小值.
(一)导学案自主探究(一) 在点t=a附近的图像有什么特点(自左向右上 升还是下降)?此点附近的导数符号有什么 变化?在t=a时,函数h(t)在此点的导数是多少?
∴a=-6,b=9. ………………………6 分
• (2)f′(x)=-18x2+18x=-18x(x-1) ……… ……… 8分 • 当f′(x)=0时,x=0或x=1. • 当f′(x)>0时,0<x<1; • 当f′(x)<0时,x<0或x>1. ……… ……… ……… ……… 10分 • ∴函数f(x)=-6x3+9x2的极小值为 f(0)=0. ……… 12分
3
当 x 变化时,f′(x)、f(x)的变化情况如下表:
x

1
(1,+
∞)
f ′ (x )

0

0

f(
x)

大值

小值
2 ∴f(x)的递增区间为-∞,-3和(1,+∞),递减区间 2 为-3,1. 2 49 2 当 x=-3时,f(x)有极大值,f-3=27;

高中数学全程复习方略3.3.2 函数的极值与导数(共65张PPT)

高中数学全程复习方略3.3.2 函数的极值与导数(共65张PPT)
g′(x) g(x)
2 (-≦,- ) 3 2 3 2 (- ,4) 3
4
0 -16-m
(4,+≦)
+Байду номын сангаас
+
0
68 -m 27
-



则函数g(x)的极大值为g( 2 )= 68 -m,极小值为g(4)=-16-m.
≨由y=f(x)的图象与y=
1 f′(x)+5x+m的图象有三个不同交点, 3
3
27
68 2 g( ) m>0, 得 3 27 解得-16<m< 68 . 27 g 4 16 m<0,

+ ↗
0
4 27
-
f(x)

1 )= 4 , f(x)极大值=f( 27 3
f(x)极小值=f(1)=0. 答案: 4
27
0
2.≧f(x)=x4-x3,≨f′(x)=4x3-3x2. 令f′(x)=0,即4x3-3x2=0,得x2(4x-3)=0. ≨x=0或x= 3 .
4
当x变化时,f(x),f′(x)的变化情况如下表:
的交点,求实数m的取值范围.
【解析】1.f(x)=x3+x2-5x+2,
f′(x)=3x2+2x-5.由f′(x)=0得x=- 5 或x=1.
3
当x变化时,f′(x),f(x)的变化情况如下表: x f′(x)
5 (-≦,- ) 3 5 3 5 (- ,1) 3
1 0 -1
(1,+≦) +
+
0
229 27
1.极小值点与极小值的定义
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3
解:∵ f x 1 x3 4x 4 ∴f ' x x2 4 x 2x 2

f
'
x
3
0,
解得x=2,或x=-2.
下面分两种情况讨论:
2
(1)当 f ' x 0 ,即x>2,或x<-2时; 2
(2)当 f ' x 0 ,即-2 < x<2时。
当x变化时,f ' x, f x 的变化情况如下表:
x ,2 2 2, 2 2 2,
f ' x
0
0
f x 单调递增 28 单调递减 4
3
3
∴当x=-2时, f(x)的极大值为 f (2) 28
当x=2时, f(x)的极小值为 f 2 4 3
3
单调递增
6
归纳:求函数y=f(x)极值的方法是:
(1)确定函数的定义域 (2)求导数f'(x) (3)求方程f'(x) =0的全部解 (4)把方程的解在定义域范围内分区间列成表 格 (5)确定各区间 f'(x) 的符号
3
f (b) 0
y
极大值f(b)
y
f (x) 0 f (x) 0 f (x) 0
y f x
极小值
ao
f(a)
f
(a)
b
(0图一)
x
y f x
e cd of g
(图二)
hx
点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.
点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.
练习:
1、下列结论中正确的是( B )。
A、导数为零的点一定是极值点。 B、如果在x0附近的左侧f'(x)>0,右侧f'(x)<0,那么
f(x0)是极大值。 C、如果在x0附近的左侧f'(x)<0,右侧f'(x)>0,那么
f(x0)是极大值。 D、极大值一定大于极小值。
y f x x3
x
0
7
练习
求下列函数的极值:
(1) f (x) 6x2 x 2;
(2) f (x) x3 27x;
解:
(1) f (x) 12x 1, 令 f (x) 0,
解得 x
1 12
列表:
x
(, 1 )
1
12
12
( 1 ,) 12
f ' x

0
+
f (x) 单调递减
49 单调递增 24
所以, 当 x 1 时, f (x)有极小值 12
f ( 1 ) 49 .ห้องสมุดไป่ตู้12 24
8
练习
求下列函数的极值:
(1) f (x) 6x2 x 2;
(2) f (x) x3 27x;
解: (2) 令f (x) 3x2 27 0,解得 x1 3, x2 3.列表:
x (–∞, –3)
f ' x
+
f (x) 单调递增
–3 (–3, 3)
(3)函数 y f (x)有极大值? (4)函数 y f (x)有极小值?
10
思考:已知函数 f x ax3 bx2 2x 在 x 2, x 1处取得极值。
(1)求函数f x 的解析式 (2)求函数 f x的单调区间
解:(1) f ' x 3ax2 2bx 2
∵ f x在 x 2, x 1取得极值, ∴ f (2) 0, f (1) 0
0

54 单调递减
3
( 3, +∞)
0
+
54 单调递增
所以, 当 x = –3 时, f (x)有极大值 54 ; 当 x = 3 时, f (x)有极小值 – 54 .
9
习题 A组 下图是导函数 y f (x) 的图象, 在标记的点中, 在哪一点处 (1)导函数 y f (x)有极大值? (2)导函数 y f (x)有极小值?
12

12a 4b 2 0
3a
2b
2
0
解得
a 1,b 1 32
∴ f x 1 x3 1 x2 2x
32
(2) ∵ f ' x x2 x 2, 由 f ' x 0得
x 1或x 2
∴ f x的 单调增区间为 ,2 U1,
由 f ' x 0 得 2 x 1 f x的单调减区间为 (2,1)
极小值点、极大值点统称极值点,极大值和极小值统称为极值.
思考:极大值一定大于极小值吗?
4
(1)如图是函数 y f x 的图象,试找出函数 y f x的
极值点,并指出哪些是极大值点,哪些是极小值点?
(2)如果把函数图象改为导函数 y f ' x的图象?
y
x3
a x1 o x2 x4 x5
yy ff' xx x6 b x
答: 1、x1,x3,x5,x6是函数y=f(x)的极值点,其中x1,x5是函 数y=f(x)的极大值点,x3,x6函数y=f(x)的极小值点。
2、x2,x4是函数y=f(x)的极值点,其中x2是函数y=f(x) 的极大值点,x4是函数y=f(x)的极小值点。
5
例4:求函数 f x 1 x3 4x 4 的极值.
11
课堂小结:
今天我们学习函数的极值,并利用导数求函数的极值 一、方法: (1)确定函数的定义域 (2)求导数f'(x) (3)求方程f'(x) =0的全部解 (4)把方程的解在定义域范围内分区间列成表格
(5)确定各区间 f ' x 的符号
二、通过本节课使我们学会了应用数形结合法去求函数的极 值,并能应用函数的极值解决函数的一些问题
ao
f
(a)
b
(0图一)
问题:
f (x) 0
x
y f x
e cd of g
(图二)
y f x
hx
(1)函数 y f x在点 a, b的函数值与这些点附近的
函数值有什么关系?
(2)函数 y f x在点 a, b 的导数值是多少?
(3)在点 a, b 附近,y f x 的导数的符号有什么规律?
函数的极值与导数
1
复习: 函数单调性与导数正负的关系
在某个区间(a, b)内, f '( x) 0 f ( x)在(a, b)内单调递增 f '( x) 0 f ( x)在(a, b)内单调递减 f '( x) 0 f ( x)在(a, b)内是常函数.
2
f (b) 0
y
y
f (x) 0 f (x) 0
相关文档
最新文档