定积分的概念

合集下载

定积分的概念 课件

定积分的概念 课件

a
f(x)dx等于由直线x=a,x=b,y=0与
曲线y=f(x)围成曲边梯形的面积,这是定积分的几何意义.
b
(2)计算
a
f(x)dx时,先明确积分区间[a,b],从而确定曲
边梯形的三条直边x=a,x=b,y=0,再明确被积函数f(x),
从而确定曲边梯形的曲边,这样就可以通过求曲边梯形的面积
S而得到定积分的值:
c
f(x)dx
(其中a<c<b).
[点睛] 性质(1)的等式左边是一个定积分,等式右边是常数与 一个定积分的乘积. 性质(2)对于有限个函数(两个以上)也成立. 性质(3)对于把区间[a,b]分成有限个(两个以上)区间也 成立.
利用定义求定积分
3
[典例] 利用定义求定积分0x2dx. [解] 令f(x)=x2,
n
(3)求和:
i=1Leabharlann f(ξi)·b-n a;
b
(4)取极限:a
n
f(x)=lim n i=1
b-a f(ξi)· n .
用定积分的性质求定积分
[典例]
(1)f(x)=x2+ x2,1,1≤0≤x≤x<21.,
2

f(x)dx=(
0
)
2
A. (x+1)dx 0
2
B. 2x2dx 0
1
2
C. (x+1)dx+ 2x2dx
(1)如果被积函数是几个简单函数的和的形式,利用定 积分的线性性质进行计算,可以简化计算.
(2)如果被积函数含有绝对值或被积函数为分段函数, 一般利用积分区间的连续可加性计算.
用定积分的几何意义求定积分
[典例] 根据定积分的几何意义,求下列定积分的值.

定积分的定义及几何意义

定积分的定义及几何意义

精品文档 定 积 分教学重点:定积分的概念、定积分法求简单的定积分、定积分的几何意义. 教学难点:定积分的概念、定积分的几何意义.教学重点:掌握过程步骤:分割、以不变代变、求和、逼近(取极限). 教学难点:过程的理解.1.定积分的概念:一般地,设函数()f x 在区间[,]a b 上连续,用分点0121i i n a x x x x x x b -=<<<<<<<=将区间 [,]a b 等分成n 个小区间,每个小区间长度为x ∆(b a x n-∆=),在每个小区间[]1,i i x x -上取一点()1,2,,i i n ξ=,作和式:11()()n n n i i i i b a S f x f nξξ==-=∆=∑∑ 如果x ∆无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分。

记为:()ba S f x dx =⎰其中()f x 成为被积函数,x 叫做积分变量,[,]a b 为积分区间,b 积分上限,a 积分下限。

说明:(1)定积分()b a f x dx ⎰是一个常数,即n S 无限趋近的常数S (n →+∞时)称为()b af x dx ⎰,而不是n S . (2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ; ②近似代替:取点[]1,i i i x x ξ-∈; ③求和:1()ni i b a f n ξ=-∑; ④取极限:()1()lim n b i a n i b a f x dx f n ξ→∞=-=∑⎰ (3)积分的几何意义:曲边图形面积:()ba S f x dx =⎰; 积分的物理意义: 变速运动路程21()t t S v t dt =⎰; 变力做功 ()ba W F r dr =⎰ 2.定积分的性质根据定积分的定义,不难得出定积分的如下性质:性质1a b dx b a -=⎰1 性质2 ⎰⎰=baba dx x f k dx x kf )()( (其中k 是不为0的常数)精品文档 性质31212[()()]()()b b b a a a f x f x dx f x dx f x dx ±=±⎰⎰⎰ 性质4 ()()()()bc b a a c f x dx f x dx f x dx a c b =+<<⎰⎰⎰其中例题:求曲线2x y =与0,1==y x 所围成的区域的面积 解:(1)分割:将区间[]0,1等分成n 个小区间:11i i t n n n-∆=-= (2)近似代替:2)1(1n i n s i -=∆ (3)求和: 1ni i S S ==∆∑ 从而得到S 的近似值 )12)(11(61n n s --= (4)取极限:1111115lim lim lim 112323n n n n n i i S S v n n n n →∞→∞→∞=-⎡⎤⎛⎫⎛⎫⎛⎫===---+= ⎪ ⎪⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦∑ 例1.利用定积分的定义计算dx x )1(210+⎰的值。

1 定积分概念

1 定积分概念

.1 定积分概念定义设函数f(x)在[a,b]上有界,在[a,b]中任意插入若干个分点,把区间[a,b]分成n个小区间,设有常数I,如果对于任意给定的正数ε,总存在一个正数δ,使得对于区间[a,b]的任何分法,不论在中怎样取法,只要,总有成立,则称I是f(x)在区间[a,b]上的定积分,记作。

接下来的问题是:函数f(x)在[a,b]上满足怎样的条件,f(x)在[a,b]上一定可积?以下给出两个充分条件。

定理1设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。

定理2设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。

如果我们对面积赋以正负号,在x轴上方的图形面积赋以正号,在x轴下方的图形面积赋以负号,则在一般情形下,定积分的几何意义为:它是介于x 轴、函数f(x)的图形及两条直线x = a、x = b之间的各部分面积的代数和。

.2 牛顿-莱步尼兹公式及实例定理如果函数F(x)是连续函数f(x)在区间[a,b]上的一个原函数,则。

(1)证已知函数F(x)是连续函数f(x)的一个原函数,又根据前面的定理知道,积分上限的函数也是f(x)的一个原函数。

于是这两个原函数之差为某个常数(第四章第一节),即。

(2)在上式中令x = a,得。

又由Φ (x)的定义式及上节定积分的补充规定知Φ (a) = 0,因此,C = F(a)。

以F(a)代入(2)式中的C,以代入(2)式中的Φ (x),可得,在上式中令x = b,就得到所要证明的公式(1) 。

由积分性质知,(1)式对a>b的情形同样成立。

为方便起见,以后把F(b) – F(a)记成。

公式(1)叫做牛顿(Newton)-莱步尼兹(Leibniz)公式,它给定积分提供了一种有效而简便的计算方法,也称为微积分基本公式。

例1 计算定积分。

解。

例2计算。

解。

例3计算。

解。

例4计算正弦曲线y = sinx在[0, ]上与x轴所围成的平面图形的面积。

解释定积分的概念

解释定积分的概念

解释定积分的概念
定积分是积分的一种,是函数f(x)在区间[a,b]上积分和的极限。

具体来说,定积分定义如下:设函数f(x) 在区间[a,b]上连续,将区间[a,b]分成n个子
区间[x₀,x₁], (x₁,x₂], (x₂,x₃], …, (xₙ-1,xₙ],其中x₀=a,xₙ=b。

a叫做积分下限,b叫做积分上限,区间[a, b]叫做积分区间,函数f(x)叫做被积函数,x
叫做积分变量,f(x)dx 叫做被积表达式,∫ 叫做积分号。

同时,应注意定积分与不定积分之间的关系:若定积分存在,则它是一个具体的数值,而不定积分是一个函数表达式,它们仅仅在数学上有一个计算关系(牛顿-莱布尼茨公式)。

一个函数,可以存在不定积分,而不存在定积分;也可以存在定积分,而不存在不定积分。

一个连续函数,一定存在定积分和不定积分;若只有有限个间断点,则定积分存在;若有跳跃间断点,则原函数一定不存在,即不定积分一定不存在。

以上内容仅供参考,如需更多信息,建议查阅相关文献或咨询数学专业人士。

掌握定积分概念及基本性质

掌握定积分概念及基本性质

供需关系研究
通过定积分,可以研究市 场供需关系的变化。
投资回报分析
在金融领域,定积分可以 用来分析投资回报率的变 化。
05
掌握定积分的重要性
在数学中的地位
连接微积分两大核心概念
定积分与微积分息息相关,是微积分理论体系的重要组成部分, 掌握了定积分,就等于掌握了微积分的一半。
深化对极限概念的理解
定积分与极限概念紧密相连,掌握定积分有助于更深入地理解极限 的内涵和应用。
详细描述
牛顿-莱布尼兹公式是计算定积分的核心公式,它表示为∫baf(t)dt=F(b)-F(a),其中∫baf(t)dt表示函数f(t) 在区间[a, b]上的定积分,F(x)表示f(t)的原函数,即满足F'(x)=f(x)的函数。该公式通过选取合适的分割和 近似方式,将定积分转化为一系列小矩形面积之和,最后求和得到定积分的值。
为后续课程奠定基础
定积分是学习复变函数、实变函数等后续课程的基础,对于数学专 业的学生来说至关重要。
在其他学科中的应用价值
物理学中的应用
在物理学中,定积分常用于计算 面积分,例如在计算电磁场、引
力场等物理量的分布时。
工程学科中的应用
在工程学科中,定积分常用于解 决与几何形状、物理量分布等有 关的实际问题,如机械工程、土
定积分的几何意义
定积分的几何意义是函数图像与x轴所夹的面积。具体来说,将定积分表示的函 数图像与x轴围成的面积,即为定积分的值。
定积分的几何意义还可以理解为曲线与x轴所夹的“曲边梯形”的面积。这个曲 边梯形的高就是函数值,底就是x轴上的区间。
定积分的物理意义
定积分的物理意义是表示某个物理量在某个时间段或某个 区间内的累积效应。例如,物体的质量分布不均匀,其质 心位置可以通过对质量分布函数进行定积分来求解。

定积分与不定积分定义

定积分与不定积分定义

定积分与不定积分定义
定积分和不定积分是高数中的重要概念,它们均有其特定的定义。

定积分是指将复杂函数拆分成一系列简单函数,然后将其求和计算出函数在某一区间上的总和。

它可以用来计算曲线下的面积、曲线的位移以及函数的变化等。

定积分是求取函数积分的一种方法,其定义为:若f(x)是定义在区间[a,b]上的连续
函数,则把[a,b]上f(x)的积分称为定积分,记作:∫abf(x)dx不
定积分是指在求取函数的积分时,没有给定区间,即没有给定函数的定义域,而是由求积分的过程中求出区间。

不定积分是求取函数积分的一种方法,其定义为:若f(x)是定义在实数集
上的连续函数,则把f(x)的不定积分称为不定积分,记作:
∫f(x)dx定积分和不定积分的应用十分广泛,它们在数学、物理、经济学等领域都有着重要的作用。

在求解复杂函数的积分问题时,定积分和不定积分可以通过求取函数的定积分和不定积分等方法来解决。

定积分和不定积分是高数中的重要概念,它们的定义和应用都十分广泛,可以用来解决多种复杂函数的积分问题。

在研究高数中,要深入研究定积分和不定积分的定义和应用,以便更好地理解复杂函数的求积分问题。

_定积分的概念A

_定积分的概念A

定积分的概念【要点梳理】要点一、定积分的定义 定积分的概念一般地,设函数()f x 在区间[,]a b 上连续,用分点0121i i n a x x x x x x b -=<<<<<<<=L L将区间[,]a b 等分成n 个小区间,每个小区间长度为x D (b ax n-D =),在每个小区间[]1,i i x x -上任取一点()1,2,,i i n x =L ,作和式: 11()()nnn i i i i b aS f x f n x x ==-=D =邋 如果x D 无限接近于0(亦即n ??)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分。

记为:()baS f x dx =ò,定积分的相关名称:⎰——叫做积分号,()f x ——叫做被积函数,()d f x x ——叫做被积表达式,x ——叫做积分变量,a ——叫做积分下限,b ——叫做积分上限,[a ,b]——叫做积分区间。

要点诠释: (1)定积分()baf x dx ò是一个常数,即n S 无限趋近的常数S (n ??时)记为()baf x dxò,而不是n S .(2) 定积分是一个数值(极限值),它的值仅仅取决于被积函数与积分的上、下限,而与积分变量用什么字母表示无关,即()()()bb baaaf x dx f u du f t dt ===⎰⎰⎰(称为积分形式的不变性),另外定积分()()baf x d x ⎰与积分区间[a ,b]息息相关,不同的积分区间,定积分的积分上下限不同,所得的值也就不同,例如120(1)x dx +⎰与320(1)x dx +⎰的值就不同。

(3)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ; ②近似代替:取点[]1,i i i x x x -Î;③求和:1()ni ib af n x =-å; ④取极限:()1()l i mnbi naib af x dx f nx =-=åò (4)按定积分的定义,① 由连续曲线()[()0]y f x f x =≥、直线x=a 、x=b 及x 轴所围成的曲边梯形的面积为()d baf x x ⎰;② 设物体运动的速度v=v (t ),则此物体在时间区间[a ,b]内运动的距离s 为()d bav t t ⎰。

定积分的概念和基本思想

定积分的概念和基本思想

定积分的概念和基本思想一、定积分的概念和基本思想1、定积分的概念一般地,如果函数$f(x)$在区间$[a,b]$上连续,用分点$a=x_0<x_l<$$\cdots<$$x_{i-l}<x_i<$S\cdots<$$x_n=b$将区间$ la, b] S等分成$n$ 个小区间,在每个小区间$[x_{iT},x_i]$上任取一点$ C _i (i=l, 2, \cdots, n)$,作和式$\underset{i=l}{\overset{n}{\sum}}f(4 _i)Ax=$$\underset{i=l}{\overset {n} {\sum ))\frac(b-a} {n}f(C_i)$,当Sn-8$时,上述和式无限接近某个常数,这个常数叫做函数$f (x) $在区间$[a,b]$上的定积分,记作$\int_{a} * (b}f (x) (\rm d}x$,即$\int_{a}*{b}f(x){\rmd}x=$$\underset(n~* °°}{\lim}\underset{i=l}{\overset{n}{\sum}}\frac{b_ a}{n}f(g_i)$,这里,$a$与$b$分别叫做积分下限与积分上限,区间$[a,b]$叫做积分区间,函数$f(x)$叫做被积函数,$x$叫做积分变量,$f(x) {\rm d}x$叫做被积式。

(1)定积分$\int_{a}*{b}f(x) {\rm d}x$不是一个函数式,而是一个数值(极限值),它只与被积函数以及积分区间有关,而与积分变量无关,即$\int_{a}*{b}f(x){\rm d}x=$S\int_{a}*{b}f(t)(\rm d}t=$$\int_{a}*{b}f(u){\rm d}u$o(2)定义中区间的分法和$ g _i$的取法是任意的。

2、定积分的基本思想定积分的基本思想就是以直代曲,即求曲边梯形的而积时,将曲边梯形分割成一系列的小曲边梯形,用小矩形近似代替,利用矩形面积和逼近的思想方法求出曲边梯形的面积。

定积分的概念

定积分的概念

x + 3 dx - x
3 3 0 0
2
- x + 3 dx -x + 3x dx
3 2 0
四、小结
1.定积分的实质:特殊和式的逼近值.
2.定积分的思想和方法:
分割 化整为零
求近似以直(不变)代曲(变)
求和
取逼近
积零为整
取逼近
精确值——定积分
3.定积分的几何意义及简单应用
a f(x)dx - b f (x)dx
a
(2)定积分的几何意义:
当 f(x)0 时,积分 f ( x)dx 在几何上表示由 y=f (x)、 a xa、xb与 x轴所围成的曲边梯形的面积。
y yf (x)
b
a f (x)dx a
O a
b
b
c
f (x)dx
b
c
f (x)dx。
b
lim f (i ) xi
n i 1
n
被 积 函 数
被 积 表 达 式
积 分 变 量
说明:
(1) 定积分是一个数值, 它只与被积函数及积分区间有关, 而与积分变量的记法无关,即
a f(x)dx a
(3)
b
b
b
f (t)dt f(u)du。
a
b
(2)定义中区间的分法和 i 的取法是任意的.
再 见
例 1:利用定积分的定义,计算 x3dx 的值。
0
1
3 取极限
1 1 2 1 0 x dx lim Sn lim 4 (1 n ) 4 n n
1 3
练习:利用定积分计算: x3 dx
0

定积分的基本概念

定积分的基本概念

定积分的基本概念
一、定积分的基本概念
1.定积分的定义
定积分是指在区间[a,b]中,用函数f(x)的值在x处取的积分,其中x取值于a到b之间的某个点,f(x)的积分称为定积分。

也可以表示为
∫a, bf(x)dx=∫f(x)dx
即:将函数f(x)从x=a到x=b的定积分。

2.定积分的性质
(1)定积分是一种积分的形式,它是在定的一段区间内对某个函数f(x)求积分的形式。

(2)定积分可以表示为:∫f(x)dx=F(b)-F(a),其中F(x)是f(x)的积分函数。

(3)定积分可以表示为:∫a, bf(x)dx=∑[f(x1)+f(x2)+…
+f(xn)],其中x1,x2,…,xn为积分区间[a, b]的各个各点。

(4)定积分是一种表示曲线与坐标轴围成的面积的一种数学工具。

二、定积分的计算
1.定积分的数值计算
数值计算定积分,即把范围[a,b]离散成一定的小段,在每个小段上求f(x)的值,再用这些值进行总和,来求出定积分的近似值。

2.定积分的解析计算
解析计算此类定积分,即首先求出f(x)的积分方程,在范围[a,b]内,求得它的解后,再把范围[a,b]的定积分解析成积分函数F(x)的量对应的差值F(b)-F(a)。

三、定积分的应用
定积分的应用主要是用于求出曲线与坐标轴围成的面积,也可以用于求求解线性微分方程,求解有关动力学问题的时候,还有一些物理的和化学的问题,这些问题用的都是定积分的知识。

定积分的概念及性质

定积分的概念及性质

一、定积分的概念及性质定积分是研究分布在某区间上的非均匀量的求和问题,必须通过“分割、近似、求和、求极限”四个步骤完成,它表示了一个与积分变量无关的常量。

牛顿—莱布尼兹公式揭示了定积分与原函数的关系,提供了解决定积分的一般方法。

要求解定积分,首先要找到被积函数的原函数,而求原函数是不定积分的内容,由此,大家也可以进一步体会上一章内容的重要性。

被积函数在积分区间有界是可积的必要条件,在积分区间连续是可积的充分条件。

定积分具有线性性质、比较性质以及中值定理等,这些性质在定积分的计算和理论研究上具有重要意义,希望大家认真领会。

二、定积分的计算定积分的计算主要依靠牛顿—莱布尼兹公式进行。

在被积函数连续的前提下,要计算定积分一般需要先计算不定积分(因而不定积分的计算方法在定积分的计算中仍然适用),找出被积函数的原函数,但在具体计算时,定积分又有它自身的特点。

定积分计算的特点来自于定积分的性质,来自于被积函数在积分区间上的函数特性,因此有时定积分的计算比不定积分更简洁。

尽管定积分在求原函数的指导思想上与不定积分没有差别,但实际上它们又不完全一样。

例如用换元法来计算定积分⎰22cos sin πxdx x ,如果计算过程中出现了新的变元:x u sin =,则上下限应同时相应改变,微分同样如此,即⎰202cos sin πxdx x x u sin =313110312==⎰u du u 。

可以看出,在进行换元时的同时改变了积分的上下限,这样就无须象不定积分那样回代了。

但如果计算过程中不采用新变元,则无需换限,即=⎰202cos sin πxdx x 31sin 31sin sin 203202==⎰ππx x xd 。

在前一种方法(也称为定积分的第二换元法)中,一定要注意三个相应的变换:积分上、下限、微分,否则必然出现错误。

后一种方法(定积分的第一换元法)可以解决一些相对简单的积分,实际上是换元的过程可以利用凑微分来替代,由于没有出现新的变元,因而也就无须改变积分上下限及微分。

定积分的含义和计算

定积分的含义和计算

定积分的含义和计算定积分是微积分中的一种运算方式,通过计算函数在一个区间上的面积来求解。

它是反应函数变化的量的一种数值特征,同时也是分析函数性质和解决实际问题中的重要工具之一。

在本文中,我们将详细介绍定积分的含义、计算方法及其应用。

首先,我们来探讨定积分的含义。

定积分可以理解为函数曲线与坐标轴之间的有向面积。

具体而言,对于一个函数$f(x)$,我们可以将其限定在一个区间$[a,b]$上,然后使用一根尺直角下压在曲线上,该尺的长度与曲线上相应点的纵坐标相关。

当我们将尺从$a$点移动到$b$点时,这根尺覆盖的面积就是定积分。

同时,定积分还可以表示曲线上方的面积减去曲线下方的面积,即上减下。

为了更形象地理解定积分的含义,我们可以以一个例子进行说明。

假设有一个自由落体运动,其运动方程为$s(t) = v_0t - \frac{1}{2}gt^2$,其中$v_0$是初始速度,$g$是重力加速度,$t$是时间。

现在我们想知道在给定的时间区间$[t_1,t_2]$内自由落体运动所覆盖的空间距离。

这时,我们可以使用定积分来解决这个问题。

根据定义,自由落体运动的空间距离可以表示为$s(t)$在区间$[t_1,t_2]$上的定积分:$$\int_{t_1}^{t_2}(v_0t - \frac{1}{2}gt^2)dt$$其中$\int$表示求和的符号,$(v_0t - \frac{1}{2}gt^2)dt$表示被积函数,$dt$表示积分变量。

这个定积分的结果就是自由落体运动在区间$[t_1,t_2]$内所覆盖的空间距离。

接下来,我们将介绍定积分的计算方法。

在实际计算中,定积分可以通过多种方式求解,例如几何法、牛顿-莱布尼茨公式和数值积分等。

几何法是一种直观易懂的计算方式,它利用几何图形的性质来求取定积分的值。

具体而言,对于一个函数$f(x)$,我们可以通过绘制函数曲线与坐标轴之间的图形,然后根据几何图形的性质来计算面积。

定积分的定义及几何意义

定积分的定义及几何意义

定 积 分教学重点:定积分的概念、定积分法求简单的定积分、定积分的几何意义. 教学难点:定积分的概念、定积分的几何意义.教学重点:掌握过程步骤:分割、以不变代变、求和、逼近(取极限). 教学难点:过程的理解. 1.定积分的概念:一般地,设函数()f x 在区间[,]a b 上连续,用分点0121i i n a x x x x x x b -=<<<<<<<=L L 将区间[,]a b 等分成n 个小区间,每个小区间长度为x ∆(b ax n-∆=),在每个小区间[]1,i i x x -上取一点()1,2,,i i n ξ=L ,作和式:11()()n nn i i i i b aS f x f nξξ==-=∆=∑∑如果x ∆无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分。

记为:()baS f x dx =⎰其中()f x 成为被积函数,x 叫做积分变量,[,]a b 为积分区间,b 积分上限,a 积分下限。

说明:(1)定积分()ba f x dx ⎰是一个常数,即n S 无限趋近的常数S (n →+∞时)称为()baf x dx ⎰,而不是n S .(2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ; ②近似代替:取点[]1,i i i x x ξ-∈;③求和:1()ni i b a f n ξ=-∑; ④取极限:()1()lim n b i a n i b af x dx f n ξ→∞=-=∑⎰(3)积分的几何意义:曲边图形面积:()b aS f x dx =⎰;积分的物理意义: 变速运动路程21()t t S v t dt =⎰; 变力做功 ()baW F r dr =⎰2.定积分的性质根据定积分的定义,不难得出定积分的如下性质: 性质1a b dx ba-=⎰1性质2 ⎰⎰=babadx x f k dx x kf )()( (其中k 是不为0的常数)性质3 1212[()()]()()bbbaaaf x f x dx f x dx f x dx ±=±⎰⎰⎰性质4()()()()b cba acf x dx f x dx f x dxa cb =+<<⎰⎰⎰其中例题:求曲线2x y =与0,1==y x 所围成的区域的面积 解:(1)分割:将区间[]0,1等分成n 个小区间:11i i t n n n-∆=-= (2)近似代替:2)1(1n i n s i -=∆(3)求和: 1ni i S S ==∆∑ 从而得到S 的近似值 )12)(11(61n n s --=(4)取极限:1111115lim lim lim 112323nn n n n i i S S v n n n n →∞→∞→∞=-⎡⎤⎛⎫⎛⎫⎛⎫===---+= ⎪ ⎪⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦∑g 例1.利用定积分的定义计算dx x )1(210+⎰的值。

定积分的定义

定积分的定义


2
0
f
x
dx- 2 0
2xdx
=8-4=4.
答案:4
【技法点拨】利用定积分的性质求定积分的策略 (1)利用性质可把定积分分成几个简单的积分的组合,对于 每一个积分都可以利用定积分的几何意义求出, 从而得到所求 定积分的值. (2)求分段函数的定积分,可先把每一段的定积分求出后再 相加. 提醒:要注意合理利用函数的奇偶性、对称性求解.

2
0 f
x dx

2
20
f

x

dx.
1.若在区间[1,2]上,f(x)>0恒成立,则
2
1 f
xdx 的符号(
)
A.一定为正
B.一定为负
C.可能为正,也可能为负
D.不能判断
【解析】选A.由定积分的概念可知,
2
1
f

x的d值x 为曲边梯形
的面积.而该曲边梯形始终在x轴的上方,故其值为正.
积求定积分的值.
2.弄清被积函数的图象,结合定积分的几何意义作答.
【解析】1.(1)012d表x 示的是图(1)中阴影所示长方形的
面积,由于这个长方形的面积为2,所以
1
0 2dx

2.
答案:2
(2)
2
1
x表dx示的是图(2)中阴影所示梯形的面积,由于这个
梯形的面积为 3所, 以
2
2 xdx 3 .
2
分的形式为_______.

【解析】由定积分的定义和几何意义可知
S

2 0
sin
xdx.

答案: 2 sin xdx 0

定积分的定义及几何意义

定积分的定义及几何意义

定 积 分教学重点:定积分的概念、定积分法求简单的定积分、定积分的几何意义. 教学难点:定积分的概念、定积分的几何意义.教学重点:掌握过程步骤:分割、以不变代变、求和、逼近(取极限). 教学难点:过程的理解. 1.定积分的概念:一般地,设函数()f x 在区间[,]a b 上连续,用分点0121i i n a x x x x x x b -=<<<<<<<=将区间[,]a b 等分成n 个小区间,每个小区间长度为x ∆(b ax n-∆=),在每个小区间[]1,i i x x -上取一点()1,2,,i i n ξ=,作和式:11()()n nn i i i i b aS f x f nξξ==-=∆=∑∑如果x ∆无限接近于0(亦即n →+∞)时,上述和式n S 无限趋近于常数S ,那么称该常数S 为函数()f x 在区间[,]a b 上的定积分。

记为:()ba S f x dx =⎰其中()f x 成为被积函数,x 叫做积分变量,[,]a b 为积分区间,b 积分上限,a 积分下限。

说明:(1)定积分()ba f x dx ⎰是一个常数,即n S 无限趋近的常数S (n →+∞时)称为()ba f x dx ⎰,而不是n S .(2)用定义求定积分的一般方法是:①分割:n 等分区间[],a b ; ②近似代替:取点[]1,i i i x x ξ-∈;③求和:1()n i i b a f n ξ=-∑; ④取极限:()1()lim n b i a n i b af x dx f n ξ→∞=-=∑⎰(3)积分的几何意义:曲边图形面积:()ba S f x dx =⎰;积分的物理意义: 变速运动路程21()t t S v t dt =⎰; 变力做功 ()ba W F r dr =⎰2.定积分的性质根据定积分的定义,不难得出定积分的如下性质:性质1 a b dx ba-=⎰1性质2 ⎰⎰=babadx x f k dx x kf )()( (其中k 是不为0的常数)性质3 1212[()()]()()b bbaaaf x f x dx f x dx f x dx ±=±⎰⎰⎰性质4()()()()b cbaacf x dx f x dx f x dxa cb =+<<⎰⎰⎰其中例题:求曲线2x y =与0,1==y x 所围成的区域的面积 解:(1)分割:将区间[]0,1等分成n 个小区间:11ii t n n n-∆=-= (2)近似代替:2)1(1n i n s i -=∆(3)求和: 1ni i S S ==∆∑ 从而得到S 的近似值 )12)(11(61n n s --=(4)取极限:1111115lim lim lim 112323nn n n n i i S S v n n n n →∞→∞→∞=-⎡⎤⎛⎫⎛⎫⎛⎫===---+= ⎪ ⎪⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦∑ 例1.利用定积分的定义计算dx x )1(210+⎰的值。

定积分的条件

定积分的条件

定积分的条件一、定积分的基本概念定积分其实就是求函数在某个区间上的一种和式的极限。

想象一下,你有一个函数图像,在一个区间[a, b]上,定积分就像是把这个区间分成好多好多小份,然后把每一小份对应的小矩形的面积加起来,当这些小份分得无限细的时候,这个和就趋近于定积分的值啦。

这就好像是你在数一堆密密麻麻的小石子,一块一块地数,最后得到总数一样。

二、定积分存在的必要条件1. 函数要有界。

如果一个函数在某个区间上是无界的,那就像一个没有边界的海洋,你根本没办法去计算它在这个区间上的定积分。

比如说,函数f(x)=1/x在区间(0,1)上,当x趋近于0的时候,f(x)的值会变得无限大,这个函数在这个区间就是无界的,定积分就不存在。

就好比你想把一个无限大的东西放进一个有限的盒子里,这是不可能的。

2. 函数在区间上的间断点不能太多。

这里的“太多”是有比较严格的定义的。

如果函数只有有限个间断点,或者是有可数个间断点并且这些间断点是第一类间断点(可去间断点或者跳跃间断点),那么定积分还是有可能存在的。

就像是一条绳子,有几个小的断点或者可以接上的点,还是可以量出它的大概长度的。

但是如果这条绳子断成了无数小段,而且根本没办法接起来,那就很难量出它的长度了,对应的就是定积分不存在了。

三、定积分存在的充分条件1. 函数在区间[a, b]上连续。

这是一个很美好的情况,就像一条光滑的丝带,没有任何瑕疵。

如果函数在这个区间上连续,那么它在这个区间上的定积分肯定是存在的。

这就像是你沿着一条平坦的小路走,很容易就能算出你走了多远。

2. 函数在区间[a, b]上只有有限个第一类间断点。

虽然有间断点,但是间断点是那种比较“温和”的,就像小坎坷一样,不影响我们计算定积分。

比如说一个函数在某个区间上有几个跳跃间断点,但是整体还是比较规律的,我们还是可以用一些方法来计算定积分的。

定积分的这些条件就像是游戏规则一样,只有满足了这些规则,我们才能愉快地计算定积分,去探索函数在某个区间上的“面积”或者其他相关的量呢。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.5.3 定积分的概念
1.定积分⎠⎛0
1
1d x 的值等于
( ) A .0 B .1 C.12 D .2
答案 B
2.已知⎠⎛1
3
f (x )d x =56,则
( ) A.⎠⎛1
2
f (x )d x =28
B.⎠⎛2
3
f (x )d x =28
C.⎠⎛1
2
2f (x )d x =56
D.⎠⎛12f (x )d x +⎠⎛2
3
f (x )d x =56
答案 D
3.如图所示,⎠⎛a b
f 1(x )d x =M ,⎠⎛a
b f 2(x )d x =N ,则阴影部分的面积为
( )
A .M +N
B .M
C .N
D .M -N
答案 D
4.不用计算,根据图形,用不等号连接下列各式
( )
(1)⎠⎛01
x d x ________⎠⎛0
1
x 2d x (图1);
(2)⎠⎛01
x d x ________⎠⎛1
2
x d x (图2);
(3)⎠⎛024-x 2
d x ________⎠⎛022d x (图3).
答案 (1)> (2)< (3)<
1.定积分可以表示图形的面积
从几何上看,如果在区间[a ,b ]上,函数f (x )连续且恒有f (x )≥0,那么定积分⎠⎛a
b f (x )d x 就表示由直线x =a ,x =b (a ≠b ),y =0和曲线y =f (x )所围成的曲边梯形的面积,这就是定积分⎠⎛a
b f (x )d x 的几何意义. 2.定积分表示图形面积的代数和
被积函数是正的,定积分的值也为正,如果被积函数是负的,函数曲线在x 轴之下,定积分的值就是带负号的曲边梯形的面积.当被积函数在积分区间上有正有负时,定积分就是x 轴之上的正的面积与x 轴之下的负的面积的代数和.
3.此外,定积分还有更多的实际意义,比如在物理学中,可以用定积分表示功、路程、压力、体积等.
4.定积分是一个数值(极限值),它的值仅仅取决于被积函数与积分的上、下限,而与积分变量用什么字母表示无关,即⎠⎛a b f (x )d x =⎠⎛a b f (u )d u =⎠⎛a
b f (t )d t =…(称为积分形式的不变性),另外定积分⎠⎛a
b f (x )d x 与积分区间[a ,b ]息息相关,不同的积分区间,所得的值也不同,例如⎠⎛01(x 2+1)d x 与⎠⎛0
3(x 2+1)d x 的值就不同.。

相关文档
最新文档