2_流体动力学基础

合集下载

2粘性流体动力学基础

2粘性流体动力学基础

流体力学基础
粘性流体动力学基础
两块相距为b的平行平板,它们之间充满着某种流体,这两块 乎板具有足够的长度。让下板B静止不动,用力F拖动A板,使 A板以速度U作匀速直线运动.从试验可以发现,紧贴A板的一 层流体与A板以同样的速度U运动,而静贴B板的流体则与B板 具有同样的速度,即速度为零。当速度U不是很大时,两板之 间某点y处的流体速度与距离满足线性关系。 粘度单位:N·s/m2=Pa·s=帕·秒,随温度升高而降低。20。C, 粘度单位 水的粘度约为1.002×10-3Pa·s,空气的粘度1.81×10-5Pa·s 运动粘性系数:动力粘度/密度 m2/s,水1.01×10-6 m2/s 运动粘性系数
流体力学基础
粘性流体动力学基础
层流和紊流
• 雷诺实验
ru2与惯性力成正比,mu/d与粘性力成正比, 由此可见,雷诺准数的物理意义是惯性力与粘性力之比。
流体力学基础
粘性流体动力学基础
层流与紊流
• 湍流 湍流,也称为紊流 紊流,是流体 流体的一种流动状态。当流速很小 紊流 流体 时,流体分层流动,互不混合,称为层流,或称为片流; 逐渐增加流速,流体的流线开始出现波浪状的摆动,摆动 的频率及振幅随流速的增加而增加,此种流况称为过渡流; 当流速增加到很大时,流线不再清楚可辨,流场中有许多 小漩涡,称为湍流,又称为乱流、扰流或紊流。 • 这种变化可以用雷诺数来量化。雷诺数较小时,黏滞力对 流场的影响大于惯性力,流场中流速的扰动会因黏滞力而 衰减,流体流动稳定,为层流;反之,若雷诺数较大时, 惯性力对流场的影响大于黏滞力,流体流动较不稳定,流 速的微小变化容易发展、增强,形成紊乱、不规则的湍流 流场。
流体力学基础
粘性流体动力学基础
流体力学发展简史

流体动力学基础

流体动力学基础

流体动力学基础流体动力学是研究流体的运动规律和性质的科学,它是流体力学的分支之一,广泛应用于航空、航天、水力、能源等领域。

本文将介绍流体动力学的基础概念、基本方程以及常用方法。

一、流体动力学的基本概念1. 流体力学与流体静力学的区别流体力学研究流体在运动中的行为,包括流体的流动速度、压力、密度等参数的分布规律;而流体静力学则研究流体在静止状态下的平衡规律,主要关注流体的静压力和浮力等性质。

2. 流体的本构关系流体的本构关系描述了流体的应力与变形速率之间的关系。

常见的本构关系有牛顿黏性流体、非牛顿流体以及理想流体等。

3. 流体的运动描述流体的运动可以通过流体速度场来描述,流体速度场是空间中的矢量函数,它描述了流体的速度分布。

流体速度场的描述可以使用欧拉描述方法或者拉格朗日描述方法。

二、流体动力学的基本方程1. 连续性方程连续性方程描述了质量守恒的原理,即单位时间内通过某一截面的质量是恒定的。

对于稳定流动的不可压缩流体来说,连续性方程可表示为流体密度与速度之积在空间中的量级是恒定的。

2. 动量方程动量方程是描述质点运动定律的基本方程,对流体来说,动量方程体现了运动流体的动力学行为。

对于稳定流动的不可压缩流体来说,动量方程可表示为流体的密度乘以速度与压力梯度的叠加等于外力的结果。

3. 能量方程能量方程描述了热力学系统的能量守恒原则,对于流体来说,能量方程考虑了流体的流动对能量转移的影响,以及热源、做功所导致的能量变化。

三、流体动力学的常用方法1. 数值模拟方法数值模拟是流体动力学研究的重要工具,通过在计算机上建立流体动力学方程的数值解,可以模拟复杂流动现象,如湍流、多相流等。

2. 实验方法实验方法是流体动力学研究的另一重要手段,通过搭建实验平台,测量流体的压力、速度等参数,从而验证理论和数值模拟结果的准确性。

3. 理论分析方法理论分析方法是流体动力学研究中的基础,通过建立假设和推导数学表达式,可以得到流体动力学问题的解析解,为实验和数值模拟提供参考。

流体动力学基础

流体动力学基础

ax

u t

2x t 2

ax (a,b, c,t)
3)
ay

v t

2 y t 2

ay (a,b,c,t)
(3-
az

w t

2z t 2

az (a,b,c,t)
4
同样,流体的密度、压强和温度也可写成a、b、c、 的函数,即ρ= ρ (a,b,c,),P=P (a,b,c,),t=t (a,b,c,)。
式中,括弧内D可D( t以) 代 表(描t )述 (流V体 运)(动)的任一物理(量3-,10)
如密度、温度、压强,可以是标量,也可以是矢量。
D( )
称为全导数, 称为当地导数,
称为迁移导D数t 。
( )
(V )( )
t
11
2019/6/14
由上述可知,采用欧拉法描述流体的流动,常常比采 用拉格朗日法优越,其原因有三。一是利用欧拉法得到的 是场,便于采用场论这一数学工具来研究。二是采用欧拉 法,加速度是一阶导数,而拉格朗日法,加速度是二阶导 数,所得的运动微分方程分别是一阶偏微分方程和二阶偏 微分方程,在数学上一阶偏微分方程比二阶偏微分方程求 解容易。三是在工程实际中,并不关心每一质点的来龙去 脉。基于上述三点原因,欧拉法在流体力学研究中广泛被 采用。当然拉格朗日法在研究爆炸现象以及计算流体力学 的某些问题中还是方便的。
零,即
0
t
因此,定常流动时流体加速度可简化成 a (V )V
(3-12) (3-13)
2019/6/14
由式(3-13)可知,在定常流动中只有迁移加速度。例 如图3-2中,当水箱的水位保持不变时,2点到3点流体质 点的速度减小,而4点到5点速度增加,都是由于截面变化 而引起的迁移加速度。若迁移加速度为零,则为均匀流动,

[工学]第2章 流体力学基础

[工学]第2章 流体力学基础

Q S1S2 2gh /(S12 S22 )
15
4、体位对血压的影响 血流在静脉和动脉中的速度近似不变
当v不变时有: P gh 恒量, h P
举例
直立
平卧
动脉 头
静脉
6.8kPa -5.2kPa
12.67kPa 0.67kPa
直立减小5.87kPa
动脉 脚
静脉
24.4kPa 12.4kPa
头打开时管内水的速度和压强。
解:将一楼至二楼的水管看作一流管,在一楼流管
取一截面A,在二搂流管取一截面B将水视为理想流体,
由连续性方程可得:
vB
S AvA SB
(1102 )2 4 (0.5102 )2
16m s1
又由伯努利方程 P 1 v2 gh 恒量 有:
2
2021/8/26
11
PA
2、柏努利方程中,当P不变时有: 1 v2 gh 恒量
2 当h不变时有: P 1 v2 恒量
2
当v不变时有: P gh 恒量
2021/8/26
9
3、方程的适用条件为:理想流体(无内摩擦,不可压
缩);稳定流动(v不随时间变化)。实际流体只
是具有近似性,对于粘性比较小的水和酒精等可较 好的符合,而对于甘油和血液等粘性较大的流体只 能粗略解释;对于气体,若不受压,可适用。
r v
r+r
5、实验表明:摩擦力 f 与 dv/dr 和接触
v+v
面积A成正比,即:
f
A dv
dr
(牛顿黏滞定律)
2021/8/26
20
f A dv
dr 其中 为黏滞系数或黏度,表示流体间速度梯度为1

流体动力学基本原理的内容及成立条件

流体动力学基本原理的内容及成立条件

流体动力学基本原理的内容及成立条件一、流体动力学的基本概念流体动力学是研究流体在运动中所表现出来的各种力学现象的科学。

它是研究流体的物理性质、运动规律和应用的基础。

流体包括气体和液体,其特点是没有固定的形状,在受到外力作用时能够变形。

二、流体动力学基本方程1.连续性方程连续性方程描述了质量守恒原理,即在任意给定时刻,单位时间内通过任意给定截面积内的质量保持不变。

2.动量守恒方程动量守恒方程描述了牛顿第二定律,即物体受到外力作用时会发生加速度变化。

3.能量守恒方程能量守恒方程描述了能量守恒原理,即系统内总能量保持不变。

三、成立条件为了使上述基本方程成立,需要满足以下条件:1.连续性假设:假设流体是连续不断的介质,在微观尺度下不存在空隙或孔隙。

这个假设在实际应用中通常是成立的。

2.牛顿第二定律适用:流体的运动速度相对于光速较慢,所以牛顿第二定律可以适用于流体运动。

3.稳态假设:假设流体的物理状态在空间和时间上是恒定不变的。

这个假设在实际应用中通常是成立的。

4.不可压缩性假设:假设流体密度不随时间和位置而变化。

这个假设在实际应用中通常是成立的。

5.粘性效应:粘性是流体内部分子之间相互作用力导致的,它会影响流体的运动规律。

当流体处于高速运动状态时,粘性效应可以忽略不计;但当流体处于低速运动状态时,粘性效应就会显著影响流体运动规律。

四、结论综上所述,流体动力学基本原理包括连续性方程、动量守恒方程和能量守恒方程。

为了使这些基本方程成立,需要满足一定条件,如连续性假设、牛顿第二定律适用、稳态假设、不可压缩性假设以及粘性效应等。

这些基本原理和条件对于研究流体的物理性质、运动规律和应用具有重要意义。

第二章:液体流体力学

第二章:液体流体力学

Fx 2 dFx 2 plr cos d 2 plr pAx
2 2


第一节:流体静力学基础
67-9
第二节 液体动力学基础
本节主要讨论液体的流动状态、运动规律及能量转换
等问题,具体地说主要有连续性方程、伯努利方程和动
量方程三个基本方程。这些都是液体动力学的基础及液 压传动中分析问题和设计计算的理论依据。 一、基本概念: 二、连续性方程:
第三节:液体流动时的压力损失
39-32
第三节:液体流动时的压力损失
39-33
二、沿程压力损失
液体在等径直管中流动时因粘性摩擦而产生的压力损
失,称为沿程压力损失。液体的流动状态不同,所产生
的沿程压力损失也有所不同。
第三节:液体流动时的压力损失
39-34
二、沿程压力损失
1、层流时的沿程压力损失
在管道内液体的层流压力损失分析: 1)取微圆柱体 2)液体压力与液体摩擦力受力平衡 3) 求得速度表达式 4)求得流量表达式
层流:液体质点互不干扰,液 体的流动呈线性或层状,且平 行于管道轴线。 紊流:液体质点的运动杂乱无 章,在沿管道流动时,除平行 于管道轴线的运动外,还存在 着剧烈的横向运动,液体质点 在流动中互相干扰。
第三节:液体流动时的压力损失
39-29
雷诺实验表明: 影响液体在圆形管道中的流动状态因素 管内的平均流速v; 管道的直径d; 液体的运动粘度ν 。 液体流动状态是由上述三个参数所确定雷诺 数Re,即:
理。
F p A
第一节:流体静力学基础
67-6
例:如图所示的两个相互连通的液压缸,已知大缸 内径D=100mm,小缸内径d=20mm,大活塞上放置的 物体所产生的重力为 F2 50000 N,试求在小活塞上 应施加多大的力 F1 才能使大活塞顶起重物。

第3章2 流体动力学基础-伯努利方程应用

第3章2 流体动力学基础-伯努利方程应用

17

【解】 以0-0为基准面,列1-1、2-2两个断面的伯努利方程:
V12 p2 V22 z1 z2 2g 2g p1
其中,z1 0、V1 Q A1 = (4 0.1) (3.14 0.32 ) =1.42m/s z2 z h、V2 Q A2 = (4 0.1) (3.14 0.12 ) =12.74m/s
z2

2

2
2g
z4

4

4
2g
其中,z2 0、p2 p0、V2 0, z4 0.3 1.0 1.3m、p4 0、V4 ?
10

【解】 联立以上两个方程,解得
V4 6.57(m / s)

喷射高度:
V4 2 h 2.2(m) 2g

即,喷水出口流速为6.57m/s,喷射高度为2.2m。
3

【解】

流量Q=VA,管径A已知,只需求出流速V。 基准面取在管道处,取1-1和2-2两个断面,列伯努 利方程。
V12 p2 V22 z1 z2 h12 2g 2g p1
1 1断面:z1 H 7m,p1 0,V1 0; 2 2断面:z2 0,p2 0.5atm 50662.5Pa,V2 ?,h12 1.5m。
11流体动力学基础流体动力学基础n伯努利方程的应用伯努利方程的应用n泵对液流能量的增加泵对液流能量的增加2伯努利方程的应用伯努利方程的应用11一般的水力计算一般的水力计算22节流式流量计节流式流量计33驻压强和测速管驻压强和测速管44流动吸力问题流动吸力问题311一般的水力计算一般的水力计算例例3131从水池接一管路如图所示

第3章2 流体动力学基础-稳定流动量方程及应用

第3章2 流体动力学基础-稳定流动量方程及应用

4Q 1、V1 = = 1.132m / s 2 π d1 p1 V12 p2 V2 2 + = + γ 2g γ 2g
4Q V2 = = 4.527m / s 2 π d2
2、取两个断面列伯努利方程:
p2 = p1 +
ρ
2
(V12 − V2 2 ) = 1.964 × 105 Pa
3、选取控制体列动量方程: x方向:p1 A1 − Fx = ρ Q (0 − V1 ) y方向:Fy − p2 A2 = ρ Q (V2 − 0)
流体动力学基础
稳定流的动量方程及其应用
3.5 稳定流的动量方程及其应用
前面我们讨论了流体动力学的两个重要 方程——连续性方程和伯努利方程 连续性方程和伯努利方程。应用这 连续性方程和伯努利方程 两个方程可以解决许多实际问题。但是,在 工程中还要计算流体与固体相互作用的力。 动量方程提供了流体与固体相互作用的动力 动量方程 学规律。
x
O
y
【解】:设平板对流体的作用力为R’,取坐标系XOY,以A0、 A1、A2断面间水体为控制体。 (1)求流体对平板的作用力 列x方向动量方程:
R ' = ρ Q (0 − ( −V0 sin θ )) R ' = ρ A0V0 2 sin θ
因为平板光滑,作用力垂直平板,所以流体对平板面作用力 的大小为 ρ A0V0 2 sin θ ,方向与R’相反。
F = ρ AV = 2 ρ Agh = 2 Aγ h
2
3、自由射流对挡板的压力
y
根据动量方程,x轴向为: − Rx = ρ Q1u1 cos α1 + ρ Q2u2 cos α 2 − ρ Q0u0 y轴 向 为 :

水力学5.1(2、3)实际流体的动力学基础(N-S方程,能量方程)

水力学5.1(2、3)实际流体的动力学基础(N-S方程,能量方程)
能量方程的几何意义:
水力坡度J: 当总水头线为直线时,
J hw l
当总水头线为曲线时, J dhw dH dl dl
5.3.3 实际流体恒定总流能量方程的意义
能量方程的几何意义:
(2)测管水头线可沿程降 低或升高.为什么?
测管水头线坡度JP:
d(z p)
JP
dl
水力学中规定:所有沿 程下降的坡度为正,所 以式中有一负号.
5.3.3 实际流体恒定总流能量方程的意义
能量方程的几何意义:
(3)在流速不变的流段内, 测管水头线与总水头线 平行.为什么?
5.3.4 实际流体恒定总流能量方程的应用
能量方程的应用条件及注意事项: (1)必须是恒定流,且为不可压缩的均质流体.
(2)作用于流体上的质量力只有重力,所研究的流 体边界是静止的.
流速分布越均匀,α越接近于1. 流速分布越不均匀,α的值越大. 一般渐变流, α≈1.05~1.10
为简便,常常取α=1.0
5.3.2 实际流体恒定总流的能量方程
Q (z1i
p1i
)dQi
Q
u12i 2g
dQi
Q (z2i
p2i
)dQi
Q
u22i 2g
dQi
Q hw idQi
(3)第三类积分: Q hw dQ
5 实际(粘性)流体的动力学基础
实际(粘性)流体
仅有连续性方程远远不能解决实际 问题,如:作用力,能量问题等
本章主要任务:
给出实际(粘性)流体的运动微分方程 (N-S方程),在此基础上讨论元流和恒定 总流的伯努利方程(能量方程),动量方程 的推导以及它们的意义和应用
5 实际(粘性)流体的动力学基础

流体动力基本概念

流体动力基本概念
1、迹线 迹线(path line)某一质点在某一时段内的运动轨迹线。是拉格朗日法描述流体运动的基础。
2、流线 定义:流线(stream line)是表示某一瞬时流体各点流动趋势的曲线,曲线上任一点的切线 方向与该点的流速方向重合。流线是欧拉法描述流体运动的基础。图为流线谱中显示的流 线形状。
流线的作法: 在流场中任取一点,绘出某时刻通过该点的流体质点的流速矢量u1,再画出距1点很近 的2点在同一时刻通过该处的流体质点的流速矢量u2…,如此继续下去,得一折线1234 …, 若各点无限接近,其极限就是某时刻的流线。
ρdV 0 A ρv ndA t V
由奥-高公式

A
ρv n dA ( ρv ) dV
V
根据控制体与时间的无关性
ρ ρdV dV t V t V
直角坐标系下连续性方程的微分形式
ρ ( ρv ) 0 t
二、欧拉法与控制体
欧拉法(Euler method)是以流体质点流经流场中各空间点的运动即以流场作为 描述对象研究流动的方法——流场法 。它不直接追究质点的运动过程,而是以充满 运动流体质点的空间——流场为对象。研究各时刻质点在流场中的变化规律。将个 别流体质点运动过程置之不理,而固守于流场各空间点。通过观察在流动空间中的 每一个空间点上运动要素随时间的变化,把足够多的空间点综合起来而得出的整个 流体的运动情况。 (设立观察站的方法) 流场运动要素是时空(x,y,z,t)的连续函数: 速度 (x,y,z,t)——欧拉变量
控制体:将孤立点上的观察站扩大为一个有适当规模的连续区域。控制体相对于坐 标系固定位置,有任意确定的形状,不随时间变化。控制体的表面为控制面,控制 面上有流体进出。

流体动力学基础工程流体力学

流体动力学基础工程流体力学
31
固定的控制体
对固定的CV,积分形式的连续性方程可化为
CS
ρ(
vn
)dA
CV
t
dV
运动的控制体
将控制体随物体一起运动时,连续性方程形式不变,只
要将速度改成相对速度vr
t
dV
CV
CS (vr n)dA 0
32
连续方程的简化
★1、对于均质不可压流体: ρ=const
dV 0
t CV
t
,所以由于密度 的变
化单位时间内微元六面体内增加的质量为dxdydz t。
微元控制体内流体质量增长率: dxdydz t
48
(3)根据质量守恒定律
流体运动的连续方程式为:
dxdydz uxdydz dx uydxdz dy uzdxdy dz 0
令β=1,由系统的质量不变可得连续性方程
D Dt
CV
dV
t
CV
ρdV
CS
ρ
vndA
0
30
D Dt
CV
dV
t
CV
ρdV
CS
ρ
vn
dA
0
系统质量变化率 控制体内质量变化率 流出控制体的质量流率
上式表明:通过控制面净流出的质量流量等于控 制体内流体质量随时间的减少率。
在推导上式的时候,未作任何假设,因此只要满 足连续性假设,上式总是成立的
CV
B V n dA
CS
D* (t )
CV B n
质量体
控制体 任一物理量 控制体表面外法向单位向量
18
雷诺输运定理
将拉格朗日法求系统内物理 量的时间变化率转换为按欧 拉法去计算的公式

流体动力学基础习题答案

流体动力学基础习题答案

流体动力学基础习题答案流体动力学基础习题答案一、流体静力学1. 压力是流体静力学中的重要概念。

它定义为单位面积上的力的大小,可以用公式P = F/A表示,其中P表示压力,F表示作用在面积A上的力。

2. 流体静力学中的另一个重要概念是压强。

压强定义为单位面积上的压力大小,可以用公式P = F/A表示,其中P表示压强,F表示作用在面积A上的力。

3. 流体静力学中的重要定理之一是帕斯卡定律。

帕斯卡定律指出,在静止的流体中,任何一个点的压力改变都会传递到整个流体中。

这意味着,如果在一个封闭容器中施加了压力,那么容器中的每一个点都会受到相同大小的压力。

4. 流体静力学中的另一个重要定理是阿基米德原理。

阿基米德原理指出,浸没在流体中的物体所受到的浮力等于物体排开的流体的重量。

这一原理解释了为什么物体在浸没在流体中时会浮起来。

二、流体动力学1. 流体动力学是研究流体在运动状态下的行为和性质的学科。

与流体静力学不同,流体动力学关注的是流体在运动中的力学特性。

2. 流体动力学中的重要概念之一是流速。

流速定义为流体通过某一点的体积流量除以通过该点的横截面积。

可以用公式v = Q/A表示,其中v表示流速,Q表示体积流量,A表示横截面积。

3. 流体动力学中的另一个重要概念是雷诺数。

雷诺数定义为流体的惯性力与黏性力的比值。

雷诺数越大,流体的惯性力相对于黏性力越大,流体的流动趋向于湍流;雷诺数越小,流体的惯性力相对于黏性力越小,流体的流动趋向于层流。

4. 流体动力学中的伯努利定理是一个重要的定理。

伯努利定理指出,在不可压缩、黏性、稳定的流体中,沿着流线的总能量保持不变。

这一定理解释了为什么飞机的机翼能够产生升力,以及水管中的水流速度和压力之间的关系。

三、流体力学习题答案1. 问题:一个直径为0.1米的管道中的水流速度为2米/秒,求水流的体积流量。

解答:体积流量可以用公式Q = Av表示,其中Q表示体积流量,A表示横截面积,v表示流速。

流体动力学基础

流体动力学基础

例3、如图所示,有一上方开口截面积很大的水槽,槽内水深h = 40 cm ,接到槽外水平管的截面积依次是1.0 cm2, 0.5 cm2 , 0.25 cm2 。 试求: 1)体积流量 QV 。 2)各段水平管中水流速度 vc ,vd ,ve 。 3)与水平管相连的各压强计中水柱高度 hc , hd , he 。
第二章 流体动力学基础
1、理解理想流体和定常流动(稳定流动)的概念 2、掌握运用连续性方程和伯努利方程 3、了解黏滞定律、泊肃叶定律、斯托克斯定律 4、了解测量液体黏度的实验方法。
第一节、理想流体的定常流动 第二节、伯努利方程 第三节、伯努利方程的应用 第四节、黏性流体的流动 第五节、泊肃叶定律和斯托克斯定律
a
h
c
hd :
d
1 2 1 2 Pd v d Pb v b , 其中Pb =P0 2 2 1 2 1 2 gh d P0 v d P0 v b 2 2 2 v b2 v d hc = 30cm 2g
e
b
例3、如图所示,有一上方开口截面积很大的水槽,槽内水深h = 40 cm ,接到槽外水平管的截面积依次是1.0 cm2, 0.5 cm2 , 0.25 cm2 。 试求: 3)与水平管相连的各压强计中水柱高度 hc , hd , he 。
a
h c
d e
b
例3、如图所示,有一上方开口截面积很大的水槽,槽内水深h = 40 cm ,接 到槽外水平管的截面积依次是1.0 cm2, 0.5 cm2 , 0.25 cm2 。 试求: 1)体积流量 QV 。
a h c d e
解(1)
b
QV Sb vb, 其中S b =Se,vb = 2gh

流体力学讲义 第三章 流体动力学基础

流体力学讲义 第三章 流体动力学基础

第三章流体动力学基础本章是流体动力学的基础。

主要阐述了流体运动的两种描述方法,运动流体的基本类别与基本概念,用欧拉法解决运动流体的连续性微分方程、欧拉运动微分方程及N-S方程。

此外,还阐述了无旋流与有旋流的判别,引出了流函数与势函数的概念,并且说明利用流网与势流叠加原理可解决流体的诸多复杂问题。

第一节流体流动的基本概念1.流线(1)流线的定义流线(stream line)是表示某一瞬时流体各点流动趋势的曲线,曲线上任一点的切线方向与该点的流速方向重合。

图3-1为流线谱中显示的流线形状。

(2)流线的作法:在流场中任取一点(如图3-2),绘出某时刻通过该点的流体质点的流速矢量u1,再画出距1点很近的2点在同一时刻通过该处的流体质点的流速矢量u2…,如此继续下去,得一折线1234 …,若各点无限接近,其极限就是某时刻的流线。

流线是欧拉法分析流动的重要概念。

图3-1 图3-2(3)流线的性质(图3-3)a.同一时刻的不同流线,不能相交。

图3-3因为根据流线定义,在交点的液体质点的流速向量应同时与这两条流线相切,即一个质点不可能同时有两个速度向量。

b.流线不能是折线,而是一条光滑的曲线。

因为流体是连续介质,各运动要素是空间的连续函数。

c.流线簇的疏密反映了速度的大小(流线密集的地方流速大,稀疏的地方流速小)。

因为对不可压缩流体,元流的流速与其过水断面面积成反比。

(4)流线的方程(图3-4)根据流线的定义,可以求得流线的微分方程:图3-4设d s为流线上A处的一微元弧长:u为流体质点在A点的流速:因为流速向量与流线相切,即没有垂直于流线的流速分量,u和d s重合。

所以即展开后得到:——流线方程(3-1)(或用它们余弦相等推得)2.迹线(1)迹线的定义迹线(path line)某一质点在某一时段内的运动轨迹线。

图3-5中烟火的轨迹为迹线。

(2)迹线的微分方程(3-2)式中,u x,u y,u z均为时空t,x,y,z的函数,且t是自变量。

流体动力学基础

流体动力学基础

第3章 流体动力学基础一、单项选择题1、当液体为恒定流时,必有( )等于零。

A .当地加速度 B.迁移加速度 C.向心加速度 D.合加速度 2、均匀流过流断面上各点的( )等于常数。

A.p B.z+gpρ C.gpρ+gu22D. z+gpρ+gu223、过流断面是指与( )的横断面。

A .迹线正交 B.流线正交 C.流线斜交 D.迹线斜交 4、已知不可压缩流体的流速场为Ux=f(y,z),Uy=f(x),Uz=0,则该流动为( )。

A.一元流 B.二元流 C.三元流 D.均匀流5、用欧拉法研究流体运动时,流体质点的加速度a=( ). A.22dtr d B.tu ∂∂ C.(u ·▽)u D.tu ∂∂+(u ·▽)u6、在恒定流中,流线与迹线在几何上( )。

A.相交 B.正交 C.平行 D.重合7、控制体是指相对于某个坐标系来说,( ).A .由确定的流体质点所组成的流体团 B.有流体流过的固定不变的任何体积 C.其形状,位置随时间变化的任何体积 D.其形状不变而位置随时间变化的任何体积.8、渐变流过流断面近似为( ).A.抛物面B.双曲面C.对数曲面D.平面 9、在图3.1所示的等径长直管流中,M-M 为过流断面,N-N 为水平面,则有( ). A.p1=p2 B.p3=p4 C.z1+gp ρ1=z2+gp ρ2D.z3+gp ρ3=z4+gp ρ410、已知突然扩大管道突扩前后管段的管径之比21d d =0.5, 则突扩前后断面平均流速之比v1:v2=( ).A. 4B.2C.1D.0.5 11、根据图3.2 所示的三通管流,可得( )。

A .qv 1+qv 2=qv 3 B.qv 1-qv 2=qv 3 C.qv 1=qv 2+qv 3 D.qv 1+qv 2+qv 3=0 12、根据图3.3 所示的三通管流,可得( )。

A .qv 1+qv 2=qv 3 B.qv 1-qv 2=qv 3 C.qv 1=qv 2+qv 3 D.qv 1+qv 2+qv 3=0 13、测压管水头坡度Jp=( )。

流体动力学的基本概念和原理

流体动力学的基本概念和原理

流体动力学的基本概念和原理流体动力学是研究流体在运动中的行为和性质的学科。

它探究了流体的静力学、动力学以及其它相关问题。

本文将介绍流体动力学的基本概念和原理,包括流体的性质、力学原理和其应用。

一、流体的性质流体是指可以流动的物质,通常分为液体和气体两种状态。

液体具有固定体积和可变形状的特性,而气体具有可变体积和可变形状的特性。

流体具有以下基本性质:1. 静力学性质:包括流体的压强和密度等。

压强是单位面积上的力的作用,常用帕斯卡(Pa)作为单位;密度是单位体积上的质量,常用千克/立方米(kg/m³)作为单位。

2. 动力学性质:包括流体的运动速度和流量等。

运动速度是流体中某点在单位时间内通过该点的位移,常用米/秒(m/s)作为单位;流量是单位时间内通过某一横截面的流体体积,常用立方米/秒(m³/s)作为单位。

3. 黏性:流体的相对运动会产生内部的摩擦力。

黏性是流体抵抗剪切性变形的能力,通常用粘度来表示,其单位为帕斯卡秒(Pa·s)。

二、流体的力学原理流体动力学依赖于一些重要的力学原理,包括质量守恒定律、动量定律和能量守恒定律。

1. 质量守恒定律:它描述了在封闭系统中质量的守恒。

即在单位时间内通过某一横截面的流体质量相等于该段时间内流入和流出的质量之和。

2. 动量定律:流体动量变化率等于合外力的作用。

这个原理描述了流体在流动过程中受到的力和力的变化情况。

动量定律可以用来推导流体的运动方程和流体的受力情况。

3. 能量守恒定律:它讲述了能量的守恒。

流体在运动过程中一般存在着压力能、动能和重力势能等形式的能量,并且能量守恒定律可以用来分析流体在不同形式能量之间的转化。

三、流体动力学的应用流体动力学的应用广泛,以下是一些典型的应用领域:1. 工程应用:流体动力学可以应用于液体和气体的管道系统、水力发电、空气动力学等工程领域,通过分析流体的行为来优化系统设计和改进效率。

2. 生物医学:流体动力学在生物医学领域中的应用包括血液循环、呼吸系统等的研究,通过模拟和分析流体行为来了解生物体内部的生理过程。

流体动力学基础

流体动力学基础

1.3 流体动力学基础 教案目录 电子课件【掌握内容】(1)基本概念:流量、流速、压头等(2)质量流量、体积流量之间关系(3)流态判断(4)连续性方程的表达式、物理意义及计算(5)伯努利方程的表达式、物理意义及计算(6)流体阻力的种类及产生的原因【理解内容】(1)管道截面上的速度分布(2)阻力计算(3)简单管路、串联管路、并联管路计算【了解内容】(1)伯努利方程的应用(2)动量方程1.3.1基本概念1.3.1.1流量与流速(1)流量:单位时间内流过管道任一截面的流体量,称为流量。

①体积流量:单位时间内流过管道任一截面的流体体积,以符号V 表示,单位为m 3/s ②质量流量:单位时间内流过管道任一截面的流体质量,以符号M 表示,单位为kg/s(2)流速:单位时间内流体的质点在流动方向上流过的距离称为流速.FV w = (m/s ) (3)质量流量与体积流量和平均流速间的关系。

wF V =(m 3/s )ρρwF V M == (kg/s )对于气体: 222111T V p T V p = 122112T T p p V V = (m 3/s ) 122111221122T T p p w T T p p F V F V w === (m/s ) [例题1-4] 某硅酸盐窑炉煅烧后产生的烟气量为10万m 3/h ,该处压强为负100Pa ,气温为800℃,经冷却后进入排风机,这时的风压为负1000Pa ,气温为200℃,求这时的排风量(不计漏风等影响)。

解: 1p =101325-100=101225Pa , 2p =101325-1000=100325Pa1T =273+800=1073K 2T =273+200=473K1V =1.0×105m 3/h 2V =1073473100325101225100.15⨯⨯⨯ =4.44×104 (m 3/h)硅酸盐窑炉系统中,可近似认为1p =2p =0p (大气压),1211212273273t t V T T V V ++== (m 3/s ) 1.3.1.2稳定流与非稳定流运动流体全部质点所占的空间称为流场。

第三章流体运动学与动力学基础主要内容基本概念欧拉运动微分方程

第三章流体运动学与动力学基础主要内容基本概念欧拉运动微分方程

第三章流体运动学与动力学基础主要内容z基本概念z欧拉运动微分方程z连续性方程——质量守恒*z伯努利方程——能量守恒** 重点z动量方程——动量守恒** 难点z方程的应用第一节研究流体运动的两种方法z流体质点:物理点。

是构成连续介质的流体的基本单位,宏观上无穷小(体积非常微小,其几何尺寸可忽略),微观上无穷大(包含许许多多的流体分子,体现了许多流体分子的统计学特性)。

z空间点:几何点,表示空间位置。

流体质点是流体的组成部分,在运动时,一个质点在某一瞬时占据一定的空间点(x,y,z)上,具有一定的速度、压力、密度、温度等标志其状态的运动参数。

拉格朗日法以流体质点为研究对象,而欧拉法以空间点为研究对象。

一、拉格朗日法(跟踪法、质点法)Lagrangian method1、定义:以运动着的流体质点为研究对象,跟踪观察个别流体质点在不同时间其位置、流速和压力的变化规律,然后把足够的流体质点综合起来获得整个流场的运动规律。

2、拉格朗日变数:取t=t0时,以每个质点的空间坐标位置为(a,b,c)作为区别该质点的标识,称为拉格朗日变数。

3、方程:设任意时刻t,质点坐标为(x,y,z) ,则:x = x(a,b,c,t)y = y(a,b,c,t)z = z(a,b,c,t)4、适用情况:流体的振动和波动问题。

5、优点:可以描述各个质点在不同时间参量变化,研究流体运动轨迹上各流动参量的变化。

缺点:不便于研究整个流场的特性。

二、欧拉法(站岗法、流场法)Eulerian method1、定义:以流场内的空间点为研究对象,研究质点经过空间点时运动参数随时间的变化规律,把足够多的空间点综合起来得出整个流场的运动规律。

2、欧拉变数:空间坐标(x ,y ,z )称为欧拉变数。

3、方程:因为欧拉法是描写流场内不同位置的质点的流动参量随时间的变化,则流动参量应是空间坐标和时间的函数。

位置: x = x(x,y,z,t) y = y(x,y,z,t) z = z(x,y,z,t) 速度: u x =u x (x,y,z,t ) u y =u y (x,y,z,t ) u z =u z (x,y,z,t )同理: p =p (x,y,z,t ) ,ρ=ρ(x,y,z,t) 说明: x 、y 、z 也是时间t 的函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

a、b、c为t0时刻,某 质点的 坐标 ,不是空 间点的 坐标 (拉各 朗 日变数)。
流体质点速度:
vx =
ax =
dx dy dz ,vy = , vz = dt dt dt
d x d y d z ,a y = 2 ,a z = 2 dt 2 dt dt
2 2 2
流体质点加速度:
宗燕兵
§2.1 研究流体流动的方法 研究
三、两种方法的 比较
拉格朗日 法(质点) 欧拉法(空间点)
第二章 流体动力学基础
§2.1 §2.2 §2.3 §2.4 §2.5 §2.6 §2.7 §2.8 研究流体流动的方法 流动的分类 迹线与流线 流管 流束 流量 流体流动的连续性方程 理想流体运动的微分方程 理想流体沿流线的伯努例方程 粘性流体的运动微分方程
宗燕兵
23
宗燕兵
24
P D F
c re a te d
w ith
p d f F a c to r y tr ia l v e r s io n
例题
vx = vx ( x, y, z, t ) vy = v y ( x, y, z, t) v = v ( x, y, z, t ) z z
§2.1 研究流体流动的方法 研究
一、欧拉法(续)
4. 加速度及其他物理量的时间变化率(续)
(1)加速度
§2.1 研究流体流动的方法 研究
一、欧拉法(续)
4. 加速度及其他物理量的时间变化率(续)
(2)其他物理量的时间变化率 (通用公式 ) d
r r r r r dv ∂v a = = + ( v ⋅ ∇ )v dt ∂t
r r v = v ( x, y, z ) p = p( x, y, z ) ρ = ρ ( x, y, z )
按照流体性质分:
Ø理想流体的流动和 粘性流体的流动 Ø不可 压缩流体的流动和 可压缩流体的流动
l
按照流动状态分:
Ø稳定 流动和 非稳定 流动 Ø层流流动和 紊流流动
l
按照流动空间的 坐标数目分:
az =
∂t
+
∂x dt
+
∂y ቤተ መጻሕፍቲ ባይዱt
+
∂z dt
r ∂N ∂N ∂N + vy + vy (v ⋅∇ ) N = vx
∂x ∂y ∂z
5 宗燕兵 6
宗燕兵
P D F
c re a te d
w ith
p d f F a c to r y tr ia l v e r s io n
∂N ≠0 ∂τ
B.
∂N =0 ∂τ
N的位变加速度为0
dN =0 dτ
D.
特点:流场内的速度、压强、密度 等参 量不仅 是坐标 的函数,而且 与时间有 关。
即:
宗燕兵
∂ () ≠0 ∂t
举例说明?
19
宗燕兵
20
§2.2 流动的分类
二、一维流动、二维流动和 三维流动
1. 定义
流动 参量是 几个坐标 变量的函数, 即为几维 流动。 r r v = v ( x) 一维流动 r r v = v ( x, y ) 二维 流动 r r v = v ( x, y, z ) 三维 流动
Ø一维流动、 二维 流动和 三维 流动
宗燕兵
特点:流场内的速度、压强、密度 等参 量只是坐标的函 数,而 与时间 无关 。 即:
17 宗燕兵
∂ () =0 ∂t
18
P D F
c re a te d
w ith
p d f F a c to r y tr ia l v e r s io n
时变加速度与位变加速度的理解
vz=2z 2,求点( 1,2,3)处的流体加速度。
∂v x ∂v ∂v ∂v + vx x + v y x + vz x ∂t ∂x ∂y ∂z ∂v y ∂v y ∂v y ∂v y ay = + vx + vy + vz ∂t ∂x ∂y ∂z ∂v z ∂v z ∂v z ∂v z az = + vx + vy + vz ∂t ∂x ∂y ∂z ax =
1 宗燕兵 2
研究流体流动的方法 流动的分类 迹线与流线 流管 流束 流量 流体流动的连续性方程 理想流体运动的微分方程 理想流体沿流线的伯努例方程 粘性流体的运动微分方程
§2.1 研究流体流动的方法
一、欧拉法
1. 方法概要 流场: 流场:充满运动流体的空间。 着眼于流场中各空间点 , 综合流场中所有被研究空间点上流体质点的运动变化规律, 来获得整个流场的运动特性(速度分布)。 2. 研究对象 流场 (或者流场中的空间点 )
分别描述有 限质点的 轨迹 不能直接反映参 数的空间分布, 拉格朗日观 点是重要的
同时描述所有质点的 瞬时参数 直接反映参 数的空间分布, 流体 力学最常 用的 解析方法
宗燕兵
15
宗燕兵
16
§2.2 流动的分类
l
§2.2 流动的分类
一、稳定流动和非稳定流动
1. 稳定流动(或 定常流动) 流动 参量不随时间变化的流动。
dρ ∂ρ r = + ( v ⋅ ∇) ρ dt ∂t
宗燕兵
r r ( v ⋅ ∇ ) v : 位变加速度。由流体质点所在空间位置的变化引
宗燕兵
密度:
r v ⋅ ∇ 迁移导数
∂ 局部导数 ∂t
dρ ∂ρ ∂ρ ∂ρ ∂ρ = + vx + vy + vz ∂t ∂x ∂y dt ∂z
8
7
计算题 1:已知 流场的速度分布为 vx=x2y,vy=-3y ,
vx = x + t vy = −y + t vz = 0
(2)积分求解
(1) 写微分方程式
例如 ,某一流场的 表达式为(欧拉 表达 式)
dx = x+t dt dy = −y + t dt dz =0 dt A = a + t0 + 1 B = b − t0 + 1 C =c
3 宗燕兵
p = p ( x , y , z, t )
ρ = ρ ( x, y , z , t )
密度场:

其他物理量( N)场:
N = N( x, y, z, t )
4
§2.1 研究流体流动的方法 研究
一、欧拉法(续)
4. 加速度及其他物理量的时间变化率
(1)加速度 (因为流体质点在流场内是连续的 ax = ,且速度是 x、y、z、t的函数 ) 全微分,偏微分
解:
A
B
= 2x3y2 −3x2 y =2 = 9y =18 =8z3 =216
说明:随体导数的表达式及物理意义?
2 2 2 a = ax + a2 y + a z = 216.76m / s
9
宗燕兵
若流体在平面运动的速度场
vx = xy + 20t 1 vy = x − y2 + t 2 2
∂vx dx ∂vx dy ∂vx dz dv x ∂v + + = x + dt ∂x dt ∂y dt ∂z dt ∂t
定义: ∇ =
∂ v x ∂ v x dx ∂ v x dy ∂ v x dz a x = ∂ t + ∂ x dt + ∂ y dt + ∂ z dt a = ∂v y + ∂v y dx + ∂vy dy + ∂vy dz y ∂t ∂x dt ∂y dt ∂z dt ∂v z ∂vz dx ∂vz dy ∂vz dz
§2.2 流动的分类
一、稳定流动和非稳定流动(续)
2. 非稳定 流动 流动 参量随时间变化的流动。
r r v = v ( x , y , z, t ) p = p ( x, y, z , t ) ρ = ρ ( x, y, z , t )
设N为某稳定流场中的一个物理量,以下对该场描述正确的是 ( ) A. C.
t x=(a+1) e − t -1 ∴ 轨迹方程为 t (b+1) y e = − t -1 ∴ t=2时,该质点的位置为x=(a+1) e2 − 3, y =(b+1) e2 − 3 13
x = x (a , b , c , t ) y = y ( a, b, c, t ) z = z ( a, b, c, t )
宗燕兵
§2.1 研究流体流动的方法 研究
一、欧拉法(续)
3. 运动描述 流速场: vx = vx ( x, y, z, t) vy = vy ( x, y, z, t) v = v ( x, y, z, t) z z
x、 y、z是空间点的坐标, 不是某个质点的坐标
压强场:
(水文站观测 洪水的流动)
a x ==
dv x dt ∂v ∂v dx ∂v x dy ∂v x dz = x+ x + + ∂t ∂x dt ∂y dt ∂z dt = ∂vx ∂v ∂v ∂v + vx x + v y x + vz x ∂t ∂x ∂y ∂z
∂ r ∂ r ∂ r i+ j+ k ∂x ∂y ∂z 哈密顿算子
第二章 流体动力学基础
§2.1 §2.2 §2.3 §2.4 §2.5 §2.6 §2.7 §2.8
宗燕兵
§2.1 研究流体流动的方法
一、欧拉法( Euler )(流场法) Euler 法:考察通过 固定空间位置点 的不同流体质点 的运 动状态,来了解整个运动空间内的流动情况,汇总这些情 况即可了解整个流体的运动变化规律(速度分布) 。 二、拉格朗日法( Lagrange ):(质点法) Lagrange 法是以研究 每个质点的运动全过程为基础,通 过对每个质点运动的研究来了解整个流体运动的规律 (速 度分布) 。 Lagrange 法在概念上比较直观,但在数学处理上较为复 杂。所以很少用,本书主要采用 Euler 法。
相关文档
最新文档