二次离子质谱

合集下载

南京大学现代分析技术之SIMS

南京大学现代分析技术之SIMS
(2)与化学环境关系 被氧覆盖前后: 纯元素二次离子产额增大2-3个数量级 多荷离子和原子团则表现出不同的规律
(3)基体效应 同一元素的二次离子产额因其它成分的存在而改变。
二次离子的发射与中性原子溅射不同, 由于涉及电子转 移,因此与化学态密切相关,其它成分的存在影响了电子态。
(4)与入射离子种类关系 惰性元素离子:Ar+, Xe+ 电负性离子:O2+, O-, F-, Cl-, I- 电正性离子:Cs+ 电负性离子可大大提高正二次离子产额 电正性离子可大大提高负二次离子产额 它们随靶原子序数变化规律不同,在实际应用中
硅的二次离子质谱--负谱图
Si(111)注O2表面二次离子质谱--正谱图
Si(111)注O2表面二次离子质谱--负谱图
2.二次离子产额 S+或S-:一个一次离子平均打出的二次离子个数。
(1)与样品原子序数关系 明显的周期性关系 S+: 电离能 ↗ S+ ↘ S-: 电子亲和势↗ S- ↘ 各种元素离子产额差异大,可达4个数量级
Δ 在分析过程中,表面单分子层寿命长达几小时。
SIMS设பைடு நூலகம்示意图
高真空静态SIMS设备外观
SIMS设备中的离子枪
TOF-SIMS系统示意图
TOF-SIMS系统外观图
实验条件: 一次离子能量 < 5 keV 一次离子束流密度 < nA/cm2 在低的一次束流密度下,为提高灵敏度,采用: 一次束大束斑+离子计数+高传输率分析器
(2)动态SIMS-- 离子微探针 一次束流密度 J > 10-7A/cm2 溅射效果显著 非表层分析:微区扫描成象 深度剖面分析
3. 主要部分介绍
(1)离子源种类及参数

二次离子质谱(SIMS)技术介绍(一)2024

二次离子质谱(SIMS)技术介绍(一)2024

二次离子质谱(SIMS)技术介绍(一)引言:二次离子质谱(SIMS)技术是一种可以分析物质表面组成和结构的先进技术。

它通过轰击样品表面的离子束,从而产生次级离子,然后利用质谱仪来分析并检测这些次级离子的质量和相对丰度。

本文将介绍SIMS技术的原理、仪器和应用。

正文:1. SIMS原理1.1 离子轰击过程1.1.1 离子束与样品的作用机制1.1.2 衰减效应对数据解析的影响1.1.3 电子对离子的俘获过程1.2 次级离子的产生与检测1.2.1 SIMS离子源的种类及特点1.2.2 二次离子产生的机制1.2.3 质谱仪的构成及原理2. SIMS仪器和操作2.1 SIMS仪器的主要组成2.1.1 离子源系统2.1.2 质谱分析系统2.1.3 控制与数据采集系统2.2 SIMS样品制备与操作要点2.2.1 样品的清洁与处理2.2.2 样品的固定与定位2.2.3 实验运行参数的选择与优化3. SIMS技术的应用领域3.1 材料科学与工程3.1.1 表面组成与化学状态分析 3.1.2 材料腐蚀与附着行为研究 3.1.3 材料表面改性与功能化研究 3.2 生命科学与生物医学3.2.1 细胞与组织样品的分析3.2.2 生物分子的分析与鉴定3.2.3 药物载体与药物释放研究 3.3 环境科学与地质学3.3.1 化学污染物的检测与追踪 3.3.2 地质样品的微观结构分析3.3.3 植物与土壤化学分析4. SIMS技术的优势与挑战4.1 优势4.1.1 高灵敏度与高分辨率4.1.2 可实现微区分析4.1.3 非破坏性测试4.2 挑战4.2.1 数据解析与定量分析问题4.2.2 多元素同时测量的复杂性4.2.3 低浓度元素和轻元素的分析难度5. 总结本文介绍了SIMS技术的原理、仪器和应用。

SIMS技术具有高灵敏度、高分辨率和非破坏性等优势,广泛应用于材料科学与工程、生命科学与生物医学、环境科学与地质学等领域。

然而,SIMS 技术在数据解析和多元素测量方面仍面临一些挑战。

二次离子质谱法(SIMS)

二次离子质谱法(SIMS)

二次离子质谱法(SIMS)扎卡里·沃拉斯(Zachary Voras)1.分类二次离子质谱法(secondary ion mass spectrometry,SIMS)是一种灵敏的表面分析质谱技术,可对样品进行光谱分析、成像或深度剖面分析。

这是一种侵入式技术,不能进行原位检测。

2.说明SIMS是一种超高真空(ultra-high vacuum,UHV)表面分析技术,可以观察样品表面的原子和分子种类。

该技术用离子源发出一次离子束,聚焦并加速轰击样品,样品受碰撞脱落的二次离子直接进入质量分析仪(通常为飞行时间质量分析仪)(Vickerman,2009)。

这种碰撞级联会将一次离子的势能转化为脱落的二次离子碎片的动能。

质量碎片的大小则与脱落部位和初始碰撞位置的远近有关。

要获得最佳信号速率和质量分辨率,必须对一次离子和二次离子进行高水平控制,而一次离子源到分析仪之间的路程超过1 m,因此仪器应保持超高真空条件,才能将平均自由程碰撞控制在最低限度。

图1为SIMS表面分析概述。

在一次离子束入射能量和种类设置最优的情况下,可最大限度地提高单一碰撞事件的二次离子产额。

通过观察原子离子或分子离子都可以表征样品的表面材料,但使用下文所述的团簇离子源则可能减少残余对材料的损伤。

图1 SIMS表面分析概述为获得较高的质量分辨率,二次离子质谱仪通常采用飞行时间(time-of-flight,TOF)质量分析器,因为TOF可匹配脉冲式一次离子束。

TOF质量分析器的作用是让进入的离子先通过漂移管加速,再撞击探测装置(通常为微通道板)(Tang等,1988)。

为确保获得最佳质量分辨率,一次离子束的脉冲必须和质量分析仪的提取/加速阶段完全同步(Niehuis等,1987)。

要进一步提高质量分辨率,离子束的脉冲宽度就必须尽可能窄(<1ns)(Eccles和Vickerman,1989)。

与其他质量分析器(如四极杆分析器和扇形磁场分析器)相比,TOF质量分析器有着最高的传输率和灵敏度,可满足静态SIMS分析对数据速率的要求(Vickerman,2009)。

二次离子质谱分析

二次离子质谱分析
➢ 溅射产额决定接收到的二次离子的多少,它与 入射离子能量、入射角度、原子序数均有一定 的关系,并与靶材晶格取向有关。
SIMS 二次离子质谱仪
二次离子质谱仪主 要由五部分组成: 主真空室 样品架及送样系统 离子枪 二次离子分析器 离子流计数及数据 处理系统
SIMS 二次离子质谱仪
❖ 二次离子质谱仪-离子枪
SIMS 基本工作原理
样品表面被高能聚焦的一 次离子轰击时,一次离子 注入被分析样品,把动能 传递给固体原子,通过层 叠碰撞,引起中性粒子和 带正负电荷的二次离子发 生溅射,根据溅射的二次 离子信号,对被轰击样品 的表面和内部元素分布特 征进行分析。
SIMS工作原理示意图
SIMS 入射离子与样品的相互作用
SIMS 二次离子质谱仪
❖ 液态金属离子源
金属镓熔融(熔点: 29.8℃)后,依靠 表面张力覆盖在钨丝 的尖端,形成一个锥 体。液态镓在强静电 场的作用下发生场致 电离现象,形成离子 Ga+,然后被萃取电
极 引出并准直。
SIMS 二次离子质谱仪
❖ 二次离子质谱仪-质谱分析器
➢ 二次离子分析早期采用磁质谱仪,其质量分辨率和检 测灵敏度高,但仪器复杂、成本高。
❖ 动力学级联碰撞模型
在高能一次离子作用下, 通过一系列双体碰撞后, 由样品内到达表面或接近 表面的反弹晶格原子获得 了具有逃逸固体所需的能 量和方向时,就会发生溅 射现象。
SIMS
入射离子与样品的相互作用
❖ 离子溅射 ➢ 描述溅射现象的主要参数是溅射阈能和溅射产
额。溅射阈能指的是开始出现溅射时,初级离 子所需的能量。
磁场分离 (m/z)
检测器记录
其中,z为电荷数,e为电子电荷,U为加速电压,m为 碎片质量,V为电子运动速度。

二次离子质谱基本规律和应用

二次离子质谱基本规律和应用
拖尾短。 利用上述性质,采用能量过滤器,可滤掉低能
原子团。
五、SIMS分析模式和基本关系式
l、SIMS分析模式
SIMS分析模式大致可分为动态和静态两大类。一 次离子束流密度是划分两种模式的主要标志。动态 SIMS是最早的SIMS分析模式。
离子显微镜和离子微探针都属于这一类。其 一 次 离 子 束 流 密 度 较 高 (>1X10-7A/cm2) , 溅 射速率>5nm/min,这种模式常用于深度剖析、 成像和微区分析,主要应用于电子技术和材 料科学的研究。
以至打入体内(称反弹注入),见图中的 I。
一次离子还可穿入表面,在靶内会产生一系列联碰 撞,将其能量逐步转移给周围的晶格,最后注入到 一定的深度即离子注入。
靶内原子受到碰撞,一旦获得高于一定阈值的能量就 会发生体内移位,变成一次撞出原子,它们可再次与 周围原子碰撞,使撞出原子增加,其中必然有一部分 会扩展到表面。
当粒子获得离开表面方向的动量,且能量又可克服其 结合能量时,则会产生二次发射,这种现象称为溅射。
溅射出的二次粒子可以是原子、分子或原子团,其中 大部分是中性的,还有一些带正及负电荷的二次离子。 这些二次粒子都带有一定初始能。见图中的 II。
还有一部分一次离子和表面原子碰撞,在一次碰撞中 把大一部分能量传递给表面原子,使其以很高的能量 发射出去(这称反弹溅射),一次离子则注入到表面内, 见图中的 Ⅲ。
二次离子质谱基本规律和 应用
二次离子质谱
(Secondary Ion Mass Spectrometry 简称 SIMS)
一、简介 二、离子与表面的相互作用 三、溅射的基本规律 四、二次离子发射的基本规律 五、二次离子质谱分析技术 六、二次离子分析方法 七、二次离子质谱的研究新方向 八、总结

现代材料分析方法(8-SIMS)

现代材料分析方法(8-SIMS)

Al+的流强随时间变化的曲线
SIMS 离子溅射与二次离子质谱
Si的正二次离子质谱
SIMS 离子溅射与二次离子质谱
聚苯乙烯的二次离子质谱
SIMS 离子溅射与二次离子质谱
在超高真空条件下,在清 洁的纯Si表面通入20 L的氧 气后得到的正、负离子谱, 并忽略了同位素及多荷离 子等成份。除了有硅、氧 各自的谱峰外,还有SimOn (m,n = 1, 2, 3……)原子团离 子发射。应当指出,用氧 离子作为入射离子或真空 中有氧的成分均可观察到 MemOn (Me为金属)
SIMS 二次离子质谱仪
定性分析Biblioteka SIMS定性分析的目的是根据所获取的二次离子
质量谱图正确地进行元素鉴定。样品在受离子照射时,
一般除一价离子外,还产生多价离子,原子团离子,
一次离子与基体生成的分子离子。带氢的离子和烃离 子。这些离子有时与其它谱相互干涉而影响质谱的正 确鉴定。
SIMS 二次离子质谱仪
溅射产额与元素的升 华热倒数的对比
SIMS 离子溅射与二次离子质谱
溅射产额与晶格取向的关系
SIMS 离子溅射与二次离子质谱
在100~1000 eV下,用Hg+垂直入射Mo和Fe的溅射粒子的角分布
SIMS 离子溅射与二次离子质谱
= 60o时W靶的溅射粒子的角分布
SIMS 离子溅射与二次离子质谱
SIMS 离子溅射与二次离子质谱
是入射方向与
样品法向的夹角。
当 = 60o~ 70o时, 溅射产额最大, 但对不同的材料, 增大情况不同。
相对溅射产额与离子入射角度的关系
SIMS 离子溅射与二次离子质谱
溅射产额与入射离子原子序数的关系
SIMS 离子溅射与二次离子质谱

二次离子质谱ppt

二次离子质谱ppt
离子束聚焦和加速
通过采用先进的磁场和电场设计,实现对离子 束的精确控制,提高离子的聚焦度和加速效率 ,从而提高分辨率和灵敏度。
新型二次离子质谱仪器的发展
微型化仪器
随着微制造技术的发展,研制微型化的二次离子质谱仪器具有更大的潜力。这种仪器具有 更小的体积、更轻的重量和更低的功耗,可适用于各种实际应用场景。
多元素分析能力
发展能够同时分析多种元素的二次离子质谱仪器,可以实现对样品中多种元素的同时分析 ,提高分析效率。
在线实时分析仪器
研制在线实时分析的二次离子质谱仪器,可以实现对生产过程中样品的质量监控,提供更 及时、准确的分析结果。
二次离子质谱与其他分析技术的联用
01
与色谱技术联用
将二次离子质谱与色谱技术联用,可以实现复杂样品中不同组分的分
二次离子质谱是一种基于离子束分析的方法,通过在样品表 面注入高能离子束,激发样品中的原子或分子,使其电离并 产生二次离子。
这些二次离子通过质量分析器按其质荷比进行分离,最终得 到样品的元素组成和化学态信息。
二次离子质谱的技术分类
根据不同的激发源,二次离子质谱可分为激光诱导二次离 子质谱、粒子束诱导二次离子质谱、场诱导二次离子质谱 等。
04
二次离子质谱的技术发展及最新研究进展
提高分辨率和灵敏度的方法
1 2 3
优化仪器设计
通过改进仪器设计,如采用更高效的离子光学 系统和更精密的离子检测系统,可以提高二次 离子质谱的分辨率和灵敏度。
采用先进的离子源
采用新型的离子源,如激光烧蚀离子源、场离 子源等,可以获得更高质量的离子束,从而提 高分辨率和灵敏度。
03
二次离子质谱的发展历程
技术起源与早期发展 技术发展重要阶段 技术最新进展与趋势

二次离子质谱 质谱原理与技术 华南理工大学现代化学分析原理与技术 化学分离

二次离子质谱 质谱原理与技术 华南理工大学现代化学分析原理与技术 化学分离

第二节 二次离子质谱(SIMS)
二次离子质谱是利用质谱法,分析初级离子入 射靶面后,溅射产生的二次离子而获取材料表面 信息的一种方法。二次离子质谱可以分析包括氢 在内的全部元素,并能给出同位素的信息,分析 化合物组分和分子结构。二次离子质谱具有很高 的灵敏度,可达到ppm甚至ppb的量级,还可以 进行微区成分成像和深度剖面分析 。
一、离子溅射与二次离子质谱
一定能量的离子打到固体表面会引起 表面原子、分子或原子团的二次发射,即 离子溅射。溅射的粒子一般以中性为主, 其中有一部分带有正、负电荷,这就是二 次离子。利用质量分析器接收分析二次离 子就得到二次离子质谱。
❖离子溅射
➢ 描述溅射现象的主要参数是溅射阈能和溅射产 额。溅射阈能指的是开始出现溅射时,初级离 子所需的能量。
离子源
①Electron Ionization (EI)源
++
:
: R2
+
: R3
++
: R4 :e
(M-R2)+
(M-R1)+
(M-R3)+
M+
Mass Spectrum
EI 源的特点: 1.电离效率高,灵敏度高; 2.应用最广,标准质谱图基本都是采用EI源得到的; 3.稳定,操作方便,电子流强度可精密控制; 4.结构简单,控温方便;
43
29 15
57
71 85 99 113 142
m/z
质谱分析特点
(1)应用范围广。测定样品可以是无机物,也可以是 有机物。应用上可做化合物的结构分析、测定原子量与 相对分子量、同位素分析、生产过程监测、环境监测、 热力学与反应动力学、空间探测等。被分析的样品可以 是气体和液体,也可以是固体。

二次离子质谱

二次离子质谱

叠,使识谱和定量分析产生一定的困难。
表面分析技术
25
SIMS 二次离子发射规律
发射离子的类型
在超高真空条件下,在清洁的纯Si表面通 入20 L的氧气后得到的正、负离子谱,并 忽略了同位素及多荷离子等成份。除了有 硅、氧各自的谱峰外,还有SimOn (m,n = 1, 2, 3……)原子团离子发射。应当指出 ,用氧离子作为入射离子或真空中有氧的 成分均可观察到MemOn (Me为金属)
热阴极电离型离子源电离率高,但发射区域大,聚束困难、能量分散和 角度分散较大。
热阴极电离型离子源示意图 表面分析技术
12
SIMS 二次离子质谱仪
二次离子质谱仪-离子枪
双等离子体离子源亮度高,束斑可
达1-2 m经过Wein过滤器可用于离 子探针和成像分析。
液态金属场离子源可以得到束斑为 0.2-0.5 m ,束流为0.5 nA的离子 束,束斑最小可达到50 nA。
二次离子质谱(SIMS) Secondary Ion Mass Spectroscopy
表面分析技术
1
SIMS
引言
二次离子质谱是利用质谱法分析初级离子入射靶 面后,溅射产生的二次离子而获取材料表面信息的一 种方法。二次离子质谱可以分析包括氢在内的全部元
素,并能给出同位素的信息,分析化合物组分和分子
0.007 0.01 0.0025 0.005 0.012 0.06 0.017 -
0.01 0.02 0.0001 0.00025 0.004 0.0009 0.0007 0.007 0.0015 0.013 0.00038 0.00081
0.0025 0.02 0.008 0.002 0.018 0.03 0.007 0.001 0.0012 0.0085 0.06 0.015 0.006 0.0008 0.0014 0.058 0.045

二次离子质谱

二次离子质谱

二次离子质谱
二次离子质谱(Secondary Ion Mass Spectrometry ,SIMS)是通过高能量的一次离子束轰击样品表面,使样品表面的原子或原子团吸收能量而从表面发生溅射产生二次粒子,这些带电粒子经过质量分析器后就可以得到关于样品表面信息的图谱。

[1]
在传统的SIMS实验中,高能一次离子束,如Ga, Cs, 或Ar离子在超真空条件下聚焦于固体样品表面(如左图所示)。

一次离子束与样品相互作用,材料表面溅射和解吸出二次离子。

这些二次离子随后被提取到质量分析器中,从而呈现具有分析表面特征的质谱图,同时产生元素、同位素及分子的信息,其灵敏度范围可达ppm至ppb量级。

在该领域中,有三种基础类型的SIMS仪器最为常用,每一种质谱使用不同的质量分析器。

二次离子质谱(SIMS)

二次离子质谱(SIMS)

综上所述,SIMS能给出一价离子(是识别该 元素存在的主要标志)、多荷离子、原子团离子 (如Si2+ ,Si3+ ),化合物的分子离子以至重排 离子,Biblioteka 稳离子及入射离子与样品表面相互作用
后生成的离子及环境作用(如吸附)产生的离子谱, 因而提供了十分丰富的表面信息。
二、二次离子质谱仪
二次离子质 谱仪至少包括主真 空室、样品架及送 样系统、离子枪、 二次离子分析器和 离子流计数及数据 处理系统等五部分。
溅射产额与晶格取向的关系
在100~1000 eV下,用Hg+垂直入射Mo和Fe的溅射粒子的角分布
= 60o时W靶的溅射粒子的角分布
最可几能量分布范围:1-10eV 与入射离子能量无关
原子离子:峰宽,有长拖尾 带电原子团:能量分布窄,最 可几能量低,拖尾短
利用上述性质,采用能量过 滤器,可滤掉低能原子团。
溅射时从表面射出的粒子可能是中性粒子或带有不 同电荷—正离子(+)、负离子(-)、或多重电离。对于 AxBy的化合物:
S = {(A+)+(B+)+(A-)+(B-)+(A2+)+(B2+) +(A2-)+(B2-) +(A2+)+(B2+)+…+(An±P)+(Bn±P)+(A2B+) +(A2B-) +…+(AnBm±P)+(A0)+(B0)+ (AB0) +…+(A20)+ (A20)+ (AnBm0)}/Ip
分辨率高;笨重、扫描速度慢
四极质谱(QMS)

二次离子质谱仪-中国科学院地质与地球物理研究所

二次离子质谱仪-中国科学院地质与地球物理研究所

二次离子质谱仪原理简介二次离子质谱仪(Secondary Ion Mass Spectrometry, SIMS)又称离子探针(Ion Microprobe),是一种利用高能离子束轰击样品产生二次离子并进行质谱测定的仪器,可以对固体或薄膜样品进行高精度的微区原位元素和同位素分析。

由于地学样品的复杂性和对精度的苛刻要求,在本领域内一般使用定量精度最高的大型磁式离子探针。

该类型的商业化仪器目前主要有法国Cameca公司生产的IMS1270-1300系列和澳大利亚ASI公司的SHRIMP系列。

最近十年来,两家公司相继升级各自产品,在灵敏度、分辨率及分析精度等方面指标取得了较大的提升,元素检出限达到ppm-ppb级,空间分辨率最高可达亚微米级,深度分辨率可达纳米级。

目前,大型离子探针可分析元素周期表中除稀有气体外的几乎全部元素及其同位素,涉及的研究领域包括地球早期历史与古老地壳演化、造山带构造演化、岩石圈演化与地球深部动力学、天体化学与比较行星学、全球变化与环境、超大型矿床形成机制等。

因而国内各大研究机构纷纷引进大型离子探针(北京离子探针中心的SHRIMP II 和SHRIMP IIe-MC、中科院地质与地球物理研究所的Cameca IMS-1280、Cameca IMS-1280HR和NanoSIMS 50L、中科院广州地球化学研究所的Cameca IMS-1280HR、中核集团核工业北京地质研究院的IMS-1280HR),大大提高了国内微区分析的能力。

本实验室配备了Cameca公司生产的IMS1280离子探针和其升级型号IMS1280HR。

两台仪器的基本原理及设计相同,升级型号IMS1280HR主要在磁场设计上有所改进,具有更高的质量分辨率和传输效率。

该型仪器从功能上可分为四部分,如图一所示:一次离子产生及聚焦光路(黄色部分)、二次离子产生及传输光路(蓝色部分)、双聚焦质谱仪(粉色部分)和信号接收系统(紫色部分)。

二次离子质谱

二次离子质谱

表面分析技术
2
SIMS 离子溅射与二次离子质谱
二次离子质谱
一定能量的离子打到固体表面会引起表面原子、 分子或原子团等的二次发射,即离子溅射。溅射的粒 子一般以中性为主,其中有一部分带有正、负电荷, 这就是二次离子。利用质量分析器接收分析二次离子
就得到二次离子质谱。
表面分析技术
3
SIMS 离子溅射与二次离子质谱
表面分析技术
双等离子体离子源示意图
12
SIMS 二次离子质谱仪
二次离子质谱仪-质谱分析器
二次离子分析系统早期采用磁质谱分析器,不同动量的离子 在磁场中偏转半径不同,不同质荷比的离子分开。质量分辨
本领可高达10000以上,质量范围也较宽。但仪器复杂、成 本高,扫描速度慢。
表面分析技术
13
表面分析的静态SIMS中,几乎都采用四极滤质器 ,它通过高频与直流电场是特定质荷比的离子以稳 定轨迹穿过四极场,而质量较大或较小的离子由于
SIMS 二次离子质谱仪
二次离子质谱仪
二次离子质谱仪至少 包括主真空室、样品架及
送样系统、离子枪、二次 离子分析器和离子流计数 及数据处理示意图
10
SIMS 二次离子质谱仪
二次离子质谱仪-离子枪
离子枪一般分为热阴极电离型离子源、双等离子体离子源 和液态金属场离子源。
表面分析技术
16
分析速度快、流通率高,可以测量高质量数 的离子,而逐渐受到人们的重视。
表面分析技术
17
SIMS 二次离子质谱仪
SIMS类型-离子探针 离 子 探 针 即 离 子 微 探 针 质 量 分 析 器 (Ion Microprobe Mass Analyzer—IMMA),有时也称

二次离子质谱发展历史_概述说明

二次离子质谱发展历史_概述说明

二次离子质谱发展历史概述说明1. 引言1.1 概述二次离子质谱(Secondary Ion Mass Spectrometry,SIMS)是一种分析技术,具有高灵敏度和高空间分辨率等优势。

它通过将固体样品表面激发产生的次级离子进行质谱分析,可以实现对材料的元素成分、同位素丰度、元素空间分布以及化学状态等信息的获取。

1.2 文章结构本文主要围绕二次离子质谱的发展历史、技术原理和主要应用展开探讨。

文章包括引言、二次离子质谱发展历史、二次离子质谱技术原理、主要应用和成果总结以及结论与展望五个部分。

1.3 目的本文旨在全面概述二次离子质谱的发展历史,并详细介绍其原理和主要应用领域。

同时,还将对二次离子质谱在地质学、生物医学和材料科学领域中取得的重要成果进行总结,并提出存在的问题和未来发展方向。

通过阅读本文,读者能够了解到二次离子质谱研究领域的进展情况及其在各个领域中的应用前景。

注:本文大纲采用JSON格式,仅用于展示文章的目录结构,并无实际意义。

2. 二次离子质谱发展历史2.1 早期研究二次离子质谱(Secondary Ion Mass Spectrometry,SIMS)作为一项重要的表面分析技术,起源于20世纪60年代。

早期的研究主要集中在金属和半导体材料等无机样品的表面分析上。

1965年,Oesterhelt和Felix首次使用电子轰击发射次级离子,并将其纳入到质谱仪进行质量分析。

此后,Nieman等人对将溅射离子用作粒子探针进一步扩展了这项技术的应用范围。

2.2 技术突破与进展随着对逐个原子检测需求的不断增加,SIMS技术得到了迅速发展。

1970年代初,Czyzewski和Bennett首先提出了溅射离子法用于生物分析,使得该技术在生物领域获得了广泛应用。

1985年,SESSIMS(Static SIMS)技术被引入,克服了早期动态SIMS存在的问题,并且提高了灵敏度和分辨率。

1990年代以后,ToF-SIMS(Time-of-Flight SIMS)技术的引入进一步提高了分辨率和质谱效能。

二次离子质谱仪_标准样品_解释说明

二次离子质谱仪_标准样品_解释说明

二次离子质谱仪标准样品解释说明1. 引言1.1 概述二次离子质谱仪是一种重要的分析工具,能够对物质的组成及其所含元素进行高精度和高灵敏度的定量和定性分析。

本文将介绍二次离子质谱仪的原理、应用领域以及发展历史,并重点讨论了标准样品在二次离子质谱仪中的作用。

1.2 文章结构本文共分为五个部分来阐述。

首先,我们将在引言部分概述文章的目的和结构。

其次,介绍二次离子质谱仪的原理、应用领域以及其发展历史。

然后,着重讨论了标准样品在二次离子质谱仪中的作用,包括定义、制备方法以及对仪器校准和性能评估的重要性。

接下来,我们将详细介绍二次离子质谱仪标准样品的分类方式及其应用案例,并针对可能存在的挑战提供解决方案。

最后,在结论部分总结文章要点,并展望未来二次离子质谱仪发展方向。

1.3 目的本文旨在解释说明二次离子质谱仪及其标准样品的重要性。

通过对二次离子质谱仪的原理、应用领域以及发展历史进行介绍,读者可以了解到该技术的基本概念和特点。

同时,我们将重点讨论标准样品在二次离子质谱仪中的作用,包括其定义、制备方法以及对仪器校准和性能评估的重要性。

此外,我们还将提供二次离子质谱仪标准样品分类方式和应用案例,并讨论可能出现的挑战和解决方案。

通过本文的阐述,读者能够全面了解并掌握二次离子质谱仪及其标准样品相关知识,并对未来发展方向有所展望。

2. 二次离子质谱仪2.1 原理介绍二次离子质谱仪(Secondary Ion Mass Spectrometer,SIMS)是一种高灵敏度的表征材料的仪器。

其原理基于样品表面与束流轰击相互作用,产生并逸出二次离子信号,进而利用质谱分析技术对这些离子进行定性和定量分析。

当一个束流以高能量轰击样品表面时,样品中的原子、分子或团簇会被激发,并且部分从表面挥发成为二次离子。

这些二次离子可以通过电场加速器聚焦和选择,然后经过质量/电荷比分析器进行质谱分析。

根据不同的元素和化合物,其产生的二次离子信号具有特定的质荷比,从而提供了材料成分和结构信息。

(仅供参考)二次离子质谱(SIMS)

(仅供参考)二次离子质谱(SIMS)
二次离子质谱(SIMS) Secondary Ion Mass Spectroscopy
一、概述
•二 次 离 子 质 谱 是 表 征 固 体材料表面组分和杂质的 离子束分析技术。
•利 用 质 谱 法 分 析 由 一 定 能量的一次离子轰击在样 品靶上溅射产生的正、负 二次离子。
工作原理: 一定能量的离子轰击固体表面引起表面原子、
离子探针
离子探针即离子微探针质量分析器,有时也称扫描 离子显微镜(SIM)。它是通过离子束在样品表面上扫描 而实现离子质谱成像的。初级离子束斑直径最小可达12m,甚至更低。初级离子束的最大能量一般为20keV, 初级束流密度为mA/cm2量级。
离子显微镜
离子显微镜(IM)即直接成像质量分析器 (Direct Imaging Mass Analyzer—DIMA)也就是成像质谱计 (Imaging Mass Spectrometer—IMS),它是利用较 大的离子束径打到样品表面上,从被轰击区域发射的 二次离子进行质量分离和能量过滤,在保证空间关系 不变的情况下,在荧光屏上以一定的质量分辨本领分 别得到各种成分离子在一定能量范围内的分布图像。
(2)动态SIMS
痕量元素的体分析
为了提高分析灵敏度,采用很高的溅射率,即用大束流、 较高能量(数keV—20keV)的一次束,靠快速剥蚀不断地对新 鲜表面进行分析,测到的是体内的成分。
成分-深度剖析
选取二次离子质谱上的一个或几个峰,在较高的溅射速 率下,连续记录其强度随时间的变化,得到近表面层的成 分—深度剖图。
溅射粒子能量分布曲线
SIMS 基体效应
17种元素的二次离子产额
金属
清洁表面 覆氧表面
金属
清洁表面 覆氧表面

二次离子质谱 测试

二次离子质谱 测试

二次离子质谱测试
二次离子质谱(SIMS)测试是一种重要的材料分析方法。

这种技术具有极高的灵敏度和精度,可以用于探测样品中各种元素的浓度,以及这些元素在材料表面的分布。

在二次离子质谱测试中,高能离子束被用来轰击样品表面,然后分析从样品中释放出的二次离子的质谱。

通过这种方式,可以获得关于样品成分的详细信息。

二次离子质谱测试的主要优点包括:
1. 高灵敏度:能够检测出样品中痕量元素的浓度,甚至可以检测到单个原子。

2. 高分辨率:可以在微米尺度上探测元素的分布,这对于研究表面和界面现象非常有用。

3. 动态范围广:可以同时探测从痕量到大量元素的浓度范围。

4. 无损分析:样品在测试过程中不会被破坏或改变。

然而,二次离子质谱测试也有一些局限性:
1. 需要制备样品:由于测试过程中涉及高能离子束的轰击,因此需要对样品进行特殊处理和制备。

2. 测试成本高:需要使用高能离子源和高真空系统,因此测试成本较高。

3. 需要专业操作:需要专业人员操作和维护测试系统。

尽管有这些局限性,二次离子质谱测试在材料科学、化学、生物学等领域仍然是一种非常重要的分析方法。

它可以用于研究表面和界面现象、催化剂和吸附剂的性质、生物材料的组成和分布等方面。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次离子质谱Secondary Ion Mass Spectrometry (SIMS) 1 引言:离子探针分析仪,即离子探针(Ion Probe Analyzer,IPA),又称二次离子质谱(Secondary Ion Mass Spectrum,SIMS),是利用电子光学方法把惰性气体等初级离子加速并聚焦成细小的高能离子束轰击样品表面,使之激发和溅射二次离子,经过加速和质谱分析,分析区域可降低到1-2μm直径和5nm的深度,正是适合表面成分分析的功能,它是表面分析的典型手段之一。

应用离子照射样品产生二次离子的基础研究工作最初是R.H.斯隆(1938)和R.F.K.赫佐格(1949)等人进行的。

1962 年R.卡斯塔因和G.斯洛赞在质谱法和离子显微技术基础上研制成了直接成像式离子质量分析器。

1967 年H.利布尔在电子探针概念的基础上,用离子束代替电子束,以质谱仪代替X 射线分光计研制成扫描式离子探针质量显微分析仪[1]。

二次离子质谱(SIMS)比其他表面微区分析方法更灵敏。

由于应用了中性原子、液态金属离子、多原子离子和激光一次束,后电离技术,离子反射型飞行时间质量分析器,离子延迟探测技术和计算机图像处理技术等,使得新型的IWHI 的一次束能量提高到MeV,束斑至亚μm,质量分辨率达到15000,横向和纵向分辨率小于0.5μm和5nm,探测限为ng/g,能给出二维和三维图像信息。

SIMS 已发展为一种重要的材料成分分析方法,在微电子、光电子、材料科学、催化、薄膜和生物领域有广泛应用[2]。

2 SIMS的基本原理[3]离子探针的原理是利用能量为1~20KeV的离子束照射在固体表面上,激发出正、负离子(溅射),利用质谱仪对这些离子进行分析,测量离子的质荷比和强度,从而确定固体表面所含元素的种类和数量。

2.1 溅射被加速的一次离子束照射到固体表面上,打出二次离子和中性粒子等,这个现象称作溅射。

溅射过程可以看成是单个入射离子和组成固体的原子之间独立的、一连串的碰撞所产生的。

左图说明入射的一次离子与固体表面的碰撞情况。

入射离子一部分与表面发生弹性或非弹性碰撞后改变运动方向,飞向真空,这叫作一次离子散射(如图中Ⅰ);另外有一部分离子在单次碰撞中将其能量直接交给表面原子,并将表面原子逐出表面,使之以很高能量发射出去,这叫作反弹溅射(如图中Ⅲ);然而在表面上大量发生的是一次离子进入固体表面,并通过一系列的级联碰撞而将其能量消耗在晶格上,最后注入到一定深度(通常为几个原子层)。

固体原子受到碰撞,一旦获得足够的能量就会离开晶格点阵,并再次与其它原子碰撞,使离开晶格的原子增加,其中一部分影响到表面,当这些受到影响的表面或近表面的原子具有逸出固体表面所需的能量和方向时,它们就按一定的能量分布和角度分布发射出去(如图中Ⅱ)。

通常只有2-3个原子层中的原子可以逃逸出来,因此二次离子的发射深度在1nm左右。

可见,来自发射区的发射粒子无疑代表着固体近表面区的信息,这正是SISM能进行表面分析的基础。

一次离子照射到固体表面引起溅射的产物种类很多,其中二次离子只占总溅射产物的很小一部分(约占0.01-1%)。

影响溅射产额的因素很多,一般来说,入射离子原子序数愈大,即入射离子愈重,溅射产额愈高;入射离子能量愈大,溅射产额也增高,但当入射离子能量很高时,它射入晶格的深度加大将造成深层原子不能逸出表面,溅射产额反而下降。

2.2 SIMS原理示意图[2]SIMS的基本原理如左图所示:(1)利用聚焦的一次离子束在样品上稳定的进行轰击,一次离子可能穿透固体样品表面的一些原子层深入到一定深度,在穿透过程中发生一系列弹性和非弹性碰撞。

一次离子将其部分能量传递给晶格原子,这些原子中有一部分向表面运动,并把能量的一部分传递给表面粒子使之发射,这种过程称为粒子溅射。

在一次离子束轰击样品时,还有可能发生另外一些物理和化学过程:一次离子进入晶格,引起晶格畸变;在具有吸附层覆盖的表面上引起化学反应等等。

溅射粒子大部分为中性原子和分子,小部分为带正、负电荷的原子、分子和分子碎片;(2)电离的二次粒子(溅射的原子、分子和原子团等)按质荷比实现质谱分离;(3)收集经过质谱分离的二次离子,可以得知样品表面和本体的元素组成和分布。

在分析过程中,质量分析器不但可以提供对应于每一时刻的新鲜表面的多元素分析数据,而且还可以提供表面某一元素分布的二次离子图像。

3. SIMS仪器的组成及分类3.1 仪器组成[3]SIMS主要由三部分组成:一次离子发射系统、质谱仪、二次离子的记录和显示系统。

前两者处于压强〈10-7Pa的真空室内。

其结构原理如上图所示。

①一次离子发射系统一次离子发射系统由离子源(或称离子枪)和透镜组成(如左图所示)。

离子源是发射一次离子的装置,通常是用几百伏特的电子束轰击气体分子(如惰性气体氦、氖、氩等),使气体分子电离,产生一次离子。

在电压作用下,离子从离子枪内射出,再经过几个电磁透镜使离子束聚焦,照射在样品表面上激发二次离子。

用一个电压约为1KV的引出电极将二次离子引入质谱仪。

SIMS的一次离子源分为气体放电源(O2+、O-、N2+、Ar+)、表面电离源(Cs+、Rb+)和液态金属场离子发射源(Ga+、In+)等。

②质谱仪质谱仪由扇形电场和扇形磁场组成(如左图示)。

二次离子首先进入一个扇形电场,称为静电分析器。

在电场内,离子沿半径为r的圆形轨道运动,由电场产生的力等于向心力。

运动轨道半径r等于mv2/eE,与离子的能量成正比。

所以扇形电场能使能量相同的离子作相同程度的偏转。

由电场偏转后的二次离子再进入扇形磁场(磁分析器)进行第二次聚焦。

由磁通产生的洛仑兹力等于向心力。

不同质荷比的离子聚焦在成像面的不同点上。

如果C狭缝固定不动,联系改变扇形磁场的强度,便有不同质量的离子通过C狭缝进入探测器。

B狭缝称为能量狭缝,改变狭缝的宽度可选择不同能量的二次离子进入磁场。

③离子探测系统离子探测器是二次电子倍增管,内是弯曲的电极,各电极之间施加100-300V的电压,以便逐级加速电子。

二次离子通过质谱仪后直接与电子倍增管的初级电极相碰撞,产生二次电子发射。

二次电子被第二级电极吸引并加速,在其上轰击出更多的二次电子,这样逐级倍增,最后进入记录和观察系统。

二次离子的记录和观察系统与电子探针相似,可在阴极射线管上显示二次离子像,给出某元素的面分布图,或在记录仪上画出所有元素的二次离子质谱图。

3.2 SIMS主要优缺点优点:⑴信息深度为几个原子层,甚至单层(最表面原子打出);⑵能分析氢在内的全部元素,并可监测同位素(m不同);⑶能分析化合物,得到其分子量及分子结构的信息;⑷对许多成分检测灵敏度很高,有的杂质检测极限达ppm(10-6),ppb(10-9)量级,是表面分析中灵敏度最高的一种(微量B,O等);⑸可进行微区成分分析和深度剖面分析,还可得到一定程度的晶格信息。

缺点:⑴定量差;⑵理论不完整;⑶破坏性分析。

在使用S-SIMS进行分析时,目前可以查找到多种有机化合物的标准谱图,可以参照手册对典型化合物进行定性分析。

但在分析一些手册中没有的化合物,一般需要先测定化学结构已知的标准样品,并将测定结果作为解析的基本谱图。

3.3 SIMS仪器类型[2]根据微区分析能力和数据处理方式,可以将SIMS分为三种类型:(1)非成像型离子探针。

用于侧向均匀分布样品的纵向剖析或对样品最外表面层进行特殊研究;(2)扫描成像型离子探针。

利用束斑直径小于10μm的一次离子束在样品表面作电视形式的光栅扫描,实现成像和元素分析;(3)直接成像型离子显微镜。

以较宽(5~300μm)的一次离子束为激发源,用一组离子光学透镜获得点对点的显微功能。

根据一次束能量和分析纵向,二次离子质谱可分为DSIMS和SSIMS两种。

在以往的SIMS研究中,DSIMS占据主导地位,而SSIMS作为一种新型的二次离子质谱正越来越受到重视。

随着技术的不断完善和发展,SSIMS技术也越来越多地应用于其他科研领域,其中在地球化学领域涉及对煤、烃源岩和矿物沥青质体的分析。

3.3 SIMS的最新进展⑴后电离技术(溅射中性粒子质谱,SNMS)分析方法:对溅射得到的中性粒子实行后电离(如左图所示),再进行质谱分析,可以提高二次离子产额,减小不同元素二次离子产额之间的差别后电离方法:激光、等离子体和电子优点:减小基体效应的影响⑵飞行时间二次离子质谱(TOF-SIMS)上图为ION-TOF设备及飞行时间原理图。

TOF-SIMS具有高分辨率(如M/△M ≥15 000,m/z>150);超高灵敏度(检出限ng/g量级);亚微米空间分辨率的离子成像;对无机元素和有机物同时分析等功能。

与其它仪器相比,TOF-SIMS非常适用于复杂离子的精确分析。

离子探针作为一个具有分析微量元素的高灵敏度的微区分析方法正在迅速发展。

但是,由于二次离子溅射机理较为复杂,定量分析仍存在许多问题。

今后发展和改进的主要方向是:提高质谱分辨率,以减少和排除二次离子质谱干扰;实现多种质谱粒子探测,以获得样品和多种粒子的信息和资料;定量分析和离子溅射机理的研究;新型液态金属离子源的应用;离子探针与多种仪器(如X 射线光电子能谱、紫外光电子能谱、俄歇电子能谱)联用等[1]。

参考文献:1 /view/906501.htm2 二次离子质谱(SIMS)分析技术及应用进展周强; 李金英; 梁汉东; 伍昌平质谱学报2004-06-303/wiki/%E7%A6%BB%E5%AD%90%E6%8E%A2%E9%92%88%E5%8 8%86%E6%9E%90%E4%BB%AA#catalog。

相关文档
最新文档