正方形展开图11种方式
正方体11种平面展开图
正方体的11种平面展开图正方体的平面展开图共有11种(那些经旋转或翻转后方向不同但实质相同的图形不重复计算),具体来讲分以下4类。
第一类:“1—4—1”型,其特点是有4个连成一排的正方形,两侧又各有1个正方形,共有6种。
第二类:“1—3—2”型,其特点是有3个连成一排的正方形,这一排正方形的一侧有1个正方形,另一侧有2个正方形(其中只有1个与中间那一排相连),共有3种。
第三类:“2—2—2”型,其特点是有2个连成一排的正方形,其两侧又各有2个连成一排的正方形,只有1种。
第四类:“3—3”型,其特点是有3个连成一排的正方形,其一侧还有3个连成一排的正方形,只有1种。
注:①将长方体、正方体展开:无论怎么剪,都要剪7条棱。
②“隔”的原理:相对的面如果在同一行或同一排,中间一定只隔一个面;相对的面如果不在同一行或同一排,中间可以隔着一些面。
③长方体、正方体中各面的关系:相对、相邻。
每个面都有1个相对的面,4个相邻的面。
注:立体图中相对的面在展开图中符合“隔”的原理,而相邻的面在展开图中不符合“隔”的原理。
④长方体、正方体中最多可以同时看到三个面,且这三个面都是相邻的面。
⑤要区分好是从“立体图”到“展开图”,还是从“展开图”到“立体图”:互逆正方体、长方体展开图⑥长方体(不包含正方体)最多有1组相对的面是正方形;当有2组相对的面是正方形时,长方体就变成了正方体(特殊的长方体)。
长方体(不包含正方体)的6个面中,最多有4个面的面积相等;12条棱中,最多有8条棱长度相等。
(即2个相对的面是正方形,其余四个面变为完全相同的长方形。
)⑦正方体的棱长扩大a倍:棱长和扩大a倍,表面积扩大a2倍,体积扩大a3倍。
(给出其中一个,要能将其余的都求出来)⑧常见的平方、立方(需熟记在心)12=1 22=4 32=9 42=16 52= 25 62=36 72=49 82=64 92=81 ……13=1 23=8 33=27 43=64 53= 125 63=216 ……。
正方体11种平面展开图
正方体的11种平面展开图正方体的平面展开图共有11种(那些经旋转或翻转后方向不同但实质相同的图形不重复计算),具体来讲分以下4类。
第一类:“1—4—1”型,其特点是有4个连成一排的正方形,两侧又各有1个正方形,共有6种。
第二类:“1—3—2”型,其特点是有3个连成一排的正方形,这一排正方形的一侧有1个正方形,另一侧有2个正方形(其中只有1个与中间那一排相连),共有3种。
第三类:“2—2—2”型,其特点是有2个连成一排的正方形,其两侧又各有2个连成一排的正方形,只有1种。
第四类:“3—3”型,其特点是有3个连成一排的正方形,其一侧还有3个连成一排的正方形,只有1种。
注:①将长方体、正方体展开:无论怎么剪,都要剪7条棱。
②“隔”的原理:相对的面如果在同一行或同一排,中间一定只隔一个面;相对的面如果不在同一行或同一排,中间可以隔着一些面。
③长方体、正方体中各面的关系:相对、相邻。
每个面都有1个相对的面,4个相邻的面。
注:立体图中相对的面在展开图中符合“隔”的原理,而相邻的面在展开图中不符合“隔”的原理。
④长方体、正方体中最多可以同时看到三个面,且这三个面都是相邻的面。
⑤要区分好是从“立体图”到“展开图”,还是从“展开图”到“立体图”:正方体、长方体展开图⑥长方体(不包含正方体)最多有1组相对的面是正方形;当有2组相对的面是正方形时,长方体就变成了正方体(特殊的长方体)。
长方体(不包含正方体)的6个面中,最多有4个面的面积相等;12条棱中,最多有8条棱长度相等。
(即2个相对的面是正方形,其余四个面变为完全相同的长方形。
)⑦正方体的棱长扩大a倍:棱长和扩大a倍,表面积扩大a2倍,体积扩大a3倍。
(给出其中一个,要能将其余的都求出来)⑧常见的平方、立方(需熟记在心)12=1 22=4 32=9 42=16 52= 25 62=36 72=49 82=64 92=81 ……13=1 23=8 33=27 43=64 53= 125 63=216 ……互逆。
正方形11种展开图
正方形11种展开图正方形一直以来都是数学课上学习的重要内容,在我们的日常生活中也有许多的应用,比如装饰室内的地板材料,踩在地上的边框等等,但是大家如何快速地把一个正方形展开来,以便更好地把它变成一个模型呢?下面我们就来看看,正方形可以用11种方式展开,有些只需要一步即可完成,有些则需要两步或者多步才能完成:1.叠对称:将正方形折叠成一个对称的六边形,只需一步即可完成。
2.称折叠:将正方形平均分成四份,然后各自折叠成对称的六边形。
3. 中心折叠:把正方形的中心向上折叠,然后把两个角向下折叠,这样就可以得到一个六边形。
4.边折叠:把正方形的每边分成两部分,把两边的中心线向上折叠,然后把两角向下折叠,可以得到一个六边形。
5. 中心双折叠:将正方形的中心线折叠成两个三角形,然后把每个三角形展开成六边形。
6.折叠:将正方形的四角向外折叠,得到一个八边形,然后把中间的四角向内折叠,这样就可以得到一个六边形。
7.边形折叠:将正方形的四个角折叠成六边形,然后再各自折叠一次,就可以得到一个六边形。
8.叠菱形:把正方形分成两个菱形,然后把每个菱形展开成六边形。
9.折叠:将正方形折叠成转角形,然后把转角折叠,就可以得到一个六边形。
10.形折叠:将正方形折叠成菱形,然后把四个角向外折叠,可以得到一个六边形。
11.插折叠:将正方形的四角穿插折叠,然后把中间的边向外折叠,就可以得到一个六边形。
上面这些方法绝对能够帮助大家快速地把一个正方形展开,让它变成一个模型。
只要大家能够坚持不懈地学习,不断练习,相信大家很快就可以把这11种展开图熟练掌握,轻轻松松把正方形变成各种模型。
虽然正方形的展开图只有11种,但是它的应用却是无穷的,它不仅可以用于数学课上的练习,还可以用于美术创作,比如把11种展开图应用在地板上,形成各式各样的图案,给室内的环境带来全新的变化,让室内的环境变得更加精致、优雅。
11种展开图可以用在室内装饰之外,还可以用于设计一些普通的生活小物,比如盒子、水果篮等,只要掌握了这11种展开图,就可以快速地把它们转换成模型,让生活变得更加简单便捷。
正方体的 11 种展开图打印附带讲解
正方体的11种展开图打印附带讲解本文章主要带孩子认识11种正方体展开图,家人可以把它打印下来,陪孩子一起制作。
(PS:1、如果A4的纸太软不好固定,可以用纸箱、纸质购物袋等画出对应的图形进行裁剪;2、亦或者可以用包书的纸裁剪出展开图的样子,做成精美的包装纸贴在正方体外面,做一个精美的小礼盒哦)(为了方便打印,文章末尾,把所有资料汇总了一遍,可直接跳转到末尾打印11钟展开图)在正式学习之前,可以将家中的魔方拿出来,看看正方体有几面?每一面都是什么形状?以此区分一下正方体和正方形。
分别有前面、后面、上面、下面、左面、右面这六面。
接着介绍“正方体的展开图”,带着孩子观察展开图的特点,并知道其名称。
(一)首先认识一下1-4-1型,为了更形象的记忆,我把它概括为“1头4身体1脚”(头是由1个正方形组成的,身体是由4个正方形组成的,脚是由1个正方形组成的,)家人可以先把图形制作出来,然后带孩子去观察特点。
打印图纸:1-4-1打印专用:1-4-1共有6种,身体均是4个正方体,头和脚各一个,头和脚的位置可左右移动改变(二)接下来认识2-3-1型,2-3-1共有3种,头2个正方体,身体3个,脚1个。
脚的位置可左右移动改变,以此展开图为例,虽然身体部分较原来少了一个,但是恰好可以由头部多的一个补上。
操作演示时,先把身体折起来,发现身体少了一个,接着把上面脑袋部分拼好,拼好之后脑袋部分多的一个刚好可以补充身体。
2-3-1打印专用:2-3-1共有3种,头2个正方体,身体3个,脚1个。
脚的位置可左右移动改变(三)接下来认识2-2-2型,与3-3型,可以把资料打印下来,通过操作去提升动手以及想象能力。
2-2-2与3-3打印专用。
正方体展开的11种画法
正方体展开的11种画法正方体展开图这事儿可太有趣啦!咱们得知道正方体展开可有11种画法呢。
咱先来说说最常见的一种,那种“一四一”型的。
就像是一个大长条,中间四个正方形连着,两边各一个正方形。
你可以想象这就像一列小火车,中间的车厢比较多,车头车尾各一节。
这种展开图看起来特别规整,很容易理解。
比如说,你把一个正方体纸盒沿着棱剪开,很有可能就会得到这种“一四一”型的展开图。
还有一种是“二三一”型的。
这种就像是两层楼,楼下有三个正方形并排,楼上有两个正方形,旁边再带一个小“耳朵”一样的正方形。
你看,这就像一个小房子,楼下三间房,楼上两间房,旁边还有个小仓库似的。
这种展开图就有点小调皮了,不像“一四一”型那么一目了然,但只要你仔细观察,就会发现它的妙处。
接着就是“二二二”型的啦。
这就像是两个小楼梯并排着,每个楼梯都是两个正方形组成的。
这种展开图就比较对称,看起来特别和谐。
就好像是两个小伙伴手拉手一样,很是可爱呢。
然后是“三三”型的。
这个就简单啦,就像两个三格的长条并在一起。
感觉就像是两条小木板绑在一起一样,很有那种质朴的感觉。
这11种展开图啊,每一种都像是一个小秘密,等待着我们去发现。
有时候做数学题或者手工的时候,就会碰到正方体展开图的问题。
要是能把这11种都牢牢记住,那可就太厉害啦。
我记得我第一次学正方体展开图的时候,那真是一头雾水啊。
看着那些奇奇怪怪的图形,就想这都是啥呀。
但是慢慢研究下来,就发现其中的乐趣了。
就像解谜一样,每一种展开图都是一个小谜题,解开了就特别有成就感。
而且啊,在生活中也能看到正方体展开图的影子呢。
比如说一些包装盒,要是把它拆开平铺,可能就是这11种展开图中的一种。
这时候你就可以跟身边的小伙伴显摆一下,说看,这就是正方体展开图中的一种哦,可神奇了呢。
咱们再仔细说说这11种展开图的特点。
像前面提到的“一四一”型,它的优点就是简单直观,不管是从制作正方体还是识别正方体展开图的角度来说,都是最容易上手的。
正方体11种平面展开图口诀
正方体的11种平面展开图
正方体的平面展开图共有11种(那些经旋转或翻转后方向不同但实质相同的图形不重复计算),具体来讲分以下4类。
口诀:需背诵
正方体:中间四个面,上下各一面(6种摆法-141)
中间三个面,一二隔河见(3种摆法-132/231)
中间二个面,楼梯天天见(1种摆法-222)
中间没有面,三三连一线(1种摆法-33)
“田”“凹”“7”应弃之
第一类:“1—4—1”型,其特点是有4个连成一排的正方形,两侧又各有1个正方形,共有6种。
口诀:中间四个面,上下各一面(上下面随便放)
第二类:“1—3—2”型,其特点是有3个连成一排的正方形,这一排正方形的一侧有1个正方形,另一侧有2个正方形(其中只有1个与中间那一排相连),共有3种。
口诀:中间三个面,一二隔河见(二三位置是固定的)
第三类:“2—2—2”型,其特点是有2个连成一排的正方形,其两侧又各有2个连成一排的正方形,只有1种。
口诀:中间二个面,楼梯天天见
第四类:“3—3”型,其特点是有3个连成一排的正方形,其一侧还有3个连成一排的正方形,只有1种。
口诀:中间没有面,三三连一线(1种摆法-33)。
(完整word版)正方体的11种展开图
正方体的11种展开图
判断技巧
我们知道,同一个立方体图形,按不同的方式展开得到的平面展开图形一般是不一样的。
常见的正方体平
面展开图究竟有几种不同的形状呢?
同学们一定熟悉这样一种操作:把一个正方形纸片平均分成9个小正方形,剪去角上四个小正方形,可以拼成一个无盖的正方体纸盒,其中五个面按习惯不妨记为下、左、右、前、后,如图一。
好啦!现在只要把刚才剪去的一个小正方形作为“上"面,就可拼成一个正方体。
作为正方体平面展开图,这个“上”应该和图1(1)中哪个面拼接在一起呢?观察图1(2),知“上”和前、后、左、右任一个面拼接都行(这四种拼接看作同一种情形),不妨和“后”拼接在一起,如图2.
根据上和下、左和右、前和后相间隔这一规律,现在我们把图2中的“左”或“右”平移,可得图3~图7五种情形.
平移图2中的“前”,可得图8;再平移图8中的“左”,可得图9、图10;把图10中的“上"向左平移,得图11;若移动图8(或图9、图10)中的“左",又可得图12。
同学们,当你和我一样,把图2~图12这11个图剪下来,动手折一折,得到11个漂亮的小正方体时,你一定为我们的收获感到欢欣鼓舞吧!
对正方体表面展开图的11种情况,为加深记忆,可编成如下口诀:一四一呈6种,一三二有3种,二二二与三三各1种,展开图共有11种。
“动手实践,自主探索和合作交流”是新课程标准倡导学习数学的三种重要方法,而实践活动是培养我们进行主动探索与合作交流的重要途径。
只要通过自己主动观察、实验、猜想、验证等数学活动,就能使我们“建立空间观念,发展几何直觉”,提高思维能力.。
正方形展开图形的11种图片
正方形展开图形的11种图片
第一类:“141型”(6个)
这类展开图的特点是:第一行有1个,第二行有3个,第三行也是1个,所以一般会总结为“141型”。
枚举展开图的时候,可以先确定第一行这1个的位置,再确定第3行的位置,一定不会出错。
第二类:“231型”(3个)
第二类展开图:第一行有2个,第二行有3个,第三行有1个,我们称其为“231型”。
第三类:楼梯型“222”、“33”(2个)
第三类比较特殊,我们经常会把“222”和“33”统称为“楼梯型”。
这也是很多学生在初次接触正方体的时候,容易误判的——误以为这两个图形不能折成正方体。
同学们可以自己动手剪一剪、折一折,感受一下。
正方体11种平面展开图(精心整理)
正方体的11种平面睁开图之杨若古兰创作正方体的平面睁开图共有11种(那些经扭转或翻转后方向分歧但实质不异的图形不反复计算),具体来讲分以下4类.
口诀:需背诵
正方体:两头四个面,上下各一面(6种摆法-141)
两头三个面,一二隔河见(3种摆法-132/231)
两头二个面,楼梯天天见(1种摆法-222)
两头没有面,三三连一线(1种摆法-33)
“田”“凹”应弃之
第一类:“1—4—1”型,其特点是有4个连成一排的正方形,两侧又各有1个正方形,共有6种.
口诀:两头四个面,上下各一面(上上面随便放)
第二类:“1—3—2”型,其特点是有3个连成一排的正方形,这一排正方形的一侧有1个正方形,另一侧有2个正方形(其中只要1个与两头那一排相连),共有3种.
口诀:两头三个面,一二隔河见(二三地位是固定的)
第三类:“2—2—2”型,其特点是有2个连成一排的正方形,其两侧又各有2个连成一排的正方形,只要1种.
口诀:两头二个面,楼梯天天见
第四类:“3—3”型,其特点是有3个连成一排的正方形,其一侧还有3个连成一排的正方形,只要1种.
两头没有面,三三连一线(1种摆法-33)。
正方体11种平面展开图(精心整理)
正方体的11种平面展开图
正方体的平面展开图共有11种(那些经旋转或翻转后方向不同但实质相同的图形不重复计算),具体来讲分以下4类。
口诀:需背诵
正方体:中间四个面,上下各一面(6种摆法-141)
中间三个面,一二隔河见(3种摆法-132/231)
中间二个面,楼梯天天见(1种摆法-222)
中间没有面,三三连一线(1种摆法-33)
“田”“凹”应弃之
第一类:“1—4—1”型,其特点是有4个连成一排的正方形,两侧又各有1个正方形,共有6种。
口诀:中间四个面,上下各一面(上下面随便放)
第二类:“1—3—2”型,其特点是有3个连成一排的正方形,这一排正方形的一侧有1个正方形,另一侧有2个正方形(其中只有1个与中间那一排相连),共有3种。
口诀:中间三个面,一二隔河见(二三位置是固定的)
第三类:“2—2—2”型,其特点是有2个连成一排的正方形,其两侧又各有2个连成一排的正方形,只有1种。
口诀:中间二个面,楼梯天天见
第四类:“3—3”型,其特点是有3个连成一排的正方形,其一侧还有3个连成一排的正方形,只有1种。
中间没有面,三三连一线(1种摆法-33)。
正方体展开全图11种情况
三 棱 锥
四棱锥
五棱锥
正方体展开图
“一四一” 型
“二三一” 型
“三三” 型
“二二二” 型
第一类(6种):中间四连方,两侧各有一个。
展开1
第一类(6种):中间四连方,两侧各有一个。
展开2
第一类(6种):中间四连方,两侧各有一个。
展开3
第一类(6种):中间四连方,两侧各有一各有一个。
展开5
第一类(6种):中间四连方,两侧各有一个。
展开6
第二类(3种):中间三连方,两侧各有一、二个。
展开7
第二类(3种):中间三连方,两侧各有一、二个。
展开8
第二类(3种):中间三连方,两侧各有一、二个。
展开9
展开10
第三类(1种):中间二连方,两侧各有二个。
相间的两个小正方形(中间隔着一个小正方形)是正方体的 两个对面,如图6中的A面和B面;“Z”字两端处的小正方形 是正方体的对面,如图7、图8的A面和B面.
A
A
B
A
B
图6
图7
B
图8
图9
例3.(2005河南)如图9,一个正方体的每个面上都写有 一个汉字,其平面展开图如图9所示,那么在该正方体中, 和“超”相对的字是 .
A
B
变形:如图有一长方体房间,在房间内一角A 处有一只小虫,它想到房间的另一角 B处去吃食物,它采取怎样的行走路线最近?
A
B
一、一线不过四
是指在正方体展开图中,一条直线上的小正方形不会 超过四个,如图1、图2都不是正方体的展开图.
图1
图2
例1.(2004连云港)下面每个图片都是由6个大小相同的 正方形组成,其中不能折成正方体的是( )
正方体11种折叠方法
探究正方体的展开图
将一个正方体的表面沿某些棱剪开,展成一个平面,共有哪些不同的图形呢?只从本质上讲,有以下三类共11种。
一、“141型”(共6种)
特点:这类展开图中,最长的一行(或一列)有4个正方形(图1~图6)。
理解:有4个面直线相连,其余2个面分别在“直线”两旁,位置任意。
二、“231型”与“33型”(共4种)
特点:这类展开图中,最长的一行(或一列)有3个正方形(如图7~图10)。
理解:在“231型”中,“3”所在的行(列)必须在中间,“2”、“1”所在行(列)分属两边(前后不分),且“2”与“3”同向,“1”可以放在“3”的任意一个正方形格旁边,这种情况共有3种,而“33型”只有1种。
三、“222型”(只有1种)
特点:展开图中,最多只有2个面直线相连(图11)。
评注:⑴将上面11个图中的任意一个,旋转一定角度或翻过来,看上去都与原图似有不同,但这只是图形放置的位置或方式不同。
实际上,它与原图能够完全重合,不能算作一个独立的新图,而从上面11个图中任取两个,不论怎样操作(旋转、翻折、平移等),它们都不可能完全重合,即彼此是独立的、不同的图形。
⑵对于由大小一样的六个正方形通过边对齐相连组成的平面图,如果图中含有“一”字型、“7”字型、“田”字型、“凹”字型,就一定不能折成正方体。
概括地说,只要不符合上述“141”、“231”和“33”、“222”的特点,就不能折成正方体。
如图12,如果将其看作“231”型,那么,无论怎么看,“2”和“3”都不是同向,故不能折成正方体。
其实,它属于“123”(或“321”)型。