人教版八年级数学上册期中测试题(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版八年级上册期中考前压轴题突破训练
知识范围:第11-12章
第11章
1.如图,点A、B分别在射线ON、OM上运动(不与点O重合),AC、BC分别是∠BAO 和∠ABO的角平分线,BC延长线交ON于点G.
(1)若∠MON=60°,则∠ACB=°;若∠MON=90°,则∠ACB=°;
(2)若∠MON=n°.请求出∠ACG的度数;(用含n的代数式表示)
2.(1)如图1,△ABC中,∠ABC的平分线与外角∠ACD的平分线相交于P点,请探究∠P与∠A的关系,并说明理由.
(2)如图2、3,四边形ABCD中,设∠A=α,∠D=β,∠P为四边形ABCD的内角∠ABC的平分线与外角∠DCE的平分线所在直线相交而形成的锐角.请利用(1)中的结论完成下列问题:
①如图2,若α+β>180°,直接写出∠P的度数.(用α,β的代数式表示)
②如图3,若α+β<180°,直接写出∠P的度数.(用α,β的代数式表示)
3.如图1,四边形MNBD为一张长方形纸片.
(1)如图2,将长方形纸片剪两刀,剪出三个角(∠BAE、∠AEC、∠ECD),则∠BAE+∠AEC+∠ECD=°.
(2)如图3,将长方形纸片剪三刀.剪出四个角(∠BAE、∠AEF、∠EFC、∠FCD),则∠BAE+∠AEF+∠EFC+∠FCD=°.
(3)如图4,将长方形纸片剪四刀,剪出五个角(∠BAE、∠AEF、∠EFG、∠FGC、∠GCD),则∠BAE+∠AEF+∠EFG+∠FGC+∠GCD=°.
(4)根据前面探索出的规律,将本题按照上述剪法剪n刀,剪出(n+1)个角,那么这(n+1)个角的和是°.
4.如图,在四边形ABCD中,AD∥BC,∠B=∠D,延长BA至点E,连接CE,且CE交AD于点F,∠EAD和∠ECD的角平分线相交于点P.
(1)①直接写出AB和CD的位置关系:;
②求证:∠EAD+∠ECD=∠APC.
(2)若∠B=70°,∠E=60°,求∠APC的度数;
(3)若∠APC=m°,∠EFD=n°,请你探究m和n之间的数量关系.
5.探究与发现:
【探究一】我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?
已知:如图①,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD
的数量关系,并证明你探究的数量关系.
【探究二】三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?
已知:如图②,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠A与∠P的数量关系,并证明你探究的数量关系.
【探究三】若将△ADC改成任意四边形ABCD呢?
已知:如图③,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论直接写出∠A+∠B与∠P的数量关系.
6.将一副三角板中的两块直角三角尺的直角顶点C按如图所示的方式叠放在一起(其中∠A=60°,∠D=30°,∠E=∠B=45°),固定三角板ACD,另一三角板BCE的CE边从CA边开始绕点C顺时针旋转,设旋转的角度为α.
(1)当α<90°时;
①若∠DCE=30°,则∠ACB的度数为;
②若∠ACB=130°,求∠DCE的度数;
(2)由(1)猜想∠ACB与∠DCE的数量关系,并说明理由;
(3)当0°<α<180°时,这两块三角尺是否存在一组边互相垂直?若存在,请直接写出α所有可能的值,并指出哪两边互相垂直(不必说明理由);若不存在,请说明理由.
7.认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.探究1:如图1,在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90°+,理由如下:
∵BO和CO分别是∠ABC和∠ACB的角平分线
∴
∴
又∵∠ABC+∠ACB=180°﹣∠A
∴
∴∠BOC=180°﹣(∠1+∠2)=180°﹣(90°﹣∠A)
=
探究2:如图2中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC 与∠A有怎样的关系?请说明理由.
探究3:如图3中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC 与∠A有怎样的关系?(只写结论,不需证明)
结论:.
8.已知,在四边形ABCD中,∠A+∠C=160°,BE,DF分别为四边形ABCD的外角∠CBN,∠MDC的平分线.
(1)如图1,若BE∥DF,求∠C的度数;
(2)如图2,若BE,DF交于点G,且BE∥AD,DF∥AB,求∠C的度数.
9.如图①,∠1、∠2是四边形ABCD的两个不相邻的外角.
(1)猜想并说明∠1+∠2与∠A、∠C的数量关系;
(2)如图②,在四边形ABCD中,∠ABC与∠ADC的平分线交于点O.若∠A=50°,∠C=150°,求∠BOD的度数;
(3)如图③,BO、DO分别是四边形ABCD外角∠CBE、∠CDF的角平分线.请直接写出∠A、∠C与∠O的数量关系.
10.平面内的两条直线有相交和平行两种位置关系.
(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B﹣∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D 之间有何数量关系?请证明你的结论;
(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD、∠B、∠D、∠BQD之间有何数量关系?(不需证明)
(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.
第12章
11.如图,△ABC中,∠ACB=90°,AC=6cm,BC=8cm,点P从A点出发沿A﹣C路径向终点C运动;点Q从B点出发沿B﹣C﹣A路径向终点A运动.点P和Q分别以每秒1cm和3cm的运动速度同时开始运动,其中一点到达终点时另一点也停止运动,在某时刻,分别过P和Q作PE⊥l于E,QF⊥l于F.则点P运动时间为多少时,△PEC与△QFC全等?