有理数的加减法——提高题练习
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数的加减法练习题——提高题
班级: 学号: 姓名: 成绩:_________
1、若m 是有理数,则||m m +的值( )
A 、可能是正数
B 、一定是正数
C 、不可能是负数
D 、可能是正数,也可能是负数
2、若m m m <-0,则||的值为( )
A 、正数
B 、负数
C 、0
D 、非正数
3、如果0m n -=,m n 则与的关系是 ( )
A 、互为相反数
B 、 m =±n ,且n ≥0
C 、相等且都不小于0
D 、m 是n 的绝对值
4、下列等式成立的是( )
A 、0=-+a a
B 、a a --=0
C 、0=--a a
D 、a --a =0
5、若230a b -++=,则a b +的值是( )
A 、5
B 、1
C 、-1
D 、-5
6、在数轴上,a 表示的点在b 表示的点的右边,且6,3a b ==,则a b -的值为( )
A.-3 B.-9 C.-3或-9 D.3或9
7、两个数的差为负数,这两个数 ( )
A 、都是负数
B 、两个数一正一负
C 、减数大于被减数
D 、减数小于被减数
6、负数a 与它相反数的差的绝对值等于( )
A 、 0
B 、a 的2倍
C 、-a 的2倍
D 、不能确定
8、下列语句中,正确的是( )
A 、两个有理数的差一定小于被减数
B 、两个有理数的和一定比这两个有理数的差大
C 、绝对值相等的两数之差为零
D 、零减去一个有理数等于这个有理数的相反数
9、对于下列说法中正确的个数( )
①两个有理数的和为正数时,这两个数都是正数
②两个有理数的和为负数时,这两个数都是负数
③两个有理数的和,可能是其中的一个加数
④两个有理数的和可能等于0
A 、1
B 、2
C 、3
D 、4
10、有理数a ,b 在数轴上的对应点的位置如图所示,则( )
A 、a +b =0
B 、a +b >0
C 、a -b <0
D 、a -b >0
11、下列各式中与a b c --的值不相等的是( )
A 、a b c --()
B 、a b c -+()
C 、()()a b c -+-
D 、()()-+-b a c
12、下列各式与a -b +c 的值相等的是( )
A .a -(b +c )
B .c +(a +b )
C .c -(b -a )
D .a +(b +c )
13、用式子 表示引入相反数后,加减混合运算可以统一为加法运算,正确的是( )
A 、a +b -c =a +b +c
B 、a -b +c =a +b +c
C 、a +b -c =a +(-b )=(-c )
D 、a +b -c =a +b +(-c )
14、若0a b c d <<<<,则以下四个结论中,正确的是( )
A 、a b c d +++一定是正数
B 、c d a b +--可能是负数
C 、d c a b ---一定是正数
D 、c d a b ---一定是正数
15、若a 、b 为有理数,a 与b 的差为正数,且a 与b 两数均不为0,那么( )
A 、被减数a 为正数,减数b 为负数
B 、a 与b 均为正数,切被减数a 大于减数b
C 、a 与b 两数均为负数,且减数 b 的绝对值大
D 、以上答案都可能
16、若a 、b 表示有理数,且a >0,b <0,a +b <0,则下列各式正确的是( )
A 、-b <-a <b <a
B 、-a <b <a <-b
C 、b <-a <-b <a
D 、b <-a <a <-b
17、下列结论不正确的是( )
A 、若0a <,0b >,则0a b -<
B 、若0a >,0b <,则0a b ->
C 、若0a <,0b <,则()0a b -->
D 、若0a <,0b <,且a b >,则0a b -<
18、若0x <,0y >时,x ,x y +,y ,x y -中,最大的是( )
A 、x
B 、x y +
C 、x y -
D 、y
19、数m 和n ,满足m 为正数,n 为负数,则m ,m -n ,m +n 的大小关系是 ( )
A 、m >m -n >m +n
B 、m +n >m >m -n
C 、 m -n >m +n >m
D 、m -n >m >m +n
20、如果a <0,那么a 和它的相反数的差的绝对值等于( )
A 、a
B 、0
C 、-a
D 、-2a
21、若a b >>00,,则下列各式中正确的是( )
A 、a b ->0
B 、a b -<0
C 、a b -=0