八年级数学:平行线截得比例线段定理

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学新课程标准教材

数学教案( 2019 — 2020学年度第二学期 )

学校:

年级:

任课教师:

数学教案 / 初中数学 / 八年级数学教案

编订:XX文讯教育机构

平行线截得比例线段定理

教材简介:本教材主要用途为通过学习数学的内容,让学生可以提升判断能力、分析能力、理解能力,培养学生的逻辑、直觉判断等能力,本教学设计资料适用于初中八年级数学科目, 学习后学生能得到全面的发展和提高。本内容是按照教材的内容进行的编写,可以放心修改调整或直接进行教学使用。

嵩明县小街镇甸丰小学李逵

教学目标:1、理解平行线截得比例线段定理;

2、会证明平行线截得比例线段定理;

3、通过对定理的证明,学习几何证明方法和作辅助线的方法;

4、培养逻辑思维能力。

教学重点:1、几何证明中的证法分析;

2、添加辅助线的方法。

教学难点:如何添加有用的辅助线。

教学关键:抓住相似三角形的判定和性质进行教学。

教学方法:学习指导法,即读、思、练、讲。

一、复习铺垫

1、提问:

同学们,你会画相交线吗?

你会画平行线吗?

2、请你自己试一试:

①画一组平行线;

②画一组相交线。

说明:让同学们自己在练习本上画,画得好的同学到黑板上板演。同一小组内的同学可以互相交流。

二、初步感知

请同学们按下面的要求做一做,按照顺序,做完一个再进行下一个。同一小组内的同学可以互相指导、互相交流。

1、画三条平行线(等距不等距均可,但要互相平行);

2、画两条直线与上面的三条平行线相交;

3、找一找

①三条平行线在两条直线上面截得了哪些线段?(小组内交流,你是怎样找到的)

②哪条线段和哪条线段是对应线段?(小组内交流,你是怎样想的)

4、量一量

三条平行线在两条直线上截得的线段的长度各是多少。(精确到毫米)

5、算一算

①对应线段的比值是多少?

②你是按什么顺序写出比的?

6、观察总结

在算出的比值中,它们的比值相等吗?

请你把比值相等的两个比写成比例。

7、猜想结论

从写出的比例式子,你能猜出什么结论吗?

请把你的结论说一说,然后写出来。

8、验证结论

你的结论正确吗?重新画个图形试一试。

三、探索,寻找理论支持(根据)

1、你能用你学过的知识来证明你得到的结论吗?

2、怎样才能把现在的结论和以前学过的知识联系起来?

3、要不要添加辅助线?怎样画辅助线?

a

b

c

d

e

f

m

n

4、怎样分析寻找证明的思路和过程?

5、教师整理(板书)

①定理:两条直线被三条平行线截得的对应线段成比例。

已知:交直线于、、,交直线于、、。

求证:(或者)。

②分析:要证明,从图形上我们看不出与之间有什么联系。如果把线段平移到图中的位置,如果把线段平移到图中的位置,那么,就变成了。在中,横着看,、在中;、在中。(竖着看行不行?为什么?)。要是能证明∽,那么,证明的问题就算是解决了。

现在,我们来考虑怎样证明∽。我们知道,平行移动(平移)不会改变线段的长度,移动后得到的线段和原来的线段还是平行的。因此,我们可以判断、,从而得到,而且,,。

③证明:过作交于、过作交于,

∴(同平行于一直线的两条直线互相平行)

∴,(夹在两平行线间的平行线段相等)

(这里也可以用平行四边形来证明)

在和中

∴(两直线平行,同位角相等)

∴(同上)

∴∽(有两个角对应相等的两个三角形相似)

∴(相似三角形的对应边成比例)

∵,(已证)

∴(等量代换)

四、实践应用

1、你得到的结论有什么用处?你能举个例子说明吗?

(可以自己“编造”例子,也可以从教材上寻找。只要会说明)

2、你能要这个结论来解决实际问题吗?

五、知识拓展

1、上面的定理及其证明过程,变成特殊情况它还成立吗?

a

e

f

c

d

当点和点重合时,四边形变成了,如图。

当点变成的中点,点变成的中点时,变成了的中位线,如图。这时,还会有吗?

事实上,是的中位线,便有,,。此时,,。所以,。

2、当上面的四边形变成了时,上面的定理及其证明过程还成立吗?当点变成的中点,点变成的中点,变成了的中位线时,如图,还能得到上面的定理的结论吗?

事实上,,四边形就是梯形。点是的中点, a

b

c

d

e

f

点是的中点时,就是的中位线。根据梯形的中位线定义,,,。此时,,。所以,。

3、你还能想到别的情况吗?

如果四边形是平行四边形或者是矩形,上面的结论还成立吗?自己试试看。

六、回顾总结

这一节课我们学到了什么?请自己回顾一下。想好后,我们一起来进行总结。

平行

平行线截得比例线段定理

分析证明

应用举例

特殊情形

XX文讯教育机构

WenXun Educational Institution

相关文档
最新文档