追及与相遇问题(详解)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

追及与相遇问题刘玉平

课时安排:3课时

三维目标:

1、掌握匀变速直线运动的速度、位移公式以及速度-位移公式;

2、能灵活选用合适的公式解决实际问题;

3、通过解决实际问题,培养学生运用物理规律对实际生活中进行合理分析、解决问题的能力;

4、通过教学活动使学生获得成功的愉悦,培养学生参与物理学习活动的兴趣,提高学习自信心。教学重点:灵活选用合适的公式解决实际问题;

教学难点:灵活选用合适的公式解决实际问题。

教学方法:启发式、讨论式。

教学过程

两物体在同一直线上追及、相遇或避免碰撞问题中的条件是:两物体能否同时到达空间某位置。因此应分别对两物体进行研究,列出位移方程,然后利用时间关系、速度关系、位移关系求解。

一、追及问题

1、追及问题的特征及处理方法:

“追及”主要条件是:两个物体在追赶过程中处在同一位置,常见的情形有三种:

⑴初速度比较小(包括为零)的匀加速运动的物体甲追赶同方向的匀速运动的物体乙,一定

能追上。

a、追上前,当两者速度相等时有最大距离;

b、当两者位移相等时,即后者追上前者。

⑵匀减速运动的物体追赶同向的匀速运动的物体时,存在一个能否追上的问题。

判断方法是:假定速度相等,从位置关系判断。

解决问题时要注意二者是否同时出发,是否从同一地点出发。

a、当两者速度相等时,若追者位移仍小于被追者,则永远追不上,此时两者间有最

小距离;

b、若两者速度相等时,两者的位移也相等,则恰能追上,也是两者避免碰撞的临界

条件;

c、若两者速度相等时,追者位移大于被追者,说明在两者速度相等前就已经追上;

在计算追上的时间时,设其位移相等来计算,计算的结果为两个值,这两个

值都有意义。即两者位移相等时,追者速度仍大于被追者的速度,被追者还

有一次追上追者的机会,其间速度相等时两者间距离有一个较大值。

⑶匀速运动的物体甲追赶同向匀加速运动的物体乙,情形跟⑵类似。

匀速运动的物体甲追赶同向匀减速运动的物体乙,情形跟⑴类似;被追赶的物体做匀减速运动,一定要注意追上前该物体是否已经停止运动。

2、分析追及问题的注意点:

⑴要抓住一个条件,两个关系:一个条件是两物体的速度满足的临界条件,如两物体距离最大、

最小,恰好追上或恰好追不上等。两个关系是时间关系和位移关系,通过画草图找两物体的位移关系是解题的突破口。

⑵若被追赶的物体做匀减速运动,一定要注意追上前该物体是否已经停止运动。

⑶仔细审题,充分挖掘题目中的隐含条件,同时注意v t 图象的应用。

二、相遇

⑴ 同向运动的两物体的相遇问题即追及问题,分析同上。

⑵ 相向运动的物体,当各自发生的位移绝对值的和等于开始时两物体间的距离时即相遇。

【典型例题】

【例1】 在十字路口,汽车以0.5m/s 2的加速度从停车线启动做匀加速运动,恰好有一辆自行车以5m/s 的速度匀速驶过停车线与汽车同方向行驶,求:

(1) 汽车追上自行车之前,什么时候它们相距最远?最远距离是多少?

(2) 在什么地方汽车追上自行车?追到时汽车的速度是多大?

解:①汽车追上自行车之前,两车速度相等时相距最远,设所用时间为t

v 汽=at =v 自 t =10s 最远距离x =x 自-x 汽=v 自t -

21at 2=25m ②设汽车追上自行车所用时间为t / 此时x 自=x 汽 v 自t /=2

1a t /2 t /=20s 此时距停车线距离 x =v 自t /

=100m 此时汽车速度 v 汽=a t /=10m/s

【例2】 客车以30m/s 的速度行驶,突然发现前方72 m 处有一自行车正以6m/s 的速度同向匀速行驶,于是客车紧急刹车,若以3m/s 2的加速度匀减速前进,问:

(1) 客车是否会撞上自行车?若会撞上自行车,将会在匀减速前进多久时撞上?

(2) 若要保证客车不会撞上自行车,客车刹车时距离自行车至少多远?

(3) 若要保证客车不会撞上自行车,客车刹车时的加速度至少多大? 1) 速度相等时用时t ,则30-3t=6m/s 解得t=8s ,此时自行车行驶6*8=48m ,客车行驶30*8-1/2*3*8*8=144,72+48=120m<144m,所以会撞上。假设t 时刻撞上,则有30*t-1/2*3t2=72+6*t 解得t1=4s ,t2=12s (舍去)

2)不会撞上则速度相同时刚好不会撞上。由(1)中得144=48+S ,所以至少相差96m

【例3】 在一条平直的公路上,乙车以10m/s 的速度匀速行驶,甲车在乙车的后面作初速度为15m/s ,加速度大小为0.5m/s 2的匀减速运动,则两车初始距离L 满足什么条件时可以使:

(1)两车不相遇;

(2)两车只相遇一次;

(3)两车能相遇两次(设两车相遇时互不影响各自的运动)。 a=-0.5 v1=10 v2=15

当甲车减速为v=10时,两车速度相同。即之后甲车速度小于乙车。

设甲车v=10时,辆车正好相遇。t=(v1-v2)/a=10.

s 甲=v2*t+at^2/2=15*10-0.5*10*10/2=125

s 乙=v1*t=100

L=s 甲-s 乙=25(m )

即当L<25时为①两车相遇两次(设两车相遇时互不影响各自的运动)

当L=25时为②两车只相遇一次

当L>25时为③两车不相遇 【例4】 如图,A 、B 两物体相距S=7米,A 正以V 1=4米/秒的速度向右做匀速直线运动,而物体B 此时速度V 2=10米/秒,方向向右,做匀减速直线运动(不能返

相关文档
最新文档