2014届高三数学每日一练14(含答案)

合集下载

2014年高三一模数学(文)北京市海淀区试题Word版带答案.doc

2014年高三一模数学(文)北京市海淀区试题Word版带答案.doc

海淀区高三年级第二学期期中练习数 学 (文科) 2014.4一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.52i=- A.2i - B.2i + C.12i + D. 12i -解析:55(2)22(2)(2)i i i i i +==+--+2. 已知集合{}{}1,0,1,sin π,,A B y y x x A A B =-==∈=则A.1 B.0 C. 1 D.解析:{0}B =,所以{0}A B ⋂=3. 抛物线28y x =上到其焦点F 距离为5的点有 A.0个B.1个C. 2个D. 4个解析:根据抛物线的定义抛物线上的任意一点到焦点的距离等于到准线的距离,有两个点。

4. 平面向量,a b 满足||2=a ,||1=b ,且,a b 的夹角为60︒,则()⋅+a a b = A.1B. 3C.5D. 7解析:()a a b a a a b +=•+•=4+1=5 5. 函数()2sin f x x x =+的部分图象可能是A B C D解析:由题得函数为奇函数,关于原点对称,x=1时,函数值为正,答案为A 。

6. 已知等比数列{}n a 的前n 项和为n S ,且1S ,22S a +,3S 成等差数列,则数列{}n a 的公比为A .1B .2C .12D .3 解析:根据题意有22132()S a S S +=+,2111112()a a q a a q a q +=++解得q=3.OyxOyxOyxOyx7. 已知()x f x a 和()x g x b 是指数函数,则“(2)(2)f g ”是“ab ”的A.充分不必要条件B.必要不充分条件C.充分必要条件D. 既不充分也不必要条件解析:根据题意函数式指数函数,a ,b>0,所以22a b >,a b >,反之也成立,所以为充分必要条件。

8. 已知(1,0)A ,点B 在曲线:G ln y x =上,若线段AB 与曲线:M 1y x=相交且交点恰为线段AB 的中点,则称B 为曲线G 关于曲线M 的一个关联点.那么曲线G 关于曲线M 的关联点的个数为A .0B .1C .2D .4解析:A(1,0),设0,0(ln )B x x 则AB 的中点坐标001ln (,)22x x +,因为中点在1y x =上,所以00(1)ln 4x x +=,利用数形结合,满足条件的点个数1个。

2014年高三数学高考模拟卷(附详细答案)

2014年高三数学高考模拟卷(附详细答案)

2014届高三数学(理)试题注:请将答案填在答题卷相应的位置上.................一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合要求的.1. 已知全集U R =,集合11,2xA x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭3{|log 0}B x x =>,则()U A C B ⋂=A. {}0x x <B. {}1x x >C. {}01x x <≤D. {}01x x <<2. 如果函数2()3(,4]f x x ax =---∞在区间上单调递减,则实数a 满足的条件是 A .8a ≥ B .8a ≤ C .4a ≥ D .4a ≥- 3. 下列函数中,满足22()[()]f x f x =的是A .()ln f x x =B .()|1|f x x =+C .3()f x x = D .()xf x e =4. 已知函数3()sin 2()2f x x x π⎛⎫=+∈ ⎪⎝⎭R ,下面结论错误..的是 A .函数)(x f 的最小正周期为π B .函数)(x f 是偶函数 C .函数)(x f 的图象关于直线4x π=对称 D .函数)(x f 在区间0,2π⎡⎤⎢⎥⎣⎦上是增函数 5. 给出如下四个命题:①若“p 且q ”为假命题,则p 、q 均为假命题;②命题“若2x ≥且3y ≥,则5x y +≥”的否命题为“若2x <且3y <,则5x y +<”;③在ABC ∆中,“45A >”是“sin 2A >”的充要条件。

④命题 “00,0xx R e ∃∈≤”是真命题. 其中正确的命题的个数是A. 3B. 2C. 1D. 06. 定义行列式运算⎪⎪⎪⎪⎪⎪a 1 a 2a 3 a 4=a 1a 4-a 2a 3;将函数f (x )=⎪⎪⎪⎪⎪⎪3 sin x 1 cos x 的图象向左平移n (n >0)个单位,所得图象对应的函数为偶函数,则n 的最小值为( )A.π6B.π3C.5π6D.2π37. 函数x x e x y e x+=-的一段图象是8. 设函数[],0(),(1),0x x x f x f x x -≥⎧=⎨+<⎩ 其中][x 表示不超过x 的最大整数,如[ 1.2]-=-2,]2.1[=1,]1[=1,若直线y=)0(>+k k kx 与函数y=)(x f 的图象恰有三个不同的交点,则k 的取值范围是 A .]31,41( B .]41,0( C .]31,41[ D .)31,41[二、填空题:本大题共6小题,每小题5分,满分30分.9. 已知函数3log ,0()2,0x x x f x x >⎧=⎨≤⎩,则1(())9f f = .10. 已知1sin()33πα-=,则5cos()6πα-=_____________. 11. 曲线0,,2y y x y x ===-所围成的封闭图形的面积为 .12. 已知函数2()1,f x x mx =++若命题“000,()0x f x ∃><”为真,则m 的取值范围是___. 13. 设25a b m ==,且112a b+=,则m = _________. 14. 若关于x 的方程24xkx x =+有四个不同的实数解,则实数k 的取值范围是 .三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.15.(本小题满分12分) 已知函数R x x x x f ∈--=,21cos 2sin 23)(2(I )求函数)(x f 的最小正周期;(II )确定函数)(x f 在⎥⎦⎤⎢⎣⎡2,0π上的单调性并求在此区间上)(x f 的最小值.16.(本小题满分12分)已知函数f (x )=A sin ⎝⎛⎭⎫π3x +φ,x ∈R ,A >0,0<φ<π2,y =f (x )的部分图象如图所示,P 、Q 分别为该图象的最高点和最低点,点P 的坐标为(1,A ).(1)求f (x )的最小正周期及φ的值;(2)若点R 的坐标为(1,0),∠PRQ =2π3,求A 的值.17. (本小题满分14分)已知等比数列{}n a 中,232a =,812a =,1n n a a +<. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设21222log log log n n T a a a =++⋅⋅⋅+,求n T 的最大值及相应的n 值.18. (本小题满分14分)设二次函数2()(0)f x ax bx c a =++≠满足条件:(1)(1)(1)f x f x -+=--;(2)函数在y 轴上的截距为1,且3(1)()2f x f x x +-=+. (1)求()f x 的解析式;(2)若[,1],()x t t f x ∈+的最小值为()h t ,请写出()h t 的表达式; (3)若不等式()11()f x tx ππ->在[2,2]t ∈-时恒成立,求实数x 的取值范围.19.(本题满分14分)已知函数32()f x x ax bx c =+++的图象如图,直线0y =在原点处与函数图象相切,且此切线与函数图象所围成的区域(阴影)面积为274.(1)求()f x 的解析式(2)若常数0m >,求函数()f x 在区间[],m m -上的最大值.20.(本小题满分14分)已知函数()ln f x x x a x =--,a ∈R .(Ⅰ)若2a =,求函数()f x 在区间[]1e ,上的最值; (Ⅱ)若()0f x ≥恒成立,求a 的取值范围. 注:e 是自然对数的底数2014届高三数学(理)试题数学(理)试题注:请将答案填在答题卷相应的位置上.................一、选择题:本大题共8小题,每小题5分,满分40分,在每小题给出的四个选项中,只有一项是符合要求的.1. 已知全集U R =,集合112xA x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,3{|log 0}B x x =>则()U A C B ⋂=( C )A. {}0x x <B. {}1x x >C. {}01x x <≤D. {}01x x <<2. 如果函数2()3(,4]f x x ax =---∞在区间上单调递减,则实数a 满足的条件是( A ) A .8a ≥ B .8a ≤ C .4a ≥ D .4a ≥-3. 下列函数中,满足22()[()]f x f x =的是 ( C ) A .()ln f x x =B .()|1|f x x =+C .3()f x x =D .()xf x e =4. 已知函数3()sin 2()2f x x x π⎛⎫=+∈ ⎪⎝⎭R ,下面结论错误..的是 ( C ) A .函数)(x f 的最小正周期为π B .函数)(x f 是偶函数 C .函数)(x f 的图象关于直线4x π=对称 D .函数)(x f 在区间0,2π⎡⎤⎢⎥⎣⎦上是增函数5. 给出如下四个命题:①若“p 且q ”为假命题,则p 、q 均为假命题;②命题“若2x ≥且3y ≥,则5x y +≥”的否命题为“若2x <且3y <,则5x y +<”;③在ABC ∆中,“45A >”是“2sin 2A >”的充要条件。

2014届高三数学天天练1(教师版)(最新整理)

2014届高三数学天天练1(教师版)(最新整理)

答案:(1) m 1 (2)当 a 1时, x 1 ;当 0 a 1时, x 1
15、设函数 f (x) 2 cos2 x 2 3 sin x cos x mx R (1)化简函数 f x 的表达式,并求函数 f x 的最小正周期
(2)若
x
0,
2
,是否存在实数 m
,使函数
f
2 2 5
10
即 BDM
arccos
10 10
.异 面 直 线
BD 与
A1C
10 角为 arccos
10
函数的解析式 f (x) _________ f (x) 2x2 4
0x ,
13、已知
2 化简:
lg cos
x
tan
x
1
2 sin2
x 2
lg
2
cos
x
4
lg1
sin
2x
答案:0
14、已知函数
f
(x)
loga
1 mx x 1
是奇函数 a
0, a
1
(1)求 m 值
(2)解关于 x 的不等式 f x 0
2014 届高三数学天天练 1
1、不等式 x -1 1的解集是_____________________ 0,2
2、不等式 1 1的解是_______________ x 0或x 1 x
3、若集合 A x x 2, B x x a,满足 A B 2,则实数 a ______ 2
4、若函数 f (x) 的反函数 f 1x log2 x ,则 f (x) _________ f (x) 2x x R
5、若正四棱柱 ABCD A1B1C1D1 的底面边长为 2,高位 4,则异面直线 BD1与AD 所成角

2014届高三数学每日一练16(含答案)

2014届高三数学每日一练16(含答案)

1、已知全集{}{}2,03,2>=<-==x x B x x x A R U ,则_____=B C A U (]2,02、方程08329=-⋅-x x 的解为___________2log 3=x3、已知全集R U =,集合⎭⎬⎫⎩⎨⎧≤-+=021x x x A ,则集合__________=A C U {}21≥-<x x x 或 4、已知函数()x xx f 212+=,则________311=⎪⎭⎫ ⎝⎛-f -1 5、函数()()2log 1220+++-=x x x y x 的定义域为____________________()∞+,22,11,0 6、若函数()174c o s 2-⎪⎭⎫ ⎝⎛+=πx x f 与函数()()21t a n 5+-=ax x g 的最小正周期相同,则实数_______=a 2±7、已知定义在R 上的奇函数()x f 满足()()x f x f -=+2,则()______8=f 08、(文)已知变量y x ,满足条件⎪⎩⎪⎨⎧≤-+≤-≥0401y x y x x ,则y x z 2+=的最大值是__________7(理)在ABC ∆中,若552sin ,5,1===A BC AB ,则________sin =C 254 9、设+∈R y x ,,且满足404=+y x ,则y x lg lg +的最大值是________210、已知集合⎭⎬⎫⎩⎨⎧<--=01a x ax x A ,且A A ∉∈3,2,则实数a 的取值范围是__________(]3,221,31 ⎪⎭⎫⎢⎣⎡ 11、不等式3502≤++≤mx x 恰好有一个实数解,则实数m 的取值范围是____{}22±∈m 12、已知0,0>>b a ,则不等式a xb <<-1的解集是______⎪⎭⎫ ⎝⎛+∞⎪⎭⎫ ⎝⎛-∞-,11,a b 13、(理)在实数R 中定义一种运算”“*,具有下列性质:(1)对任意a b b a R b a *=*∈,, (2)对任意a a R b a =*∈0,,(3)对任意()()c c b c a ab c c b a R c b a 2)()(,,-*+*+*=**∈,则函数()()R x x x x f ∈*=2的单调递减区间是_________________⎥⎦⎤ ⎝⎛∞23--,14、已知函数()R x x x x f ∈--=,21cos 2sin 232 (1)求函数()x f 的最小值和最小正周期;(2)设ABC ∆的内角C B A ,,的对边分别为c b a ,,,且()0,3==c f c ,若A B sin 2sin =,求b a ,的值. 解答:(1)T=()2m in -=x f ,π (2)3π=C ,a=1,b=215、已知函数()()021>+-=x xa x f (1)判断()x f 在()+∞,0的增减性,并证明你的结论;(2)解关于x 的不等式()0>x f ;(3)若()02≥+x x f 在()+∞,0上恒成立,求a 的取值范围.解:(1)f(x)在(0,+∞)上为减函数,设0<x1<x2,f(x1)-f(x2)=⎝ ⎛⎭⎪⎫-1a +2x1-⎝ ⎛⎭⎪⎫-1a +2x2 =2x1-2x2=2(x2-x1)x1x2>0, ∴f(x1)>f(x2),∴f(x)在(0,+∞)上为减函数.(2)不等式f(x)>0,即-1a +2x>0, 即-x +2a ax>0.整理成(x -2a)·ax<0. ①当a>0时,不等式x(x -2a)<0,不等式的解为0<x<2a.②当a<0时,不等式x(x -2a)>0,不等式的解为x>0或x<2a(舍去).综上,a>0时,不等式解集为{x|0<x<2a},a<0时,解集为{x|x>0}.(3)若f(x)+2x ≥0在(0,+∞)上恒成立,即-1a +2x +2x ≥0,∴1a ≤2⎝ ⎛⎭⎪⎫x +1x . ∵2⎝⎛⎭⎪⎫x +1x 的最小值为4, 故1a ≤4,解得a<0或a ≥14.。

2014届高三高考模拟题数学试卷(文科)(含答案)

2014届高三高考模拟题数学试卷(文科)(含答案)

2014届高三高考模拟题数学试卷(文科)(含答案)一、选择题(每题5分,共8题)1.已知复数12z i =-,那么1z =( )A.55i +B.55-C.1255i +D.1255i - 2. “1x >”是“1x >” 的A .充分不必要条件 B.必要不充分条件 C. 充分必要条件 D.既不充分又不必要条件3.设变量x,y 满足,x y 1x y 1x +≤⎧⎪-≤⎨⎪≥0⎩,则x y +2的最大值和最小值分别为( )A . 1,-1 B. 2,-2 C. 1,-2 D.2,-14. 方程03log 4=-x x 的根所在区间为( )A .)25,2( B. )3,25( C.)4,3( D.)5,4(5.已知定义在R 上的函数)(x f 是偶函数,对2)3()2()2( -=--=+∈f x f x f R x ,当有都 时,)2013(f 的值为( ) A .-2 B. 2 C.4 D.-46. 若直线10x y -+=与圆22()2x a y -+=有公共点,则实数a 取值范围是( )A . [3,1]-- B. [1,3]- C. [3,1]- D. (,3][1,)-∞-+∞ 7. 在△ABC 中,a =32,b =23,cos C =13,则△ABC 的面积为( ).A . 3B .2 3C .3 3 D. 4 38.则使方程()x f x m +=有解的实数m 的取值范围是( ) A .(1,2)B. (,1][2,)-∞⋃+∞C.(,1)(2,)-∞⋃+∞D. (,2]-∞-二、填空题(每小题5分,共6小题)9.已知集合{}320A x R x =∈+>,{}(1)(3)0B x R x x =∈+->,则A B = 。

10.已知(2,0),(2,2),(2,1)OB OC CA ===,则OA 与OB 夹角的正弦值为_____.11.如图,PT 切圆O 于点T ,PA 交圆O 于A 、B 两点,且与直径CT 交于点D ,6,3,2===BD AD CD ,则=PB 。

2014届高三数学每日一练15(含答案)

2014届高三数学每日一练15(含答案)

1、函数()x x f lg 1-=的定义域为______________(]10,02、函数()()0sin 22>+=w wx x f 最小正周期与函数()2tan x x g =最小正周期相等,则正实数w 为____21 3、锐角ABC ∆,角B 所对边长10=b ,ABC ∆面积为10,外接圆半径13=R ,ABC ∆周长为_ __31010+4、已知314cos =⎪⎭⎫ ⎝⎛-απ,则_______4sin =⎪⎭⎫ ⎝⎛+απ31 5、若集合{}1,a A =是集合{}a B ,2,1=的子集,则实数a 的值为______4或06、偶函数()x f 在()∞+,0上为减函数,且()02=f ,则不等式()()0>-+x x f x f 解集为____()()2,02-- ,∞ 7、函数2()(21)13f x x m x m =-+-+-在(2,3]x ∈-上是减函数,实数m 取值范围为 . 3,2⎛⎤-∞- ⎥⎝⎦ 8、对于任意实数x ,()x f 满足()()x f x f =-,若()x f 有2011个零点,则这2011个零点之和为____09、函数()()01lg 2≥+=x x y 的反函数__________)(1=-x f 0,110≥-x x10、(文)若y x ,满足⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+09382y x y x y x ,则y x z 2+=的最大值为__________7(理)设cos x α=,2,63ππα⎡⎤∈-⎢⎥⎣⎦,则arcsin x 的取值范围为___________.,62ππ⎡⎤-⎢⎥⎣⎦11、(理科)若函数)(x f 满足1()1(1)f x f x +=+,当[0,1]x ∈时, ()f x x =,若在区间(1,1]-上,()()g x f x m x m =--有两个零点,则实数m 的取值范围是 。

1(0,]2(文科))(x f 是定义在R 上的偶函数,且对任意x R ∈,都有(2)()f x f x +=。

2014年高考理科数学总复习试卷第14卷题目及其答案

2014年高考理科数学总复习试卷第14卷题目及其答案

补2014年高考理科数学总复习试卷第14卷题目及其答案一、选择题:本题共8小题,每小题5分,共40分。

每小题给出的四个选项中,只有一个选项最符合题目要求。

1.设()ln f x x x =,若0()2f x '=,则0x =( ) A .2eB .eC .ln 22D .ln 22.经过圆:C 22(1)(2)4x y ++-=的圆心且斜率为1的直线方程为( )A .30x y -+=B .30x y --= C.10x y +-= D .30x y ++= 3.已知边长为2的菱形ABCD,∠A=60º,将菱形沿对角线BD 折成120 º的二面角,则AC 的长为( )A .2B .3C .3D . 224.在空间中,有如下命题:①互相平行的两条直线在同一个平面内的射影必然是互相平行的两条直线; ②若平面α∥平面β,则平面α内任意一条直线m ∥平面β;③若平面α与平面β的交线为m ,平面α内的直线n ⊥直线m ,则直线n ⊥平面β;④若平面α内的三点A, B, C 到平面β的距离相等,则α∥β. 其中正确命题的个数为( )个。

A .0B .1C .2D .3 ( ) ( )5.曲线313y x x =+在点413⎛⎫⎪⎝⎭,处的切线与坐标轴围成的三角形面积为( )A .19B .29 C .13D .236.若R m ∈,直线03)1()12(:1=-++-y m x m l ,022:2=-+y mx l 则( )A .2=m 时, 21//l lB .2≠m 时, 1l 与 2l 相交C .2=m 时, 21l l ⊥D .对任意R m ∈,1l 不垂直于2l 7.如图是某几何体的三视图,其中正视图是腰长为2的等腰三角形,俯视图是半径为1的半圆,则该几何体的体积是( ) A .π334 B .π21C . π33D . π63 8.直线0)1()1(=+++y b x a 与圆222=+y x 的位置关系是( )A .相离B .相切C .相交或相切D . 不能确定 二、填空题(本大题共6小题,每小题5分,共30分.)9. ⎰262cos ππxdx =10.直线052=-+y x 被圆2522=+y x 所截得的弦长为11.已知x x x x f 35)(23+-=,若关于x 的方程b x f =)(在[0,1]上恰好有两个不同的实数根,则实数b 的取值范围是12.(不等式选讲)如果关于x 的不等式a x x >-+-|4||3|的解集是R,则实数a 的取值范围为13.(坐标系与参数方程选讲) 极坐标系下,直线cos()14πρθ+=与圆2=ρ的公共点个数是______.14.(平面几何选讲) 如图所示, AB 是半径等于3的圆O 的直径,CD 是圆O 的弦,BA ,DC 的延长线交于点P ,若PA=4,PC=5,则CBD ∠= ________三、解答题(本大题共6小题,共80分,要写出详细的解答过程或证明过程)15.(本小题满分12分)已知圆C 的圆心与点(21)P -,关于直线1y x =+对称.直线34110x y +-=与圆C 相交于A B ,两点,且6AB =,求圆C 的方程.16.(本小题满分14分)如图,在四棱锥P ABCD -中,底面ABCD 是边长为a 的正方形,侧面PAD ⊥底面ABCD ,且22P A P D A D ==,若E 、F 分别为线段PC 、BD 的中点. (1) 求证:直线EF // 平面PAD ; (2) 求二面角B PD C --的余弦值.17. (本小题满分12分)从集合{}1,2,3,4,5的所有非空子集....中,等可能地取出一个。

2014年高考数学模拟试题及答案一

2014年高考数学模拟试题及答案一

2014年高考数学模拟试题及答案一高三数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至5页,共150分.考试时间120分钟.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题 共40分)注意事项:1.考生务必将答案答在答题卡上,在试卷上作答无效.2.答题前考生务必用黑色字迹的签字笔在答题卡上填写姓名、准考证号,然后再用2B 铅笔将与准考证号对应的信息点涂黑.3.答题卡上第Ⅰ卷必须用2B 铅笔作答,将选中项涂满涂黑,黑度以遮住框内字母为准,修改时用橡皮擦除干净.第Ⅱ卷必须用黑色字迹的签字笔按照题号顺序在各题目的答题区域内作答,未在对应的答题区域内作答或超出答题区域作答的均不得分.一、本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. (1)1.已知全集U =R ,集合{}|12A x x =->,{}2|680B x x x =-+<,则集合()U A B = ð( ) A .{}|14x x -≤≤ B .{}|14x x -<< C .{}|23x x <≤ D . {}|23x x <≤ 【解析】 D ;容易解得{3A x x x =>或者}0x <,{}26B x x =<<. 于是()U A B = ð{}23x x <≤.(2)2.一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人. 为了调查职工的健康状况,用分层抽样的方法从全体职工中抽出一个容量为25的样本,应抽取不超过45岁的职工人数为 ( )A . 5B . 10C .15D .50 【解析】 C ;容易知道样本中不超过45岁的人与超过45岁的人数之比为1203802=.于是抽取不超过45岁的职工人数为325155⋅=人.(3)3.已知PA 是O 的切线,切点为A ,2PA =,AC 是O 的直径,PC 交O 于点B ,30PAB ∠= ,则O 的半径为 ( )PAA .1B .2CD .【解析】 C;30,tan30PAPCA PAB CA ∠=∠===(4)4.已知等比数列{}n a 为递增数列,且373a a +=,282a a ⋅=,则117a a = ( ) A .2 B . 43 C . 32 D .12【解析】 A ;不妨设等比数列的公比为q .由2375213a a a q q ⎛⎫+=+= ⎪⎝⎭知50a >.于是228552a a a a ⋅==⇒=代入上式知22q =2q =而数列单调增,于是2q =42q =.(5)5.已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的为 ( ) A .若,,αγβγ⊥⊥则αβ∥ B .若,,m n αα⊥⊥则m n ∥ C .若,m n αα∥∥,则m n ∥ D .若,,m m αβ∥∥则αβ∥【解析】 B ;A 中,αβ可以是任意关系;B 正确;C 中,m n 平行于同一平面,其位置关系可以为任意.D 中平行于同一直线的平面可以相交或者平行.(6)6.设33,,2x yx y M N P ++===(其中0x y <<), 则,,M N P 大小关系为 ( ) A .M N P << B .N P M << C .P M N << D .P N M << 【解析】 D ;由0x y <<,有2x y+.由指数函数的单调性,有23x y x y P N ++=<==;23332x yx y M N ++=>==.(7)7.2位男生和3位女生共5位同学站成一排.若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数为 ( )A .36B .42C . 48D .60【解析】 C ;不妨将5个位置从左到右编号为1,2,3,4,5.于是甲只能位于2,3,4号位. ①当甲位于2号位时,3位女生必须分别位于1,3,4位或者1,4,5位.于是相应的排法总数为33212A =;②当甲位于3号位时,3位女生必须分别位于1,2,4位或者1,2,5位或者1,4,5或者2,4,5位.于是相应的排法总数为33424A =.③当甲位于4号位时,情形与①相同.排法总数为33212A =. 综上,知本题所有的排法数为12+24+12=48.(8)8.设定义在R 上的函数1,(1),1()1,(1)x x f x x ⎧≠⎪-=⎨⎪=⎩. 若关于x 的方程2()()0f x bf x c ++=有3个不同的实数解1x ,2x ,3x ,则123x x x ++等于 ( ) A . 3 B .2 C .1b -- D .c【解析】 A ;易知()f x 的图像关于直线1x =对称.2()()0f x bf x c ++=的解必有一根使()1f x =.不妨设为1x .23,x x 关于直线1x =对称.于是1233x x x ++=.第Ⅱ卷(共110分)二、填空题:本大题共6小题,每小题5分,共30分. (9)9.如果复数()()2i 1i m m ++(其中i 是虚数单位)是实数,则实数m =___________. 【解析】 1-;()()()()223i 1i 1mm m m i m ++=-++.于是有3101m m +=⇒=-.(10)10.若12a x ⎫⎪⎭的展开式中的常数项为220-,则实数a =___________.【解析】 1-;由二项式定理4124311212CC rrr rr r r a T a x x --+⎛⎫== ⎪⎝⎭.令44033r r -=⇒=.于是有3312C 2201a a =-⇒=-.(11)11.将参数方程12cos ,2sin ,x y θθ=+⎧⎨=⎩(θ为参数)化成普通方程为 .【解析】 ()2214x y -+=;由12cos ,2sin x y θθ-==知()2214x y -+=.(12)12.某程序框图如图所示,该程序运行后输出,M N 的值分别为 .【解析】 13,21;依据程序框图画出运行n 次后,,M N i 的值..(13)13.若数列{}n a 的前n 项和为n S ,则11,(1),,(2)n nn S n a S S n -=⎧=⎨-⎩.≥若数列{}n b 的前n 项积为n T ,类比上述结果,则n b =_________;此时,若2()n T n n *=∈N ,则n b =___________.【解析】 11,2;, 1.nT n T T n ⎧⎪⎨⎪=⎩≥,()221,1;, 2.1n n n n =⎧⎪⎨⎪-⎩≥; 由12....n n T b b b =,知()1211...n n n n n T b b b b T b --==.(14)14.定义在R 上的函数满足1(0)0,()(1)1,()()52x f f x f x f f x =+-==,且当1201x x <≤≤时,12()()f x f x ≤,则12010f ⎛⎫= ⎪⎝⎭_________________.【解析】 132;容易知道()11,f =于是()1111522f f ⎛⎫== ⎪⎝⎭.而1111112222f f f ⎛⎫⎛⎫⎛⎫+-=⇒= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.又由()f x 单调增,知()1,2f x =当1152x ≤≤时.而441111155201052⋅⋅≤≤,4411111522232f f ⎛⎫⎛⎫⎛⎫⋅== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.于是11201032f ⎛⎫= ⎪⎝⎭.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. (15)15.在ABC ∆中,角,,A B C 所对的边分别为,,a b c,满足sin2A ,且ABC ∆的面积为2.⑴求bc 的值;⑵若6b c +=,求a 的值. 【解析】 ⑴∵sin2A =0πA <<.∴cos 2A =. ∴4sin 2sin cos 225A A A ==.∵1sin 22ABC S bc A ∆==,∴5bc =. --------------------6分⑵∵sin 2A ∴23cos 12sin 25A A =-=.∵5bc =,6b c +=,∴2222cos a b c bc A =+-2()2(1cos )b c bc A =+-+20=∴a = -----------12分(16)16.为了调查某厂2000名工人生产某种产品的能力,随机抽查了m 位工人某天生产该产品的数量,产品数量的分组区间为[)10,15,错误!未找到引用源。

2014年高考数学试题及答案

2014年高考数学试题及答案

Read a ,b If a >b Then m ←a Else m ←b End If Print m ( 第4题图 )2014年高考数学试题及答案参考公式:(1)样本数据12,,,n x x x 的方差2211()n i i s x x n ==-∑,其中11n i i x x n ==∑(2)直柱体的侧面积S ch =,其中c 为底面周长,h 是高 (3)柱体的体积公式V Sh =,其中S 为底面面积,h 是高一、填空题:本大题共14小题,每小题5分,共70分。

请把答案填写在答题卡相应位置上........。

1、已知集合{1,1,2,4},{1,0,2},A B =-=- 则_______,=⋂B A 答案:{}1-,2 2、函数)12(log )(5+=x x f 的单调增区间是__________答案:+∞1(-,)23、设复数i 满足i z i 23)1(+-=+(i 是虚数单位),则z 的实部是_________ 答案:14、根据如图所示的伪代码,当输入b a ,分别为2,3时,最后输出的m 的值是________ 答案:35、从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是______ 答案:136、某老师从星期一到星期五收到信件数分别是10,6,8,5,6,则该组数据的方差___2=s解析:可以先把这组数都减去6再求方差,1657、已知,2)4tan(=+πx 则xx2tan tan 的值为__________解析:22tan()11tan tan 1tan 44tan tan(),2tan 443tan 229tan()141tan x x x x x x x x x xππππ+-+-===++(-)===-8、在平面直角坐标系xOy 中,过坐标原点的一条直线与函数xx f 2)(=的图象交于P 、Q 两点,则线段PQ 长的最小值是________ 解析:4,设交点为2(,)x x ,2(,)x x --,则224(2)()4PQ x x=+≥ 9、函数ϕϕ,,(),sin()(w A wx A x f +=是常数,)0,0>>w A 的部分图象如图所示,则____)0(=f解析:由图可知:72,,2,41234T A πππω==-==22,,33k k πϕπϕππ⨯+==-26(0)2sin()32f k ππ=-=±10、已知→→21,e e 是夹角为π32的两个单位向量,,,22121→→→→→→+=-=e e k b e e a 若0=⋅→→b a ,则k 的值为解析:由0=⋅→→b a 得:k=2 11、已知实数0≠a ,函数⎩⎨⎧≥--<+=1,21,2)(x a x x a x x f ,若)1()1(a f a f +=-,则a 的值为________解析:30,2212,2a a a a a a >-+=---=-,30,1222,4a a a a a a <-+-=++=- 12、在平面直角坐标系xOy 中,已知点P 是函数)0()(>=x e x f x 的图象上的动点,该图象在P 处的切线l 交y 轴于点M ,过点P 作l 的垂线交y 轴于点N ,设线段MN 的中点的纵坐标为t ,则t 的最大值是_____________ 解析:设00(,),x P x e则00000:(),(0,(1))x x x l y e e x x M x e -=-∴-,过点P 作l 的垂线000000(),(0,)x x x x y e e x x N e x e ---=--+,00000000011[(1)]()22x x x x x x t x e e x e e x e e --=-++=+-00'01()(1)2x x t e e x -=+-,所以,t 在(0,1)上单调增,在(1,)+∞单调减,max 11()2t e e=+。

2014届高三数学文科高考模拟试卷及答案

2014届高三数学文科高考模拟试卷及答案

2014届高三数学文科高考模拟试卷考生须知:1、全卷分试卷I 、II ,试卷共4页,有三大题,满分150分。

考试时间120分钟。

2、本卷答案必须做在答卷I 、II 的相应位置上,做在试卷上无效。

3、请用蓝、黑墨水笔或圆珠笔将姓名、准考证号分别填写在答卷I 、II 的相应位置上,用2B 铅笔将答卷I 的准考证号和学科名称所对应的方框内涂黑。

参考公式:如果事件A , B 互斥, 那么 棱柱的体积公式P (A +B )=P (A )+P (B ) V =ShP (A ·B )=P (A )·P (B )棱锥的体积公式如果事件A 在一次试验中发生的概率是p , 那么n V =31Sh次独立重复试验中事件A 恰好发生k 次的概率其中S 表示棱锥的底面积, h 表示棱锥的高 P n (k )=C k np k (1-p )n -k (k = 0,1,2,…, n )球的表面积公式棱台的体积公式S = 4πR 2)2211(31S S S S h V ++=球的体积公式其中S 1, S 2分别表示棱台的上.下底面积, h 表示棱台 V =34πR 3的高 其中R 表示球的半径选择题部分(共50分)一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.如图,全集}9,7,6,4,2,1{=I , 其中}9,7,4,2{=M ,}9,7,4,1{=P ,}7,4,2{=S 是I 的3个子集,则阴影部分所表示的集合等于 ( ▲ )(A )}9,7,4{ (B )}9,7{ (C )}9,4{ (D )}9{2.已知a R ∈,则“2a >”是“22a a >”成立的( ▲ )(A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件3.已知βα,是不同的两个平面,n m ,是不同的两条直线,则下列命题中不正确...的是( ▲ ) (A )若α⊥m n m ,//,则α⊥n (B )若,m m αβ⊥⊥,则αβ∥ (C )若βα⊂⊥m m ,,则αβ⊥ (D )若,m n ααβ=∥,则m n ∥4.下列函数中,既是偶函数又在) , 0(∞+上单调递增的是( ▲ )(A )||ln x y = (B )2x y -= (C )xe y = (D )x y cos = 5. 某中学高三理科班从甲、乙两个班各选出7名学生参加数学竞赛,他们取得的成绩(满分100分)的茎叶图如右图,其中甲班学生成绩的平均分是85,乙班学生成绩的中位数是83,则x +y 的值为( ▲ )(A )8 (B )7 (C )9 (D )168 6. 函数)(x f y =的图象向右平移3π单位后与函数x y 2sin =的图象重合,则)(x f y =的(第5题)乙甲y x 611926118056798解析式是( ▲ ) (A )()f x =)32cos(π-x (B )()f x =)62cos(π-x (C )()fx =)62cos(π+x (D )()f x =)32cos(π+x7.已知函数n mx x x f 231)(23+-=(n m ,为常数),当2=x 时,函数)(x f 有极值,若函数)(x f 只有三个零点,则实数n 的取值范围是( ▲ )(A )]35,0( (B ))32,0( (C ))35,1[ (D )]32,0[ 8.已知向量OA ,OB 的夹角为60°,|OA |=|OB |=2,若OC =2OA +OB ,则△ABC 为( ▲ )(A )直角三角形 (B )等腰三角形 (C )等边三角形 (D )等腰直角三角形9.P 为双曲线221916x y -=右支上一点,12,F F 分别是双曲线的左焦点和右焦点,过P 点作 12PH F F ⊥,若12PF PF ⊥,则PH = ( ▲ )(A )645 (B )85 (C )325 (D )16510.已知函数⎪⎩⎪⎨⎧≥-<-=2,132|,12|)(x x x x f x ,若方程0)(=-a x f 有两个不同的实数根,则实数a的取值范围为 ( ▲ ) (A ))3,1( (B ))3,1[(C ))1,0( (D ))3,0(非选择题部分(共100分)二、填空题: 本大题共7小题, 每小题4分, 共28分。

北京市西城区2014年高三一模试卷 数学理

北京市西城区2014年高三一模试卷  数学理

北京市西城区2014年高三一模试卷数 学(理科) 2014.4一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.设全集U =R ,集合2{|0}A x x =<≤,{|1}B x x =<,则集合()U A B = ð( ) (A )(,2]-∞ (B )(,1]-∞ (C )(2,)+∞ (D )[2,)+∞2. 已知平面向量(2,1)=-a ,(1,1)=b ,(5,1)=-c . 若()//k +a b c ,则实数k 的值为( )(A )2 (B )12 (C )114 (D )114- 3.在极坐标系中,过点π(2,)2且与极轴平行的直线方程是( )(A )2ρ= (B )2θπ= (C )cos 2ρθ= (D )sin =2ρθ4.执行如图所示的程序框图,如果输入2,2a b ==,那么输出的a 值为( ) (A )4 (B )16 (C )256 (D )3log 165.下列函数中,对于任意x ∈R ,同时满足条件()()f x f x =-和(π)()f x f x -=的函数是( ) (A )()sin =f x x (C )()cos =f x x (B )()sin cos =f x x x (D )22()cos sin =-f x x x6. “8m <”是“方程221108x y m m -=--表示双曲线”的( )(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 7.某企业为节能减排,用9万元购进一台新设备用于生产. 第一年需运营费用2万元,从第二年起,每年运营费用均比上一年增加2万元,该设备每年生产的收入均为11万元. 设该设备使用了()n n *∈N 年后,年平均盈利额达到最大值(盈利额等于收入减去成本),则n 等于( ) (A )3 (B )4 (C )5 (D )68. 如图,设P 为正四面体A BCD -表面(含棱)上与顶点不重合的一点,由点P 到四个顶点的距离组成的集合记为M ,如果集合M 中有且只有2个元素,那么符合条件的点P 有( ) (A ) 4个 (B )6个 (C )10个 (D )14个第Ⅱ卷(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分. 9.设复数1ii 2ix y -=++,其中,x y ∈R ,则x y +=______. 10. 若抛物线2:2C y px =的焦点在直线240x y +-=上,则p =_____;C 的准线方程为_____.11.已知一个正三棱柱的所有棱长均等于2,它的俯视图是一个边长为2的正三角形,那么它的侧(左)视图面积的最小值是________.12.若不等式组1,0,26,ax y x y x y ⎧⎪⎪⎨+⎪⎪+⎩≥≥≤≤表示的平面区域是一个四边形,则实数a 的取值范围是_______.13. 科技活动后,3名辅导教师和他们所指导的3名获奖学生合影留念(每名教师只指导一名学生),要求6人排成一排,且学生要与其指导教师相邻,那么不同的站法种数是______. (用数字作答)14.如图,在直角梯形ABCD 中,//AB CD ,AB BC ⊥,2AB =,1CD =,(0)BC a a =>,P 为线段AD (含端点)上一个动点,设AP xAD = ,PB PC y ⋅=,对于函数()y f x =,给出以下三个结论:①当2a =时,函数()f x 的值域为[1,4]; ②(0,)a ∀∈+∞,都有(1)1f =成立; ③(0,)a ∀∈+∞,函数()f x 的最大值都等于4.其中所有正确结论的序号是______.三、解答题:本大题共6小题,共80分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分13分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c . 已知222b c a bc +=+.(Ⅰ)求A 的大小;(Ⅱ)如果cos B 2b =,求△ABC 的面积.16.(本小题满分13分)在某批次的某种灯泡中,随机地抽取200个样品,并对其寿命进行追踪调查,将结果列成频率分布表如下. 根据寿命将灯泡分成优等品、正品和次品三个等级,其中寿命大于或等于500天的灯泡是优等品,寿命小于300天的灯泡是次品,其余的灯泡是正品. (Ⅰ)根据频率分布表中的数据,写出a ,b 的值; (Ⅱ)某人从灯泡样品中随机地购买了()*∈n n N 个,如果这n 个灯泡的等级情况恰好与按三个等级分......层抽样...所得的结果相同,求n 的最小值; (Ⅲ)某人从这个批次的灯泡中随机地购买了3个进行使用,若以上述频率作为概率,用X 表示此人所购买的灯泡中次品的个数,求X 的分布列和数学期望. 17.(本小题满分14分)如图,在四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 和侧面BCC 1B 1都是矩形,E 是CD 的中点,D 1E ⊥CD ,AB =2BC =2.(Ⅰ)求证:BC ⊥D 1E ; (Ⅱ)求证:B 1C ∥ 平面BED 1;(Ⅲ)若平面BCC 1B 1与平面BED 1所成的锐二面角的大小为π3,求线段D 1E 的长度.18.(本小题满分13分)已知函数2ln ,,()23,,x x x a f x x x x a >⎧⎪=⎨-+-⎪⎩≤ 其中0a ≥.(Ⅰ)当0a =时,求函数()f x 的图象在点(1,(1))f 处的切线方程;(Ⅱ)如果对于任意12,x x ∈R ,且12x x <,都有12()()f x f x <,求a 的取值范围.19.(本小题满分14分)已知椭圆2212xW y +=:,直线l 与W 相交于,M N 两点,l 与x 轴、y 轴分别相交于C 、D 两点,O 为坐标原点.(Ⅰ)若直线l 的方程为210x y +-=,求OCD ∆外接圆的方程;(Ⅱ)判断是否存在直线l ,使得,C D 是线段MN 的两个三等分点,若存在,求出直线l 的方程;若不存在,说明理由.20.(本小题满分13分)在数列{}n a 中,1()n a n n*=∈N . 从数列{}n a 中选出(3)k k ≥项并按原顺序组成的新数列记为{}n b ,并称{}n b 为数列{}n a 的k 项子列. 例如数列1111,,,2358为{}n a 的一个4项子列.(Ⅰ)试写出数列{}n a 的一个3项子列,并使其为等差数列;(Ⅱ)如果{}n b 为数列{}n a 的一个5项子列,且{}n b 为等差数列,证明:{}n b 的公差d 满足108d -<<;(Ⅲ)如果{}n c 为数列{}n a 的一个(3)m m ≥项子列,且{}n c 为等比数列,证明:1231122m m c c c c -++++-≤.北京市西城区2014年高三一模试卷参考答案及评分标准 高三数学(理科) 2014.41~4CBDC 5~8DAAC9.25-10.8 4x =- 11. 12.(3,5) 13.48 14.○2,○3 注:第10题第一问2分,第二问3分. 第14题若有错选、多选不得分.三、解答题:本大题共6小题,共80分. 其他正确解答过程,请参照评分标准给分.15.(本小题满分13分) (Ⅰ)解:因为 222b c a bc +=+,所以 2221cos 22b c a A bc +-==,…… 3分又因为 (0,π)∈A ,所以 π3A =. ……………… 5分(Ⅱ)解:因为 cos 3=B ,(0,π)∈B ,所以 sin 3B ==. ………………7分 由正弦定理sin sin =a bA B , ………………9分 得 sin 3sin ==b Aa B. ………………10分因为 222b c a bc +=+,所以 2250--=c c ,解得 1=c 因为 0>c ,所以 1=c . …11分故△ABC 的面积1sin 2S bc A == ………………13分 16.(本小题满分13分)(Ⅰ)解:0.15a =,30b =. ……………… 2分(Ⅱ)解:由表可知:灯泡样品中优等品有50个,正品有100个,次品有50个,所以优等品、正品和次品的比例为50:100:501:2:1=. ……………… 4分所以按分层抽样法,购买灯泡数24()*=++=∈n k k k k k N ,所以n 的最小值为4. …… 6分 (Ⅲ)解:X 的所有取值为0,1,2,3. ……………… 7分由题意,购买一个灯泡,且这个灯泡是次品的概率为0.10.150.25+=, ……… 8分 从本批次灯泡中购买3个,可看成3次独立重复试验,所以033127(0)C (1)464P X ==⨯-=,1231127(1)C (1)4464P X ==⨯⨯-=, 2213119(2)C ()(1)4464P X ==⨯-=,33311(3)C ()464P X ==⨯=. ……………… 11分 所以随机变量X………………12分所以X 的数学期望2727913()0123646464644E X =⨯+⨯+⨯+⨯=. ………………13分(注:写出1(3,)4X B ,3311()C ()(1)44kk k P X k -==-,0,1,2,3k =. 请酌情给分)17.(本小题满分14分)(Ⅰ)证明:因为底面ABCD 和侧面11BCC B 是矩形,所以 BC CD ⊥,1BC CC ⊥,又因为 1= CD CC C ,所以 BC ⊥平面11DCC D ,…………2分因为 1D E ⊂平面11DCC D ,所以1BC D E ⊥. ………………4分(Ⅱ)证明:因为 1111//, BB DD BB DD =,所以四边形11D DBB 是平行四边形. 连接1DB 交1D B 于点F ,连接EF ,则F 为1DB 的中点. 在1∆B CD 中,因为DE CE =,1DF B F =,所以 1//EF B C . …………6分又因为 1⊄B C 平面1BED ,⊂EF平面1BED ,所以 1//B C 平面1BED . ………………8分(Ⅲ)解:由(Ⅰ)可知1BC D E ⊥,又因为1D E CD⊥,BC CD C = ,所以 1D E ⊥平面ABCD . ………………9分设G 为AB 的中点,以E 为原点,EG ,EC ,1ED 所在直线分别为x 轴,y 轴,z 轴,如图建立空间直角坐标系,设1D E a =,则11(0,0,0), (1,1,0), (0,0,), (0,1,0), (1,2,), (1,0,0)E B D a C B a G .设平面1BED 法向量为(,,)x y z =n ,因为 1(1,1,0), (0,0,)EB ED a == ,由10,0,EB ED ⎧⋅=⎪⎨⋅=⎪⎩n n得0,0.x y z +=⎧⎨=⎩令1x =,得(1,1,0)=-n . ………………11分设平面11BCC B 法向量为111(,,)x y z =m ,因为 1(1,0,0), (1,1,)CB CB a ==,由10,0,CB CB ⎧⋅=⎪⎨⋅=⎪⎩ m m得 11110,0.x x y az =⎧⎨++=⎩ 令11z =,得(0,,1)a =-m . ………………12分由平面11BCC B 与平面1BED 所成的锐二面角的大小为π3,得||π|cos ,|cos 3⋅<>===m n m n m n , ………………13分 解得1a =. ………………14分18.(本小题满分13分)(Ⅰ)解:由题意,得()(ln )ln 1f x x x x ''==+,其中0x >, ……………… 2分所以 (1)1f '=,又因为(1)0f =,所以函数()f x 的图象在点(1,(1))f 处的切线方程为1y x =-. 4分(Ⅱ)解:先考察函数2()23g x x x =-+-,x ∈R 的图象,配方得2()(1)2g x x =---, ……… 5分所以函数()g x 在(,1)-∞上单调递增,在(1,)+∞单调递减,且max ()(1)2g x g ==-.……………… 6分因为对于任意12,x x ∈R ,且12x x <,都有12()()f x f x <成立,所以 1a ≤. ……………… 8分 以下考察函数()ln h x x x =,(0,)x ∈+∞的图象, 则 ()ln 1h x x '=+, 令()ln 10h x x '=+=,解得1e=x . ……………… 9分 随着x 变化时,()h x 和()h x '的变化情况如下:即函数()h x 在1(0,)e 上单调递减,在1(,)e +∞上单调递增,且min 11()()e e==-h x h . ……… 11分 因为对于任意12,x x ∈R ,且12x x <,都有12()()f x f x <成立,所以 1e≥a . ……………… 12分因为 12e->-(即min max ()()h x g x >), 所以a 的取值范围为1,e [1].……………… 13分 19.(本小题满分14分)(Ⅰ)证明:因为直线l 的方程为210x y +-=,所以与x 轴的交点(1,0)C ,与y 轴的交点1(0,)2D . ……………… 1分则线段CD 的中点11(,)24,||CD ==, ……………… 3分 即OCD ∆外接圆的圆心为11(,)24,半径为1||2CD =, 所以OCD ∆外接圆的方程为22115()()2416x y -+-=. ……………… 5分 (Ⅱ)解:结论:存在直线l ,使得,C D 是线段MN 的两个三等分点.理由如下:由题意,设直线l 的方程为(0)y kx m km =+≠,11(,)M x y ,22(,)N x y , 则 (,0)mC k-,(0,)D m , ……………… 6分 由方程组2212y kx m x y =+⎧⎪⎨+=⎪⎩ 得222(12)4220k x kmx m +++-=, ……………… 7分 所以 2216880k m ∆=-+>, (*) ……………… 8分由韦达定理,得122412kmx x k -+=+, 21222212m x x k -=+. ……………… 9分由,C D 是线段MN 的两个三等分点,得线段MN 的中点与线段CD 的中点重合. 所以 1224120km x x k mk-+==+-, ………………10分解得 2k =±. ……………… 11分由,C D 是线段MN 的两个三等分点,得||3||MN CD =. 12|x x -= ……… 12分即 12||3||mx x k-==,解得 m = ……………… 13分 验证知(*)成立. 所以存在直线l ,使得,C D 是线段MN 的两个三等分点,此时直线l 的方程为y y = ……………… 14分 20.(本小题满分13分)(Ⅰ)解:答案不唯一. 如3项子列12,13,16; ……………… 2分 (Ⅱ)证明:由题意,知1234510b b b b b >>>>>≥,所以 210d b b =-<. ……………… 3分 若 11b = ,由{}n b 为{}n a 的一个5项子列,得212b ≤,所以 2111122d b b =--=-≤. 因为 514b b d =+,50b >,所以 515411d b b b =-=->-,即14d >-. 这与12d -≤矛盾. 所以 11b ≠. 所以 112b ≤, ……………… 6分 因为 514b b d =+,50b >,所以 51511422d b b b =-->-≥,即18d >-,综上,得108d -<<. ……7分(Ⅲ)证明:由题意,设{}n c 的公比为q ,则 211231(1)m m c c c c c q q q-++++=++++ .因为{}n c 为{}n a 的一个m 项子列,所以 q 为正有理数,且1q <,111()c a a*=∈N ≤. 设 (,K q K L L *=∈N ,且,K L 互质,2L ≥).当1K =时,因为 112q L =≤,所以 211231(1)m m c c c c c q q q -++++=++++ 211111()()222≤-++++ m 112()2-=-m ,所以 112312()2m m c c c c -++++- ≤. ……………… 10分当1K ≠时, 因为 11111m m m m K c c qa L---==⨯是{}n a 中的项,且,K L 互质,所以 1*()-=⨯∈m a K M M N ,所以 211231(1)m m c c c c c q q q-++++=++++ 1232111111()----=++++ m m m m M K K L K L L.因为 2L ≥,*K M ∈N ,,所以 21112311111()()2()2222m m m c c c c --++++++++=- ≤. 综上, 1231122m m c c c c -++++-≤. ……………… 13分。

2014届高三数列测试试题(经典)(含答案)

2014届高三数列测试试题(经典)(含答案)

2014届高三数学一轮复习 数 列1 姓名1.记等比数列{a n }的公比为q ,则“q >1”是“a n +1>a n (n ∈N *)”的 ( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 2.下列关于星星的图案构成一个数列,该数列的一个通项公式是 ( )A .a n =n 2-n +1B .a n =n (n -1)2 C .a n =n (n +1)2 D .a n =n (n +2)23.(辽宁高考)设等比数列{a n }的前n 项和为S n ,若S 6S 3=3,则S 9S 6= ( )A .2 B.73 C.83D .34.已知数列{a n }的前n 项和为S n ,且15S n =a n -1,则a 2等于 ( )A .-54 B.54 C.516 D.25165.等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3成等差数列,若a 1=1,则S 4= ( )A .7B .8C .15D .16 6.设函数f (x )=x m +ax 的导函数f ′(x )=2x +1,则数列{1f (n )}(n ∈N *)的前n 项和是 A.n n +1 B.n +2n +1 C.n n -1D.n +1n ( )7.等差数列{a n }的通项公式a n =1-2n ,前n 项和为S n ,数列{S nn }的前11项和为 ( )A .-45B .-50C .-55D .-66 8.已知数列{a n }中,a 3=2,a 7=1,若{1a n +1}为等差数列,则a 11= ( )A .0 B.12 C.23D .29.在等比数列{a n }中,若a 3a 5a 7a 9a 11=32,则a 29a 11的值为 ( )A .4B .2C .-2D .-410.已知数列{a n}满足a n+1=12+a n-a2n,且a1=12,则该数列的前2 008项的和等于A.1 506 B.3 012 C.1 004 D.2 008 () 二,填空题11.在等差数列{a n}中,已知log2(a5+a9)=3,则等差数列{a n}的前13项的和S13=________.12.已知数列{a n}满足a1=12,a n=a n-1+1n2-1(n≥2),则{a n}的通项公式为________.13.(浙江高考)设等比数列{a n}的公比q=12,前n项和为S n,则S4a4=________.14.已知数列{a n}中,a1=2,点(a n-1,a n)(n>1,且n∈N*)满足y=2x-1,则a1+a2+…+a10=________.三、解答题15.已知数列{a n}的前n项和S n=-n2+24n(n∈N).(1)求{a n}的通项公式;(2)当n为何值时,S n达到最大?最大值是多少?16.在数列{a n}中,a n=1n+1+2n+1+…+nn+1,又b n=2a n·a n+1,求数列{b n}的前n项的和.17.在数列{a n}中,a1=1,a n+1=2a n+2n.(1)设b n=a n2n-1,证明:数列{b n}是等差数列;(2)求数列{a n}的前n项和S n.18.(昌平模拟)设数列{a n}满足a1+3a2+32a3+…+3n-1a n=n3,n∈N*.(1)求数列{a n}的通项公式;(2)设b n=na n,求数列{b n}的前n项和S n.19.(本小题满分12分)已知数列{a n}中,其前n项和为S n,且n,a n,S n成等差数列(n∈N*).(1)求数列{a n}的通项公式;(2)求S n>57时n的取值范围.20.(本小题满分12分)已知各项都不相等的等差数例{a n}的前六项和为60,且a6为a1和a21的等比中项.(1)求数列{a n}的通项公a n及前n项和S n;(2)若数列{b n}满足b n+1-b n=a n(n∈N*),且b1=3,求数列{1b n}的前n项和T n.21.(文)(本小题满分14分)已知函数y=f(x)的图象经过坐标原点,且f(x)=x2-x +b,数列{a n}的前n项和S n=f(n)(n∈N*).(1)求数列{a n}的通项公式;(2)若数列{b n}满足a n+log3n=log3b n,求数列{b n}的前n项和T n;(3)设P n=a1+a4+a7+…+a3n-2,Q n=a10+a12+a14+…+a2n+8,其中n∈N*,试比较P n与Q n的大小,并证明你的结论.2014届高三数学一轮复习 数 列答案:1—5、DCBDC ,6—10、ADBBA11、52 12、答案:a n =54-2n +12n (n +1) 13、15 14、103315、解:(1)n =1时,a 1=S 1=23;n ≥2时,a n =S n -S n -1=-2n +25. 经验证,a 1=23符合a n =-2n +25, ∴a n =-2n +25(n ∈N ).(2)法一:∵S n =-n 2+24n =-(n -12)2+144, ∴n =12时,S n 最大且S n =144. 法二:∵a n =-2n +25, ∴a n =-2n +25>0,有n <252, ∴a 12>0,a 13<0,故S 12最大,最大值为144. 16、解:由已知得:a n =1n +1(1+2+3+…+n )=n 2,b n =2n 2·n +12=8(1n -1n +1),∴数列{b n }的前n 项和为S n =8[(1-12)+(12-13)+(13-14)+…+(1n -1n +1)]=8(1-1n +1)=8n n +1.17、解:(1)证明:由已知a n +1=2a n +2n 得b n +1=a n +12n =2a n +2n 2n =a n2n -1+1=b n +1.又b 1=a 1=1,因此{b n}是首项为1,公差为1的等差数列.(2)由(1)知a n2n-1=n,即a n=n·2n-1.S n=1+2×21+3×22+…+n×2n-1,两边乘以2得,2S n=2+2×22+…+n×2n. 两式相减得S n=-1-21-22-…-2n-1+n·2n=-(2n-1)+n·2n=(n-1)2n+1.18、解:(1)∵a1+3a2+32a3+…+3n-1a n=n 3,①∴当n≥2时,a1+3a2+32a3+…+3n-2a n-1=n-1 3.②①-②得3n-1a n=13,a n=13n.在①中,令n=1,得a1=13,适合a n=13n,∴a n=1 3n.(2)∵b n=na n,∴b n=n3n.∴S n=3+2×32+3×33+…+n3n,③∴3S n=32+2×33+3×34+…+n3n+1.④④-③得2S n=n3n+1-(3+32+33+…+3n),即2S n=n3n+1-3(1-3n) 1-3,∴S n=(2n-1)3n+14+34.19、解:(1)∵n,a n,S n成等差数列,∴S n=2a n-n,S n-1=2a n-1-(n-1)(n≥2),∴a n=S n-S n-1=2a n-2a n-1-1(n≥2),∴a n =2a n -1+1 (n ≥2),两边加1得a n +1=2(a n -1+1) (n ≥2), ∴a n +1a n -1+1=2 (n ≥2). 又由S n =2a n -n 得a 1=1.∴数列{a n +1}是首项为2,公比为2的等比数列, ∴a n +1=2·2n -1,即数列{a n }的通项公式为a n =2n -1. (2)由(1)知,S n =2a n -n =2n +1-2-n , ∴S n +1-S n =2n +2-2-(n +1)-(2n +1-2-n ) =2n +1-1>0,∴S n +1>S n ,{S n }为递增数列. 由题设,S n >57,即2n +1-n >59. 又当n =5时,26-5=59,∴n >5.∴当S n >57时,n 的取值范围为n ≥6(n ∈N *). 20、解:(1)设等差数列{a n }的公差为d ,则⎩⎪⎨⎪⎧ 6a 1+15d =60,a 1(a 1+20d )=(a 1+5d )2,解得⎩⎪⎨⎪⎧d =2,a 1=5. ∴a n =2n +3.S n =n (5+2n +3)2=n (n +4).(2)由b n +1-b n =a n ,∴b n -b n -1=a n -1(n ≥2,n ∈N *). 当n ≥2时,b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1 =a n -1+a n -2+…+a 1+b 1 =(n -1)(n -1+4)+3=n (n +2). 对b 1=3也适合, ∴b n =n (n +2)(n ∈N *). ∴1b n=1n (n +2)=12(1n -1n +2).T n =12(1-13+12-14+…+1n -1n +2)=12(32-1n +1-1n +2)=3n 2+5n 4(n +1)(n +2). 21、解:(1)因为y =f (x )的图象过原点,所以f (x )=x 2-x . 所以S n =n 2-n ,当n ≥2时,a n =S n -S n -1=n 2-n -(n -1)2+(n -1)=2n -2, 又因为a 1=S 1=0适合a n =2n -2,所以数列{a n }的通项公式为a n =2n -2(n ∈N *). (2)由a n +log 3n =log 3b n 得:b n =n ·3a n =n ·32n -2(n ∈N *),所以T n =b 1+b 2+b 3+…+b n =30+2·32+3·34+…+n ·32n -2,9T n =32+2·34+3·36+…+n ·32n .两式相减得:8T n =n ·32n -(1+32+34+36+…+32n -2)=n ·32n -32n -18, 所以T n =n ·32n 8-32n -164=(8n -1)32n +164.(3)a 1,a 4,a 7,…,a 3n -2组成以0为首项,6为公差的等差数列,所以P n =n (n -1)2×6=3n 2-3n ;a 10,a 12,a 14,…,a 2n +8组成以18为首项,4为公差的等差数列,所以Q n =18n +n (n -1)2×4=2n 2+16n .故P n -Q n =3n 2-3n -2n 2-16n =n 2-19n =n (n -19), 所以,对于正整数n ,当n ≥20时,P n >Q n ; 当n =19时,P n =Q n ; 当n <19时,P n <Q n .。

2014届高三数学每日一练1(含答案)

2014届高三数学每日一练1(含答案)

1、不等式11-<x 的解集是_____________________()2,02、不等式11<x的解是_______________10><x x 或 3、若集合{}{}a x x B x x A ≥=≤=,2,满足{}2=B A ,则实数______=a 24、若函数)(x f 的反函数()x x f 21log =-,则_________)(=x f ()R x x f x ∈=2)(5、若正四棱柱1111D C B A ABCD -的底面边长为2,高位4,则异面直线AD BD 与1所成角的大小是_________________(结果用反三角函数值表示)5arctan6、若球21,O O 表面积之比421=S S ,则它们的半径之比_______21=R R 2 7、函数x x y cos sin 2-=的最大值为___________58、函数x x y 2sin cos 22+=的最小值是_____________2-19、函数)3(log )(3+=x x f 的反函数的图像与y 轴的交点坐标是__________()2-0,10、在相距2千米的A,B 两点处测量目标点C ,若,60,75 =∠=∠CBA CAB 则A,C 两点之间的距离为______________千米611、一个高为2的圆柱,底面周长为π2,该圆柱的表面积为__________π612、若函数()()()R b a a bx a x x f ∈++=,2)(常数是偶函数,且它的值域为(]4,∞-,则该函数的解析式_________)(=x f 42)(2+-=x x f13、已知,20π<<x 化简: ()x x x x x 2sin 1lg 4cos 2lg 2sin 21tan cos lg 2+-⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⋅π 答案:0 14、已知函数11log )(--=x mx x f a 是奇函数()1,0≠>a a ①求m 值 ②解关于x 的不等式()0>x f 答案:(1)1-=m(2)当1>a 时,1>x ;当10<<a 时,1-<x15、设函数()R x m x x x x f ∈+⋅+=cos sin 32cos 2)(2(1)化简函数()x f 的表达式,并求函数()x f 的最小正周期(2)若⎥⎦⎤⎢⎣⎡∈2,0πx ,是否存在实数m ,使函数()x f 的值域恰为?,⎥⎦⎤⎢⎣⎡2721若存在,请求出m 的值;若不存在,请说明理由。

2014高三数学一模试卷含有答案

2014高三数学一模试卷含有答案

2014高三数学质量调研卷一.填空题1. 若集合}02|{2>-=x x x A ,}2|1||{<+=x x B ,则=B A .2. 设1e 、2e 是平面内两个不平行的向量,若21e e +=与21e e m -=平行,则实数=m .3. 在△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若2=a ,32=c ,3π=C ,则=b .4. 在nx )3(-的展开式中,若第3项的系数为27,则=n .5. 若圆1)1(22=-+y x 的圆心到直线:n l 0=+ny x (*N n ∈)的距离为n d ,则=∞→n n d l im . 6. 函数)1(log )(2-=x x f )21(≤<x 的反函数=-)(1x f.7. 已知椭圆13422=+y x 的左、右两个焦点分别为1F 、2F ,若经过1F 的直线l 与椭圆相交于A 、B 两点,则△2ABF 的周长等于 .8. 数列}{n a 中,若11=a ,n n n a a 211=++(*N n ∈),则=+++∞→)(lim 221n n a a a . 9. 若函数x x x f 1)(+=,则不等式25)(2<≤x f 的解集为 .10.如图,正四棱柱1111D C B A ABCD -的底面边长2=AB ,若异面直线A A 1与C B 1 所成的角的大小为21arctan,则正四棱柱1111D C B A ABCD -的侧面积为 . 11. 在数列}{n a 中,21=a ,341+=-n n a a (2≥n ),则数列}{n a 的前n 项和=n S . 12. 已知全集}8,7,6,5,4,3,2,1{=U ,在U 中任取四个元素组成的集合记为},,,{4321a a a a A =,余下的四个元素组成的集合记为},,,{4321b b b b A C U =,若43214321b b b b a a a a +++<+++,则集合A 的取法共有 种. 13. 若函数2cos 1)(xx x f ⋅+=π,则=+++)100()2()1(f f f .第10题14.已知函数⎩⎨⎧<+≥-=0),1(0,2)(x x f x a x f x ,若方程0)(=+x x f 有且仅有两个解,则实数a 的取值范围是 . 二.选择题15.若)(x f 和)(x g 都是定义在R 上的函数,则“)(x f 与)(x g 同是奇函数或偶函数”是“)()(x g x f ⋅是偶函数”的…………………………( ))(A 充分非必要条件. )(B 必要非充分条件. )(C 充要条件. )(D 既非充分又非必要条件16. 若a 和b 均为非零实数,则下列不等式中恒成立的是……………………………( ))(A ||2||ab b a ≥+. )(B 2≥+baa b . )(C 4)11)((≥++b a b a . )(D 222)2(2b a b a +≥+. 17.将函数)(x f y =的图像向右平移4π个单位,再向上平移1个单位后得到的函数对应的表达式为x y 2sin 2=,则函数)(x f 的表达式可以是………………………………………( ))(A x sin 2. )(B x cos 2. )(C x 2sin . )(D x 2cos .18. 若i A (n i ,,3,2,1 =)是AOB ∆所在的平面内的点,且OB OA OB OA i ⋅=⋅. 给出下列说法:①||||||||21OA OA n ==== ; ②||i 的最小值一定是||OB ; ③点A 、i A 在一条直线上;④向量及i OA 在向量的方向上的投影必相等.其中正确的个数是…………………………………………………………………………( ))(A 1个. )(B 2个. )(C 3个. )(D 4个.第18题第13题三.解答题19. (本题满分12分)本大题共有2小题,第1小题满分6分,第2小题满分6分. 已知点)0,2(P ,点Q 在曲线C :x y 22=上.(1)若点Q 在第一象限内,且2||=PQ ,求点Q 的坐标; (2)求||PQ 的最小值.20. (本题满分14分)本大题共有2小题,第1小题满分6分,第2小题满分8分. 已知函数x x x x f cos sin 322cos )(+=(1)求函数)(x f 的值域,并写出函数)(x f 的单调递增区间;求函数)(x f 的最大值,并指出取到最大值时对应的x 的值; (2)若60πθ<<,且34)(=θf ,计算θ2cos 的值.21.(本题满分14分) 本大题共有2小题,第1小题6分,第2小题8分.如图所示,一种医用输液瓶可以视为两个圆柱的组合体.开始输液时,滴管内匀速滴下球状液体,其中球状液体的半径310=r 毫米,滴管内液体忽略不计.(1)如果瓶内的药液恰好156分钟滴完,问每分钟应滴下多少滴?(2)在条件(1)下,设输液开始后x (单位:分钟),瓶内液面与进气管的距离为h (单位:厘米),已知当0=x 时,13=h .试将h 表示为x 的函数.(注:3310001mm cm =)22. (本题满分16分) 已知数列{}n a 中,13a =,132n n n a a ++=⋅,*n N ∈.(1)证明数列{}2nn a -是等比数列,并求数列{}n a 的通项公式;(2)在数列{}n a 中,是否存在连续三项成等差数列?若存在,求出所有符合条件的项;若不存在,请说明理由;高三数学质量调研卷 评分标准一.填空题(本大题满分56分)本大题共有14题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1. )0,3(-; 2.1-; 3. 4;4.3; 5.1; 6. =-)(1x f )0(21≤+x x (不标明定义域不给分); 7. 8; 8.32; 9.)2,21( 10.32; 11. 14--n n (*N n ∈); 13.150;14.2<a ;二.选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.三.解答题(本大题满分74分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19. (本题满分12分)本大题共有2小题,第1小题满分6分,第2小题满分6分.【解】设),(y x Q (0,0>>y x ),x y 22=(1)由已知条件得2)2(||22=+-=y x PQ …………………………2分将x y 22=代入上式,并变形得,022=-x x ,解得0=x (舍去)或2=x ……………4分当2=x 时,2±=y只有2,2==y x 满足条件,所以点Q 的坐标为)2,2(………………6分 (2)||PQ 22)2(y x +-=其中x y 22=…………………………7分422)2(||222+-=+-=x x x x PQ 3)1(2+-=x (0≥x )…………10分当1=x 时,3||min =PQ ……………………………………12分(不指出0≥x ,扣1分)20. 【解】(1))62sin(22sin 32cos )(π+=+=x x x x f ………………2分由于2)62sin(22≤+≤-πx ,所以函数)(x f 的值域为]2,2[-………4分由πππππk x k 22)6222+≤+≤+-得ππππk x k +≤≤+-63所以函数)(x f 的单调的增区间为]6,3[ππππ+-k k ,Z k ∈………6分(文科不写Z k ∈,不扣分;不写区间,扣1分)由20π≤≤x 得,67626πππ≤+≤x ………4分 所以当262ππ=+x 时,2)(max =x f ,此时6π=x ………6分(2)由(1)得,34)62sin(2)(=+=πθθf ,即32)62sin(=+πθ……………8分其中2626ππθπ<+<得0)62cos(>+πθ………………10分所以35)62cos(=+πθ……………11分 ]6)62cos[(2cos ππθθ-+=………………13分621521322335+=⨯+⨯=………………14分 21. 解】(1)设每分钟滴下k (*N k ∈)滴,………………1分则瓶内液体的体积πππ1563294221=⋅⋅+⋅⋅=V 3cm ………………3分k 滴球状液体的体积75340103432ππk mm k k V ==⋅⋅⋅=3cm ………………5分所以15675156⨯=ππk ,解得75=k ,故每分钟应滴下75滴。

2014年北京高考数学理科(含答案)

2014年北京高考数学理科(含答案)

2014年北京高考数学(理) 含答案一.选择题(共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项) 1.已知集合2{|20},{0,1,2}A x x x B =-==,则AB =( ).{0}A .{0,1}B .{0,2}C .{0,1,2}D 2.下列函数中,在区间(0,)+∞上为增函数的是( ).1A y x =+ 2.(1)B y x=- .2x C y -= 0.5.l o g (1)D y x =+ 3.曲线1cos 2sin x y θθ=-+⎧⎨=+⎩(θ为参数)的对称中心( ).A 在直线2y x =上 .B 在直线2y x =-上 .C 在直线1y x =-上 .D 在直线1y x =+上4.当7,3m n ==时,执行如图所示的程序框图,输出的S 值为( ).7A .42B .210C .840D5.设{}n a 是公比为q 的等比数列,则"1"q >是"{}"n a 为递增数列的( ).A 充分且不必要条件 .B 必要且不充分条件.C 充分必要条件 .D 既不充分也不必要条件6.若,x y 满足20200x y kx y y +-≥⎧⎪-+≥⎨⎪≥⎩且z y x =-的最小值为-4,则k 的值为( ).2A .2B - 1.C 1.D -7.在空间直角坐标系Oxyz 中,已知()2,0,0A ,()2,2,0B ,()0,2,0C ,()1,1,2D ,若 1S ,2S ,3S 分别表示三棱锥D ABC -在xOy ,yOz ,zOx 坐标平面上的正投影图形的 面积,则( )(A )123S S S == (B )12S S =且 31S S ≠ (C )13S S =且 32S S ≠ (D )23S S =且 13S S ≠8.有语文、数学两学科,成绩评定为“优秀”“合格”“不合格”三种.若A 同学每科成绩不 低于B 同学,且至少有一科成绩比B 高,则称“A 同学比B 同学成绩好.”现有若干同学, 他们之间没有一个人比另一个成绩好,且没有任意两个人语文成绩一样,数学成绩也一样 的.问满足条件的最多有多少学生( )(A )2 (B )3 (C )4 (D )5二、填空题(共6小题,每小题5分,共30分)9.复数211i i +⎛⎫= ⎪-⎝⎭________.10.已知向量a 、b 满足1a =,()2,1b =,且()0a b R λλ+=∈,则λ=________.11.设双曲线C 经过点()2,2,且与2214y x -=具有相同渐近线,则C 的方程为________; 渐近线方程为________.12.若等差数列{}n a 满足7890a a a ++>,7100a a +<,则当n =________时{}n a 的前n 项和最大.13. 把5件不同产品摆成一排,若产品A 与产品C 不相邻,则不同的摆法有_______种.14. 设函数)sin()(ϕω+=x x f ,0,0>>ωA ,若)(x f 在学科网区间]2,6[ππ上具有单调性,且 ⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛6322πππf f f ,则)(x f 的最小正周期为________.三.解答题(共6题,满分80分)15. (本小题13分)如图,在ABC ∆中,8,3==∠AB B π,点D 在BC 边上,且71cos ,2=∠=ADC CD (1)求BAD ∠sin (2)求AC BD ,的长16. (本小题13分).李明在10场篮球比赛中的投篮情况如下(假设各场比赛互相独立):(1)从上述比赛中随机选择一场,求李明在该场比赛中投篮命中率超过6.0的概率. (2)从上述比赛中选择一个主场和一个客场,求李明的投篮命中率一场超过6.0,一 场不超过6.0的概率.(3)记x 是表中10个命中次数的平均数,从上述比赛中随机选择一场,记X 为李明 在这比赛中的命中次数,比较)(X E 与x 的大小学科网(只需写出结论) 场次 投篮次数命中次数场次 投篮次数命中次数主场1 22 12 客场1 18 8 主场2 15 12 客场2 13 12 主场3 12 8 客场3 21 7 主场4 23 8 客场4 18 15 主场52420客场5251217.(本小题14分)如图,正方形AMDE 的边长为2,C B ,分别为MD AM ,的中点,在五棱锥ABCDE P - 中,F 为棱PE 的中点,平面ABF 与棱PC PD ,分别交于点H G ,. (1)求证:FG AB //;(2)若⊥PA 底面ABCDE ,且PE AF ⊥,求直线BC 与平面ABF 所成角的大小,并 求线段PH 的长.已知函数()cos sin ,[0,]2f x x x x x π=-∈,(1)求证:()0f x ≤;(2)若sin xa b x<<在(0,)2π上恒成立,求a 的最大值与b 的最小值.已知椭圆22:24C xy +=,(1)求椭圆C 的离心率.(2)设O 为原点,若点A 在椭圆C 上,点B 在直线2y =上,且OA OB ⊥,求直线AB 与圆222x y +=的位置关系,并证明你的结论.对于数对序列1122(,),(,),,(,)n n P a b a b a b ,记111()T P a b =+,112()max{(),}(2)k k k k T P b T P a a a k n -=++++≤≤,其中112max{(),}k k T P a a a -+++表示1()k T P -和12k a a a +++两个数中最大的数,(1)对于数对序列(2,5),(4,1)P P ,求12(),()T P T P 的值.(2)记m 为,,,a b c d 四个数中最小值,对于由两个数对(,),(,)a b c d 组成的数对序列(,),(,)P a b c d 和'(,),(,)P a b c d ,试分别对m a =和m d =的两种情况比较2()T P 和2(')T P 的大小.(3)在由5个数对(11,8),(5,2),(16,11),(11,11),(4,6)组成的所有数对序列中,写出一个数对序列P 使5()T P 最小,并写出5()T P 的值.(只需写出结论).2014年普通高等学校招生全国统一考试数学(理)(北京卷)参考答案一、选择题(共8小题,每小题5分,共40分) (1)C (2)A (3)B (4)C (5)D (6)D (7)D (8)B二、填空题(共6小题,每小题5分,共30分) (9)-1 (10)5(11)221312x y -= 2y x =± (12)8(13)36 (14)π三、解答题(共6小题,共80分) (15)(共13分)解:(I )在ADC ∆中,因为17COS ADC∠=,所以43sin 7ADC ∠=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、已知集合{}{}2,3,12,3,1m B m A =--=,若A A B = ,则实数_______=m 1
2、不等式21≥x 的解集是_________⎥⎦
⎤ ⎝⎛210, 3、(理)已知θ是第二象限角,若54sin =
θ,则_________42tan =⎪⎭⎫ ⎝⎛-πθ31 (文)变量y x ,满足约束条件:⎪⎩
⎪⎨⎧≥+≤+≥-1210y x y x y x ,则目标函数y x z +=5的最小值为______2
4、函数()x f y =存在反函数)(1x f y -=,若函数()1-=x f y 的图像经过点()1,3,则________)1(1=-f 2
5、若0x 是函数()x x f x
lg 21-⎪⎭⎫ ⎝⎛=的零点,且010x x <<,则()1x f 与0的大小关系是_______()01>x f 6、已知条件21:≤+x p ;条件a x q ≤:,若p 是q 的充分不必要条件,则a 的取值范围是_________[)∞+,1 7、ABC ∆中,AB D ACB BC AC 为,3
2,1,2π=∠==上的点,若DB AD 2=,则________=∠CDB 147arccos 8、不等式042<++ax x 的解集不是空集,则实数a 的取值范围是_______________()()∞+∞,,44--
9、将⎪⎭
⎫ ⎝⎛+=63cos 2πx y 的图像上所有的点的横坐标缩短到原来的21,纵坐标不变,然后将图像 向左平移4π个单位,再向下平移2个单位,所得图像的解析式为_________2332cos 2-⎪⎭
⎫ ⎝⎛+=πx y 10、函数x a x y cos 3sin +⎪⎭⎫ ⎝
⎛-=π是奇函数,则_______=a 23 11、函数x x y 2sin 3sin 22-=的最大值是____________101+
12、若不等式()1,00log 2≠><-a a x x a 在⎪⎭⎫ ⎝⎛210,内恒成立,则实数a 的取值范围是_____ __⎪⎭
⎫⎢⎣⎡1161, 13、若函数()1
222+-+⋅=x x a a x f 为奇函数,求实数a 的值 答案:1=a 14、已知函数()()R c b c bx x x f ∈++=,2,且当1≤x 时,()0≥x f ,当31≤≤x 时,()0≤x f 恒成立
(1)求c b ,之间的关系式
(2)当3≥c 时,是否存在实数m 使得()()x m x f x g 2-=在区间()∞+,0上是单调函数?若存在,求出m 的取值范围;若不存在,请说明理由。

答案:(1)01,0)1(=++∴=c b f (2)不存在
15、记函数()21
4-++=x x x f 的定义域为()()()[]m x m x x g A ---=2log 3,的定义域为B (1)求A (2)若B A ⊆,求实数m 的取值范围
答案:(1)(]2,1-=A (2)(]()∞+∞,,23--
16、已知()b a x a x a x f ++-=sin 22sin 22的定义域是⎥⎦
⎤⎢⎣⎡20π,,值域是[]1,5-,求b a ,的值 答案:1,65,6=-=-==b a b a 或。

相关文档
最新文档