人教版八年级数学上册期中测试题(含答案)

合集下载

人教版八年级上册期中数学试卷(含解析)

人教版八年级上册期中数学试卷(含解析)

八年级(上)期中数学试卷一、选择题(每小题4分,共40分)1.(4分)下面四个图形分别是节能、节水、低碳和绿色食品标志,是轴对称图形的是()A.B.C.D.2.(4分)以下列各组线段为边,能组成三角形的是()A.1cm,2cm,4cm B.4cm,6cm,8cmC.5cm,6cm,12cm D.2cm,3cm,5cm3.(4分)如图,在△ABC中,∠A=50°,∠C=70°,则外角∠ABD的度数是()A.110°B.120°C.130°D.140°4.(4分)已知点M(﹣1,3),则M点关于x轴对称点的坐标是()A.(﹣1,﹣3)B.(1,3)C.(﹣3,1)D.(3,1)5.(4分)如图:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为()厘米.A.16B.18C.26D.286.(4分)如图,B、E、C、F四点在一条直线上,EB=CF,∠A=∠D,再添一个条件不能得到△ABC≌△DEF的是()A.AB=DE B.DF∥AC C.∠DEF=∠B D.AB∥DE7.(4分)如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE =2,则△BCE的面积等于()A.10B.7C.5D.48.(4分)如图,在△ABC中,AB=AC,D为BC中点,∠BAD=35°,则∠C的度数为()A.35°B.45°C.55°D.60°9.(4分)如图,在△ABE中,∠BAE=105°,AE的垂直平分线MN交BE于点C,且AB=CE,则∠B 的度数是()A.45°B.60°C.50°D.55°10.(4分)如图所示,在△ABC中,∠A=60°,AB=AC,BD是△ABC的角平分线,延长BC至E,使CE=CD,若△ABC的周长为20,BD=a,则△DBE的周长是()A.20+a B.15+2a C.10+2a D.10+a二、填空题(每小题5分,共20分)11.(5分)等腰三角形的两边长分别为4和9,则这个三角形的周长为.12.(5分)如图,点D在AB上,点E在AC上,CD与BE相交于点O,且AB=AC,∠B=∠C,AD=4,CE=5,则AB=.13.(5分)如图,△ABC是等边三角形,D为AB的中点,DE⊥AC,垂足为点E.若AE=2,则△ABC 的周长为.14.(5分)如图,四边形ABCD的对角线AC,BD相交于点O,AB=AD,∠CAB=∠CAD.下列结论:①AC⊥BD;②CB=CD;③DA⊥DC;④∠ACB=∠ACD,其中正确结论的序号是(只填序号)三、解答题15.(8分)如图,已知:AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=40°,求∠ADB的度数.16.(8分)如图,AC⊥BC,BD⊥AD,AC=BD,求证:△CAB≌△DBA.17.(8分)如图,直线l同侧两个点A、B(需要写画法)(1)在直线l上求作一点M,使MA=MB;(2)在直线l上求作一点N,使NA+NB最小.18.(8分)在一次数学课上,李老师在黑板上画出图(如图所示),并写出三个等式:①AB=DC,②AC =DB,③∠BAD=∠CDA,要求同学从这三个等式中选出两个作为条件,推出∠B=∠C,请你试着完成李老师提出的要求,并说明理由.已知:(写一种情况即可)求证:∠B=∠C.19.(10分)如图,一艘轮船早上8时从点A向正北方向出发,小岛P在轮船的北偏西15°方向,轮船每小时航行15海里,11时轮船到达点B处,小岛P此时在轮船的北偏西30°方向.(1)求此时轮船距小岛为多少海里?(2)在小岛P的周围20海里范围内有暗礁,如果轮船不改变方向继续向前航行,是否会有触礁危险?请说明理由.20.(10分)已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,求证:DE=DF.21.(12分)已知如图,点C为线段AB上一点,分别以AC、BC为边在线段AB的同侧作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,连接AE、BD相交于点F.(1)求证:AE=BD;(2)如果∠ACD=30°,求∠AFB.22.(12分)(1)如图(1),在△ABC中,∠ABC、∠ACB的平分线相交于点O,∠A=40°求∠BOC的度数.(2)如图(2),△A′B′C′外角的平分线相交于点O′,∠A′=40°,求∠B′O′C′的度数.(3)由(1)、(2)可以发现∠BOC与∠B′O′C′有怎样的数量关系?设∠A=∠A′=n°,∠BOC 与∠B′O′C′是否还具有这样的数量关系?这个结论你是怎样得到的?23.(14分)定义:各个角都相等,各条边都相等的多边形叫做正多边形,如图,正五边形ABCDE的对角线AD、BE相交于点O.(1)求五边形ABCDE每一个内角的度数;(2)求证:AB=BO;(3)连接CO,求证:CO垂直平分AE.参考答案一、选择题(每小题4分,共40分)1.D;2.B;3.B;4.A;5.B;6.A;7.C;8.C;9.C;10.C;二、填空题(每小题5分,共20分)11.22;12.9;13.24;14.①②④;三、解答题15【解答】解:∵AD是△ABC的角平分线,∠BAC=60°,∴∠DAC=∠BAD=30°,∵CE是△ABC的高,∠BCE=40°,∴∠B=50°,∴∠ADB=180°﹣∠B﹣∠BAD=180°﹣30°﹣50°=100°.16【解答】解:∵AD是△ABC的角平分线,∠BAC=60°,∴∠DAC=∠BAD=30°,∵CE是△ABC的高,∠BCE=40°,∴∠B=50°,∴∠ADB=180°﹣∠B﹣∠BAD=180°﹣30°﹣50°=100°.17【解答】解:(1)连接AB,作AB的垂直平分线交AB于M,则点M即为所求;(2)作点A关于l的对称点A′,连接A′B,交l与点N,点N就是所求.18【解答】解:已知:①②(或①③),证明:在△ABD和△DCA中,,∴△ABE≌△DCE(SSS),∴∠B=∠C.故答案为:①②(或①③).19【解答】解:(1)∵∠P AB=15°,∠PBC=30°,∴∠P AB=∠APB,PB=AB=15×3=45海里;(2)过P点作PD⊥BC于D,在Rt△PBD中,∠PBD=30°,PB=45,∴PD==22.5,22.5>20.所以,轮船继续向前航行,不会有触礁危险.20【解答】证明:如图,连接AD,在△ABD和△ACD中,,∴△ABD≌△ACD(SSS),∴∠BAD=∠CAD,又∵DE⊥AB,DF⊥AC,∴DE=DF.21【解答】(1)证明:∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠BCE+∠DCE,∴∠ACE=∠DCB,在△ACE和△DCB中∵,∴△ACE≌△DCB,∴AE=BD;(2)解:∵∠ACD=30°,∴∠CDB+∠DBC=∠ACD=30°,∵△ACE≌△DCB,∴∠AEC=∠DBC,∠CDB=∠CAE,∴∠CAE+∠DBC=30°,∴∠AFB=180°﹣30°=150°.22【解答】解:(1)在△ABC中,∠ABC、∠ACB的平分线相交于点O,则∠1+∠2=∠ABC+∠ACB=(∠ABC+∠ACB)=(180°﹣∠A)=×(180°﹣40°)=70°.故∠BOC=180°﹣70°=110°;(2)因为∠A的外角等于180°﹣40°=140°,△A′B′C′另外的两外角平分线相交于点O′,根据三角形的外角和等于360°,所以∠1+∠2=×(360°﹣140°)=110°,∠B′O′C′=180°﹣110°=70°;(3)∵(1)(2)中∠BOC+∠B′O′C′=110°+70°=180°,∴∠BOC与∠B′O′C′互补;证明:当∠A=n°时,∠BOC=180°﹣[(180°﹣n°)÷2]=90°+n°,∵∠A′=n°,∠B′O′C′=180°﹣[360°﹣(180°﹣n°)]÷2=90°﹣n°,∴∠A+∠A′=90°+n°+90°﹣°=180°,∠BOC与∠B′O′C′互补,∴当∠A=∠A′=n°,∠BOC与∠B′O′C′还具有互补的关系.23【解答】解:(1)∠BAE=∠ABC=∠BCD=∠CDE=∠AED=(5﹣2)×180°÷5=108°;(2)证明:∵AB=AE,∴∠ABE=∠AEB=(180°﹣108°)÷2=36°,同理得:∠DAE=∠ADE=36°,∴∠BAO=∠BAE﹣∠DAE=108°﹣36°=72°,∠AOB=∠DAE+∠AEB=72°,∴∠BAO=∠AOB,∴AB=BO;(3)证明:连接AC,CE,∵AB=ED,∠ABC=∠CDE,BC=CD,∴△ABC≌△EDC(SAS),∴AC=EC,∵∠DAE=∠AEB=36°,∴AO=EO,∴CO垂直平分AE.。

人教版八年级数学上册期中考试卷(附答案)

人教版八年级数学上册期中考试卷(附答案)

人教版八年级数学上册期中考试卷(附答案)学校:___________姓名:___________班级:___________考号:___________第I 卷(选择题)一、选择题(本大题共8小题,共24.0分。

在每小题列出的选项中,选出符合题目的一项)1.下列四个实数中,最小的是( )A. −√ 3B. −2C. 2D. 32.下列各数中,无理数是( )A. √ 9B. √−83C. π2D. 533.与数轴上的点一一对应的是( )A. 有理数B. 无理数C. 整数D. 实数4.估计√ 7+1的值在( )A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间5.√ 16的算术平方根是( )A. 4B. 2C. ±4D. ±26.下列运算正确的是( )A. x 3÷x 2=xB. x 3⋅x 2=x 6C. x 3−x 2=xD. x 3+x 2=x 5 7.若(y +3)(y −2)=y 2+my +n ,则m 、n 的值分别为( )A. 5;6B. 5;−6C. 1;6D. 1;−68.已知a =255,b =344,c =433则a 、b 、c 的大小关系是( )A. b >c >aB. a >b >cC. c >a >bD. a <b <c第II 卷(非选择题)二、填空题(本大题共6小题,共18.0分)9.计算:−√ 36= ______ ,√−273= ______ ,√ 16= ______ .10.已知|a +2|+√ b −6=0,则a +b = ______ .11.√ 2−1的相反数是______ ,|√ 2−√ 3|= ______ ,√(−8)33= ______ .12.已知2n =a ,3n =b 则6n = ______ .13.已知x 2−y 2=8,且x +y =4,则x −y =______.14.已知x 2−(m −1)x +16是一个完全平方式,则m 的值等于______.三、解答题(本大题共10小题,共78.0分。

人教版八年级上册数学期中测试卷(含答案)

人教版八年级上册数学期中测试卷(含答案)
(3)如图2,△ABC固定,将△CDE绕点C按顺时针(或逆时针)方向旋转任意角度α,在旋转过程中,(1)中的结论是否总成立?∠AOB的度数是否改变?并说明理由.
参考答案
1.B
2.D
3.A
4.A
5.D
6.C
7.C
8.A
9.D
10.B
11.100°
12.4cm、5cm、6cm
13. , , ,
14.4
15.
A.直角三角形B.锐角三角形C.等边三角形D.钝角三角形
6.(本题3分)如图,点 分别在 的边 、 上, ,若 垂直平分 ,则 ().
A. B. C. D.
7.(本题3分)下列图形:①角;②直角三角形;③等边三角形;④线段;⑤等腰三角形.其中一定是轴对称图形的有()
A.2个B.3个C.4个D.5个
8.(本题3分)如图,在△ABC中,∠B=50°,点D为边AB的中点,点E在边AC上,将△ADE沿DE折叠,使得点A恰好落在BC的延长线上的点F处,DF与AC交于点O,连结CD,则下列结论一定正确的是( )
A.6B.7C.8D.9
3.(本题3分)如图,点D,F,E,A在同一直线上,已知 ,那么添加下列条件不能判断 的是()
A. B. C. D.
4.(本题3分)已知点A(m-1,3)与点B(2,n)关于x轴对称,则m+n的值为( ).
A.0B.-6C.-1D.6
5.(本题3分)若一个三角形三个内角度数的比为11︰7︰3,那么这个三角形是()
人教版八年级上册数学期中测试卷
(满分120分时间100分钟)
题号



总分
得分
一、单选题(共30分)
1.(本题3分)已知等腰三角形的两边长分别为3cm和7cm,则这个三角形的周长为()

人教版八年级上册数学期中试卷(附答案)

人教版八年级上册数学期中试卷(附答案)

人教版八年级上册数学期中试卷(附答案)一、选择题(每小题3分,共计30分)1.下列计算正确的是( )(A)3a-a=2 (B)(a 2)4=a 8 (C)a+a 4=a 5 (D)(a+b)(a-b)=a 2+b 22.下列图形是轴对称图形的是( )3.下列从左到右的变形中,是因式分解的是( )(A)x(a-b)=ax-bx (B) x 2-1+y 2=(x-1)(x+1)+y 2(C) x 2-1=(x-1)(x+1) (D) ax+bx+c= x(a+b)+c4.计算[(-a )3]4÷(-a 4)3的结果是( )(A)-1 (B)1 (C)a (D)-a5.计算:0.756³(- 43)6的结果是( ) (A)-1 (B)1 (C)-5 (D) 164 6.如图,AB=AC ,∠A=40°,AB 的垂直平分线MN交AC 于点D ,则∠DBC 的度数为( )(A)60° (B)45°(C)30° (D)20°7. 计算:a 2(a+1)-a(a 2-2a-1)的结果是( )(A) -a 2-a (B) 2a 2+a +1 (C) 3a 2+a (D) 3a 2-a8.等腰三角形的一边长为4cm ,另一边长为9cm ,则它的周长为( )(A)13cm (B)17cm (C)22cm (D)17cm 或22cm .9.如图,∠AOB=30°,P 为∠AOB 平分线上一点,PC∥OA 交OB 于点C , PD ⊥OA 于点D ,若PD+PC=12,则0C 的长为( )(A)2 (B)4 (C)6 (D)810.下列命题中:①有一个外角是120°的等腰三角形是等边三角形;②有两个外角相等的等腰三角形是等边三角形; ③有一边上的高也是这边上的中线的 等腰三角形是等边三角形; ④三个外角都相等的三角形是等边三角形. 正确 的个数有( )(A) 1个 (B) 2个 (C) 3个 (D) 4个二、填空题(每小题3分,共计30分)11.如果点A 的坐标为(3,-2),点B 的坐标为(3,2),那么点A 和点B 关于 _________ 对称.12.计算:d 3²d+d 2²d 2=_________.13.若等腰三角形有一个角为1000,则另两个角为_________.14.把多项式ab 2-2ab+a 分解因式的结果是15.计算(-x-y )2=_________________.16.若x+ 1x =5, 则x 2+ 1 x2 =________. 17.若x 2 - 2mx + 1是一个完全平方式,则m 的值为18.已知等腰Rt △ABC 中,∠C=90°,直线l 经过点C , 过点A 、B 分别作直线l 的垂线,垂足分别为D 、E , 若AD=15,BE=13,则DE=_________.19. 如图,在△ABC 中,AB=AC, 点D 、E 分别在BC 、AC 上,连接AD 、DE ,∠BAD=20°,AD=AE,则∠EDC=_______度.20.在△ABC 中,∠ACB=2∠ABC ,AD 为∠BAC 的平分线,过C 点作 AD 的垂线交 AB 于点,垂足为F ,BF=43, 则CD=三、解答题(21-24题每题6分,25,26题每题8分,27,28题每题10分,共60分)21.计算、因式分解:⑴ 计算: (x+y)(x-y)-x(x+y); ⑵ 因式分解: m 2(x-y)+n 2(y-x).。

人教版八年级上册数学期中考试试卷及答案

人教版八年级上册数学期中考试试卷及答案

八年级上册数学期中考试(时刻:90分钟总分:100分)一.选择题(36分)1.下列结论正确的是()(A)有两个锐角相等的两个直角三角形全等;(B)一条斜边对应相等的两个直角三角形全等;(C)顶角和底边对应相等的两个等腰三角形全等;(D)两个等边三角形全等.2.下列四个图形中,不是轴对称图形的是()AB C3.已知,如图1,AD=AC,BD=BC,O为AB上一点,那么,图中共有()对全等三角形.A. 1B. 2图14.如图2,AD是ABC△的中线,E,F别离是AD和AD延长线上的点,且DE DF,连结BF,CE.下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有()A.1个B.2个C.3个D.4个5.直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是()A.形状相同B.周长相等C.面积相等D.全等6.已知一个等腰三角形两内角的度数之比为1:4,则那个等腰三角形顶角的度数为()A.20B.120C.20或120D.367.如图4,已知点O是△ABC内一点,且点O到三边的距离相等,∠A=40,则∠BOC=()A. 0110 B.0120 C.0130 D.01408.圆、正方形、长方形、等腰梯形中有唯一条对称轴的是()A. 圆B. 正方形C. 长方形D. 等腰梯形9.点(3,-2)关于x轴的对称点是( )A. (-3,-2)B. (3,2)C. (-3,2)D. (3,-2)10.下列长度的三线段,能组成等腰三角形的是()A. 1,1,2B. 2,2,5C. 3,3,5D. 3,4,5ADCB图2EFCOAB图411.等腰三角形的一个角是80°,则它的底角是 ( )A. 50°B. 80°C. 50°或80°D. 20°或80°12.若等腰三角形腰上的高是腰长的一半,则那个等腰三角形的底角是 ( )A. 75°或30°B. 75°C. 15°D. 75°和15°二.填空题(18分)13.若是△ABC 和△DEF 全等,△DEF 和△GHI 全等,则△ABC 和△GHI ______全等, 若是△ABC 和△DEF 不全等,△DEF 和△GHI 全等,则△ABC 和△GHI ______全等.(填“必然”或“不必然”或“必然不”)14.点P (-1,2)关于x 轴对称点P 1的坐标为( ).15.如左下图.△ABC ≌△ADE ,则,AB= ,∠E=∠ .若∠BAE=120°∠BAD=40°.则∠BAC= . 16.如图3,AB ,CD 相交于点O ,AD =CB ,请你补充一个条件,使得△AOD ≌△COB .你补充的条件是______.17.点M (-2,1)关于x 轴对称的点N 的坐标是________,直线MN 与x 轴的位置关系是___________.18.如图4,直线AE ∥BD ,点C 在BD 上,若AE =4,BD =8,△ABD 的面积为16,则ACE △的面积为______.三.作图题(6分)19.最近几年来,国家实施“村村通”工程和农村医疗卫生改革,某县打算在张村、李村之间建一座定点医疗站P ,张、李两村座落在两相交公路内(如图所示).医疗站必需知足下列条件:①使其到两公路距离相等,②到张、李两村的距离也相等,请你通过作图确信P 点的位置.(不写作法,要保留作图痕迹)四.解答题(40分)20(本题8分).如图,AB=DF ,AC=DE ,BE=FC ,问:ΔABC 与ΔDEF 全等吗?AB 与DF 平行吗?请说明你的理由。

人教版八年级数学(上)期中测试试题及答案

人教版八年级数学(上)期中测试试题及答案

人教版八年级数学(上)期中测试试题及答案一、选择题(每小题2分,共20分)1.如果一个三角形有两边长分别是3和5,那么第三边长可能是( )A.1 B.2 C.4 D.82.在一些美术字中,有的汉字是轴对称图形,下面4个汉字中,可以看作是轴对称图形的是( ) A.B.C.D.3.等腰三角形的一个底角是50°,则它的顶角是( )A.50°B.50°或65°C.65°D.80°4.如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌Rt△DCF,则还需要添加一个条件是( )A.AE=DF B.∠A=∠D C.∠B=∠C D.AB=DC5.能将三角形面积平分的是三角形的( )A.角平分线B.高C.中线D.外角平分线6.在△ABC中,∠A:∠B:∠C=3:4:5,则∠C等于( )A.45°B.60°C.75°D.90°7.如图,甲、乙、丙三个三角形中和△ABC全等的图形是( )A.甲和乙B.乙和丙C.只有乙D.只有丙8.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是( )A.180°B.220°C.240°D.300°9.已知∠AOB=30°,点P在∠AOB内部,P1与P关于OB对称,P2与P关于OA对称,则P1,O,P2三点所构成的三角形是( )A.直角三角形B.钝角三角形C.等腰三角形D.等边三角形10.AD是△ABC的角平分线且交BC于D,过点D作DE⊥AB于E,DF⊥AC于F,则下列结论不一定正确的是( ) A.DE=DF B.BD=CD C.AE=AF D.∠ADE=∠ADF二、填空题(每小题3分,共18分)11.一个等边三角形的对称轴有__________条.12.如图是一个活动的衣帽架,它应用了四边形的__________性.13.如图,若△ABC≌△ADE,且∠B=60°,∠C=30°,则∠DAE=__________.14.若点M(﹣3,b)与点N(a,2)关于x轴对称,则a+b=__________.15.如图,分别以五边形的各个顶点为圆心,1cm长为半径作圆,则图中阴影部分的面积为__________cm2.16.如图,在△ABC中,AB=AC,BE=CD,BD=CF,则∠α与∠A之间的数量关系为__________.三、解答题(62分)17.完成下列证明过程:如图,∠CAE是△ABC的一个外角,∠1=∠2,AD∥BC,求证:AB=A C.证明:∵AD∥BC(已知)∴∠1=∠__________(两直线平行,同位角相等)∠2=∠__________(__________)又∵∠1=∠2(已知)∴__________=__________(等量代换)∴AB=AC(__________).18.如图,在3×3的正方形网格中,有格点△ABC和△DEF,且△ABC和△DEF关于某条直线成轴对称,请在下面给出的图中,画出3个不同位置的△DEF及其对称轴MN.19.如图,AC=AE,AB=AD,∠1=∠2,求证:∠B=∠D.20.如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E,∠B=40°,∠E=30°,求∠BAC的度数.21.一个多边形的内角和比四边形的外角和多540°,并且这个多边形的各内角都相等.这个多边形的每一个内角等于多少度?它是正几边形?22.如图,在△ABC中,AB=AC,D为BC中点,DE、DF分别是∠ADB、∠ADC的平分线,若DE=2,求DF的长.23.如图,△ABC是等边三角形,D为BC边上一个动点(D与B、C均不重合),AD=AE,∠DAE=60°,连接CE.(1)求证:△ABD≌△ACE;(2)求证:CE平分∠ACF;(3)若AB=2,当四边形ADCE的周长取最小值时,求BD的长.24.如图1,在平面直角坐标系xOy中,A(﹣3,0),B(2,0),C为y轴正半轴上一点,且BC=4.(1)求∠OBC的度数;(2)如图2,点P从点A出发,沿射线AB方向运动,同时点Q在边BC上从点B向点C运动,在运动过程中:①若点P的速度为每秒2个单位长度,点Q的速度为每秒1个单位长度,运动时间为t秒,已知△PQB是直角三角形,求t的值;②若点P,Q的运动路程分别是a,b,已知△PQB是等腰三角形时,求a与b满足的数量关系.参考答案一、选择题(每小题2分,共20分)1.如果一个三角形有两边长分别是3和5,那么第三边长可能是( )A.1 B.2 C.4 D.8【考点】三角形三边关系.【分析】根据三角形的三边关系可得5﹣3<x<5+3,解不等式,确定x的取值范围,然后可得答案.【解答】解:设第三边长为x,由题意得:5﹣3<x<5+3,即2<x<8,故选:C.【点评】此题主要考查三角形的三边关系,要注意三角形形成的条件:任意两边之和大于第三边,三角形的两边差小于第三边.2.在一些美术字中,有的汉字是轴对称图形,下面4个汉字中,可以看作是轴对称图形的是( )A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形;B、不是轴对称图形;C、不是轴对称图形;D、不是轴对称图形;故选A.【点评】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.等腰三角形的一个底角是50°,则它的顶角是( )A.50°B.50°或65° C.65°D.80°【考点】等腰三角形的性质.【分析】由等腰三角形的性质可知两底角相等,再根据三角形内角和为180°,即可求出顶角的度数.【解答】解:∵等腰三角形的一个底角是50°,∴它的顶角=180°﹣50°﹣50°=80°,故选D.【点评】本题考查了等腰三角形的性质以及三角形内角和定理的运用,解题的关键是熟记等腰三角形的各种性质并且能够灵活运用.4.如图,BE=CF,AE⊥BC,DF⊥BC,要根据“HL”证明Rt△ABE≌Rt△DCF,则还需要添加一个条件是( )A.AE=DF B.∠A=∠D C.∠B=∠C D.AB=DC【考点】直角三角形全等的判定.【分析】根据垂直定义求出∠CFD=∠AEB=90°,再根据全等三角形的判定定理推出即可.【解答】解:条件是AB=CD,理由是:∵AE⊥BC,DF⊥BC,∴∠CFD=∠AEB=90°,在Rt△ABE和Rt△DCF中,,∴Rt△ABE≌Rt△DCF(HL),故选D.【点评】本题考查了全等三角形的判定定理的应用,能灵活运用全等三角形的判定定理进行推理是解此题的关键.5.能将三角形面积平分的是三角形的( )A.角平分线 B.高C.中线 D.外角平分线【考点】三角形的面积.【分析】根据三角形的面积公式,只要两个三角形具有等底等高,则两个三角形的面积相等.根据三角形的中线的概念,故能将三角形面积平分的是三角形的中线.【解答】解:根据等底等高可得,能将三角形面积平分的是三角形的中线.故选C.【点评】注意:三角形的中线能将三角形的面积分成相等的两部分.6.在△ABC中,∠A:∠B:∠C=3:4:5,则∠C等于( )A.45°B.60°C.75°D.90°【考点】三角形内角和定理.【分析】首先根据∠A:∠B:∠C=3:4:5,求出∠C的度数占三角形的内角和的几分之几;然后根据分数乘法的意义,用180°乘以∠C的度数占三角形的内角和的分率,求出∠C等于多少度即可.【解答】解:180°×==75°即∠C等于75°.故选:C.【点评】此题主要考查了三角形的内角和定理,要熟练掌握,解答此题的关键是要明确:三角形的内角和是180°.7.如图,甲、乙、丙三个三角形中和△ABC全等的图形是( )A.甲和乙B.乙和丙C.只有乙D.只有丙【考点】全等三角形的判定.【分析】根据全等三角形的判定定理作出判断与选择.【解答】解:在△ABC中,∠B=50°.甲:只有一个对应边与一个对应角相等,故甲不符合条件;乙:由两个对应边与这两个边的夹角相等,符合两个三角形全等的定理SAS;丙:由两个对应角与一条边对应相等,符合两个三角形全等的定理AAS.故选B.【点评】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.8.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是( )A.180°B.220°C.240°D.300°【考点】等边三角形的性质;多边形内角与外角.【专题】探究型.【分析】本题可先根据等边三角形顶角的度数求出两底角的度数和,然后在四边形中根据四边形的内角和为360°,求出∠α+∠β的度数.【解答】解:∵等边三角形的顶角为60°,∴两底角和=180°﹣60°=120°;∴∠α+∠β=360°﹣120°=240°;故选C.【点评】本题综合考查等边三角形的性质及三角形内角和为180°,四边形的内角和是360°等知识,难度不大,属于基础题9.已知∠AOB=30°,点P在∠AOB内部,P1与P关于OB对称,P2与P关于OA对称,则P1,O,P2三点所构成的三角形是( )A.直角三角形B.钝角三角形C.等腰三角形D.等边三角形【考点】等边三角形的判定;轴对称的性质.【专题】应用题.【分析】根据轴对称的性质可知:OP1=OP2=OP,∠P1OP2=60°,即可判断△P1OP2是等边三角形.【解答】解:根据轴对称的性质可知,OP1=OP2=OP,∠P1OP2=60°,∴△P1OP2是等边三角形.故选:D.【点评】主要考查了等边三角形的判定和轴对称的性质.轴对称的性质:(1)对应点所连的线段被对称轴垂直平分;(2)对应线段相等,对应角相等.10.AD是△ABC的角平分线且交BC于D,过点D作DE⊥AB于E,DF⊥AC于F,则下列结论不一定正确的是( ) A.DE=DF B.BD=CD C.AE=AF D.∠ADE=∠ADF【考点】角平分线的性质.【分析】根据角平分线的性质,可证△AFD≌△AED,找到图中相等的关系即可.【解答】解:∵AD是∠BAC的平分线,∴DE=DF,DE⊥AB,DF⊥AC,∴△AFD≌△AED(HL),∴DE=DF,AE=AF,∠ADE=∠ADF.故选B.【点评】本题主要考查角平分线的性质,由已知能够注意到△AFD≌△AED,是解决的关键.二、填空题(每小题3分,共18分)11.一个等边三角形的对称轴有3条.【考点】轴对称的性质.【分析】根据对称轴:如果沿某条直线对折,对折的两部分是完全重合的,那么就称这样的图形为轴对称图形,这条直线叫做这个图形的对称轴.对称轴绝对是一条点化线,可得答案.【解答】解:如图:一个等边三角形的对称轴有3条,故答案为:3.【点评】本题考查了轴对称的性质,如果沿某条直线对折,对折的两部分是完全重合的,那么就称这样的图形为轴对称图形,这条直线叫做这个图形的对称轴.对称轴绝对是一条点化线.12.如图是一个活动的衣帽架,它应用了四边形的不稳定性.【考点】多边形;三角形的稳定性.【分析】根据四边形具有不稳定性解答.【解答】解:一个活动的衣帽架,它应用了四边形的不稳定性,故答案为:不稳定.【点评】本题考查三角形的稳定性和四边形的不稳定性在实际生活中的应用问题,解决本题的关键是熟记四边形的不稳定性.13.如图,若△ABC≌△ADE,且∠B=60°,∠C=30°,则∠DAE=90°.【考点】全等三角形的性质.【分析】根据三角形内角和定理求出∠BAC,根据全等三角形的性质求出∠DAE=∠BAC,求出即可.【解答】解:∵在△ABC中,∠B=60°,∠C=30°,∴∠BAC=180°﹣∠B﹣∠C=90°,∵△ABC≌△ADE,∴∠DAE=∠BAC=90°,故答案为:90°.【点评】本题考查了全等三角形的性质和三角形内角和定理的应用,注意:全等三角形的对应边相等,对应角相等.14.若点M(﹣3,b)与点N(a,2)关于x轴对称,则a+b=﹣5.【考点】关于x轴、y轴对称的点的坐标.【分析】直接利用关于x轴对称点的性质,得出a,b的值即可.【解答】解:∵点M(﹣3,b)与点N(a,2)关于x轴对称,∴a=﹣3,b=﹣2,则a+b=﹣3﹣2=﹣5.故答案为:﹣5.【点评】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标关系是解题关键.15.如图,分别以五边形的各个顶点为圆心,1cm长为半径作圆,则图中阴影部分的面积为πcm2.【考点】多边形内角与外角.【分析】根据多边形的外角和为360°可得阴影部分的面积为半径为1的圆的面积,再利用圆的面积计算公式可得答案.【解答】解:图中阴影部分的面积为π×12=π.故答案为:π.【点评】此题主要考查了多边形的外角,关键是掌握多边形的外角和为360°.16.如图,在△ABC中,AB=AC,BE=CD,BD=CF,则∠α与∠A之间的数量关系为2∠α+∠A=180°.【考点】全等三角形的判定与性质.【分析】根据SAS证明△BED与△CDF全等,再利用全等三角形的性质解答即可.【解答】解:∵AB=AC,∴∠C=∠B,在△BED与△CDF中,,∴△BED≌△CDF(SAS),∴∠BED=∠FDC,∵∠α+∠FDC=∠B+∠BED,∴∠α=∠B,∵∠A+∠B+∠C=180°,∴2∠α+∠A=180°.故答案为:2∠α+∠A=180°.【点评】本题考查了全等三角形的判定和性质,三角形外角的性质和三角形内角和定理,熟练掌握性质定理是解题的关键.三、解答题(62分)17.完成下列证明过程:如图,∠CAE是△ABC的一个外角,∠1=∠2,AD∥BC,求证:AB=A C.证明:∵AD∥BC(已知)∴∠1=∠B(两直线平行,同位角相等)∠2=∠C(两直线平行,内错角相等)又∵∠1=∠2(已知)∴∠B=∠C(等量代换)∴AB=AC(等角对等边).【考点】平行线的性质.【专题】推理填空题.【分析】根据平行线的性质和等角对等边的性质填空.【解答】证明:∵AD∥BC(已知)∴∠1=∠B(两直线平行,同位角相等)∠2=∠C(两直线平行,内错角相等)又∵∠1=∠2(已知)∴∠B=∠C(等量代换)∴AB=AC(等角对等边).【点评】本题主要利用平行线的性质和等角对等边的性质,书写证明过程是本题练习的重点.18.如图,在3×3的正方形网格中,有格点△ABC和△DEF,且△ABC和△DEF关于某条直线成轴对称,请在下面给出的图中,画出3个不同位置的△DEF及其对称轴MN.【考点】利用轴对称设计图案.【分析】本题要求思维严密,根据对称图形关于某直线对称,找出不同的对称轴,画出不同的图形,对称轴可以随意确定,因为只要根据你确定的对称轴去画另一半对称图形,那这两个图形一定是轴对称图形.【解答】解:如图所示;【点评】本题主要考查的是利用轴对称设计图案,掌握轴对称图形的性质是解题的解题的关键.19.如图,AC=AE,AB=AD,∠1=∠2,求证:∠B=∠D.【考点】全等三角形的判定与性质.【专题】证明题.【分析】由SAS证明△BAC≌△DAE,得出对应角相等即可.【解答】证明:∵∠1=∠2,∴∠CAB=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS),∴∠B=∠D.【点评】本题考查了全等三角形的判定与性质;熟练掌握全等三角形的判定方法,证明三角形全等是解决问题的关键.20.如图,CE是△ABC的外角∠ACD的平分线,且CE交BA的延长线于点E,∠B=40°,∠E=30°,求∠BAC的度数.【考点】三角形的外角性质.【分析】根据三角形外角性质求出∠ECD,根据角平分线定义求出∠ACD,根据三角形外角性质求出即可.【解答】解:∵∠B=40°,∠E=30°,∴∠ECD=∠B+∠E=70°,∵CE是△ABC的外角∠ACD的平分线,∴∠ACD=2∠ECD=140°,∴∠BAC=∠ACD﹣∠B=140°﹣40°=100°.【点评】本题考查了三角形外角性质,角平分线定义的应用,能灵活运用定理进行推理是解此题的关键,注意:三角形的一个外角等于和它不相邻的两个内角的和.21.一个多边形的内角和比四边形的外角和多540°,并且这个多边形的各内角都相等.这个多边形的每一个内角等于多少度?它是正几边形?【考点】多边形内角与外角.【分析】本题考查多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征,还需要懂得挖掘此题隐含着边数为正整数这个条件.本题可用整式方程求解.【解答】解:设边数为n,根据题意,得(n﹣2)×180°=360°+540°(n﹣2)×180°=900°n﹣2=5∴n=7.900÷7=.答:这个多边形的每一个内角等于度、它是正七边形.【点评】此题较难,考查比较新颖,涉及到整式方程.22.如图,在△ABC中,AB=AC,D为BC中点,DE、DF分别是∠ADB、∠ADC的平分线,若DE=2,求DF的长.【考点】全等三角形的判定与性质;等腰三角形的性质.【分析】证明△ADE≌△ADF即可,然后可得DF=DE=2.【解答】解:如图,∵AB=AC,D为BC中点,∴∠ADB=∠ADC=90°,∠1=∠2,∵DE、DF分别是∠ADB,∠ADC的平分线,∴∠ADE=∠ADB=45°,∠ADF=∠ADC=45°,∴∠ADE=∠ADF,在△ADE和△ADF中,,∴△ADE≌△ADF(ASA),∴DF=DE=2.【点评】本题考查了等腰三角形三线合一的性质、全等三角形的判定与性质,比较基础.对于全等三角形的证明,差什么条件就去寻找什么条件,如果条件不是明显的,则先通过推导得出所需要的条件.23.如图,△ABC是等边三角形,D为BC边上一个动点(D与B、C均不重合),AD=AE,∠DAE=60°,连接CE.(1)求证:△ABD≌△ACE;(2)求证:CE平分∠ACF;(3)若AB=2,当四边形ADCE的周长取最小值时,求BD的长.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】(1)由于AB=AC,AD=AE,所以只需证∠BAD=∠CAE即可得结论;(2)证明∠ACE和∠ECF都等于60°即可;(3)将四边形ADCE的周长用AD表示,AD最小时就是四边形ADCE的周长最小,根据垂线段最短原理,当AD⊥BC 时,AD最小,此时BD就是BC的一半.【解答】(1)证明:∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵∠DAE=60°,∴∠BAD+∠DAC=∠CAE+∠DAC,即∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE.(2)证明:∵△ABC是等边三角形,∴∠B=∠BCA=60°,∵△ABD≌△ACE,∴∠ACE=∠B=60°,∵△ABD≌△ACE,∴∠ACE=∠B=60°,∴∠ECF=180﹣∠ACE﹣∠BCA=60°,∴∠ACE=∠ECF,∴CE平分∠ACF.(3)解:∵△ABD≌△ACE,∴CE=BD,∵△ABC是等边三角形,∴AB=BC=AC=2,∴四边形ADCE的周长=CE+DC+AD+AE=BD+DC+2AD=2+AD,根据垂线段最短,当AD⊥BC时,AD值最小,四边形ADCE的周长取最小值,∵AB=AC,∴BD===1.【点评】此题主要考查了全等三角形的判定和性质定理以及垂线段最短原理,关键是找出能使三角形全等的条件,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应边相等,对应角相等.24.如图1,在平面直角坐标系xOy中,A(﹣3,0),B(2,0),C为y轴正半轴上一点,且BC=4.(1)求∠OBC的度数;(2)如图2,点P从点A出发,沿射线AB方向运动,同时点Q在边BC上从点B向点C运动,在运动过程中:①若点P的速度为每秒2个单位长度,点Q的速度为每秒1个单位长度,运动时间为t秒,已知△PQB是直角三角形,求t的值;②若点P,Q的运动路程分别是a,b,已知△PQB是等腰三角形时,求a与b满足的数量关系.【考点】一次函数综合题.【分析】(1)在OA上取一点D,根据等边三角形的性质进行解答即可;(2)①分∠PQB=90°时和∠QPB=90°时两种情况进行解答即可;②分a<5和a>5两种情况,利用等腰三角形和等边三角形的性质进行解答即可.【解答】解:(1)如图1:在OA上取一点D,使得OD=OB,连接CD,则BD=2OB=4,∵CO⊥BD,∴CD=CB=4,∴CD=CB=BD,∴△DBC是等边三角形,∴∠OBC=60°;(2)①由题意,得AP=2t,BQ=t,∵A(﹣3,0),B(2,0),∴AB=5,∴PB=5﹣2t,∵∠OBC=60°≠90°,∴下面分两种情况进行讨论,Ⅰ)如图2:当∠PQB=90°时,∵∠OBC=60°,∴∠BPQ=30°,∴BQ=,∴,解得:t=;Ⅱ)当∠QPB=90°时,如图3:∵∠OBC=60°,∴∠BQP=30°,∴PB=,∴,解得:t=2;②如图4:当a<5时,∵AP=a,BQ=b,∴BP=5﹣a,∵△PQB是等腰三角形,∠OBC=60°,∴△PQB是等边三角形,∴b=5﹣a,即a+b=5,如图5:当a>5时,∵AP=a,BQ=b,∴BP=a﹣5,∵△PQB是等腰三角形,∠QBP=120°,∴BP=BQ,∴a﹣5=b,即a﹣b=5.【点评】本题是一次函数的综合题,考查了一次函数图象上点的坐标特征,等边三角形的判定和性质,等腰三角形的应用等,根据题意作出图形是解题的关键.。

人教版八年级上学期期中考试数学试卷及答案解析(共六套)

人教版八年级上学期期中考试数学试卷及答案解析(共六套)

人教版八年级上学期期中考试数学试卷(一)一、选择题(本题共30分,每小题3分,下列各题均有四个选项,其中只有一个是符合题意的)1.图中的两个三角形全等,则∠α=()A.72°B.60°C.58°D.50°2.下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和其中一角对应相等C.两边和夹角对应相等D.两角和它们的夹边对应相等3.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.x2﹣1=(x+1)(x﹣1) D.ax+bx+c=x(a+b)+c4.下列各式中,正确的是()A.B.C. =D.5.若分式的值为0,则x应满足的条件是()A.x=﹣2 B.x=2 C.x≠﹣2 D.x=±26.下列各分式中,最简分式是()A.B.C.D.7.若x2﹣2(m﹣3)x+16是完全平方式,则m的值等于()A.﹣1 B.7 C.7或﹣7 D.7或﹣18.如图,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是()A.PE=PF B.AE=AF C.△APE≌△APF D.AP=PE+PF9.已知:三角形的两边长分别为3和7,则第三边的中线长x的取值范围是()A.2<x<5 B.4<x<10 C.3<x<7 D.无法确定10.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD :S△ACD=()A.3:4 B.4:3 C.16:9 D.9:16二、填空题(本题共16分,每小题2分)11.计算:3﹣2= .12.若(x﹣2)0有意义,则x的取值范围是.13.分解因式:x2+x﹣2= .14.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么亮亮画图的依据是.15.如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是.16.在△ABC中,∠C=90°,BC=4cm,∠BAC的平分线交BC于D,且BD:DC=5:3,则D到AB的距离为 cm.17.若x2+4x+1=0,则x2+= .18.请同学们观察 22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23…(1)写出表示一般规律的第n个等式;(2)根据所总结的规律计算210﹣29﹣28﹣…﹣22﹣2= .三、解答题(本题共54分)19.(5分)请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x﹣3﹣3(x+1)(C)=﹣2x﹣6(D)(1)上述计算过程中,从哪一步开始出现错误:;(2)从B到C是否正确,若不正确,错误的原因是;(3)请你正确解答.20.(2分)尺规画图(不用写作法,要保留作图痕迹)如图1,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路与到公路的距离相等,且离铁路与公路交叉处B点400米,如果你是红方的指挥员,请你在图2所示的作战图上标出蓝方指挥部的位置点P.21.(6分)分解下列因式:(1)9a2﹣1(2)p3﹣16p2+64p.22.(7分)计算(1)﹣.(2)()﹣1+(﹣1)+(2﹣)0+|﹣3|.23.(5分)先化简,再求值:,其中x=5.24.(5分)解分式方程:.25.(4分)已知:如图,AB=AC,AD=AE,∠1=∠2.求证:△ABD≌△ACE.26.(4分)已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC.(2)AD∥BC.27.(4分)在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:(1)AD=CB;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC.请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出证明过程.28.(4分)若x2+y2﹣4x+2y+5=0,求()2010+y2010的值.29.(4分)已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.(1)如图1,当∠MAN绕点A旋转到BM=DN时,有BM+DN=MN.当∠MAN绕点A 旋转到BM≠DN时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间有怎样的等量关系?请写出你的猜想,并证明.30.(4分)已知:在△ABC中,∠ABC=100°,∠C的平分线交AB边于点E,在AC边上取点D,使得∠CBD=20°,连结DE.求∠CED的度数.参考答案与试题解析一、选择题(本题共30分,每小题3分,下列各题均有四个选项,其中只有一个是符合题意的)1.图中的两个三角形全等,则∠α=()A.72°B.60°C.58°D.50°【考点】KA:全等三角形的性质.【分析】根据全等三角形对应角相等解答即可.【解答】解:∵两个三角形全等,∴α=58°.故选C.【点评】本题考查了全等三角形的性质,熟记性质并准确识图,确定出对应角是解题的关键.2.下列条件中,不能判定三角形全等的是()A.三条边对应相等B.两边和其中一角对应相等C.两边和夹角对应相等D.两角和它们的夹边对应相等【考点】KB:全等三角形的判定.【分析】根据全等三角形的判定定理逐个判断即可.【解答】解:A、符合全等三角形的判定定理SSS,能推出两三角形全等,故本选项不符合题意;B、不符合全等三角形的判定定理,不能推出两三角形全等,故本选项符合题意;C、符合全等三角形的判定定理SAS,能推出两三角形全等,故本选项不符合题意;D、符合全等三角形的判定定理ASA,能推出两三角形全等,故本选项不符合;故选B.【点评】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.3.下列各式从左到右的变形中,是因式分解的为()A.x(a﹣b)=ax﹣bx B.x2﹣1+y2=(x﹣1)(x+1)+y2C.x2﹣1=(x+1)(x﹣1) D.ax+bx+c=x(a+b)+c【考点】51:因式分解的意义.【分析】根据因式分解的定义作答.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【解答】解:A、是整式的乘法运算,故选项错误;B、结果不是积的形式,故选项错误;C、x2﹣1=(x+1)(x﹣1),正确;D、结果不是积的形式,故选项错误.故选:C.【点评】熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式.4.下列各式中,正确的是()A.B.C. =D.【考点】65:分式的基本性质.【分析】利用分式的基本性质对各式进行化简即可.【解答】解:A、已经是最简分式,故本选项错误;B、,故本选项错误;C、=,故本选项错误;D、利用分式的基本性质在分式的分子与分母上同时乘以x+y即可得到,故本选项正确;故选D.【点评】本题考查了分式的基本性质,解题的关键是在进行分式的运算时要同时乘除.5.若分式的值为0,则x应满足的条件是()A.x=﹣2 B.x=2 C.x≠﹣2 D.x=±2【考点】63:分式的值为零的条件.【分析】根据分式值为0的条件可得x2﹣4=0且x+2≠0,再解出x的值即可.【解答】解:由题意得:x2﹣4=0且x+2≠0,解得:x=2.故选:B.【点评】此题主要考查了分式的值为零的条件,分式值为零的条件是分子等于零且分母不等于零.6.下列各分式中,最简分式是()A.B.C.D.【考点】68:最简分式.【分析】最简分式是指分子和分母没有公因式.【解答】解:(A)原式=,故A不是最简分式;(B)原式==,故B不是最简分式;(C)原式=,故C是最简分式;(D)原式==,故D不是最简分式;故选(C)【点评】本题考查考查最简分式,要注意将分子分母先分解后,约去公因式.7.若x2﹣2(m﹣3)x+16是完全平方式,则m的值等于()A.﹣1 B.7 C.7或﹣7 D.7或﹣1【考点】4E:完全平方式.【分析】这里首末两项是x和4这两个数的平方,那么中间一项为加上或减去x 和4积的2倍.【解答】解:依题意,得m﹣3=±4,解得m=7或﹣1.故选D.【点评】本题是完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.8.如图,P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,下列结论中不正确的是()A.PE=PF B.AE=AF C.△APE≌△APF D.AP=PE+PF【考点】KF:角平分线的性质.【分析】题目的已知条件比较充分,满足了角平分线的性质要求的条件,可直接应用性质得到结论,与各选项进行比对,得出答案.【解答】解:∵P是∠BAC的平分线AD上一点,PE⊥AB于E,PF⊥AC于F,∴PE=PF,又有AD=AD∴△APE≌△APF(HL∴AE=AF故选D.【点评】本题主要考查平分线的性质,由已知证明△APE≌△APF是解题的关键.9.已知:三角形的两边长分别为3和7,则第三边的中线长x的取值范围是()A.2<x<5 B.4<x<10 C.3<x<7 D.无法确定【考点】K6:三角形三边关系;K2:三角形的角平分线、中线和高.【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边.倍长中线,构造一个新的三角形.根据三角形的三边关系就可以求解.【解答】解:7﹣3<2x<7+3,即2<x<5.故选A.【点评】本题主要考查了三角形的三边关系,注意此题构造了一条常见的辅助线:倍长中线.10.如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD :S△ACD=()A.3:4 B.4:3 C.16:9 D.9:16【考点】K3:三角形的面积.【分析】利用角平分线的性质,可得出△ABD的边AB上的高与△ACD的AC上的高相等,估计三角形的面积公式,即可得出△ABD与△ACD的面积之比等于对应边之比.【解答】解:∵AD是△ABC的角平分线,∴设△ABD的边AB上的高与△ACD的AC上的高分别为h1,h2,∴h1=h2,∴△ABD与△ACD的面积之比=AB:AC=8:6=4:3,故选:B.【点评】本题考查了角平分线的性质,以及三角形的面积公式,熟练掌握三角形角平分线的性质是解题的关键.二、填空题(本题共16分,每小题2分)11.计算:3﹣2= .【考点】6F:负整数指数幂.【分析】根据负整数指数为正整数指数的倒数计算.【解答】解:3﹣2=.故答案为.【点评】本题主要考查了负指数幂的运算,比较简单.12.若(x﹣2)0有意义,则x的取值范围是x≠2 .【考点】6E:零指数幂.【分析】根据非零的零次幂等于1,可得答案.【解答】解:由题意,得x﹣2≠0,解得x≠2,故答案为:x≠2.【点评】本题考查了零指数幂,利用非零的零次幂等于1是解题关键.13.分解因式:x2+x﹣2= (x﹣1)(x+2).【考点】57:因式分解﹣十字相乘法等.【分析】因为(﹣1)×2=﹣2,2﹣1=1,所以利用十字相乘法分解因式即可.【解答】解:∵(﹣1)×2=﹣2,2﹣1=1,∴x2+x﹣2=(x﹣1)(x+2).故答案为:(x﹣1)(x+2).【点评】本题考查的是十字相乘法分解因式,运用十字相乘法分解因式时,要注意观察,尝试,并体会它实质是二项式乘法的逆过程.14.如图,亮亮书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么亮亮画图的依据是两角和它们的夹边分别相等的两个三角形全等.【考点】KE:全等三角形的应用.【分析】根据图象,三角形有两角和它们的夹边是完整的,所以可以根据“角边角”画出即可.【解答】解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故答案为:两角和它们的夹边分别相等的两个三角形全等.【点评】本题考查了三角形全等的判定的实际运用,熟练掌握判定定理:两角及其夹边分别对应相等的两个三角形全等是解题的关键.15.如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是AO=DO或AB=DC或BO=CO .【考点】KB:全等三角形的判定.【分析】本题要判定△AOB≌△DOC,已知∠A=∠D,∠AOB=∠DOC,则可以添加AO=DO或AB=DC或BO=CO从而利用ASA或AAS判定其全等.【解答】解:添加AO=DO或AB=DC或BO=CO后可分别根据ASA、AAS、AAS判定△AOB≌△DOC.故填AO=DO或AB=DC或BO=CO.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.16.在△ABC中,∠C=90°,BC=4cm,∠BAC的平分线交BC于D,且BD:DC=5:3,则D到AB的距离为 1.5 cm.【考点】KF:角平分线的性质.【分析】作出图形,过点D作DE⊥AB于E,先求出CD的长,再根据角平分线上的点到角的两边的距离相等可得DE=CD解答.【解答】解:如图,过点D作DE⊥AB于E,∵BC=4cm,BD:DC=5:3,∴CD=×4=1.5cm,∵AD是∠BAC的平分线,∴DE=CD=1.5cm.故答案为:1.5.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键,作出图形更形象直观.17.若x2+4x+1=0,则x2+= 14 .【考点】4C:完全平方公式.【分析】由x2+4x+1=0可得x≠0,两边除以x可得到x+=﹣4,再两边平方,根据完全平方公式展开即可得到x2+的值.【解答】解:∵x2+4x+1=0,∴x+4+=0,即x+=﹣4,∴(x+)2=(﹣4)2,∴x2+2+=16,∴x2+=14.故答案为14.【点评】本题考查了完全平方公式:(a±b)2=a2±2ab+b2.也考查了代数式的变形能力.18.请同学们观察 22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23…(1)写出表示一般规律的第n个等式2n+1﹣2n=2n;(2)根据所总结的规律计算210﹣29﹣28﹣…﹣22﹣2= 2 .【考点】37:规律型:数字的变化类.【分析】(1)根据等式的变化找出变化规律“第n个等式为2n+1﹣2n=2n”,此题得解;(2)根据2n=2n+1﹣2n将算式210﹣29﹣28﹣…﹣22﹣2进行拆项,合并同类项即可得出结论.【解答】解:(1)观察,发现规律:22﹣2=2(2﹣1)=2,23﹣22=22(2﹣1)=22,24﹣23=23(2﹣1)=23,…,∴第n个等式为2n+1﹣2n=2n.故答案为:2n+1﹣2n=2n.(2)∵2n=2n+1﹣2n,∴210﹣29﹣28﹣…﹣22﹣2=210﹣210+29﹣29+28﹣28+27﹣…﹣23+22﹣2=22﹣2=2.故答案为:2.【点评】本题考查了规律型中数字的变化类,根据等式的变化找出变化规律是解题的关键.三、解答题(本题共54分)19.请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x﹣3﹣3(x+1)(C)=﹣2x﹣6(D)(1)上述计算过程中,从哪一步开始出现错误: A ;(2)从B到C是否正确,若不正确,错误的原因是不能去分母;(3)请你正确解答.【考点】6B:分式的加减法.【分析】异分母分式相加减,先化为同分母分式,再加减.【解答】解:===,(1)故可知从A开始出现错误;(2)不正确,不能去分母;(3)===.【点评】本题考查异分母分式相加减.应先通分,化为同分母分式,再加减.本题需注意应先把能因式分解的分母因式分解,在计算过程中,分母不变,只把分子相加减.20.尺规画图(不用写作法,要保留作图痕迹)如图1,在一次军事演习中,红方侦察员发现蓝方指挥部在A区内,到铁路与到公路的距离相等,且离铁路与公路交叉处B点400米,如果你是红方的指挥员,请你在图2所示的作战图上标出蓝方指挥部的位置点P.【考点】N4:作图—应用与设计作图;KF:角平分线的性质.【分析】作出角平分线,进而截取PB=400进而得出答案.【解答】解:如图所示:P点即为所求.【点评】此题主要考查了应用设计与作图,正确掌握角平分线的性质是解题关键.21.分解下列因式:(1)9a2﹣1(2)p3﹣16p2+64p.【考点】55:提公因式法与公式法的综合运用.【分析】(1)原式利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可.【解答】解:(1)原式=(3a+1)(3a﹣1);(2)原式=p(p2﹣16p+64)=p(p﹣8)2.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.22.计算(1)﹣.(2)()﹣1+(﹣1)+(2﹣)0+|﹣3|.【考点】6B:分式的加减法;2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】(1)直接利用分式加减运算法则化简求出答案;(2)直接利用负指数幂的性质以及零指数幂的性质以及绝对值的性质分别化简求出答案.【解答】解:(1)原式===;(2)原式=2﹣1+1+3=5.【点评】此题主要考查了分式得加减运算以及实数运算,正确掌握运算法则是解题关键.23.先化简,再求值:,其中x=5.【考点】6D:分式的化简求值.【分析】把原式的第二项被除式分母及除式分母都分解因式,然后利用除以一个数等于乘以这个数的倒数把除法运算化为乘法运算,约分后,再与第一项通分,利用同分母分式的减法运算计算,可化为最简,最后把x的值代入化简的式子中即可求出值.【解答】解:==﹣=﹣===,(4分)当x=5时,原式==.(5分)【点评】此题考查了分式的化简求值,分式的化简求值时,加减的关键是通分,通分的关键是找出各分母的最简公分母,分式的乘除关键是约分,约分的关键是找出公因式,本题属于化简求值题,解答此类题要先将原式化为最简,再代值,同时注意有时计算后还能约分,比如本题倒数第二步约去公因式x+1.24.解分式方程:.【考点】B3:解分式方程;86:解一元一次方程.【分析】方程的两边都乘以5(x+1),把分式方程转化成整式方程,求出方程的解,再代入方程进行检验即可.【解答】解:方程的两边都乘以5(x+1)、去分母得:5x=2x+5x+5,移项、合并同类项得:2x=﹣5,∴系数化成1得:x=﹣,经检验x=﹣是原方程的解,∴原方程的解是x=﹣.【点评】本题考查了分式方程的解法,关键是把分式方程转化成整式方程,注意一定要检验.25.已知:如图,AB=AC,AD=AE,∠1=∠2.求证:△ABD≌△ACE.【考点】KB:全等三角形的判定.【分析】首先得出∠EAC=∠BAD,进而利用全等三角形的判定方法(SAS)得出即可.【解答】证明:∵∠1=∠2,∴∠EAC=∠BAD,在△DAB和△EAC中,∴△ABD≌△ACE(SAS)【点评】此题主要考查了全等三角形的判定,正确应用全等三角形的判定方法是解题关键.26.已知:如图,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC.(2)AD∥BC.【考点】KD:全等三角形的判定与性质.【分析】(1)易证△ABD≌△CDB,根据全等三角形的对应边相等知AB=DC;(2)因为△ABD≌△CDB,所以全等三角形的对应角∠ADB=∠CBD.然后由平行线的判定定理知AD∥BC.【解答】证明:(1)∵AB⊥BD,CD⊥BD,∴∠ABD=∠CDB=90°,∴在Rt△ABD和Rt△CDB中,,∴Rt△ABD≌Rt△CDB(HL),∴AB=DC(全等三角形的对应边相等);(2)∵Rt△ABD≌Rt△CDB[由(1)知],∴∠ADB=∠CBD(全等三角形的对应角相等),∴AD∥BC(内错角相等,两直线平行).【点评】本题考查了全等三角形的判定与性质.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.以及三角形全等的性质:全等三角形的对应边、对应角相等.27.在△AFD和△BEC中,点A、E、F、C在同一直线上,有下面四个论断:(1)AD=CB;(2)AE=CF;(3)∠B=∠D;(4)AD∥BC.请用其中三个作为条件,余下一个作为结论,编一道数学问题,并写出证明过程.【考点】KD:全等三角形的判定与性质.【分析】只要以其中三个作为条件,能够得出另一个结论正确即可,下边以(1)、(2)、(4)为条件,(3)为结论为例.【解答】解:以(1)、(2)、(4)为条件,(3)为结论.证明:∵AE=CF,∴AF=CE,∵AD∥BC,∴∠A=∠C,又AD=BC,∴△ADF≌△CBE(SAS),∴∠B=∠D.【点评】本题与命题联系在一起,归根到底主要还是考查了全等三角形的判定及性质问题,应熟练掌握.28.若x2+y2﹣4x+2y+5=0,求()2010+y2010的值.【考点】AE:配方法的应用;1F:非负数的性质:偶次方.【分析】根据x2+y2﹣4x+2y+5=0,可以求得x、y的值,从而可以求得所求式子的值.【解答】解:∵x2+y2﹣4x+2y+5=0,∴x2﹣4x+4+y2+2y+1=0,∴(x﹣2)2+(y+1)2=0,∴x﹣2=0,y+1=0,解得,x=2,y=﹣1,∴()2010+y2010==1+1=2.【点评】本题考查配方法的应用、非负数的性质,解题的关键是明确题意,找出所求问题需要的条件.29.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.(1)如图1,当∠MAN绕点A旋转到BM=DN时,有BM+DN=MN.当∠MAN绕点A旋转到BM≠DN时,如图2,请问图1中的结论还是否成立?如果成立,请给予证明,如果不成立,请说明理由;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM,DN和MN之间有怎样的等量关系?请写出你的猜想,并证明.【考点】LE:正方形的性质;KD:全等三角形的判定与性质;R2:旋转的性质.【分析】(1)在MB的延长线上截取BE=DN,连接AE,根据正方形性质得出AD=AB,∠D=∠DAB=∠ABC=∠ABE=90°,证△ABE≌△ADN推出AE=AN;∠EAB=∠NAD,求出∠EAM=∠MAN,根据SAS证△AEM≌△ANM,推出ME=MN即可;(2)在DN上截取DE=MB,连接AE,证△ABM≌△ADE,推出AM=AE;∠MAB=∠EAD,求出∠EAN=∠MAN,根据SAS证△AMN≌△AEN,推出MN=EN即可.【解答】解:(1)图1中的结论仍然成立,即BM+DN=MN,理由为:如图2,在MB的延长线上截取BE=DN,连接AE,∵四边形ABCD是正方形,∴AD=AB,∠D=∠DAB=∠ABC=∠ABE=90°,∵在△ABE和△ADN中,∴△ABE≌△ADN(SAS).∴AE=AN;∠EAB=∠NAD,∵∠DAB=90°,∠MAN=45°,∴∠DAN+∠BAM=45°,∴∠EAM=∠BAM+∠EAB=45°=∠MAN,∵在△AEM和△ANM中,∴△AEM≌△ANM(SAS),∴ME=MN,∴MN=ME=BE+BM=DN+BM,即DN+BM=MN;(2)猜想:线段BM,DN和MN之间的等量关系为:DN﹣BM=MN.证明:如图3,在DN上截取DE=MB,连接AE,∵由(1)知:AD=AB,∠D=∠ABM=90°,BM=DE,∴△ABM≌△ADE(SAS).∴AM=AE;∠MAB=∠EAD,∵∠MAN=45°=∠MAB+∠BAN,∴∠DAE+∠BAN=45°,∴∠EAN=90°﹣45°=45°=∠MAN,∵在△AMN和△AEN中,∴△AMN≌△AEN(SAS),∴MN=EN,∵DN﹣DE=EN,∴DN﹣BM=MN.【点评】本题考查了正方形性质和全等三角形的性质和判定的应用,题目具有一定的代表性,是一道比较好的题目,证明过程类似,培养了学生的猜想能力和分析归纳能力.30.已知:在△ABC中,∠ABC=100°,∠C的平分线交AB边于点E,在AC边上取点D,使得∠CBD=20°,连结DE.求∠CED的度数.【考点】KD:全等三角形的判定与性质;KF:角平分线的性质.【分析】分别作EF⊥CB的延长线于F,EH⊥AC于H,EG⊥BD于G.利用CE是角平分线,角平分线的性质定理,得EF=EH,再证明∠ABD=∠EBF,同理可证:EF=EG,根据HL证明Rt△EDH≌Rt△EDG,根据全等三角形的性质和角的和差关系可求∠CED.【解答】解:分别作EF⊥CB的延长线于F,EH⊥AC于H,EG⊥BD于G.∵CE是角平分线,∴EF=EH.∠ABC=100°,∠DBC=20°,∴∠ABD=80°,又∵∠EBF=80°,∴∠ABD=∠EBF,∴EF=EG,∴EH=EG,在Rt△EDH与Rt△EDG中,,∴Rt△EDH≌Rt△EDG(HL),∴∠EDH=∠EDG,∴∠CED=∠EDH﹣∠ECD=(∠BDH﹣∠BCA)=×20°=10°.【点评】本题考查了全等三角形的判定与性质,角的平分线的性质定理和逆定理,本题的关键是作出辅助线,以及角的平分线性质定理的应用.人教版八年级上学期期中考试数学试卷(二)一、精心选一选(每小题3分,共30分)1.计算(﹣)﹣3的结果是()A.﹣B.﹣C.﹣343 D.﹣212.将,(﹣2)0,(﹣3)2这三个数按从小到大的顺序排列,正确的结果是()A.(﹣2)0<<(﹣3)2B.<(﹣2)0<(﹣3)2C.(﹣3)2<(﹣2)0<D.(﹣2)0<(﹣3)2<3.下列各式中,从左到右的变形是因式分解的是()A.a2﹣4ab+4b2=(a﹣2b)2 B.x2﹣xy2﹣1=xy(x﹣y)﹣1C.(x+2y)(x﹣2y)=x2﹣4y2D.ax+ay+a=a(x+y)4.如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE5.在下列图案中,不是轴对称图形的是()A.B.C.D.6.如图,若OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=PC C.∠CPO=∠DPO D.OC=OD7.下列等式成立的是()A.B.C.D.8.如图,△ABC≌△BAD,点A和点B,点C和点D是对应点,如果AB=6cm,BD=5cm,AD=4cm,那么BC的长是()A.4 B.5 C.6 D.无法确定9.如图,正方形ABCD的边长为4,将一个足够大的直角三角板的直角顶点放于点A处,该三角形板的两条直角边与CD交于点F,与CB延长线交于点E,四边形AECF的面积是()A.16 B.12 C.8 D.410.如图,将一张正方形纸片经两次对折,并剪出一个菱形小洞后展开铺平,得到的图形是()A.B.C.D.二.细心填一填(每小题2分,共20分)11.一种细菌的半径为0.000407m,用科学记数法表示为m.12.当x= 时,分式没有意义;当x= 时,分式的值为0.13.计算(﹣)3÷(﹣)2的结果是.14.计算+的结果是.15.若x2+mx+16是完全平方式,则m= .16.如图,在△ABC和△DEF 中,AB=DE,AC=DF.请再添加一个条件,使△ABC 和△DFE全等.添加的条件是(填写一个即可):,理由是.17.如图,把△ABC绕C点顺时针旋转30°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=80°,则∠A=°.18.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D 到线段AB的距离是cm.19.如图,△ABC中,AB=AC,AB的垂直平分线交AC于P点.(1)若∠A=35°,则∠BPC=;(2)若AB=5cm,BC=3cm,则△PBC的周长= .20.探究:观察下列各式,,,…请你根据以上式子的规律填写: = ;= .三.精心解一解:(21,22每小题2分,23,24,25每小题2分,共16分)21.因式分解:2mx2﹣4mx+2m= .22.因式分解:x2y﹣9y= .23.化简:﹣+.24.先化简,再求值:(1﹣)÷,其中x=2.25.解分式方程:四.耐心想一想:(本小题4分)26.四川5.12特大地震受灾地区急需大量赈灾帐篷,某帐篷生产企业接到生产任务后,加大生产投入,提高生产效率,实际每天生产帐篷比原计划多200顶,已知现在生产3000顶帐篷所用的时间与原计划生产2000顶的时间相同.现在该企业每天能生产多少顶帐篷?五.精确作一作:作图题(本小题4分)27.某地区要在区域S内(即∠COD内部)建一个超市M,如图所示,按照要求,超市M到两个新建的居民小区A,B的距离相等,到两条公路OC,OD的距离也相等.这个超市应该建在何处?(要求:尺规作图,不写作法,保留作图痕迹)六.耐心看一看(每小题6分)28.如图,△ABC中A(﹣2,3),B(﹣31),C(﹣1,2).(1)画出△ABC关于x轴对称的△A1B1C1;并写出△A1B1C1三个顶点坐标:,,.(2)画出△ABC关于y轴对称的△A2B2C2;并写出△A2B2C2三个顶点坐标:,,.七.严密推一推(每小题4分,共20分)29.已知:如图,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.30.如图,已知AB=AD,AC=AE,∠1=∠2,求证:BC=DE.31.已知:AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)AO=BO.32.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.33.已知:如图,在△ABC中,∠ACB=90°,CD⊥AB于点D,点E在AC上,CE=BC,过E点作AC的垂线,交CD的延长线于点F.求证:AB=FC.八.挑战自我(选做本题4分)34.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,试判断AB﹣AD 与CD﹣CB的大小关系,并证明你的结论.解:结论:证明:参考答案与试题解析一、精心选一选(每小题3分,共30分)1.计算(﹣)﹣3的结果是()A.﹣B.﹣C.﹣343 D.﹣21【考点】负整数指数幂.【分析】根据负整数指数为正整数指数的倒数进行计算即可.【解答】解:原式=(﹣7)3=﹣343.故选:C.【点评】此题主要考查了负整数指数幂、乘方,关键是掌握负整数指数为正整数指数的倒数.2.将,(﹣2)0,(﹣3)2这三个数按从小到大的顺序排列,正确的结果是()A.(﹣2)0<<(﹣3)2B.<(﹣2)0<(﹣3)2 C.(﹣3)2<(﹣2)0<D.(﹣2)0<(﹣3)2<【考点】负整数指数幂;有理数的乘方;零指数幂.【分析】分别根据零指数幂,负整数指数幂和平方的运法则进行计算,再比较大小即可.【解答】解:∵=6,(﹣2)0=1,(﹣3)2=9,又∵1<6<9,∴(﹣2)0<<(﹣3)2.故选A.【点评】主要考查了零指数幂,负整数指数幂和平方的运算.负整数指数幂为相应的正整数指数幂的倒数;任何非0数的0次幂等于1.3.下列各式中,从左到右的变形是因式分解的是()A.a2﹣4ab+4b2=(a﹣2b)2 B.x2﹣xy2﹣1=xy(x﹣y)﹣1C.(x+2y)(x﹣2y)=x2﹣4y2D.ax+ay+a=a(x+y)【考点】因式分解的意义.【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:A、把一个多项式转化成几个整式积的形式,故A正确;B、每把一个多项式转化成几个整式积的形式,故B错误;C、是整式的乘法,故C错误;D、把一个多项式转化成几个整式积的形式,故D正确;故选:D.【点评】本题考查了因式分解的意义,利用了因式分解的意义.4.如图所示,AB=AC,要说明△ADC≌△AEB,需添加的条件不能是()A.∠B=∠C B.AD=AE C.∠ADC=∠AEB D.DC=BE【考点】全等三角形的判定.【分析】△ADC和△AEB中,已知的条件有AB=AC,∠A=∠A;要判定两三角形全等只需条件:一组对应角相等,或AD=AE即可.可据此进行判断,两边及一边的对角相等是不能判定两个三角形全等的.【解答】解:A、当∠B=∠C时,符合ASA的判定条件,故A正确;B、当AD=AE时,符合SAS的判定条件,故B正确;C、当∠ADC=∠AEB时,符合AAS的判定条件,故C正确;D、当DC=BE时,给出的条件是SSA,不能判定两个三角形全等,故D错误;故选:D.【点评】本题主要考查的是全等三角形的判定方法,需注意的是SSA和AAA不能作为判定两个三角形全等的依据.5.在下列图案中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、B、C都是轴对称图形,D不是轴对称图形,故选:D.【点评】此题主要考查了轴对称图形,关键是正确找出对称轴的位置.6.如图,若OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分别是C、D,则下列结论中错误的是()A.PC=PD B.OC=PC C.∠CPO=∠DPO D.OC=OD【考点】角平分线的性质.。

人教版八年级上册数学《期中》考试题(参考答案)

人教版八年级上册数学《期中》考试题(参考答案)

人教版八年级上册数学《期中》考试题(参考答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.-2019的相反数是( )A .2019B .-2019C .12019D .12019- 2.若点1(),6A x -,2(),2B x -,32(),C x 在反比例函数12y x=的图像上,则1x ,2x ,3x 的大小关系是( ) A .123x x x << B .213x x x << C .231x x x << D .321x x x <<3.若x ,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( )A .2x x y +-B .22y xC .3223y xD .222()y x y - 4.若不等式组11324x x x m+⎧<-⎪⎨⎪<⎩无解,则m 的取值范围为( ) A .2m ≤ B .2m < C .2m ≥ D .2m >5.若 45+a =5b (b 为整数),则a 的值可以是( )A .15B .27C .24D .206. 如图,在周长为12的菱形ABCD 中,AE =1,AF =2,若P 为对角线BD 上一动点,则EP +FP 的最小值为( )A .1B .2C .3D .47.下面四个手机应用图标中是轴对称图形的是( )A .B .C .D .8.下列图形中,不是轴对称图形的是( )A .B .C .D .9.如图,平行于x 轴的直线与函数11k y (k 0x 0)x =>>,,22k y (k 0x 0)x=>>,的图象分别相交于A ,B 两点,点A 在点B 的右侧,C 为x 轴上的一个动点,若ABC 的面积为4,则12k k -的值为( )A .8B .8-C .4D .4-10.如图,AD ,CE 分别是△ABC 的中线和角平分线.若AB=AC ,∠CAD=20°,则∠ACE 的度数是( )A .20°B .35°C .40°D .70°二、填空题(本大题共6小题,每小题3分,共18分)1.若613x ,小数部分为y ,则(213)x y +的值是________.2.已知15x x+=,则221x x +=________________. 3.因式分解:24x -=__________.4.如图,▱ABCD 中,AB =3cm ,BC =5cm ,BE 平分∠ABC 交AD 于E 点,CF 平分∠BCD 交AD 于F 点,则EF 的长为________m .5.如图,在平面直角坐标系中,点A 、B 的坐标分别为(1,3)、(n ,3),若直线y=2x 与线段AB 有公共点,则n 的值可以为____________.(写出一个即可)6.如图所示,在△ABC 中,∠BAC=106°,EF 、MN 分别是AB 、AC 的垂直平分线,点E 、N 在BC 上,则∠EAN=________.三、解答题(本大题共6小题,共72分)1.解方程:21133x x x x =+++.2.先化简,再求值:22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中3x =3.已知22a b -=,且1a ≥,0b ≤.(1)求b 的取值范围(2)设2m a b =+,求m 的最大值.4.已知:如图所示△ACB 和△DCE 都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE ,BD .求证:AE=BD .5.如图,ABC 中,点E 在BC 边上,AE AB =,将线段AC 绕点A 旋转到AF 的位置,使得CAF BAE ∠=∠,连接EF ,EF 与AC 交于点G(1)求证:EF BC =;(2)若65ABC ∠=︒,28ACB ∠=︒,求FGC ∠的度数.6.某超市计划购进甲、乙两种商品,两种商品的进价、售价如下表: 商品甲 乙 进价(元/件)60x + x 售价(元/件) 200 100若用360元购进甲种商品的件数与用180元购进乙种商品的件数相同.(1)求甲、乙两种商品的进价是多少元?(2)若超市销售甲、乙两种商品共50件,其中销售甲种商品为a件(30a ),设销售完50件甲、乙两种商品的总利润为w元,求w与a之间的函数关系式,并求出w的最小值.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、D4、A5、D6、C7、D8、A9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、32、233、(x+2)(x-2)4、15、26、32°三、解答题(本大题共6小题,共72分)1、32x =-2、3x3、(1)102b -≤≤;(2)2 4、略.5、(1)略;(2)78°.6、(1)分别是120元,60元;(2)402000w a =+(30)a ≥,当a=30件时,w 最小值=3200元。

人教版八年级(上)数学期中试卷(含答案)

人教版八年级(上)数学期中试卷(含答案)

人教版八年级(上)数学期中试卷一、选择题(共10个小题,每小题3分,共30分)1.(3分)下面所给的图形中,不是轴对称图形的是()A.B.C.D.2.(3分)若一个正多边形的内角和小于外角和,则该正多边形的每个内角度数为()A.30°B.60°C.120°D.150°3.(3分)如图,在△ABC和△DEF中,已知AB=DF,BC=EF,根据(SAS)判定△ABC≌△DEF,还需的条件是()A.∠A=∠D B.∠B=∠EC.∠B=∠F D.以上三个均可以4.(3分)下列计算正确的是()A.(﹣a3)3=﹣a9B.(3x3)3=9x9C.2x3•5x3=10x3D.(2a7)÷(4a3)=2a45.(3分)如图,BC=BE,CD=ED,则△BCD≌△BED,其依据是()A.SAS B.AAS C.SSS D.ASA6.(3分)把分式中的x、y的值都扩大2倍,分式的值有什么变化()A.不变B.扩大2倍C.扩大4倍D.缩小一半7.(3分)下列关系式中,正确的是()A.(a﹣b)2=a2﹣b2B.(a+b)(a﹣b)=a2﹣b2C.(a+b)2=a2+b2D.(a+b)2=a2﹣2ab+b28.(3分)下列各式从左到右变形,属于因式分解的是()A.x(x+2)=x2+2x B.x2+3x+1=x(x+3)+1C.(x﹣2)(x+2)=x2﹣4D.4x2+2x=2x(2x+1)9.(3分)如图:△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB =6cm,则△DEB的周长是()A.6cm B.4cm C.10cm D.以上都不对10.(3分)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4B.5C.6D.7二、填空题(共8个小题,每题2分,共16分)11.(2分)计算:(﹣3xy2)3=.12.(2分)因式分解:x2﹣4=.13.(2分)当x时,分式的值为正数.14.(2分)如图在△ABC中,∠C=90°,AB的垂直平分线MN分别交AC,AB于点D,E.若∠CBD:∠DBA=2:1,则∠A为.15.(2分)如图:DC∥AB,要证△ABD≌△CDB,根据“SAS”可知,需要添加一个条件:.16.(2分)比较大小:2.(填“>”,“<”或“=”)17.(2分)如果等腰三角形的两边长分别是4、8,那么它的周长是.18.(2分)如图,AB=12m,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动分钟后△CAP与△PQB全等.三、计算:(共5个小题,每题4分,共20分)19.(4分)(﹣1)2018+(﹣)2﹣(3.14﹣π)0.20.(4分)();21.(4分)(﹣4a3+12a3b﹣7a3b2)÷(﹣4a2).22.(4分)(x+2y)2﹣(x﹣2y)2.23.(4分)求x的值:27(8x﹣)3=216.四、解答题(24题5分,25题5分,26题7分,27题7分,28题10分,共34分)24.(5分)先化简,再求值:[(a﹣2b)2+(a﹣2b)(2b+a)﹣2a(2a﹣b)]÷2a.其中a=2,b=.25.(5分)如图:已知AD∥BC,AD⊥DF,BC⊥BE,DF=BE,求证:AE=FC.26.(7分)某部队将在指定山区进行军事演习,为了使道路便于部队重型车辆通过,部队工兵连接到抢修一段长3600米道路的任务,按原计划完成总任务的后,为了让道路尽快投入使用,工兵连将工作效率提高了50%,一共用了10小时完成任务.(1)按原计划完成总任务的时,已抢修道路米;(2)求原计划每小时抢修道路多少米?27.(7分)(1)设A=(x2+ax+5)(﹣2x)2﹣4x4,化简A;(2)若A﹣6x3的结果中不含有x3项,求4a2﹣4a+1的值.28.(10分)在Rt△ABC中,BC=AC,∠ACB=90°,点D为射线AB上一点,连接CD,过点C作线段CD的垂线l,在直线l上,分别在点C的两侧截取与线段CD相等的线段CE和CF,连接AE、BF.(1)当点D在线段AB上时(点D不与点A、B重合),如图1①请你将图形补充完整;②线段BF、AD所在直线的位置关系为,线段BF、AD的数量关系为;(2)当点D在线段AB的延长线上时,如图2①请你将图形补充完整;②在(1)中②问的结论是否仍然成立?如果成立请进行证明,如果不成立,请说明理由.人教版八年级(上)数学期中试卷参考答案与试题解析一、选择题1.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.2.【解答】解:设这个正多边形为n边形,根据题意,得:(n﹣2)×180°<360°,解得n<4.所以该正多边形为等边三角形,所以该正多边形的每个内角度数为60°.故选:B.3.【解答】解:∵AB=DF,BC=EF,∴添加条件∠B=∠F,则△ABC≌△DFE(SAS),故选:C.4.【解答】解:A、原式=﹣a9,符合题意;B、原式=27x9,不符合题意;C、原式=10x6,不符合题意;D、原式=a4,不符合题意.故选:A.5.【解答】解:在△BCD和△BED中,,∴△BCD≌△BED(SSS),故选:C.6.【解答】解:分别用2x和2y去代换原分式中的x和y,====×.故选:D.7.【解答】解:A、应为(a﹣b)2=a2﹣2ab+b2,本选项错误;B、(a+b)(a﹣b)=a2﹣b2,本选项正确;C、应为(a+b)2=a2+2ab+b2,本选项错误;D、应为(a+b)2=a2+2ab+b2,本选项错误.故选:B.8.【解答】解:A.从左边到右边的变形不属于因式分解,故本选项不符合题意;B.从左边到右边的变形不属于因式分解,故本选项不符合题意;C.从左边到右边的变形不属于因式分解,故本选项不符合题意;D.从左边到右边的变形属于因式分解,故本选项符合题意;故选:D.9.【解答】解:∵∠C=90°,∴DC⊥AC,又AD平分∠CAB交BC于D,DE⊥AB,∴CD=ED,在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,又AC=BC,∴AC=AE=BC,又AB=6cm,∴△DEB的周长=DB+BE+ED=DB+CD+BE=BC+BE=AE+EB=AB=6cm.故选:A.10.【解答】解:如图:故选:D.二、填空题11.【解答】解:(﹣3xy2)3=﹣27x3y6;故答案为:﹣27x3y6.12.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).13.【解答】解:分式的值为正数,则分子分母同号即同时为正或同时为负,∵x2>0,∴同时为负不可能,则同时为正即x﹣1>0,x2>0,x>1,故答案为:x>1.14.【解答】解:∵MN是AB的垂直平分线,∴AD=DB,∴∠A=∠DBA,∵∠CBD:∠DBA=2:1,∠C=90°,∴在△ABC中,∠A+∠ABC=∠A+∠A+2∠A=90°,解得∠A=22.5°.故答案为:22.5°.15.【解答】解:∵DC∥AB,∴∠ABD=∠CDB,又∵BD=DB,∴要证△ABD≌△CDB(SAS),需要添加一个条件AB=CD,故答案为:AB=CD.16.【解答】解:∵2≈2.33,≈2.45,∴2<;故答案为:<.17.【解答】解:∵等腰三角形有两边分别分别是4和8,∴此题有两种情况:①4为底边,那么8就是腰,则等腰三角形的周长为4+8+8=20,②8底边,那么4是腰,4+4=8,所以不能围成三角形应舍去.∴该等腰三角形的周长为20,故答案为:2018.【解答】解:∵CA⊥AB于A,DB⊥AB于B,∴∠A=∠B=90°,设运动x分钟后△CAP与△PQB全等;则BP=xm,BQ=2xm,则AP=(12﹣x)m,分两种情况:①若BP=AC,则x=4,AP=12﹣4=8,BQ=8,AP=BQ,∴△CAP≌△PBQ;②若BP=AP,则12﹣x=x,解得:x=6,BQ=12≠AC,此时△CAP与△PQB不全等;综上所述:运动4分钟后△CAP与△PQB全等;故答案为:4.三、计算:19.【解答】解:原式=1+﹣1=.20.【解答】解:(1)原式=•=•=•=;21.【解答】解:原式=﹣4a3÷(﹣4a2)+12a3b÷(﹣4a2)﹣7a3b2÷(﹣4a2)=a﹣3ab+ab2.22.【解答】解:原式=(x+2y+x﹣2y)(x+2y﹣x+2y)=2x•4y=8xy.23.【解答】方程整理得:(8x﹣)3=8,开立方得:8x﹣=2,解得:x=.四、解答题24.【解答】解:原式=(a2﹣4ab+4b2+a2﹣4b2﹣4a2+2ab)÷2a=(﹣2a2﹣2ab)÷2a=﹣a﹣b,当a=2,b=时,原式=﹣2﹣=.25.【解答】证明:∵AD∥BC,∴∠A=∠C,∵AD⊥DF,BC⊥BE,∴∠D=∠B=90°,在△ADF和△CBE中,,∴△ADF≌△CBE(AAS),∴AE=FC.26.【解答】解:(1)按原计划完成总任务的时,已抢修道路3600×=1200米,故答案为:1200米;(2)设原计划每小时抢修道路x米,根据题意得:,解得:x=280,经检验:x=280是原方程的解.答:原计划每小时抢修道路280米.27.【解答】解:(1)A=(x2+ax+5)×4x2﹣4x4=4x4+4ax3+20x2﹣4x4=4ax3+20x2;(2)A﹣6x3=4ax3+20x2﹣6x3=(4a﹣6)x3+20x2.∵A﹣6x3的结果中不含有x3项,∴4a﹣6=0.∴a=.当a=时,4a2﹣4a+1=4×﹣4×+1=4.28.【解答】解:(1)①见图1所示.②证明:∵CD⊥EF,∴∠DCF=90°,∵∠ACB=90°,∴∠ACB=∠DCF,∴∠ACD=∠BCF∵BC=AC,CD=CF,∴△ACD≌△BCF,∴AD=BF,∠BAC=∠FBC,∴∠ABF=∠ABC+∠FBC=∠ABC+∠BAC=90°,即BF⊥AD.故答案为:垂直、相等.(2)①见图2所示.②成立.理由如下:证明:∵CD⊥EF,∴∠DCF=90°,∵∠ACB=90°,∴∠DCF+∠BCD=∠ACB+∠BCD,即∠ACD=∠BCF,∵BC=AC,CD=CF,∴△ACD≌△BCF,∴AD=BF,∠BAC=∠FBC,∴∠ABF=∠ABC+∠FBC=∠ABC+∠BAC=90°,即BF⊥AD.。

人教版八年级上册数学期中测试卷(含答案)

人教版八年级上册数学期中测试卷(含答案)

人教版八年级上册数学期中测试卷姓名班级学号成绩一、单项选择题(每小题2分, 共12分)1.下列银行标志中,不是轴对称图形的为()A. B. C. D.2.点(﹣2,3)关于y轴的对称点的坐标为()A.(﹣2,﹣3) B.(2,3) C.(﹣2,3) D.(2,﹣3)3.已知等腰三角形的一个内角为40°,则这个等腰三角形的底角为()A.40° B.100° C.40°或100° D.40°或70°4.如图,△ABC与△A′B′C′关于直线l对称,若∠A=68°,∠C′=38°,则∠B的度数为()A.74° B.38° C.94° D.68°(第4题图)(第5题图)(第6题图)AB长为半径画弧,两弧交点的连线交5.如图,在△ABC中,AB=AC,分别以点A、点B为圆心,以大于12AC于点D,交AB于点E,连接BD,若∠A=40°,则∠DBC=()A.40° B.30° C.20° D.10°6.小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于()A.280°B.290° C.285° D.295°二、填空题(每小题3分, 共24分)7.如图,在已知的△ABC中,按以下步骤作图:BC的长为半径作弧,两弧相交于两点M,N;①分别以B,C为圆心,以大于12②作直线MN交AB于点D,连接CD.若CD=AC,∠A=50°,则∠ACB=.8.等腰三角形的周长为20cm,一边长为6cm,则底边长为cm.9.若点P(﹣3,4)和点Q(a,b)关于x轴对称,则2a+b=.10.如图,∠ADB=90°,∠DAB=∠BAC,BD=4,AC=10,则△ABC的面积是.(第7题图)(第10题图)(第11题图)11.如图,AB∥CF,E为DF的中点,若AB=7cm,CF=5cm,则BD=cm.12.如图,△ABC中AB=AC,AB的垂直平分线交AC于点D.若∠A=40°,则∠DBC=.(第12题图)(第13题图)(第14题图)13.如图,把一张长方形纸片ABCD沿EF折叠,∠1=55°,则∠2=度.14.如图,已知△ABC中∠A=43°,∠B=73°,点B,C,D,E在同一直线上,且CG=CD,DF=DE,则∠E=度.三、解答题(每小题5分,共20分)15.一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数.16.如图,在平面直角坐标系中有一个△ABC,顶点A(﹣1,3),B(2,0),C(﹣3,﹣1).(1)画出△ABC关于y轴的对称图形△A1B1C1(不写画法);点A关于x轴对称的点坐标为;点B关于y轴对称的点坐标为;(2)若网格上的每个小正方形的边长为1则△ABC的面积是.17.如图,在△ABC中,AB=AC,AD是BC上边的中线,BE⊥AC于点E,求证:∠CBE=∠BAD.18.如图,四边形ABCD中,AD∥BC,∠ABD=30°,AB=AD,DC⊥BC于点C,若BD=2,求CD的长.四、解答题(每小题7分,共28分)19.如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.(1)若∠A=40°,求∠DBC的度数;(2)若AE=6,△CBD的周长为20,求BC的长.20.如图,在△ABC中,AC=BC.(1)尺规作图:在AC上找一点M,使得∠MBC=∠C;(不写作法,保留作图痕迹)(2)在(1)的条件下,若满足BM=AB时,求∠C的度数.21.课间,小明拿着老师的等腰直角三角尺玩,不小心掉到两堆砖块之间,如图所示.(1)求证:△ADC≌△CEB;(2)已知DE=35cm,请你帮小明求出砖块的厚度a的大小(每块砖的厚度相同).22.如图所示,△ABC和△A′BC存在着某种对应关系(它们关于BC对称),其中A的对应点是A′,A(3,6),A′(3,0),△ABC内部的点M(4,4)的对应点是N(4,2).(1)你知道它们的对应点的坐标有什么关系吗?(2)如果△ABC内有一点P(x,y),那么在△A′BC内P的对应点P′的坐标是什么?五、解答题(每小题8分,共16分)23.(1)证明角平分线具有的性质:角平分线上的点到角的两边的距离相等.为了更直观、清楚地表达题意,我们通常在证明之前画出图形,并用符号表示已知和求证.如图1,已知:OC平分∠AOB,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为D,E.求证:PD=PE.(2)如图2,在△OAB中,OP平分∠AOB,交AB于点P,PD⊥OA于点D,PE⊥OB于点E,OA=OB=6,若S△OAB=15,求PD的长.24.某轮船由西向东航行,在A处测得小岛P的方位是北偏东75°,又继续航行7海里后,在B处测得小岛P的方位是北偏东60°求:(1)此时轮船与小岛P的距离BP是多少海里.(2)小岛点P方圆3海里内有暗礁,如果轮船继续向东行驶,请问轮船有没有触礁的危险?说明理由.六、解答题(每小题10分,共20分)25.感知:如图①,点E为等边三角形ABC中AC边上一点,连接BE,以BE为边在BE的左侧作等边三角形BDE,连接AD。

人教版八年级数学上册期中测试题(含答案)

人教版八年级数学上册期中测试题(含答案)

人教版八年级数学上册期中测试题(含答案)一.选择题1.下列图形中为轴对称图形的是()A。

B。

C。

D。

2.以下各组线段长能组成三角形的是()A。

1,2,4B。

2,4,6C。

4,6,8D。

5,6,123.△ABC中BC边上的高作法正确的是()A。

B。

C。

D。

4.下列条件中,不能判定三角形全等的是()A。

三条边对应相等B。

两边和一角对应相等C。

两角和其中一角的对边对应相等D。

两角和它们的夹边对应相等5.XXX同学在研究了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线。

如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,XXX说:“射线OP就是∠BOA的角平分线。

”他这样做的依据是()A。

角的内部到角的两边的距离相等的点在角的平分线上B。

角平分线上的点到这个角两边的距离相等C。

三角形三条角平分线的交点到三条边的距离相等D。

以上均不正确6.如图,XXX书上的三角形被墨迹污染了一部分,她根据所学的知识很快就画了一个与书上完全一样的三角形,那么红红画图的依据是()A。

SSSB。

SASC。

ASAD。

AAS7.一个多边形的内角和等于它的外角和的3倍,这个多边形是()A。

四边形B。

六边形C。

八边形D。

十边形8.在平面直角坐标系中,点A(1,-2)关于x轴对称的点的坐标为()A。

(1,2)B。

(-1,2)C。

(2,1)D。

(-1,-2)9.如图所示,BE⊥AC,CF⊥AB,垂足分别是E,F,若BE=CF,则图中全等三角形有()A。

1对B。

2对C。

3对D。

4对10.如图,将纸片△XXX沿DE折叠使点A落在点A′处,若∠1=80°,∠2=24°,则∠A为()A。

24°B。

28°C。

32°D。

36°11.如图,已知△ABC与△CDE都是等边三角形,点B、C、D在同一条直线上,AD与BE相交于点G,BE与AC相交于点F,AD与CE相交于点H,则下列结论:①△ACD≌△BCE;②∠AGB=60°;③BF=AH;④△CFH是等边三角形;⑤连CG,则∠XXX∠DGC。

人教版八年级上册数学期中检测卷(含答案)

人教版八年级上册数学期中检测卷(含答案)

期中检测卷(120分钟150分)一、选择题(本大题共10小题,每小题4分,满分40分)1.对于直线y=kx+b,若b减小一个单位,则直线将A.向左平移一个单位B.向右平移一个单位C.向上平移一个单位D.向下平移一个单位2.已知△ABC平移后得到△A1B1C1,且A1(-2,3),B1(-4,-1),C1(m,n),C(m+5,n+3),则A,B两点的坐标为A.(3,6),(1,2)B.(-7,0),(-9,-4)C.(1,8),(-1,4)D.(-7,-2),(0,-9)3.如图,AD是∠CAE的平分线,∠B=35°,∠DAC=60°,则∠ACD等于A .25°B .85°C .60°D .95°4.如图,已知△ABC 为直角三角形,∠C=90°,若沿图中虚线剪去∠C ,则∠1+∠2等于 A .315°B .270°C .180°D .135°5.平面直角坐标系内,点A (n ,1-n )一定不在 A.第一象限B.第二象限C.第三象限D.第四象限6.一次函数y=(m-1)x+m 2的图象过点(0,4),且经过第一、二、三象限,则m= A .-2B .2C .2或3D .-2或27.已知下列命题:①若a ≤0,则|a|=-a ;②若ma 2>na 2,则m>n ;③同位角相等,两直线平行;④对顶角相等.其中原命题与逆命题均为真命题的有 A .1个B .2个C .3个D .4个8.在平面直角坐标系中,对于平面内任意一点(a ,b ),若规定以下三种变换:①△(a ,b )=(-a ,b );②O (a ,b )=(-a ,-b );③Ω(a ,b )=(a ,-b ).按照以上变换有:△(O (1,2))=(1,-2),那么O (Ω(3,4))等于 A .(3,4)B .(3,-4)C .(-3,4)D .(-3,-4)9.一个装有进水管与出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y (单位:升)与时间x (单位:分)之间的函数关系如图所示.则每分钟出水量及从某时刻开始的9分钟时容器内的水量分别是 A .154升,1054升 B .54升,1054升 C .154升,25升 D .54升,454升10.已知自变量为x 的一次函数y=a (x-b )的图象经过第三象限,且y 随x 的增大而减少,则 A.a>0,b<0B.a<0,b>0C.a<0,b<0D.a>0,b>0二、填空题(本大题共4小题,每小题5分,满分20分)11.已知一个三角形的三边长为2,5,a ,且此三角形的周长为偶数,则a= 5 .12.在平面直角坐标系中,△ABC 的三个顶点的坐标是A (-2,3),B (-4,-1),C (2,0),将△ABC 平移至△A 1B 1C 1的位置,点A ,B ,C 的对应点分别是点A 1,B 1,C 1.若点A 1的坐标为(3,1),则点C 1的坐标为 (7,-2) .13.甲、乙两名大学生去距学校36千米的某乡镇进行社会调查.他们从学校出发,骑电动车行驶20分钟时发现忘带相机,甲下车前往,乙骑电动车按原路返回.乙取相机后(在学校取相机所用时间忽略不计),骑电动车追甲.在距乡镇13.5千米处追上甲后同车前往乡镇.电动车的速度始终不变.设甲与学校相距y 甲(千米),乙与学校相距y 乙(千米),甲离开学校的时间为x (分钟).y 甲、y 乙与x 之间的函数图象如图所示,则乙返回到学校时,甲与学校相距 20 千米.14.在平面直角坐标系中,过一点分別作x 轴与y 轴的垂线,若与坐标轴围成的长方形的周长与面积相等,则这个点叫做和谐点.给出以下结论:①点M (2,4)是和谐点;②不论a 为何值,点P (2,a )不是和谐点;③若点P (a ,3)是和谐点,则a=6;④若点F 是和谐点,则点F 关于坐标轴的对称点也是和谐点.则正确结论的序号是 ②④ . 三、(本大题共2小题,每小题8分,满分16分)15.如果|3x-13y+16|+|x+3y-2|=0,那么点P (x ,y )在第几象限?点Q (x+1,y-1)在坐标平面内的什么位置?解:根据题意,得{3x -13y +16=0,x +3y -2=0,解得{x =-1,y =1.∴点P (-1,1)在第二象限,点Q (0,0)在坐标原点.16.写出下列命题的逆命题,并判断原命题与逆命题的真假.(1)如果|a|=|b|,那么a=b;(2)如果a>0,那么a2>0;(3)同旁内角互补,两直线平行.解:(1)逆命题:如果a=b,那么|a|=|b|.原命题为假命题,逆命题为真命题.(2)逆命题:如果a2>0,那么a>0.原命题为真命题,逆命题为假命题.(3)逆命题:两直线平行,同旁内角互补.原命题和逆命题都是真命题.四、(本大题共2小题,每小题8分,满分16分)17.叙述并证明三角形内角和定理.要求写出定理、已知、求证,画出图形,并写出证明过程.定理:三角形的内角和等于180°.已知:△ABC的三个内角分别为∠A,∠B,∠C.求证:∠A+∠B+∠C=180°.证明:如图,过点A作直线MN,使MN∥BC.∵MN∥BC,∴∠B=∠MAB,∠C=∠NAC.∵∠MAB+∠NAC+∠BAC=180°,∴∠BAC+∠B+∠C=180°.18.已知直线y=kx+b 经过点A (5,0),B (1,4). (1)求直线AB 的表达式;(2)若直线y=2x-4与直线AB 相交于点C ,求点C 的坐标; (3)根据图象,写出关于x 的不等式2x-4>kx+b 的解集. 解:(1)∵直线y=kx+b 经过点A (5,0),B (1,4),∴{5k +b =0,k +b =4,解得{k =-1,b =5,∴直线AB 的表达式为y=-x+5.(2)由已知得{y =-x +5,y =2x -4,解得{x =3,y =2.∴C (3,2).(3)根据图象可得x>3.五、(本大题共2小题,每小题10分,满分20分)19.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把P'(y-1,-x-1)叫做点P 的友好点,已知点A 1的友好点为A 2,点A 2的友好点为A 3,点A 3的友好点为A 4,…,这样依次得到点. (1)当点A 1的坐标为(2,1),则点A 3的坐标为 (-4,-1) ,点A 2021的坐标为 (-2,3) ; (2)若点A 2021的坐标为(-3,2),则设点A 1(x ,y ),求x+y 的值;(3)设点A 1的坐标为(a ,b ),若点A 1,A 2,A 3,…,A n 均在y 轴左侧,求a ,b 的取值范围. 解:(2)∵点A 2021的坐标为(-3,2),∴A 2022(1,2),A 1(1,2),∴x+y=3.(3)∵A 1(a ,b ),A 2(b-1,-a-1),A 3(-a-2,-b ),A 4(-b-1,a+1), 点A 1,A 2,A 3,…A n 均在y 轴左侧,∴{a <0,-a -2<0和{b -1<0,-b -1<0,解得-2<a<0,-1<b<1.20.如图,已知直线l 1经过点A (-1,0)与点B (2,3),另一条直线l 2经过点B ,且与x 轴相交于点P (m ,0).(1)求直线l 1的表达式;(2)若△APB 的面积为3,求m 的值. 解:(1)y=x+1.(2)由已知可得S △APB =12×AP×3=32×|m+1|=3, 解得m=1或-3. 六、(本题满分12分)21.嘉淇同学大学毕业后借助低息贷款创业,他向银行贷款30000元,分12个月还清贷款,月利率是0.2%,银行规定的还款方式为“等额本金法”,即每月除归还等额的本金为30000÷12=2500元外,还需要归还本月还款前的本金的利息,下面是还款的部分明细. 第1个月,由于本月还款前的本金是30000元,则本月应归还的利息为30000×0.2%=60元,本月应归还的本息和为2500+60=2560元;第2个月,由于本月还款前的本金是27500元,则本月应归还的利息为27500×0.2%=55元,本月应归还的本息和为2500+55=2555元. …根据上述信息:(1)在空格处直接填写结果:(2)设第x个月应归还的利息是y元,求y关于x的函数表达式,并写出x的取值范围.(3)嘉淇将创业获利的2515元用于还款,则恰好可以用于还清第几个月的本息和? 解:(2)由题意可得y=[30000-2500(x-1)]×0.2%=65-5x,即y关于x的函数表达式是y=65-5x(1≤x≤12,x取正整数).(3)当本息和恰好为2515时,利息为2515-2500=15, 则15=65-5x ,解得x=10,答:恰好可以用于还清第10个月的本息和. 七、(本题满分12分)22.如图,在△ABC 中,AD 是高,AE ,BF 是角平分线,它们相交于点O ,∠CAB=50°,∠C=60°,求∠DAE 和∠BOA 的度数.解:∵AE 平分∠CAB ,∠CAB=50°,∴∠CAE=12∠CAB=12×50°=25°.∵AD ⊥BC 于点D ,∠C=60°,∴∠CAD=180°-90°-60°=30°. ∴∠DAE=∠DAC-∠CAE=30°-25°=5°.∵BF 平分∠ABC ,∴∠OBA=12∠ABC=12×(180°-50°-60°)=35°. ∴∠BOA=180°-(∠OBA+∠OAB )=180°-(35°+25°)=120°. ∴∠DAE 和∠BOA 的度数分别为5°,120°.八、(本题满分14分)23.如图1,在△ABC 中,∠ACB=90°,M 为AC 上任意一点(不与点A ,C 重合),过点M 作直线MN 交BC 于点N ,过点A ,B 作AD ⊥MN ,BE ⊥MN ,垂足分别为D ,E. (1)∠DAM ,∠EBN 之间的数量关系是 ∠DAM+∠EBN=90° .(2)如图2,当点M 在AC 的延长线上时,其他条件不变,探索∠DAM ,∠EBN 之间的数量关系并证明你的结论.(3)如图3,若∠ACB=α,点N 在BC 的延长线上,其他条件不变时,∠DAM ,∠EBN 之间的数量关系是否改变?若改变,请写出∠DAM ,∠EBN 与α之间满足的数量关系,并说明理由.解:(2)∠DAM+∠EBN=90°.理由略.(3)改变.∠DAM+∠EBN=180°-α.。

人教版八年级上册数学期中测试卷(含答案)

人教版八年级上册数学期中测试卷(含答案)

人教版八年级上册数学期中测试卷(满分120分时间100分钟)学校一、单选题(共30分)1.(本题3分)下面四个图形中,线段BE能表示三角形ABC的高的是()A.B.C.D.2.(本题3分)下列所给图形中,不是轴对称图形的是()A.B.C.D.3.(本题3分)下列长度的三条线段能组成三角形的是()A.1,2,3B.2,3,5C.3,4,8D.5,6,10 4.(本题3分)如图,点D,E分别在等腰ABC的腰AB,AC上,添加下列条件,不△≌△的是()能判定ABE ACD∠=∠A.DCB EBC∠=∠B.ADC AEB=C.AD AE=D.BE CD5.(本题3分)等腰三角形具有“三线合一”的性质,以下哪个不是三线之一()A.底边上的高B.腰上的高C.底边上的中线D.顶角的角平分线6.(本题3分)要使如图所示的六边形木架不变形,则至少需要钉上木条的根数为()A.1B.2C.3D.47.(本题3分)如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC△△ADC 的是()A.△B=△D=90°B.△BCA=△DCA C.△ABC=△ADC D.CB=CD 8.(本题3分)如图,△ABC中,△C=90°,AC=BC,AD平分△CAB,交BC于点D,DE△AB于点E,且AB=6cm,则△DEB的周长为()A.4B.8C.6D.129.(本题3分)如图,已知图中的两个三角形全等,则△α的度数是()A.72°B.60°C.58°D.50°10.(本题3分)如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连接BF,CE.下列说法△△BDF△△CDE;△△ABD和△ACD面积相等;△BF△CE;△CE=BF.其中正确的有()A.1个B.2个C.3个D.4个二、填空题(共15分)11.(本题3分)如图,在△ABC 中,△C =90°,△B =15°,DE 是AB 的垂直平分线,BE =5,则AC 的长为__________12.(本题3分)线段CD 是由线段AB 平移得到的,点A (4,7)的对应点为C (-1,4)则点B (-4,-1)的对应点D 的坐标为________.13.(本题3分)一个多边形的内角和等于其外角和的两倍,则这个多边形的边数为______. 14.(本题3分)如图,AB =AC ,要直接依据ASA 证出△ABE △△ACD ,应添加的一个条件是_______.15.(本题3分)如图,ΔABC 是等边三角形,AD 是BC 边上的高,E 是AC 的中点,P 是AD 上的一个动点,当PC +PE 的和最小时,△ACP =_____.三、解答题(共75分)16.(本题9分)如图,在ABC 中,D 是AB 上一点,且BD AD CD ==,过B 作BE CD ⊥,分别交AC 于点E 、交CD 于点F .(1)求证:ABC 是直角三角形;(2)求证:A EBC ∠=∠;(3)如果:2AC BC =,请猜想BE 和CD 的数量关系,并证明你的猜想.17.(本题6分)如图,点B 、E 、C 、F 在同一直线上,BE =CF ,AB =DE ,AC =DF . 求证:AC ∥DF .18.(本题6分)如图,点E 、C 、D 在同一条直线上、AE AC =AD AB =、EAC DAB ∠=∠.求证:EAC DCO ∠=∠.19.(本题6分)在△ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,△BAC =50°,△C =70°,求△DAE 和△AOB 的度数.20.(本题9分)如图,在△ABC 中,△B =△C ,点D 、E 、F 分别在AB 、BC 、AC 边上,且BE =CF ,AD +EC =AB .(1)求证:DE =EF ;(2)当△A =36°时,求△DEF 的度数.21.(本题12分)如图,在三角形ABC中,△ABC=90°,AB=BC,点A,B分别在坐标轴上.AC与y轴交于点E,D为AC中点,连接BD,OD.(1)若点C的横坐标为﹣3,求点B的坐标;(2)若OA平分△BAC,BE=6,求BCE的面积;(3)求△DOE的度数.22.(本题12分)如图,在△ABC中,CE为△ABC的角平分线,AD△CE交BC于点D,垂足为点F.且△ACB=2△B.(1)当△B=31°时,求△BAD的度数;(2)求证:BE=EC;(3)求证:AB=2CF.23.(本题15分)在学习完第十二章后,刘老师让同学们独立完成识本56页第9题:如图1,△ACB=90°,AC=BC,AD△CE,BE△CE,垂足分别为D,E.AD=2.5cm,DE=1.7cm,求BE的长.(1)请你也独立完成这道题;(2)待同学们完成这道题后,刘老师又出示了一道题:在课本原题其它条件不变的前提下,将CE所在直线旋转到△ABC的外部(如图2),请你猜想AD,DE,BE三者之间的数量关系,直接写出结论,不需证明.(3)如图3,将(1)中的条件改为:在△ABC中,AC=BC,D,C,E三点在同一条直线上,并且有△BEC=△ADC=△BCA=α,其中α为任意纯角,那么(2)中你的猜想是否还成立?若成立,请证明;若不成立,请说明理由.参考答案1.B2.B3.D4.D5.B6.C7.C8.C9.D10.D11.2.55212.()9,4--13.614.△C =△B15.30˚16.(1)略;(2)略;(3)CD BE =,理由略 17.略18.略19.△DAE 的度数为 5°;△AOB 的度数为125° 20.(1)见解析;(1)△DEF =72°. 21.(1)(0,3)(2)9(3)45° 22.(1)28°;(2)略;(3)略23.(1)0.8cm ;(2)AD BE DE +=;(3)成立,证明略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版八年级上册期中考前压轴题突破训练知识范围:第11-12章第11章1.如图,点A、B分别在射线ON、OM上运动(不与点O重合),AC、BC分别是∠BAO 和∠ABO的角平分线,BC延长线交ON于点G.(1)若∠MON=60°,则∠ACB=°;若∠MON=90°,则∠ACB=°;(2)若∠MON=n°.请求出∠ACG的度数;(用含n的代数式表示)2.(1)如图1,△ABC中,∠ABC的平分线与外角∠ACD的平分线相交于P点,请探究∠P与∠A的关系,并说明理由.(2)如图2、3,四边形ABCD中,设∠A=α,∠D=β,∠P为四边形ABCD的内角∠ABC的平分线与外角∠DCE的平分线所在直线相交而形成的锐角.请利用(1)中的结论完成下列问题:①如图2,若α+β>180°,直接写出∠P的度数.(用α,β的代数式表示)②如图3,若α+β<180°,直接写出∠P的度数.(用α,β的代数式表示)3.如图1,四边形MNBD为一张长方形纸片.(1)如图2,将长方形纸片剪两刀,剪出三个角(∠BAE、∠AEC、∠ECD),则∠BAE+∠AEC+∠ECD=°.(2)如图3,将长方形纸片剪三刀.剪出四个角(∠BAE、∠AEF、∠EFC、∠FCD),则∠BAE+∠AEF+∠EFC+∠FCD=°.(3)如图4,将长方形纸片剪四刀,剪出五个角(∠BAE、∠AEF、∠EFG、∠FGC、∠GCD),则∠BAE+∠AEF+∠EFG+∠FGC+∠GCD=°.(4)根据前面探索出的规律,将本题按照上述剪法剪n刀,剪出(n+1)个角,那么这(n+1)个角的和是°.4.如图,在四边形ABCD中,AD∥BC,∠B=∠D,延长BA至点E,连接CE,且CE交AD于点F,∠EAD和∠ECD的角平分线相交于点P.(1)①直接写出AB和CD的位置关系:;②求证:∠EAD+∠ECD=∠APC.(2)若∠B=70°,∠E=60°,求∠APC的度数;(3)若∠APC=m°,∠EFD=n°,请你探究m和n之间的数量关系.5.探究与发现:【探究一】我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图①,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD的数量关系,并证明你探究的数量关系.【探究二】三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图②,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠A与∠P的数量关系,并证明你探究的数量关系.【探究三】若将△ADC改成任意四边形ABCD呢?已知:如图③,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论直接写出∠A+∠B与∠P的数量关系.6.将一副三角板中的两块直角三角尺的直角顶点C按如图所示的方式叠放在一起(其中∠A=60°,∠D=30°,∠E=∠B=45°),固定三角板ACD,另一三角板BCE的CE边从CA边开始绕点C顺时针旋转,设旋转的角度为α.(1)当α<90°时;①若∠DCE=30°,则∠ACB的度数为;②若∠ACB=130°,求∠DCE的度数;(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由;(3)当0°<α<180°时,这两块三角尺是否存在一组边互相垂直?若存在,请直接写出α所有可能的值,并指出哪两边互相垂直(不必说明理由);若不存在,请说明理由.7.认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.探究1:如图1,在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90°+,理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线∴∴又∵∠ABC+∠ACB=180°﹣∠A∴∴∠BOC=180°﹣(∠1+∠2)=180°﹣(90°﹣∠A)=探究2:如图2中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC 与∠A有怎样的关系?请说明理由.探究3:如图3中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC 与∠A有怎样的关系?(只写结论,不需证明)结论:.8.已知,在四边形ABCD中,∠A+∠C=160°,BE,DF分别为四边形ABCD的外角∠CBN,∠MDC的平分线.(1)如图1,若BE∥DF,求∠C的度数;(2)如图2,若BE,DF交于点G,且BE∥AD,DF∥AB,求∠C的度数.9.如图①,∠1、∠2是四边形ABCD的两个不相邻的外角.(1)猜想并说明∠1+∠2与∠A、∠C的数量关系;(2)如图②,在四边形ABCD中,∠ABC与∠ADC的平分线交于点O.若∠A=50°,∠C=150°,求∠BOD的度数;(3)如图③,BO、DO分别是四边形ABCD外角∠CBE、∠CDF的角平分线.请直接写出∠A、∠C与∠O的数量关系.10.平面内的两条直线有相交和平行两种位置关系.(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B﹣∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D 之间有何数量关系?请证明你的结论;(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD、∠B、∠D、∠BQD之间有何数量关系?(不需证明)(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.第12章11.如图,△ABC中,∠ACB=90°,AC=6cm,BC=8cm,点P从A点出发沿A﹣C路径向终点C运动;点Q从B点出发沿B﹣C﹣A路径向终点A运动.点P和Q分别以每秒1cm和3cm的运动速度同时开始运动,其中一点到达终点时另一点也停止运动,在某时刻,分别过P和Q作PE⊥l于E,QF⊥l于F.则点P运动时间为多少时,△PEC与△QFC全等?12.在四边形ABCD中,E为BC边中点.已知:如图,若AE平分∠BAD,∠AED=90°,点F为AD上一点,AF=AB.求证:(1)△ABE≌AFE;(2)AD=AB+CD;13.CD经过∠BCA顶点C的一条直线,CA=CB.E,F分别是直线CD上两点,且∠BEC =∠CF A=∠α.(1)若直线CD经过∠BCA的内部,且E,F在射线CD上,请解决下面两个问题:①如图1,若∠BCA=90°,∠α=90°,则BE CF;EF|BE﹣AF|(填“>”,“<”或“=”);②如图2,若0°<∠BCA<180°,请添加一个关于∠α与∠BCA关系的条件,使①中的两个结论仍然成立,并证明两个结论成立.(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,请提出EF,BE,AF三条线段数量关系的合理猜想(不要求证明).14.如图,将两个全等的直角三角形△ABD、△ACE拼在一起(图1).△ABD不动,(1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC(图2),证明:MB=MC.(2)若将图1中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB、MC(图3),判断并直接写出MB、MC的数量关系.(3)在(2)中,若∠CAE的大小改变(图4),其他条件不变,则(2)中的MB、MC 的数量关系还成立吗?说明理由.15.已知OM是∠AOB的平分线,点P是射线OM上一点,点C、D分别在射线OA、OB 上,连接PC、PD.(1)如图①,当PC⊥OA,PD⊥OB时,则PC与PD的数量关系是.(2)如图②,点C、D在射线OA、OB上滑动,且∠AOB=90°,∠OCP+∠ODP=180°,当PC⊥PD时,PC与PD在(1)中的数量关系还成立吗?说明理由.16.阅读探索题:(1)如图1,OP是∠MON的平分线,以O为圆心任意长为半径作弧,分别交射线ON、OM于C、B两点,在射线OP上任取一点A(点O除外),连接AB、AC.求证:△AOB ≌△AOC.(2)请你参考以上方法,解答下列问题:如图2,在Rt△ABC中,∠ACB=90°,∠A=60°,CD平分∠ACB,试判断BC和AC、AD之间的数量关系并证明.17.如图,在△ABC中,AB=AC,D是BC边上的一点,以AD为边在AD右侧作△ADE,使AE=AD,连接CE,∠BAC=∠DAE=100°.(1)试说明△BAD≌△CAE;(2)若DE=DC,求∠CDE的度数.18.如图①,在Rt△ABC中,∠C=90°,BC=9cm,AC=12cm,AB=15cm,现有一动点P,从点A出发,沿着三角形的边AC→CB→BA运动,回到点A停止,速度为3cm/s,设运动时间为ts.(1)如图(1),当t=时,△APC的面积等于△ABC面积的一半;(2)如图(2),在△DEF中,∠E=90°,DE=4cm,DF=5cm,∠D=∠A.在△ABC 的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A停止.在两点运动过程中的某一时刻,恰好△APQ≌△DEF,求点Q的运动速度.19.如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD;(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有(请写序号,少选、错选均不得分).20.如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为,线段CF、BD的数量关系为;②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF ⊥BC(点C、F不重合),并说明理由.参考答案第11章1.解:(1)∵∠MON=60°,∴∠OBA+∠OAB=120°,∵∠OBA、∠OAB的平分线交于点C,∴∠ABC+∠BAC=×120°=60°,∴∠ACB=180°﹣60°=120°,∵∠MON=90°,∴∠OBA+∠OAB=90°,∵∠OBA、∠OAB的平分线交于点C,∴∠ABC+∠BAC=×90°=45°,∴∠ACB=180°﹣45°=135°;(2)在△AOB中,∠OBA+∠OAB=180°﹣∠AOB=180°﹣n°,∵∠OBA、∠OAB的平分线交于点C,∴∠ABC+∠BAC=(∠OBA+∠OAB)=(180°﹣n°),即∠ABC+∠BAC=90°﹣n°,∴∠ACB=180°﹣(∠ABC+∠BAC)=180°﹣(90°﹣n°)=90°+n°,∴∠ACG=180°﹣(90°+n°)=90°﹣n°.故答案为:120,135.2.解:(1)如图1中,结论:2∠P=∠A.理由:∵∠PCD=∠P+∠PBC,∠ACD=∠A+∠ABC,∵P点是∠ABC和外角∠ACD的角平分线的交点,∴2∠PCD=∠ACD,2∠PBC=∠ABC,∴2(∠P+∠PBC)=∠A+∠ABC,2∠P+2∠PBC=∠A+∠ABC,2∠P+∠ABC=∠A+∠ABC,∴2∠P=∠A;(2)①延长BA交CD的延长线于F.∵∠F=180°﹣∠F AD﹣∠FDA=180°﹣(180°﹣α)﹣(180°﹣β)=α+β﹣180°,由(1)可知:∠P=∠F,∴∠P=(α+β)﹣90°;②如图3,延长AB交DC的延长线于F.∵∠F=180°﹣α﹣β,∠P=∠F,∴∠P=(180°﹣α﹣β)=90°﹣.3.解:(1)过E作EF∥AB(如图②).∵原四边形是长方形,∴AB∥CD,又∵EF∥AB,∴CD∥EF(平行于同一条直线的两条直线互相平行).∴∠A+∠1=180°(两直线平行,同旁内角互补).∵CD∥EF,∴∠2+∠C=180°(两直线平行,同旁内角互补).∴∠A+∠1+∠2+∠C=360°,又∵∠1+∠2=∠AEC,∴∠BAE+∠AEC+∠ECD=360°;(2)分别过E、F分别作AB的平行线,如图③所示,用上面的方法可得∠BAE+∠AEF+∠EFC+∠FCD=540°;(3)分别过E、F、G分别作AB的平行线,如图④所示,用上面的方法可得∠BAE+∠AEF+∠EFG+∠FGC+∠GCD=720°;(4)由此可得一般规律:剪n刀,剪出n+1个角,那么这n+1个角的和是180n度.故答案为:(1)360;(2)540;(3)720;(4)180n.4.解:(1)①∵AD∥BC,∴∠EAD=∠B,∵∠B=∠D,∴∠EAD=∠D,∴AB∥CD;故答案为:AB∥CD;②证明:过点P作PQ∥AB,则∠EAP=∠APQ,∴PQ∥CD,∴∠DCP=∠CPQ,∵AB∥CD,∴PQ∥CD,∴∠DCP=∠CPQ,∵∠EAP=∠EAD,∠DCP=∠ECD,∴∠EAD+∠ECD=∠APC.(2)由(1)知AD∥BC,AB∥CD,∴∠EAD=∠B=70°,∠ECD=∠E=60°,由(1)知∠EAD+∠ECD=2∠APC,∴∠APC=(70°+60°)=65°;(3)过点F作FH∥AB,则∠EAD=∠AFH,∵AB∥CD,∴FH∥CD,∴∠ECD=∠CFH,∴∠EAD+∠ECD=∠AFH+∠CFH=∠AFC=∠EFD,由(1)知∠EAD+∠ECD=2∠APC,∴∠EFD=2∠APC,∵∠APC=m°,∠EFD=n°,∴m=n.5.解:探究一:∠FDC+∠ECD=180°+∠A.理由如下:∵∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,∴∠FDC+∠ECD=∠A+∠ACD+∠A+∠ADC=180°+∠A;探究二:∵DP、CP分别平分∠ADC和∠ACD,∴∠PDC=∠ADC,∠PCD=∠ACD,∴∠DPC=180°﹣∠PDC﹣∠PCD,=180°﹣∠ADC﹣∠ACD,=180°﹣(∠ADC+∠ACD),=180°﹣(180°﹣∠A),=90°+∠A;探究三:∵DP、CP分别平分∠ADC和∠BCD,∴∠PDC=∠ADC,∠PCD=∠BCD,∴∠P=180°﹣∠PDC﹣∠PCD=180°﹣∠ADC﹣∠BCD=180°﹣(∠ADC+∠BCD)=180°﹣(360°﹣∠A﹣∠B)=(∠A+∠B).即2∠P=∠B+∠A.故答案为:2∠P=∠B+∠A.6.解:(1)①∵∠ECB=90°,∠DCE=30°,∴∠DCB=90°﹣30°=60°,∴∠ACB=∠ACD+∠DCB=90°+60°=150°;②∵∠ACB=130°,∠ACD=90°,∴∠DCB=130°﹣90°=40°,∴∠DCE=90°﹣40°=50°;(2)∠ACB+∠DCE=180°,∵∠ACB=∠ACD+∠DCB=90°+∠DCB,∴∠ACB+∠DCE=90°+∠DCB+∠DCE=90°+90°=180°;(3)存在,当α=30°时,AD⊥CE,当α=45°时,CD⊥BE,当α=75°时,AD⊥BE,当α=90°时,AC⊥CE,当α=120°时,AD⊥BC,当α=135°时,BE⊥AC.7.解:(1)探究2结论:∠BOC=∠A,理由如下:∵BO和CO分别是∠ABC和∠ACD的角平分线,∴∠1=∠ABC,∠2=∠ACD,又∵∠ACD是△ABC的一外角,∴∠ACD=∠A+∠ABC,∴∠2=(∠A+∠ABC)=∠A+∠1,∵∠2是△BOC的一外角,∴∠BOC=∠2﹣∠1=∠A+∠1﹣∠1=∠A;(2)探究3:∠OBC=(∠A+∠ACB),∠OCB=(∠A+∠ABC),∠BOC=180°﹣∠0BC﹣∠OCB,=180°﹣(∠A+∠ACB)﹣(∠A+∠ABC),=180°﹣∠A﹣(∠A+∠ABC+∠ACB),结论∠BOC=90°﹣∠A.8.解:(1)如图1,过点C作CH∥DF,∵BE∥DF,∴BE∥DF∥CH,∴∠FDC=∠DCH,∠BCH=∠EBC,∴∠DCB=∠DCH+∠BCH=∠FDC+∠EBC,∵BE,DF分别为四边形ABCD的外角∠CBN,∠MDC的平分线,∴∠FDC=∠CDM,∠EBC=,∵∠A+∠BCD=160°,∴∠ADC+∠ABC=360°﹣160°=200°,∴∠MDC+∠CBN=160°,∴∠FDC+∠CBE=80°,∴∠DCB=80°;(2)如图2,连接GC并延长,同理得∠MDC+∠CBN=160°,∠MDF+∠NBG=80°,∵BE∥AD,DF∥AB,∴∠A=∠MDF=∠DGB=∠NBG=40°,∵∠A+∠BCD=160°,∴∠BCD=160°﹣40°=120°.9.解:(1)猜想:∠1+∠2=∠A+∠C,∵∠1+∠ABC+∠2+∠ADC=360°,又∵∠A+∠ABC+∠C+∠ADC=360°,∴∠1+∠2=∠A+∠C;(2)∵∠A=50°,∠C=150°,∴∠ABC+∠ADC=360°﹣200°=160°,又∵BO、DO分别平分∠ABC与∠ADC,∴∠OBC=∠ABC,∠ODC=∠ADC,∴∠OBC+∠ODC=(∠ABC+∠ADC)=80°,∴∠BOD=360°﹣(∠OBC+∠ODC+∠C)=130°;(3)∠A、∠C与∠O的数量关系为为:∠C﹣∠A=2∠O.理由如下:∵BO、DO分别是四边形ABCD外角∠CBE、∠CDF的角平分线.∴∠FDC=2∠FDO=2∠ODC,∠EBC=2∠EBO=2∠CBO,由(1)可知:∠FDO+∠EBO=∠A+∠O,2∠FDO+2∠EBO=∠A+∠C,∴2∠A+2∠O=∠A+∠C,∴∠C﹣∠A=2∠O.故答案为:∠C﹣∠A=2∠O.10.解:(1)不成立.结论是∠BPD=∠B+∠D 延长BP交CD于点E,∵AB∥CD∴∠B=∠BED又∵∠BPD=∠BED+∠D,∴∠BPD=∠B+∠D.(2)结论:∠BPD=∠BQD+∠B+∠D.(3)连接EG并延长,根据三角形的外角性质,∠AGB=∠A+∠B+∠E,又∵∠AGB=∠CGF,在四边形CDFG中,∠CGF+∠C+∠D+∠F=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.第12章11.解:设运动时间为t秒时,△PEC≌△QFC,∵△PEC≌△QFC,∴斜边CP=CQ,有2种情况:①P在AC上,Q在BC上,CP=6﹣t,CQ=8﹣3t,∴6﹣t=8﹣3t,∴t=1;②P、Q都在AC上,此时P、Q重合,∴CP=6﹣t=3t﹣8,∴t=3.5;答:点P运动1s或3.5s时,△PEC与△QFC全等.12.(1)证明:∵AE平分∠BAD,∴∠BAE=∠F AE,在△ABE和△AFE中,,∴△ABE≌△AFE(SAS);(2)证明:由(1)知,△ABE≌△AFE,∴EB=EF,∠AEB=∠AEF,∵∠BEC=180°,∠AED=90°,∴∠AEB+∠DEC=90°,∠AEF+∠DEF=90°,∴∠DEC=∠DEF,∵点E为BC的中点,∴EB=EC,∴EF=EC,在△ECD和△EFD中,,∴△ECD≌△EFD(SAS),∴DC=DF,∵AD=AF+DF,AB=AF,∴AD=AB+CD.13.解:(1)①∵∠BCA=90°,∠α=90°,∴∠BCE+∠CBE=90°,∠BCE+∠ACF=90°,∴∠CBE=∠ACF,∵CA=CB,∠BEC=∠CF A;∴△BCE≌△CAF,∴BE=CF;EF=|CF﹣CE|=|BE﹣AF|.②所填的条件是:∠α+∠BCA=180°.证明:在△BCE中,∠CBE+∠BCE=180°﹣∠BEC=180°﹣∠α.∵∠BCA=180°﹣∠α,∴∠CBE+∠BCE=∠BCA.又∵∠ACF+∠BCE=∠BCA,∴∠CBE=∠ACF,又∵BC=CA,∠BEC=∠CF A,∴△BCE≌△CAF(AAS)∴BE=CF,CE=AF,又∵EF=CF﹣CE,∴EF=|BE﹣AF|.(2)猜想:EF=BE+AF.证明过程:∵∠BEC=∠CF A=∠α,∠α=∠BCA,∠BCA+∠BCE+∠ACF=180°,∠CF A+∠CAF+∠ACF=180°,∴∠BCE=∠CAF,又∵BC=CA,∴△BCE≌△CAF(AAS).∴BE=CF,EC=F A,∴EF=EC+CF=BE+AF.14.证明:(1)如图2,连接AM,由已知得△ABD≌△ACE,∴AD=AE,AB=AC,∠BAD=∠CAE,∵MD=ME,∴∠MAD=∠MAE,∴∠MAD﹣∠BAD=∠MAE﹣∠CAE,即∠BAM=∠CAM,在△ABM和△ACM中,,∴△ABM≌△ACM(SAS),∴MB=MC;(2)MB=MC.理由如下:如图3,延长DB、AE相交于E′,延长EC交AD于F,∴BD=BE′,CE=CF,∵M是ED的中点,B是DE′的中点,∴MB∥AE′,∴∠MBC=∠CAE,同理:MC∥AD,∴∠BCM=∠BAD,∵∠BAD=∠CAE,∴∠MBC=∠BCM,∴MB=MC;(3)MB=MC还成立.如图4,延长BM交CE于F,∵CE∥BD,∴∠MDB=∠MEF,∠MBD=∠MFE,又∵M是DE的中点,∴MD=ME,在△MDB和△MEF中,,∴△MDB≌△MEF(AAS),∴MB=MF,∵∠ACE=90°,∴∠BCF=90°,∴MB=MC.15.解:(1)PC=PD,理由:∵OM是∠AOB的平分线,∴PC=PD(角平分线上点到角两边的距离相等),故答案为:PC=PD;(2)证明:过点P点作PE⊥OA于E,PF⊥OB于F,如图,∴∠PEC=∠PFD=90°,∵OM是∠AOB的平分线,∴PE=PF,∵∠AOB=90°,∠CPD=90°,∴∠PCE+∠PDO=360°﹣90°﹣90°=180°,而∠PDO+∠PDF=180°,∴∠PCE=∠PDF,在△PCE和△PDF中,∴△PCE≌△PDF(AAS),∴PC=PD.16.(1)证明:在△AOB和△AOC中,,∴△AOB≌△AOC(SAS).(2)在CB上截取CE=CA,∵CD平分∠ACB,∴∠ACD=∠BCD,在△ACD和△ECD中,,∴△ACD≌△ECD(SAS),∴∠CAD=∠CED=60°,∵∠ACB=90°,∴∠B=30°,∴∠EDB=30°,即∠EDB=∠B,∴DE=EB,∵BC=CE+BE,∴BC=AC+DE,∴BC=AC+AD.17.(1)证明:∵∠BAC=∠DAE=100°,∴∠BAD=∠CAE,∵AB=AC,AD=AE,∴△BAD≌△CAE(SAS).(2)解:∵AB=AC,∠BAC=100°,∴∠B=∠ACB=40°,∵△BAD≌△CAE,∴∠B=∠ACE=40°,∴∠DCE=∠BCA+∠ACE=80°,∵DE=DC,∴∠DEC=∠DCE=80°,∴∠EDC=180°﹣80°﹣80°=20°.18.解:(1)①当点P在BC上时,如图①﹣1,若△APC的面积等于△ABC面积的一半;则CP=BC=cm,此时,点P移动的距离为AC+CP=12+=,移动的时间为:÷3=秒,②当点P在BA上时,如图①﹣2若△APC的面积等于△ABC面积的一半;则PD=BC,即点P为BA中点,此时,点P移动的距离为AC+CB+BP=12+9+=cm,移动的时间为:÷3=秒,故答案为:或;(2)△APQ≌△DEF,即,对应顶点为A与D,P与E,Q与F;①当点P在AC上,如图②﹣1所示:此时,AP=4,AQ=5,∴点Q移动的速度为5÷(4÷3)=cm/s,②当点P在AB上,如图②﹣2所示:此时,AP=4,AQ=5,即,点P移动的距离为9+12+15﹣4=32cm,点Q移动的距离为9+12+15﹣5=31cm,∴点Q移动的速度为31÷(32÷3)=cm/s,综上所述,两点运动过程中的某一时刻,恰好△APQ≌△DEF,点Q的运动速为cm/s或cm/s.19.(1)证明:∵∠ABC=∠DBE,∴∠ABC+∠CBE=∠DBE+∠CBE,即∠ABE=∠CBD,在△ABE和△CBD中,,∴△ABE≌△CBD,∴AE=CD.(2)∵△ABE≌△CBD,∴∠BAE=∠BCD,∵∠NMC=180°﹣∠BCD﹣∠CNM,∠ABC=180°﹣∠BAE﹣∠ANB,又∠CNM=∠ANB,∵∠ABC=90°,∴∠NMC=90°,∴AE⊥CD.(3)结论:②理由:作BK⊥AE于K,BJ⊥CD于J.∵△ABE≌△CBD,∴AE=CD,S△ABE=S△CDB,∴•AE•BK=•CD•BJ,∴BK=BJ,∵作BK⊥AE于K,BJ⊥CD于J,∴BM平分∠AMD.不妨设①成立,则△CBM≌△EBM,则AB=BD,显然不可能,故①错误.故答案为②.20.证明:(1)①正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,又∵AB=AC,∴△DAB≌△F AC,∴CF=BD,∠B=∠ACF,∴∠ACB+∠ACF=90°,即CF⊥BD.②当点D在BC的延长线上时①的结论仍成立.由正方形ADEF得AD=AF,∠DAF=90度.∵∠BAC=90°,∴∠DAF=∠BAC,∴∠DAB=∠F AC,又∵AB=AC,∴△DAB≌△F AC,∴CF=BD,∠ACF=∠ABD.∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ACF=45°,∴∠BCF=∠ACB+∠ACF=90度.即CF⊥BD.(2)当∠ACB=45°时,CF⊥BD(如图).理由:过点A作AG⊥AC交CB的延长线于点G,则∠GAC=90°,∵∠ACB=45°,∠AGC=90°﹣∠ACB,∴∠AGC=90°﹣45°=45°,∴∠ACB=∠AGC=45°,∴AC=AG,∵∠DAG=∠F AC(同角的余角相等),AD=AF,∴△GAD≌△CAF,∴∠ACF=∠AGC=45°,∠BCF=∠ACB+∠ACF=45°+45°=90°,即CF⊥BC.。

相关文档
最新文档