正方形展开图11种方式

合集下载

正方体11种平面展开图

正方体11种平面展开图

正方体的11种平面展开图正方体的平面展开图共有11种(那些经旋转或翻转后方向不同但实质相同的图形不重复计算),具体来讲分以下4类。

第一类:“1—4—1”型,其特点是有4个连成一排的正方形,两侧又各有1个正方形,共有6种。

第二类:“1—3—2”型,其特点是有3个连成一排的正方形,这一排正方形的一侧有1个正方形,另一侧有2个正方形(其中只有1个与中间那一排相连),共有3种。

第三类:“2—2—2”型,其特点是有2个连成一排的正方形,其两侧又各有2个连成一排的正方形,只有1种。

第四类:“3—3”型,其特点是有3个连成一排的正方形,其一侧还有3个连成一排的正方形,只有1种。

注:①将长方体、正方体展开:无论怎么剪,都要剪7条棱。

②“隔”的原理:相对的面如果在同一行或同一排,中间一定只隔一个面;相对的面如果不在同一行或同一排,中间可以隔着一些面。

③长方体、正方体中各面的关系:相对、相邻。

每个面都有1个相对的面,4个相邻的面。

注:立体图中相对的面在展开图中符合“隔”的原理,而相邻的面在展开图中不符合“隔”的原理。

④长方体、正方体中最多可以同时看到三个面,且这三个面都是相邻的面。

⑤要区分好是从“立体图”到“展开图”,还是从“展开图”到“立体图”:互逆正方体、长方体展开图⑥长方体(不包含正方体)最多有1组相对的面是正方形;当有2组相对的面是正方形时,长方体就变成了正方体(特殊的长方体)。

长方体(不包含正方体)的6个面中,最多有4个面的面积相等;12条棱中,最多有8条棱长度相等。

(即2个相对的面是正方形,其余四个面变为完全相同的长方形。

)⑦正方体的棱长扩大a倍:棱长和扩大a倍,表面积扩大a2倍,体积扩大a3倍。

(给出其中一个,要能将其余的都求出来)⑧常见的平方、立方(需熟记在心)12=1 22=4 32=9 42=16 52= 25 62=36 72=49 82=64 92=81 ……13=1 23=8 33=27 43=64 53= 125 63=216 ……。

正方体11种平面展开图

正方体11种平面展开图

正方体的11种平面展开图正方体的平面展开图共有11种(那些经旋转或翻转后方向不同但实质相同的图形不重复计算),具体来讲分以下4类。

第一类:“1—4—1”型,其特点是有4个连成一排的正方形,两侧又各有1个正方形,共有6种。

第二类:“1—3—2”型,其特点是有3个连成一排的正方形,这一排正方形的一侧有1个正方形,另一侧有2个正方形(其中只有1个与中间那一排相连),共有3种。

第三类:“2—2—2”型,其特点是有2个连成一排的正方形,其两侧又各有2个连成一排的正方形,只有1种。

第四类:“3—3”型,其特点是有3个连成一排的正方形,其一侧还有3个连成一排的正方形,只有1种。

注:①将长方体、正方体展开:无论怎么剪,都要剪7条棱。

②“隔”的原理:相对的面如果在同一行或同一排,中间一定只隔一个面;相对的面如果不在同一行或同一排,中间可以隔着一些面。

③长方体、正方体中各面的关系:相对、相邻。

每个面都有1个相对的面,4个相邻的面。

注:立体图中相对的面在展开图中符合“隔”的原理,而相邻的面在展开图中不符合“隔”的原理。

④长方体、正方体中最多可以同时看到三个面,且这三个面都是相邻的面。

⑤要区分好是从“立体图”到“展开图”,还是从“展开图”到“立体图”:正方体、长方体展开图⑥长方体(不包含正方体)最多有1组相对的面是正方形;当有2组相对的面是正方形时,长方体就变成了正方体(特殊的长方体)。

长方体(不包含正方体)的6个面中,最多有4个面的面积相等;12条棱中,最多有8条棱长度相等。

(即2个相对的面是正方形,其余四个面变为完全相同的长方形。

)⑦正方体的棱长扩大a倍:棱长和扩大a倍,表面积扩大a2倍,体积扩大a3倍。

(给出其中一个,要能将其余的都求出来)⑧常见的平方、立方(需熟记在心)12=1 22=4 32=9 42=16 52= 25 62=36 72=49 82=64 92=81 ……13=1 23=8 33=27 43=64 53= 125 63=216 ……互逆。

正方形11种展开图

正方形11种展开图

正方形11种展开图正方形一直以来都是数学课上学习的重要内容,在我们的日常生活中也有许多的应用,比如装饰室内的地板材料,踩在地上的边框等等,但是大家如何快速地把一个正方形展开来,以便更好地把它变成一个模型呢?下面我们就来看看,正方形可以用11种方式展开,有些只需要一步即可完成,有些则需要两步或者多步才能完成:1.叠对称:将正方形折叠成一个对称的六边形,只需一步即可完成。

2.称折叠:将正方形平均分成四份,然后各自折叠成对称的六边形。

3. 中心折叠:把正方形的中心向上折叠,然后把两个角向下折叠,这样就可以得到一个六边形。

4.边折叠:把正方形的每边分成两部分,把两边的中心线向上折叠,然后把两角向下折叠,可以得到一个六边形。

5. 中心双折叠:将正方形的中心线折叠成两个三角形,然后把每个三角形展开成六边形。

6.折叠:将正方形的四角向外折叠,得到一个八边形,然后把中间的四角向内折叠,这样就可以得到一个六边形。

7.边形折叠:将正方形的四个角折叠成六边形,然后再各自折叠一次,就可以得到一个六边形。

8.叠菱形:把正方形分成两个菱形,然后把每个菱形展开成六边形。

9.折叠:将正方形折叠成转角形,然后把转角折叠,就可以得到一个六边形。

10.形折叠:将正方形折叠成菱形,然后把四个角向外折叠,可以得到一个六边形。

11.插折叠:将正方形的四角穿插折叠,然后把中间的边向外折叠,就可以得到一个六边形。

上面这些方法绝对能够帮助大家快速地把一个正方形展开,让它变成一个模型。

只要大家能够坚持不懈地学习,不断练习,相信大家很快就可以把这11种展开图熟练掌握,轻轻松松把正方形变成各种模型。

虽然正方形的展开图只有11种,但是它的应用却是无穷的,它不仅可以用于数学课上的练习,还可以用于美术创作,比如把11种展开图应用在地板上,形成各式各样的图案,给室内的环境带来全新的变化,让室内的环境变得更加精致、优雅。

11种展开图可以用在室内装饰之外,还可以用于设计一些普通的生活小物,比如盒子、水果篮等,只要掌握了这11种展开图,就可以快速地把它们转换成模型,让生活变得更加简单便捷。

正方体的 11 种展开图打印附带讲解

正方体的 11 种展开图打印附带讲解

正方体的11种展开图打印附带讲解本文章主要带孩子认识11种正方体展开图,家人可以把它打印下来,陪孩子一起制作。

(PS:1、如果A4的纸太软不好固定,可以用纸箱、纸质购物袋等画出对应的图形进行裁剪;2、亦或者可以用包书的纸裁剪出展开图的样子,做成精美的包装纸贴在正方体外面,做一个精美的小礼盒哦)(为了方便打印,文章末尾,把所有资料汇总了一遍,可直接跳转到末尾打印11钟展开图)在正式学习之前,可以将家中的魔方拿出来,看看正方体有几面?每一面都是什么形状?以此区分一下正方体和正方形。

分别有前面、后面、上面、下面、左面、右面这六面。

接着介绍“正方体的展开图”,带着孩子观察展开图的特点,并知道其名称。

(一)首先认识一下1-4-1型,为了更形象的记忆,我把它概括为“1头4身体1脚”(头是由1个正方形组成的,身体是由4个正方形组成的,脚是由1个正方形组成的,)家人可以先把图形制作出来,然后带孩子去观察特点。

打印图纸:1-4-1打印专用:1-4-1共有6种,身体均是4个正方体,头和脚各一个,头和脚的位置可左右移动改变(二)接下来认识2-3-1型,2-3-1共有3种,头2个正方体,身体3个,脚1个。

脚的位置可左右移动改变,以此展开图为例,虽然身体部分较原来少了一个,但是恰好可以由头部多的一个补上。

操作演示时,先把身体折起来,发现身体少了一个,接着把上面脑袋部分拼好,拼好之后脑袋部分多的一个刚好可以补充身体。

2-3-1打印专用:2-3-1共有3种,头2个正方体,身体3个,脚1个。

脚的位置可左右移动改变(三)接下来认识2-2-2型,与3-3型,可以把资料打印下来,通过操作去提升动手以及想象能力。

2-2-2与3-3打印专用。

正方体展开的11种画法

正方体展开的11种画法

正方体展开的11种画法正方体展开图这事儿可太有趣啦!咱们得知道正方体展开可有11种画法呢。

咱先来说说最常见的一种,那种“一四一”型的。

就像是一个大长条,中间四个正方形连着,两边各一个正方形。

你可以想象这就像一列小火车,中间的车厢比较多,车头车尾各一节。

这种展开图看起来特别规整,很容易理解。

比如说,你把一个正方体纸盒沿着棱剪开,很有可能就会得到这种“一四一”型的展开图。

还有一种是“二三一”型的。

这种就像是两层楼,楼下有三个正方形并排,楼上有两个正方形,旁边再带一个小“耳朵”一样的正方形。

你看,这就像一个小房子,楼下三间房,楼上两间房,旁边还有个小仓库似的。

这种展开图就有点小调皮了,不像“一四一”型那么一目了然,但只要你仔细观察,就会发现它的妙处。

接着就是“二二二”型的啦。

这就像是两个小楼梯并排着,每个楼梯都是两个正方形组成的。

这种展开图就比较对称,看起来特别和谐。

就好像是两个小伙伴手拉手一样,很是可爱呢。

然后是“三三”型的。

这个就简单啦,就像两个三格的长条并在一起。

感觉就像是两条小木板绑在一起一样,很有那种质朴的感觉。

这11种展开图啊,每一种都像是一个小秘密,等待着我们去发现。

有时候做数学题或者手工的时候,就会碰到正方体展开图的问题。

要是能把这11种都牢牢记住,那可就太厉害啦。

我记得我第一次学正方体展开图的时候,那真是一头雾水啊。

看着那些奇奇怪怪的图形,就想这都是啥呀。

但是慢慢研究下来,就发现其中的乐趣了。

就像解谜一样,每一种展开图都是一个小谜题,解开了就特别有成就感。

而且啊,在生活中也能看到正方体展开图的影子呢。

比如说一些包装盒,要是把它拆开平铺,可能就是这11种展开图中的一种。

这时候你就可以跟身边的小伙伴显摆一下,说看,这就是正方体展开图中的一种哦,可神奇了呢。

咱们再仔细说说这11种展开图的特点。

像前面提到的“一四一”型,它的优点就是简单直观,不管是从制作正方体还是识别正方体展开图的角度来说,都是最容易上手的。

正方体11种平面展开图口诀

正方体11种平面展开图口诀

正方体的11种平面展开图
正方体的平面展开图共有11种(那些经旋转或翻转后方向不同但实质相同的图形不重复计算),具体来讲分以下4类。

口诀:需背诵
正方体:中间四个面,上下各一面(6种摆法-141)
中间三个面,一二隔河见(3种摆法-132/231)
中间二个面,楼梯天天见(1种摆法-222)
中间没有面,三三连一线(1种摆法-33)
“田”“凹”“7”应弃之
第一类:“1—4—1”型,其特点是有4个连成一排的正方形,两侧又各有1个正方形,共有6种。

口诀:中间四个面,上下各一面(上下面随便放)
第二类:“1—3—2”型,其特点是有3个连成一排的正方形,这一排正方形的一侧有1个正方形,另一侧有2个正方形(其中只有1个与中间那一排相连),共有3种。

口诀:中间三个面,一二隔河见(二三位置是固定的)
第三类:“2—2—2”型,其特点是有2个连成一排的正方形,其两侧又各有2个连成一排的正方形,只有1种。

口诀:中间二个面,楼梯天天见
第四类:“3—3”型,其特点是有3个连成一排的正方形,其一侧还有3个连成一排的正方形,只有1种。

口诀:中间没有面,三三连一线(1种摆法-33)。

(完整word版)正方体的11种展开图

(完整word版)正方体的11种展开图

正方体的11种展开图
判断技巧
我们知道,同一个立方体图形,按不同的方式展开得到的平面展开图形一般是不一样的。

常见的正方体平
面展开图究竟有几种不同的形状呢?
同学们一定熟悉这样一种操作:把一个正方形纸片平均分成9个小正方形,剪去角上四个小正方形,可以拼成一个无盖的正方体纸盒,其中五个面按习惯不妨记为下、左、右、前、后,如图一。

好啦!现在只要把刚才剪去的一个小正方形作为“上"面,就可拼成一个正方体。

作为正方体平面展开图,这个“上”应该和图1(1)中哪个面拼接在一起呢?观察图1(2),知“上”和前、后、左、右任一个面拼接都行(这四种拼接看作同一种情形),不妨和“后”拼接在一起,如图2.
根据上和下、左和右、前和后相间隔这一规律,现在我们把图2中的“左”或“右”平移,可得图3~图7五种情形.
平移图2中的“前”,可得图8;再平移图8中的“左”,可得图9、图10;把图10中的“上"向左平移,得图11;若移动图8(或图9、图10)中的“左",又可得图12。

同学们,当你和我一样,把图2~图12这11个图剪下来,动手折一折,得到11个漂亮的小正方体时,你一定为我们的收获感到欢欣鼓舞吧!
对正方体表面展开图的11种情况,为加深记忆,可编成如下口诀:一四一呈6种,一三二有3种,二二二与三三各1种,展开图共有11种。

“动手实践,自主探索和合作交流”是新课程标准倡导学习数学的三种重要方法,而实践活动是培养我们进行主动探索与合作交流的重要途径。

只要通过自己主动观察、实验、猜想、验证等数学活动,就能使我们“建立空间观念,发展几何直觉”,提高思维能力.。

正方形展开图形的11种图片

正方形展开图形的11种图片

正方形展开图形的11种图片
第一类:“141型”(6个)
这类展开图的特点是:第一行有1个,第二行有3个,第三行也是1个,所以一般会总结为“141型”。

枚举展开图的时候,可以先确定第一行这1个的位置,再确定第3行的位置,一定不会出错。

第二类:“231型”(3个)
第二类展开图:第一行有2个,第二行有3个,第三行有1个,我们称其为“231型”。

第三类:楼梯型“222”、“33”(2个)
第三类比较特殊,我们经常会把“222”和“33”统称为“楼梯型”。

这也是很多学生在初次接触正方体的时候,容易误判的——误以为这两个图形不能折成正方体。

同学们可以自己动手剪一剪、折一折,感受一下。

正方体11种平面展开图(精心整理)

正方体11种平面展开图(精心整理)

正方体的11种平面睁开图之杨若古兰创作正方体的平面睁开图共有11种(那些经扭转或翻转后方向分歧但实质不异的图形不反复计算),具体来讲分以下4类.
口诀:需背诵
正方体:两头四个面,上下各一面(6种摆法-141)
两头三个面,一二隔河见(3种摆法-132/231)
两头二个面,楼梯天天见(1种摆法-222)
两头没有面,三三连一线(1种摆法-33)
“田”“凹”应弃之
第一类:“1—4—1”型,其特点是有4个连成一排的正方形,两侧又各有1个正方形,共有6种.
口诀:两头四个面,上下各一面(上上面随便放)
第二类:“1—3—2”型,其特点是有3个连成一排的正方形,这一排正方形的一侧有1个正方形,另一侧有2个正方形(其中只要1个与两头那一排相连),共有3种.
口诀:两头三个面,一二隔河见(二三地位是固定的)
第三类:“2—2—2”型,其特点是有2个连成一排的正方形,其两侧又各有2个连成一排的正方形,只要1种.
口诀:两头二个面,楼梯天天见
第四类:“3—3”型,其特点是有3个连成一排的正方形,其一侧还有3个连成一排的正方形,只要1种.
两头没有面,三三连一线(1种摆法-33)。

正方体11种平面展开图(精心整理)

正方体11种平面展开图(精心整理)

正方体的11种平面展开图
正方体的平面展开图共有11种(那些经旋转或翻转后方向不同但实质相同的图形不重复计算),具体来讲分以下4类。

口诀:需背诵
正方体:中间四个面,上下各一面(6种摆法-141)
中间三个面,一二隔河见(3种摆法-132/231)
中间二个面,楼梯天天见(1种摆法-222)
中间没有面,三三连一线(1种摆法-33)
“田”“凹”应弃之
第一类:“1—4—1”型,其特点是有4个连成一排的正方形,两侧又各有1个正方形,共有6种。

口诀:中间四个面,上下各一面(上下面随便放)
第二类:“1—3—2”型,其特点是有3个连成一排的正方形,这一排正方形的一侧有1个正方形,另一侧有2个正方形(其中只有1个与中间那一排相连),共有3种。

口诀:中间三个面,一二隔河见(二三位置是固定的)
第三类:“2—2—2”型,其特点是有2个连成一排的正方形,其两侧又各有2个连成一排的正方形,只有1种。

口诀:中间二个面,楼梯天天见
第四类:“3—3”型,其特点是有3个连成一排的正方形,其一侧还有3个连成一排的正方形,只有1种。

中间没有面,三三连一线(1种摆法-33)。

正方体展开全图11种情况

正方体展开全图11种情况
圆 柱 圆 锥
三 棱 锥
四棱锥
五棱锥
正方体展开图
“一四一” 型
“二三一” 型
“三三” 型
“二二二” 型
第一类(6种):中间四连方,两侧各有一个。
展开1
第一类(6种):中间四连方,两侧各有一个。
展开2
第一类(6种):中间四连方,两侧各有一个。
展开3
第一类(6种):中间四连方,两侧各有一各有一个。
展开5
第一类(6种):中间四连方,两侧各有一个。
展开6
第二类(3种):中间三连方,两侧各有一、二个。
展开7
第二类(3种):中间三连方,两侧各有一、二个。
展开8
第二类(3种):中间三连方,两侧各有一、二个。
展开9
展开10
第三类(1种):中间二连方,两侧各有二个。
相间的两个小正方形(中间隔着一个小正方形)是正方体的 两个对面,如图6中的A面和B面;“Z”字两端处的小正方形 是正方体的对面,如图7、图8的A面和B面.
A
A
B
A
B
图6
图7
B
图8
图9
例3.(2005河南)如图9,一个正方体的每个面上都写有 一个汉字,其平面展开图如图9所示,那么在该正方体中, 和“超”相对的字是 .
A
B
变形:如图有一长方体房间,在房间内一角A 处有一只小虫,它想到房间的另一角 B处去吃食物,它采取怎样的行走路线最近?
A
B
一、一线不过四
是指在正方体展开图中,一条直线上的小正方形不会 超过四个,如图1、图2都不是正方体的展开图.
图1
图2
例1.(2004连云港)下面每个图片都是由6个大小相同的 正方形组成,其中不能折成正方体的是( )

正方体11种折叠方法

正方体11种折叠方法

探究正方体的展开图
将一个正方体的表面沿某些棱剪开,展成一个平面,共有哪些不同的图形呢?只从本质上讲,有以下三类共11种。

一、“141型”(共6种)
特点:这类展开图中,最长的一行(或一列)有4个正方形(图1~图6)。

理解:有4个面直线相连,其余2个面分别在“直线”两旁,位置任意。

二、“231型”与“33型”(共4种)
特点:这类展开图中,最长的一行(或一列)有3个正方形(如图7~图10)。

理解:在“231型”中,“3”所在的行(列)必须在中间,“2”、“1”所在行(列)分属两边(前后不分),且“2”与“3”同向,“1”可以放在“3”的任意一个正方形格旁边,这种情况共有3种,而“33型”只有1种。

三、“222型”(只有1种)
特点:展开图中,最多只有2个面直线相连(图11)。

评注:⑴将上面11个图中的任意一个,旋转一定角度或翻过来,看上去都与原图似有不同,但这只是图形放置的位置或方式不同。

实际上,它与原图能够完全重合,不能算作一个独立的新图,而从上面11个图中任取两个,不论怎样操作(旋转、翻折、平移等),它们都不可能完全重合,即彼此是独立的、不同的图形。

⑵对于由大小一样的六个正方形通过边对齐相连组成的平面图,如果图中含有“一”字型、“7”字型、“田”字型、“凹”字型,就一定不能折成正方体。

概括地说,只要不符合上述“141”、“231”和“33”、“222”的特点,就不能折成正方体。

如图12,如果将其看作“231”型,那么,无论怎么看,“2”和“3”都不是同向,故不能折成正方体。

其实,它属于“123”(或“321”)型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档