第5章2015-聚合方法

合集下载

高分子化学第五章 聚合实施方法

高分子化学第五章 聚合实施方法
如涂料、胶粘剂、浸渍液、合成纤维纺丝液
溶剂对聚合的影响:
溶剂对聚合活性有很大影响,因为溶剂难以做到完全惰 性,对引发剂有诱导分解作用,对自由基有链转移反应。 溶剂对引发剂分解速率依如下顺序递增: 芳烃、烷烃、醇类、醚类、胺类。 向溶剂链转移的结果使分子量降低。 向溶剂分子链转移: 水为零, 苯较小, 卤代烃较大。 溶剂对聚合物的溶解性能与凝胶效应有关: 良溶剂,为均相聚合,[M]不高时,可消除凝胶效应
第五章 聚合方法
1、聚合方法和体系分类
2、本体聚合
3、溶液聚合 4、悬浮聚合 5、乳液聚合
聚合方法概述
本体聚合

自由基聚合方法
溶液聚合 悬浮聚合 乳液聚合 溶液聚合

离子和配位聚合方法
本体聚合
熔融缩聚

逐步聚合方法
溶液缩聚
界面缩聚
固相缩聚
一、聚合方法和体系分类 (一)按单体在介质中的分散状态分类
而且还常比形成的聚合物的熔融温度高出10-20℃ 。 整个聚合体系始终处于熔融状态的聚合反应;由于这类 反应常是固体单体的官能团的缩聚,故常称熔融缩聚。 这种聚合除有时加入少量催化剂外,一般均不加任何溶 剂,所以实质上它也是本体聚合。
界面缩聚— 两种单体分别溶于互不相溶的介质中,随后
把两种单体溶液倒在一起,后,即成纺丝液。
例二. 醋酸乙烯酯溶液聚合
以甲醇为溶剂, AIBN为引发剂, 65℃聚合, 转化率60%,过高
会引起链转移,导致支链。 聚醋酸乙烯酯的Tg = 28℃,有较好的粘结性。 在酸性或碱性条件下醇解可得到聚乙烯醇。用作合成纤维时, 聚合度1700,醇解度98%~100%(1799);用作分散剂和织物助剂 时,聚合度1700,醇解度88%左右(1788)。

高分子化学第5章

高分子化学第5章
–(1)水溶性有机高分子物质;
• 主要有聚乙烯醇等合成高分子,及纤维素衍生物、明胶等
–(2)不溶于水的无机粉末
• 主要有碳酸镁、滑石粉、高岭土等
水溶性有机高分子
• 高分子分散剂的作用机理主要是:
–吸附在液滴表面,形成一层保护膜,起着保 护胶体的作用;
–介质的粘度增加,有碍于两液滴的粘合;
–明胶、部分醇解的聚乙烯醇等的水溶液,还 使表面张力和界面张力降低,使液滴变小。
第五章 聚合方法
5.1 引言
聚合反应工程考虑的三个层次:
• 聚合机理和动力学(mechanism and kinetics)
–连锁:自由基、阴、阳离子、配位 –逐步:缩聚、聚加成、开环等
• 聚合过程(polymerization process)
–实施方法:本体、溶液、悬浮、乳液 –相态变化:分散性质、是否沉淀、是否存在界面等
• 丙烯腈连续溶液聚合 ; • 醋酸乙烯酯溶液聚合;
• 丙烯酸酯类溶液聚合。
例1. 聚丙烯腈(PAN)连续溶液聚合
• 连续均相溶液聚合:以51-52%的硫氰化钠(NaSCN)水 溶液为溶剂,AIBN为引发剂,pH5±0.2,温度75~85 ˚C,转化率70~75%。进料单体浓度17%,出料聚合 物浓度13%,脱除单体后直接用于纺制腈纶纤维。 • 连续沉淀聚合:以水为溶剂,过硫酸盐类氧化还原引 发体系,温度40~50 ˚C,转化率80%。聚合产物从反应 体系中沉淀出来,经洗涤、分离、干燥后重新配制成纺 丝溶液用于腈纶纺丝。
–沉淀聚合机理与均相聚合有些不同,主要反 映在凝胶效应上,影响因素和生产控制也有 差异。
• 液相聚合; • 气相聚合; • 固相聚合。
从工程角度考虑(需重视操作方式)

第5章逐步聚合反应

第5章逐步聚合反应

n HOOC-R-COOH + n HO-R'-OH
O O HO ( C R C OR'O ) H + (2n-1) H2O n
聚合度的影响因素:化学计量、动力学、热力学参数、聚合实 施方法 功能基摩尔比r
高分子基础
反应程度P
5.1-5.2
第5章 逐步聚合反应
5.2.1.1 线形逐步聚合反应产物的聚合度与功能基摩尔比、 反应程度的关系
高分子基础
第5章 逐步聚合反应
5.1-5.2
5.1.2 逐步聚合反应功能基反应类型
两大类:缩合聚合(简称缩聚,Polycondensation) 和 逐步加成 聚合(Polyaddition) 缩聚反应是缩合聚合反应的简称,是指带有官能团的 单体经过多次的重复缩合反应,并且伴有小分子放出,而 逐步形成聚合物的过程,机理上属于逐步聚合反应。
高分子基础
第5章 逐步聚合反应
5.1-5.2
5.1.4 单体功能度与平均功能度
单体功能度:单体分子所含的参与聚合反应的功能基或反 应点的数目(f )。 在逐步聚合反应中,单体所带功能基的种类主要为-OH、-NH2、 -COOH、-COOR、-COCl、-CONH2、-N=C=O等。 反应条件不同时,同一个单体的功能度可能是不同的。 例如苯酚的以下聚合反应:
高分子基础
第5章 逐步聚合反应
5.1-5.2
5.1.2.2 逐步加成聚合反应主要类型 (1)重键加成逐步聚合反应:含活泼氢功能基的亲核化 合物与含亲电不饱和功能基的亲电化合物之间的逐步加成聚 合反应。
聚氨酯 (2)Diels-Alder加成聚合:乙烯基丁二烯的聚合:
高分子基础
第5章 逐步聚合反应

高分子化学第五章_聚合方法

高分子化学第五章_聚合方法
第五章 聚合方法
1
聚合物生产实施的方法,称为聚合方法。
气相聚合
在单体沸点以上聚合
单体形态
固相聚合
在单体熔点以下聚合
聚合物—单体不溶
沉淀聚合 均相聚合
聚合物—单体互溶
非均相聚合
溶解性
聚合物—单体部分互溶
2
本体聚合
悬浮聚合
物料起始状态
乳液聚合
溶液聚合
5.1 引言
自由基聚合有四种基本的实施方法。 • 本体聚合: 不加任何其它介质, 仅是单体在引发剂(甚至不 加)、热、光或辐射源作用下引发的聚合反应。 • 溶液聚合: 单体和引发剂溶于适当溶剂中进行的聚合反应。

溶剂对聚合度的溶解性能与凝胶效应有关 良溶剂,为均相聚合,[M]不高时,可消除凝胶效应 沉淀剂,凝胶效应显著,Rp 劣溶剂,介于两者之间
20
4、应用实例
多用于自由基聚合、离子聚合、配位聚合、逐步聚合等。
表4
单体
溶液聚合工业生产实例
溶剂 硫氰化钠 水溶液 水 甲醇 聚合机理 自由基聚合 自由基聚合 自由基聚合 产物特点与用途 纺丝液 配制纺丝液 制备聚乙烯醇、 维尼纶的原料
聚合物—单体—溶剂体系 均相聚合 乙烯高压聚合、苯乙烯、丙 烯酸酯 苯乙烯—苯、丙烯酸—水、 丙烯腈—二甲基甲酰胺 苯乙烯、甲基丙烯酸甲酯 苯乙烯、丁二烯、丙烯酸酯 沉淀聚合 氯乙烯、丙烯腈、丙 烯酰胺 氯乙烯—甲醇、丙烯 酸—己烷、丙烯腈— 水 氯乙烯 氯乙烯
均相体系
非均相体系
6
如何选择聚合方法: 根据产品性能的要求与经济效益,选用一种或几种方
PMMA为非晶体聚合物,Tg=105 ℃,机械性能、耐 光耐候性均十分优异,透光性达90%以上,俗称“有机 玻璃”。广泛用作航空玻璃、光导纤维、标牌、指示灯 罩、仪表牌、牙托粉等。

高分子化学第五章答案

高分子化学第五章答案

第五章聚合方法思考题 5.1聚合方法(过程)中有许多名称,如本体聚合、溶液聚合和悬浮聚合,均相聚合和非均相聚合,沉淀聚合和淤浆聚合,试说明它们相互问的区别和关系。

答聚合方法有不同的分类方法,如下表:按聚合体系中反应物的相态考虑,本体聚合是单体加有(或不加)少量引发剂的聚合。

溶液聚合是单体和引发剂溶于适当溶剂中的聚合。

悬浮聚合一般是单体以液滴状悬浮在水中的聚合,体系主要由单体、水、油溶性引发剂、分散剂四部分组成。

按聚合体系的溶解性进行分类,聚合反应可以分成均相聚合和非均相聚合。

当单体、溶剂、聚合物之间具有很好的相溶性时,聚合为均相聚合;当单体、溶剂、聚合物之间相溶性不好而产生相分离的聚合,则为非均相聚合。

聚合初始,本体聚合和溶液聚合多属于均相体系,悬浮聚合和乳液聚合属于非均相聚合;如单体和聚合物完全互溶,则该本体聚合为均相聚合;当单体对聚合物的溶解性不好,聚合物从单体中析出,此时的本体聚合则成为非均相的沉淀聚合;溶液聚合中,聚合物不溶于溶剂从而沉析出来,就成为沉淀聚合,有时称作淤浆聚合。

思考题5.2本体法制备有机玻璃板和通用级聚苯乙烯,比较过程特征,说明如何解决传热问题、保证产品品质。

答间歇本体聚合是制备有机玻璃板的主要方法。

为解决聚合过程中的散热困难、避免体积收缩和气泡产生,保证产品品质,将聚合分成预聚合、聚合和高温后处理三个阶段来控制。

①预聚合。

在90-95℃下进行,预聚至10%~20%转化率,自动加速效应刚开始较弱,反应容易控制,但体积已经部分收缩,体系有一定的黏度,便于灌模。

②聚合。

将预聚物灌入无机玻璃平板模,在(40-50℃)下聚合至转化率90%。

低温(40~50℃)聚合的目的在于避免或减弱自动加速效应和气泡的产生(MMA的沸点为100℃),在无机玻璃平板模中聚合的目的在于增加散热面。

③高温后处理。

转化率达90%以后,在高于PMMA的玻璃化温度的条件(100~120℃)下,使残留单体充分聚合,通用级聚苯乙烯可以采用本体聚合法生产。

聚合方法(课件)

聚合方法(课件)
在实际应用中,聚合方法可以用于处理多源数据、提高模型 性能、降低误差率等方面。这种方法在处理复杂问题时具有 显著的优势。
聚合方法的重要性
提高准确性和稳定性
通过将多个数据集或模型的结果进行聚合,可以降低单一数据集 或模型的误差率,提高整体分析的准确性和稳定性。
全面性分析
聚合方法可以整合多个角度、多个维度的数据,提供更全面、更 深入的分析结果。
通过将多个结果进行融 合,可以获得比单一模 型更好的性能。
降低方差和偏 差
聚合方法可以降低方差 和偏差,提高结果的稳 定性和可靠性。
适应复杂场景
聚合方法可以适应复杂 的场景和分析需求,提 供更全面、更深入的分 析结果。
02
常用聚合方法介绍
平均值聚合
定义
平均值聚合是一种简单的聚合方法 ,将一组成数据相加,然后除以数 据的数量,得到平均值。
聚合方法在金融领域中的应用场景
风险评估
通过聚合方法可以对金融市场的风险进行评估,如股票 市场的波动性、债券市场的信用风险等,为投资者和企 业提供决策支持。
投资策略
聚合方法可以帮助投资者制定投资策略,如股票投资、 基金投资等,通过对市场趋势和竞争对手情况的分析, 制定合理的投资计划。
金融监管
聚合方法可以用于金融监管,如对银行、证券公司等金 融机构的风险管理和合规情况进行监管和分析,保障金 融市场的稳定和安全。
中位数聚合
01
定义
中位数聚合是将一组数据从小到 大排序后,选取中间位置的数值 作为聚合结果。如果数据的数量 是奇数,则中位数就是中间的数 值;如果数据的数量是偶数,则 中位数是中间两个数值的平均值
02 公式
中位数 = median(数据集合)。
03

第5章共聚合反应

第5章共聚合反应

1 k 21 r2 k 22
∵ 1/r1 一种自由基和另一种单体反应 的速率常数与该自由基加成到本单体的 反应速率常数之比。 ∴ 称为单体相对活性。1/r是不同单体 与同一自由基的反应速率常数之比。
1/r1 大→M2活性大; 1/r2大→M1 活性大。
1/r1比较单体2的活性大小: 1/r2比较单体1的活性大小:
r1 = k11/k12,其中k11相当于单体M1的kp,如果已知r1和kp, 就可以求得k12,就可以比较自由基的相对活性。k12=k11/r1
高分子化学
第7章 共聚合
7.3-7.7
从取代基的影响看,单体活性与链自由基的活性次序恰 好相反,但变化的倍数并不相同。 取代基对自由基活性的影响比对单体影响大得多。 不难看出,苯乙烯的活性为醋酸乙烯酯活性的50~ 100倍,而醋酸乙烯酯自由基的活性则是苯乙烯自由基的 100~1000倍。 由此不难理解为什么醋酸乙烯酯的聚合速率远远大 于苯乙烯。 不同烯类单体之间的差别在于取代基的不同。取代基 的影响无非为共轭效应、极性效应和位阻效应三方面。
Mf1 (M dM)(f1 df 1 ) F1dM
(5-27)
整理,并略去dMdf1双重无穷小量,得到:
Mdf1 (F1 f1 )dM
积分得
高分子化学
f1 df dM M 1 ln M0 M M 0 f10 F1 f1 M
(5-28)
第5章 共聚合反应
5.3-5.4
0 M1 M1 f10 (1 C)f1 F1 M0 M C
(5-32)
高分子化学
第5章 共聚合反应
5.3-5.4
共聚产物需用平均组成表示。 共聚物中平均组成 F 与C的关系如下:

高分子化学第05章 聚合方法

高分子化学第05章 聚合方法
聚氯乙烯生产主要采用悬浮聚合法,占80%~82%。其 次是乳液聚合,占10%~12% 。近20年来发展了本体聚合。
聚氯乙烯不溶于氯乙烯单体,因此本体聚合过程中发生 聚合物的沉淀。本体聚合分为预聚合和聚合两段:
9
预聚合:小部分单体和少量高活性引发剂(过氧化乙酰 基磺酰)加入釜内,在50℃ ~70℃下预聚至7%~11%转化率, 形成疏松的颗粒骨架。
2
5.2 本体聚合
本体聚合(Bulk Polymerization):是单体本身在不加溶 剂以及其它分散剂的条件下,由引发剂或直接由光热等作 用下引发的聚合反应。 优点:无杂质,产品纯度高,聚合设备简单。 缺点:体系粘度大,聚合热不易扩散,反应难以控制,易 局部过热,造成产品发黄。自动加速作用大,严重时可导 致暴聚。
39
乳化剂的作用主要有三点: 降低表面张力,使单体分散成细小的液滴 在液滴表面形成保护层,使乳液稳定 增溶作用:形成胶束,使单体增溶 乳化剂能形成胶束的最低浓度叫临界胶束浓度(简称CMC), CMC越小,越易形成胶束,乳化能力越强。
40
亲水亲油平衡值(HLB):衡量表面活性剂中亲水和亲油部分 对水溶性的贡献。其值越大亲水性越大。
32
乳液聚合的缺点 ①需要固体产品时,乳液需经凝聚、洗涤、脱水、干燥等工 序,成本较高 ②产品中留有乳化剂等杂质,难以完全除净,有损电性能等
33
乳液聚合应用
①聚合后分离成胶状或粉状固体产品
丁苯、丁腈、氯丁等合成橡胶;ABS、MBS等工程塑料和抗冲 改性剂;糊用聚氯乙烯树脂、聚四氟乙烯等特种塑料。
12
缺点: 单体浓度较低,聚合速率慢,设备生产能力较低; 单体浓度低和向溶剂链转移使聚合物的分子量降低; 使用有机溶剂时增加成本、污染环境; 溶剂分离回收费用高,除尽聚合物中残留溶剂困难。

高分子化学第五章答案

高分子化学第五章答案

第五章聚合方法思考题 5.1聚合方法(过程)中有许多名称,如本体聚合、溶液聚合和悬浮聚合,均相聚合和非均相聚合,沉淀聚合和淤浆聚合,试说明它们相互问的区别和关系。

答聚合方法有不同的分类方法,如下表:按聚合体系中反应物的相态考虑,本体聚合是单体加有(或不加)少量引发剂的聚合。

溶液聚合是单体和引发剂溶于适当溶剂中的聚合。

悬浮聚合一般是单体以液滴状悬浮在水中的聚合,体系主要由单体、水、油溶性引发剂、分散剂四部分组成。

按聚合体系的溶解性进行分类,聚合反应可以分成均相聚合和非均相聚合。

当单体、溶剂、聚合物之间具有很好的相溶性时,聚合为均相聚合;当单体、溶剂、聚合物之间相溶性不好而产生相分离的聚合,则为非均相聚合。

聚合初始,本体聚合和溶液聚合多属于均相体系,悬浮聚合和乳液聚合属于非均相聚合;如单体和聚合物完全互溶,则该本体聚合为均相聚合;当单体对聚合物的溶解性不好,聚合物从单体中析出,此时的本体聚合则成为非均相的沉淀聚合;溶液聚合中,聚合物不溶于溶剂从而沉析出来,就成为沉淀聚合,有时称作淤浆聚合。

思考题5.2本体法制备有机玻璃板和通用级聚苯乙烯,比较过程特征,说明如何解决传热问题、保证产品品质。

答间歇本体聚合是制备有机玻璃板的主要方法。

为解决聚合过程中的散热困难、避免体积收缩和气泡产生,保证产品品质,将聚合分成预聚合、聚合和高温后处理三个阶段来控制。

①预聚合。

在90-95℃下进行,预聚至10%~20%转化率,自动加速效应刚开始较弱,反应容易控制,但体积已经部分收缩,体系有一定的黏度,便于灌模。

②聚合。

将预聚物灌入无机玻璃平板模,在(40-50℃)下聚合至转化率90%。

低温(40~50℃)聚合的目的在于避免或减弱自动加速效应和气泡的产生(MMA的沸点为100℃),在无机玻璃平板模中聚合的目的在于增加散热面。

③高温后处理。

转化率达90%以后,在高于PMMA的玻璃化温度的条件(100~120℃)下,使残留单体充分聚合,通用级聚苯乙烯可以采用本体聚合法生产。

聚合方法综述课件

聚合方法综述课件

数据融合
将来自不同数据源的数据进行融合,以获得 更全面和准确的信息。
数据关联
建立数据之间的关联关系,以发现数据之间 的潜在联系。
数据挖掘
关联规则挖掘
发现数据之间的关联规则,用于推荐和营销策略。
聚类分析
将数据分为不同的簇或组,以了解数据的分布和结构。
分类和预测
基于历史数据进行分类和预测,以预测未来的趋势和结果。
案例三:金融风控领域中的聚合方法应用
总结词
利用聚合方法进行金融风险控制和管理,提高风险管 理水平。
详细描述
在金融风控领域,聚合方法被广泛应用于风险控制和管 理。通过对各类金融数据进行聚合分析,可以识别和评 估潜在的风险点,及时预警和防范金融风险。同时,通 过聚类和关联分析等方法,可以对金融市场进行深入研 究,发现潜在的市场趋势和关联关系,为投资决策和风 险管理提供有力支持。此外,聚合方法还可以用于评估 金融机构的信用风险和欺诈风险,提高金融市场的透明 度和公正性。
要点二
适用场景
对于需要高精度数据的场景,聚合方法可能不是最佳选择。
可扩展性
可扩展性强
聚合方法具有良好的可扩展性,能够随着数据量的增长而高效地处理数据。
易于并行处理
聚合方法通常易于并行化处理,可以利用多核处理器或分布式计算资源来提高处理速度。
适用场景
适用于大数据处理
聚合方法适用于大数据的快速处理和实时分 析,能够在有限时间内给出分析结果。
聚合方法的重要性
数据简化
通过聚合,复杂的数据集可以被 简化为更易于管理和解释的形式, 从而提高数据分析和决策的效率。
隐藏细节
在某些情况下,聚合可以帮助隐 藏细节,保护隐过聚合,可以更容易地识别数 据中的模式和趋势,从而为进一 步的分析和预测提供基础。

第5章 聚合方法

第5章 聚合方法

C、出现凝胶效应,放热速率提高。 此时如散热不良,轻则造成局部过热, 使分子量分布变宽,最后影响到聚合物的 机械强度;重则温度失控,引起爆聚。
表4-3 本体聚合工业生产举例
聚合物 过程要求 聚甲基丙烯酸甲酯 第一阶段预聚至约10%转化率的粘稠浆液, (有机玻璃板) 然后浇模分段升温聚合,最后脱模成板材 聚苯乙烯 第一阶段:80~85℃预聚至33%~35%转化率, 然后在100~220℃温度递增的条件下聚合, 最后熔体挤出造粒 第一阶段预聚至7%-11%转化率,形成颗粒骨 架,然后在第二反应器内继续沉淀聚合,最 后以粉状出料 选用管式或釜式反应器连续聚合,控制单程 转化率15%-30%,最后熔体挤出造粒,未反 应单体经精制后循环使用
第四章
聚合方法
4.1 引言
1、自由基聚合的四种实施方法:
本体聚合、溶液聚合、悬浮聚合、乳液聚合
2、离子聚合的实施方法: 溶液聚合、淤浆聚合
3、逐步聚合(缩聚)实施方法: 本体聚合、溶液聚合以及界面聚合
均相体系:本体、溶液
从工程角度:
非均相体系:悬浮、乳液
例如: PS——均相体系 PVC——非均相体系
(MMA沸点为100.5℃)
高温热处理阶段——转化率达90%以后,进一步 升温至PMMA玻璃化温度以上(例如100-120℃) 进行高温热处理,使残余单体充分聚合。 高温聚合结束——冷却、脱模、修边,即成有机 玻璃板成品。 这样由本体浇铸聚合法制成的有机玻 璃,分子量可达106,而注射用的悬浮法 PMMA分子量一般约5-l0万。
缺点: ①单体浓度较低,聚合速率较慢,生产效 率较低; ②聚合物分子量降低 ;(单体浓度低和向溶剂链
转移的结果)
③溶剂回收代价大; ④除尽聚合物中残留溶剂困难。

聚合方法

聚合方法

高 分 子 化 学
17
5.2 本体聚合
例三:氯乙烯间歇本体沉淀聚合
聚氯乙烯生产主要采用悬浮聚合法,占80%~82%。其 次是乳液聚合,占10%~12% 。近20年来发展了本体聚合。
聚氯乙烯不溶于氯乙烯单体,因此本体聚合过程中发生 聚合物的沉淀。本体聚合分为预聚合和聚合两段: I. 预聚合:小部分单体和少量高活性引发剂(过氧化乙酰 基磺酰)加入釜内,在 50℃ ~70℃下预聚至 7%~11%转 化率,形成疏松的颗粒骨架。
II. 聚合:预聚物、 大部分单体和另一部分引发剂加入另一 聚合釜内聚合,颗粒骨架继续长大。转化率可达90%。 III. 通常预聚1~2h,聚合5~9h。
高 分 子 化 学
18
5.2 本体聚合
例四:乙烯高压连续气相本体聚合
聚合条件:压力 150~200MPa, 温度 180~200℃ ,微 量氧(10-6~10-4mol/L )作引发剂。 聚合工艺:连续法,管式反应器,长达千米。停留时 间几分钟,单程转化率 15%~30% 。易发生分子内转移和 分子间转移,前者形成短支链,后者长支链。平均每个分 子含有50个短支链和一个长支链。 由于高压聚乙烯支链较多,结晶度较低,仅 55% ~ 65%,Tm为105~110℃,密度:0.91~0.93。故称“低密度 聚乙烯”。熔体流动性好,适于制备薄膜。
高 分 子 化 学
8
5.1 引言
虽然不少单体可以选择四种聚合方法中的任何一种进 行聚合,但是实际上从实施聚合的难易和生产成本的高低 等因素考虑,往往仅有一两种方法最适合该种单体的聚合。 本体聚合和溶液聚合方法也适用于离子型聚合,只是 其具体的聚合条件如引发剂、溶剂的选择以及温度的确定 等与自由基聚合有所不同。 各种聚合方法的基本配方和特点列于下表。

潘祖仁《高分子化学》课后习题及详解(聚合方法)【圣才出品】

潘祖仁《高分子化学》课后习题及详解(聚合方法)【圣才出品】

第5章聚合方法(一)思考题1.聚合方法(过程)中有许多名称,如本体聚合、溶液聚合和悬浮聚合,均相聚合和非均相聚合,沉淀聚合和淤浆聚合,试说明它们相互间的区别和关系。

答:(1)根据聚合物反应物的相态考虑,有本体聚合、溶液聚合、悬浮聚合。

①本体聚合是指不加其他介质,仅有单体本身和少量引发剂(或不加)的聚合;②溶液聚合是指单体和引发剂溶于适当溶剂的聚合;③悬浮聚合一般是单体以液滴状悬浮在水中的聚合,体系主要由单体、水、油溶性引发剂、分散剂四部分组成。

(2)根据聚合体系的溶解性,聚合反应可以分为均相聚合和非均相聚合。

①单体、溶剂、聚合物之间具有很好的相容性时,聚合为均相聚合;②单体、溶剂、聚合物之间相容性不好而产生相分离的聚合,为非均相聚合。

(3)在聚合初期,本体聚合和溶液聚合多属于均相体系,悬浮聚合和乳液聚合属于非均相体系。

①单体对聚合物溶解不好,聚合物从单体中析出时,此时的本体聚合成为非均相的沉淀聚合;②溶液聚合中聚合物从溶剂中析出,就成为沉淀聚合,有时也称为淤浆聚合。

2.本体法制备有机玻璃板和通用级聚苯乙烯,比较过程特征,说明如何解决传热问题、保证产品品质。

答:(1)有机玻璃板制备主要采用间歇本体聚合法。

为解决聚合过程中的散热困难、避免体积收缩和气泡产生,保证产品品质,将聚合分成预聚合、聚合和高温后处理三个阶段来控制。

①预聚合。

在90~95℃下进行,预聚至10%~20%转化率,自动加速效应刚开始较弱,反应容易控制,但体积已经部分收缩,体系有一定的粘度,便于灌模。

②聚合。

将预聚物灌入无机玻璃平板模,在(40~50℃)下聚合至转化率90%。

低温(40~50℃)聚合的目的在于避免或减弱自动加速效应和气泡的产生(MMA的沸点为100℃),在无机玻璃平板模中聚合的目的在于增加散热面。

③高温后处理。

转化率达90%以后,在高于PMMA的玻璃化温度的条件(l00~120℃)下,使残留单体充分聚合。

(2)通用级聚苯乙烯可以采用本体聚合法生产。

高分子化学第5章-共聚合反应讲解

高分子化学第5章-共聚合反应讲解

. 1
][M
2
]

k
t12
[M
. 1
][M
. 2
]

2k
t11
M
. 1
2

0
d[M
. 2
]
dt

Ri2

k
12
[M
. 1
][M
2
]

k
21[M
. 2
][M
1
]

k
t12
[M
. 2
][M
. 1
]

2k
t
22
M
. 2
2

0
满足稳态假设的另一条件是两种自由基相互转化速率相等, 即
共 聚
k
12[M
. 1

反应,形成的聚合物称做均聚物。
类型:连锁聚合、逐步聚合。
共聚合反应
定义:由两种或两种以上的单体共同参加的 聚合反应,称做共聚合反应。形成的
聚合物称做共聚物。
共 聚
类型:连锁聚合、逐步聚合。

研究对象:二元共加聚反应。



聚 合
共聚物


和 共
共聚物的分类

无规共聚物
聚 竞聚率


共 影响竞聚率的因素


温度
线
dlnr1 dT

E11 E12 RT 2
式中E11、E12分别为自增长和共增长反应的活化能。
若r1<1,表示k11<k12,即E11>E12。上式右边为
正值,度上升,r1也上升,趋于1。若r1>1,表示k11

第5章_自由基溶液聚合

第5章_自由基溶液聚合

溶液聚合法的单体主要品种和聚合条件
聚 合 条 件 单体种类 丙烯酸酯 丙烯酰胺类 丙烯腈 苯乙烯 醋酸乙烯酯 氯乙烯 溶剂 反应时间, 转化率, 温度, 温度,℃ 反应时间,h 转化率,% 苯,甲苯等 水 水,DMF等 等 乙苯等 甲醇等 氯苯等 50~70 30~70 40~70 90~130 70~80 40~60 6~8 3~6 6~8 6~8 4~8 4~8 >95 >95 >90 >95 >90 90~95
(2)操作方式:半连续操作,便于控制聚合反应温度和速度。
(3)反应器:釜式反应器 反应器: 反应器
(4)聚合过程:先加溶剂于反应釜中加热至反应温度,再将溶有 聚合过程: 聚合过程
引发剂的单体按一定速度连续加入反应釜中。
(5)单体分离:如得到的聚合物溶液直接应用时,在聚合结束前补 单体分离: 单体分离 加引发剂尽量减少残存单体含量,或用化学办法除去。如果单体 沸点低于溶剂可采用蒸馏的办法或减压蒸馏除去单体。
2. 单体在水中的溶解度 温度℃ 温度℃ 溶解度 0 7.2 20 7.35 40 7.9 60 9.1 80 10.8
3. 水相沉淀聚合工艺条件
聚合温度:35-55℃(45℃最佳);聚合时间:1~2 h );聚合时间 聚合温度:35-55℃ 45℃最佳);聚合时间: 转化率:80~85%,单体总质量分数: 转化率:80~85%,单体总质量分数:28~30% 搅拌速度: 搅拌速度:55~80 r/min
脒基
(5)浅色剂的影响——还原剂 浅色剂的影响——还原剂
(6)转化率的选择
低转化率(50~55%):聚合物色白, ):聚合物色白 低转化率(50~55%):聚合物色白,设备利用率低 中转化率(70~75%):聚合物色浅, ):聚合物色浅 中转化率(70~75%):聚合物色浅,设备利用率高 高转化率(>80%):聚合物发黄, ):聚合物发黄 高转化率(>80%):聚合物发黄,设备利用率高 6 均相聚合的优缺点 ① 优点:聚合热容易导出,分子量分布窄,聚合反 优点:聚合热容易导出,分子量分布窄, 应容易控制,可进行连续聚合、连续纺丝。 应容易控制,可进行连续聚合、连续纺丝。 缺点:大量溶剂存在影响聚合反应,增加回收成本。 ②缺点:大量溶剂存在影响聚合反应,增加回收成本。

5第五章聚合物分子运动详解

5第五章聚合物分子运动详解

低分子, =10-8~10-10s, “瞬时过程” 高分子, =10-1~10+4 s, “松弛过程”
0
t
拉伸橡皮的回缩曲线
(3)分子运动的温度依赖性
温度升高,使分子的内能增加
运动单元做某一模式的运动需要一定的能量, 当温度升高到运动单元的能量足以克服的能 垒时,这一模式的运动被激发
温度升高使聚合物的体积增加
当运分动子单量元增-链加段到,一此定时值曲,线如上图Tg中与MT3f<不M再4<重M合5,,就出出现现高了弹第平二 台,由于链段大小主要决定于分子链的柔顺性和邻近分子间 的影响,与整个分子长度关系不大,所以Tg不再随分子量 增加而改变。
但M增大,分子链长增加,分子间作用力增大,内摩擦阻 力增大,分子相对滑移困难,而需在较高温度下才能流动, 所以Tf随M增大而升高。
具有多种运动模式
由于高分子的长链结构,分子量不仅高,还具 有多分散性,此外,它还可以带有不同的侧基, 加上支化,交联,结晶,取向,共聚等,使得 高分子的运动单元具有多重性,或者说高聚物 的分子运动有多重模式
具有多种运动单元
如侧基、支链、链节、链段、整个分子链等
各种运动单元的运动方式
链段的运动: 主链中碳-碳单键的内旋转, 使得高分
子链有可能在整个分子不动, 即分子链质量中心不变 的情况下, 一部分链段相对于另一部分链段而运动
链节的运动: 比链段还小的运动单元 侧基的运动: 侧基运动是多种多样的, 如转动, 内旋
转, 端基的运动等
高分子的整体运动: 高分子作为整体呈现质量中心
的移动
晶区内的运动: 晶型转变,晶区缺陷的运动,晶区
粘流态:大分子链受外力作用时发生位移, 且无法回复。行为与小分子液体类似

第5章-缩合聚合生产工艺

第5章-缩合聚合生产工艺

n HO-R-COOH
H-(ORCO)n-OH + (n-1) H2O
b. 两功能基相同并可相互反应:如二元醇聚合生成聚醚
n HO-R-OH
H-(OR)n-OH + (n-1) H2O
(3)体型缩聚:参加反应的单体中至少有一种带有两个以上官能团; 大分子向三个以上方向增长;产物为体型结构。
2-3官能度体系通式
逐步聚合反应单体转化率、聚合度与反应时间关系
率单 体 转 化
度产 物 聚 合
反应时间
逐步聚合反应具体反应种类很多,概括起来主要有两大类:缩合 聚合(Polycondensation) 和逐步加成聚合(Polyaddition)
2. 缩聚反应
定义:含有反应性官能团的单体经缩合反应析出小分子化合物生 成聚合物的反应称为缩合聚合反应。要求单体官能度≥2。 ●单体官能度:一个单体分子上反应活性中心的数目,用 f 表示。
工业生产采用的方法 ▲直接减压法(或提高真空度法):效果较好,但对设备制造、 加工精度要求严格,投资较大。
▲通入惰性气体降低小分子副物分压法:优点是即可以降低小 分子副产物分压,以能保护缩聚产物,防止氧化变色,一般需 要配合较强的机械搅拌。但缩聚后期效果较差。
▲综合方法是先通入惰性气体降低分压,反应后期提高真空度。
(3)生产方法:一次合成直接生产高分子量合成树脂。
4. 体型缩聚物
(1)如果一部分单体含有的反应性官能团数目大于2.则经缩聚 反应生成的最终产物为体型结构的聚合物(简称为体型缩聚物)。
(2)应用:体型缩聚物用于热固性塑料、热固性涂料以及热固性 粘合剂。少数品种的Tg低于室温,则可用作合成橡胶。 (3)生产方法:分阶段生产,仅在加工应用过程中最终形成。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
下一页
优点: η低, 散热好; Mn及分布稳定; Mn比溶液聚合高, 杂质含量 比乳液聚合少; 后处理简单, 粒状树脂可直接加工 。 兼有本体和溶液聚合的优点, 工业上广泛应用。80% PVC/全部St 型交换树脂母体, 很大一部分PS/PMMA采用此法。 5.4.2 液-液分散和成粒(机理)过程 粒径大小和形态与搅拌强度/分散剂的性质和用量等有关。 ► 影响因素 分散剂和搅拌是影响和控制 粒度的重要因素。 C=60-70% 此外, 水-单体比, T, 转化率 也有影响。
下一页
5.4.4 VC悬浮聚合; 5.4.5 St悬浮聚合 5.4.6 微悬浮聚合(Microsuspension)—细乳液聚合(Miniemulsion) 悬浮50-2000 μm—乳液0.1-0.2 μm; 微悬浮0.2-1.5 μm, 达亚微 米级, 与常规乳液聚合液滴相当。 体系组成: 采用特殊的复合乳化体系—离子型表面活性剂(十二烷 基硫酸钠)+难溶助剂(C16长链脂肪醇/烷烃)。 →优点: 1) 复合物可使单体-水界面张力↓得很低; 2) 复合物对微液滴或聚合物微粒有强的吸附保护作用, 防聚并; 3) 阻碍微粒间单体的扩散传递和重新分配, 最终粒子数/粒径及分 布与起始微液滴相当。 机理: 油溶性引发剂↔水溶性引发剂: 液滴成核。 配制要点: 1) 微乳液在加单体前配好, 配制温度在难溶助剂熔点以 上; 2) 长链脂肪醇的碳原子数>16; 3) 乳化剂/长链脂肪醇的摩尔比 1:1—1:4; 4) 配好后应立即聚合。
下一页
mulsifier 5.5.4 乳液聚合机理 1010-1012cm-3 ► 单体/乳化剂在聚合体系中的分布 -10000 nm 水相→胶束/增溶胶束→单体液滴 单体液滴直径比胶束大百倍, 液滴数 微量在水相 I水相分解 少6-7个数量级, 总比表面积小百倍。 ► 成核机理和聚合场所 胶束成核-水相成核-液滴成核? 1017-1018cm-3 →单体水溶性/乳化剂浓度/引发剂 溶解性是影响成核机理的重要因素。 a 胶束成核: St类疏水单体适用经典的乳液聚合。 胶束—单体液滴捕捉水相中的自由基? (增溶)胶束捕捉自由基并在其中聚合而成核→胶束成核后继续聚 合→单体-聚合物胶粒(继续增长聚合)→100-200nm聚合物胶粒。 分析产物粒径可证明胶束成核机理。
下一页
► 物理性能随乳化剂浓度的变化 CMC: 1-30 mmol L-1—0.1-3 g L-1—0.01-0.03%。 乳化剂用量2-3%→胶束数1017-18 cm-3, 胶束数目/大小/比表面积取决于乳化剂用量。 ► 乳化剂的作用 a 分散作用:↓表面张力→细小液滴1-10μm, 单体液滴数1010-12 cm-3。 b 稳定作用: 液滴/胶粒表面形成带电保护层。 c 增溶作用: 胶束直径4-5 nm→6-10nm。 ► 乳化剂的种类: 传统乳液聚合用阴离子 乳化剂, 非离子型表面活性剂配合使用。 前者使用时需调节pH, 保持碱性, 使 乳液稳定。使用应在三相平衡点以上, 浊点>T聚。 →HLB=8-18的O/W型乳化剂。
下一页
5.6 乳液聚合技术进展 ► 种子乳液聚合: 少量单体先聚合成种子胶乳(<100nm), 取1-3% 加入正式乳液聚合配方中, 种子经单体多级溶胀聚合→1-2 μm。 关键技术: 限量乳化剂, 不形成新胶束, 胶束仅保护胶粒。 特点: 粒径分布单分散; 加入粒径不同的种子胶乳→双峰分布胶粒
► 核-壳乳Байду номын сангаас聚合: 先一种单体乳液聚合(种子)→第二种单体聚合 (壳), 核-壳结构胶粒(软核硬壳/硬核软壳)→关键限量乳化剂。 影响核-壳结构的因素: 两种单体加料顺序及单体/引发剂亲水性、 T/pH、聚合物粘度。→ 正常→核/壳; 若先将亲水单体聚合成核, 再聚合疏水单体→草莓/雪人型形貌。 特点: 在核-壳界面形成接枝层, 改善性能。 区别: 前者均聚物; 后者不同单体共聚合→共聚物。
自由基生成速率
N=k(ρ/μ)
2/5
(αSS)3/5 总浓度
0.37-0.53 胶粒体积增加速率
k取决于胶束/粒捕获自由基的相 对效率及胶粒的几何参数。 乳化剂表面积 ► VC/VAc例外, N∝[S]一次方。
下一页
4) n 理想地, n=0.5。→ n: 受单体水溶性/[I]/N/粒径/自由基进入胶粒 的效率因子f/逸出胶粒速率/终止速率等的影响。 a n=0.5 单体难溶于水/胶粒小/忽略自由基的逸出; b n<0.5 单体水溶性较大且易链转移时; c n>0.5 胶粒体积较大, 可容纳多个自由基同时增长, 胶粒中的 Rt<自由基进入速率, 自由基解吸忽略。 5) 温度对乳液聚合的影响 T↑, kp↑; ρ↑, →N↑; 胶粒中[M]↓; 自由基和单体扩散入胶粒的速 率↑→R↑/Xn↓。 副反应: 乳液凝聚和破乳/产生支链和交联, 并对聚合物微观结 构和聚合度分布产生影响。
下一页
5.3.6 超临界CO2中的溶液聚合 Tc=31.1 º C, Pc=73.8 bar, 低粘液体。 优点: 对自由基稳定/无链转移反应/可溶解含氟单体和聚合物。 均相溶液聚合 沉淀分散聚合 特 点 溶剂易脱除/无毒/阻燃 单体-引发剂溶/聚合物不溶; 适用单体 TFE等氟代单体及其 分散粒径0.1-10 μm/MW高。 与MMA/乙烯/St共聚 St/MMA等 前景: 环保优势; 也适用于其它聚合体系。 5.4 悬浮聚合 5.4.1 概况→可看作小粒子的本体聚合。组成: 单体/油溶性引发剂 /水/分散剂。二者有相似之处→成粒机理和颗粒控制。 悬浮聚合的粒径0.05-2 (0.01-5) mm, 受搅拌和分散剂控制。 珠状聚合: 粒径 1 mm。PS/PMMA 粉状/沉淀聚合 PVC, 粒径0.01 mm以下。 分 散 聚 合
上一页
返回
5.2 本体聚合 配方组成/机理/生产(工艺)特征/产品特性/适用体系。 优点-产物纯净/后处理简单, 适于制作透明浅色的板材和型材制品 缺点-因体系粘稠, 聚合热不易散出, 会产生局部过热→自动加速 现象, 使d。 关键问题: 聚合热的排除。 调整和改善搅拌/传热/工艺→两段聚合 Stage 1: 普通聚合釜, 控制低转化率10-35%; Stage 2: 特殊设计的反应釜, 转化率和粘度较高。 典型工艺介绍 5.2.1 St连续本体聚合 5.2.2 MMA的间歇本体聚合—有机玻璃板的制备 5.2.3 VC间歇本体沉淀聚合
下一页
5.3 溶液聚合 5.3.1 自由基溶液聚合 优点: η低/散热好/T容易控制/可避免局部过热/可消除自动加速 现象; 可连续生产, 产物输送方便。在使用聚合液场合省事涂料/粘合剂/纺丝液/浸渍剂。 缺点: 单体浓度低, R慢, 加上链转移, Mn不高; 溶剂回收困难。 ► 溶剂的选择原则 1) 溶剂与聚合活性: 诱导分解/Cs的选择—R/Xn。 2) 溶剂对凝胶效应的影响: 聚合物的溶解性—自动加速效应 5.3.2 AN连续溶液聚合; 5.3.3 VAc溶液聚合; 5.3.4 丙烯酸酯类溶液共聚合 5.3.5 离子型溶液聚合: 均相/沉淀(淤浆)/微非均相聚合。Table 5-5 溶剂选择 1) 溶剂化能力-活性种紧密程度/活性→R/Mn/d/microstructure; 2) 链转移反应。
下一页
Stage 3, 降速期: 只剩胶粒一种粒子, 胶粒数不变, R↓; 粒径变化不 大, →100-200nm聚合物粒子。 Table 5-9 乳液聚合中颗粒和速率变化
经典乳液聚合机理小结:水相中引发→胶束成核→在胶束和胶粒内 增长; 另一自由基进入胶粒后才终止; 自由基τ长, 兼有高R和Mn的 动力学特征。
下一页
c 液滴成核: 适用于液滴粒径较小和/或采用油溶性引发剂场合。 ► 液滴小而多时: 液滴表面积与增溶胶束相当,可吸附水中自由基, 引发成核→发育成胶粒; ► 采用油溶性引发剂: 在单体液滴内就地引发聚合, 类似液滴内 的本体聚合。微悬浮聚合具备此双重条件 ► 乳液聚合过程中的三个阶段 Stage 1, 成核期/增速期: 从水相中自由基 进入增溶胶束→单体-聚合物胶粒的形成。 特征: 胶束↓; 胶粒/R↑; 单体液滴数不变, 只是体积缩小。到一定C, 未成核的胶束消 失→成核期结束, 胶粒数/R也因而恒定。 Stage 2, 胶粒数恒定期/恒速期: 从增溶胶 束消失开始, 只有胶粒和液滴。胶粒内[M] 和R恒定。胶粒长大→50-150nm。
下一页
5.5 乳液聚合 5.5.1 概述 定义: 单体在水中分散成乳液状态的聚合。 配方组成: 单体/水/水溶性引发剂/乳化剂。 优点 1) 环保安全/体系黏度低/便于混合传热、管道输送和连续生产; 2) 可在低温下(氧还体系)聚合, 能同时提高R和Mn; 3) 适合制作粘性聚合物和直接应用乳液的场合。 缺点 当不以乳液形式使用时, 需复杂的后处理; 产物纯度差。 应用 1) 聚合后分离成胶状或粉状固体产品; 2) 聚合后胶乳直接用作涂料和胶黏剂; 3) 微粒用作颜料、粒径测定标样; 免疫试剂的载体等。
下一页
* 能同时↑R和Mn, 粒子直径0.05-0.2 μm, 单体液滴直径1-10 μm?
5.5.2 乳液聚合的主要组分 ► 单体100—乙烯基/丙烯酸酯类/二烯烃; 主单体, 第2/3单体。 单体在水中的溶解度影响聚合机理和产品性能 St/Bu→MMA→VAc→水溶性AA/AM—反相乳液聚合。 水150-250。 引发剂0.3-0.5—水溶性过硫酸盐/氧化-还原体系; 主/副还原剂甚 至络合剂。 乳化剂2-5: O/W乳化剂HLB 8-18-阴离子型/非离子型配合使用 →Mn/pH调节剂等。 5.5.3 乳化剂和乳化作用 → 降低表面张力, 使单体乳化成小液滴, 并形成胶束, 提供引发和 聚合的场所。
第五章 自由基聚合实施方法
5.1 引言 PS/PMMA
均相体系 本体聚合 熔融—气相 溶液聚合
PVC/PAN
非均相体系 悬浮聚合 乳液聚合
聚合体系初始相态 聚合过程相态变化
相关文档
最新文档