高强度螺栓热处理工艺改进
螺丝电镀后氢脆问题及解决方案
螺丝电镀后氢脆问题及解决方案直接说结论:以合金钢作原料生产的10.9级、12.9级、14.9级高强度螺栓电镀后(或仅酸洗后),必须在第一时间除氢脆处理,除氢脆处理的方法是:200度烘箱加热3-4小时析出氢原子。
以下内容是唠叨:第二次世界大战初期,英国皇家空军一架Spitpie战斗机由于引擎主轴断裂而坠落,机毁人亡,此事曾震惊英国朝野。
1975年美国芝加哥一家炼油厂,因一根15cm的不锈钢管突然破裂,引起爆炸和火灾,造成长期停产。
法国在开采克拉克气田时,由于管道破裂,造成持续一个月的大火。
我国在开发某大油田时,也曾因管道破裂发生过井喷,损失惨重。
在军事方面还有:美国“北极星”导弹因固体燃料发动机机壳破裂而不能发射,美空军F-11战斗机在空中突然坠毁等。
途中行驶的汽车因传动轴突然断裂而翻车,正在机床上切削的刀具突然断裂等事故枚不胜举。
这些灾难性的恶性事故,瞬时发生,事先毫无征兆,断裂无商量,严重地威胁着人们生产财产安全。
起初科学工作者们对出事原因,众说纷纭,一筹莫展。
后来经过长期观察和研究,终于探明这一系列的恶性事故的罪魁祸首——氢脆。
1、氢脆的原因氢脆通常表现为钢材的塑性显著下降,脆性急剧增加,并在静载荷下(往往低于材料的σb)经过一段时间后发生破裂破坏的趋势。
众所周知,氢在钢中有一定的溶解度。
炼钢过程中,钢液凝固后,微量的氢还会留在钢中。
通常生产的钢,其含氢量在一个很小的范围内。
氢在钢中的溶解度随温度下降而迅速降低,过饱和的氢将要析出。
氢是在钢铁中扩散速度最快的元素,其原子半径最小,在低温区仍有很强的扩散能力。
如果冷却时有足够的时间使钢中的氢逸出表面或钢中的氢含量较低时,则氢脆就不易发生。
如果冷却速度快,钢件断面尺寸比较大或钢中氢含量较高时,位于钢件中心部分的氢来不及逸出,过剩的氢将进入钢的一些缺陷中去,如枝晶间隙、气孔内。
若缺陷附近由于氢的聚集会产生强大的内压而导致微裂纹的萌生与扩展。
这是由于缺陷吸附了氢原子之后,使表面能大大降低,从而导致钢材破坏所需的临界应力也急剧降低。
10.9级大规格风电螺栓热处理工艺研究
10.9级大规格风电螺栓热处理工艺研究摘要:大规格风电螺栓要求具有很高的强度、良好的塑性和韧性指标,常规调质处理热处理手段很难达到要求,通过调整热处理工艺及设备改进圆满的解决了大规格风电螺栓高强度和高的低温冲击韧性的矛盾,并得出了最佳工艺方案,为解决生产中类似问题提供借鉴。
关键词:42crmoa钢;风电螺栓;水溶性淬火液;低温冲击性中图分类号:tu74 文献标识码:a 文章编号:1风电螺栓的要求风电螺栓需要很高的抗拉强度、高的屈服强度和良好的低温冲击韧性。
42crmoa钢是一种中碳高强度合金结构钢,在调质状态下能够满足上述要求。
我公司大量采用42crmoa钢来生产m36以上的大规格10.9级(hrc33~39)风电螺栓,其化学成分范围见表1,主要机械性能要求见表2。
其制造流程为:下料-锻造-粗加工-热处理-做纵向力学性能,探伤-合格后转精加工。
虽然42crmoa钢风电螺栓性能要求较普通钢结构高强度螺栓高,但主要难题是在连续大批量生产时,在满足高抗拉强度和屈服强度的基础上,同时具有良好的低温冲击韧性(试样尺寸:10*10*55mm,akv2.00mm)。
表142crmo钢化学成分%表210.9级风电螺栓机械性能要求我公司采用苏州新凌无马弗罐托辊式保护气氛网带炉,经检验无脱碳增碳,螺栓规格:m48mm*240mm,其机械性能见表3。
在实际的生产过程中发现在满足高抗拉强度和屈服强度的同时,其低温冲击吸收功往往只有10到20j之间,而客户把零下45摄氏度时的冲击吸收功大于27j的性能要求作为重点质量把关。
所以按原工艺,满足了低温冲击性能,就往往导致抗拉强度或屈服强度又不合格。
原两次热处理工艺方案如下:一次处理方案:1、保温温度为860℃,保温75 min,淬10#机械油,520℃回火,保温150 min,水冷二次处理方案:2、保温温度为860℃,保温75 min,淬10#机械油,540℃回火,保温150 min,水冷表3m48螺栓的原热处理工艺及主要机械性能为了满足风电螺栓工艺要求,经过对热处理工艺的认真分析研究,首先对现有的生产设备进行改造,然后调整热处理工艺,最终达到了客户所需的要求,具体机械性能如表3。
提高螺栓强度的措施
提高螺栓强度的措施引言螺栓是一种常用的连接元件,广泛应用于各种工程领域中。
螺栓的强度是保证连接可靠性和安全性的关键因素之一。
本文将介绍几种提高螺栓强度的常见措施,以帮助读者在工程设计和制造中选取适用的方法。
1. 选用高强度材料选择高强度材料是提高螺栓强度最直接的措施之一。
常用的高强度材料包括合金钢和不锈钢等。
这些材料具有较高的抗拉强度和抗剪强度,能够提供更大的连接力和承载能力。
2. 优化螺栓的几何形状螺栓的几何形状也会对其强度产生重要影响。
有以下几种优化螺栓几何形状的措施可以考虑:•增加螺纹截面积:增加螺纹的截面积可以增加螺纹的抗拉强度和抗剪强度。
可以通过增大螺纹的直径或增加螺纹的数量来实现。
•改变螺纹形状:选择合适的螺纹形状可以增加螺纹的紧固力和抗扭转能力。
常见的螺纹形状包括V型螺纹和三角形螺纹。
•增加螺栓的长度:增加螺栓的长度可以增加连接的稳定性和承载能力。
但需要注意螺栓长度过长可能导致螺栓过度伸长,造成连接松动。
3. 严格控制螺栓的制造工艺螺栓的制造工艺对其强度和质量也有很大影响。
以下是几个可以提高螺栓强度的制造工艺控制措施:•精密锻造:通过精密锻造工艺可以提高螺栓的密度和强度,减少内部缺陷和晶界间隙。
•确保热处理的合理性:适当的热处理可以提高螺栓的硬度和强度。
必须确保热处理的温度、时间和冷却速度等参数控制合理。
•严格的表面处理:螺栓的表面处理可以提高其耐腐蚀性和摩擦特性。
通过镀锌、镀镍等表面处理方式,可以延长螺栓的使用寿命。
4. 适当选择螺栓的使用环境螺栓的使用环境也会对其强度产生一定影响。
以下是选择螺栓使用环境的几个关键因素:•温度:高温环境下螺栓往往容易产生退火、脆化等问题。
在高温环境中需要选用耐高温材料或采取其他保护措施。
•湿度和腐蚀性:潮湿和腐蚀性环境容易导致螺栓的腐蚀和疲劳破坏,因此需要选用耐腐蚀材料或采取腐蚀防护措施。
•振动和冲击:振动和冲击会对螺纹造成额外的负荷,导致螺栓松动和断裂。
42CrMoVNb高强度螺栓钢的热处理研究
实 质 的重要 物理量 ) 的位 错群 交截 时
位 错 的 塞 集 数 目 , 止 了 过 大 的 应 力 防 集 中, 此 , 强化 的同时并不降低韧 因 在
伴 随 着 回火 温 度 的 升 高 , 原 子 C 的 固溶强 化作 用逐渐 消 失 , 而合 金元
素 的 弥 散 强 化 作 用 逐 渐 加 强 , ■ 者 在
高 强 度 螺 栓 钢 强 度 、 度 、 性 和 硬 韧
塑 性 的 影 响 。 了 考 察 回火 温 度 对 为 4 Cr O 2 M VNb 钢力学 性 能的影 响 , 将 试 样 在 9 0℃ 温 度 下 奥 氏体 化 并淬 3 火, 然后将 其在 4 0~6 0C问不 同的 0 5 ̄ 回火 温度 下进 行 回火 处理 。 了考察 为
这 是 因 为 随 着 回 火 温 度 的 升 高 , 饱 和 的 碳 ( 从 a 固溶 体 中 过 C) 逐 渐 析 出, 饱 和 C 子 的 固 溶 强 过 原 化作 用 逐渐 消 失 , 以强 度 、 度 逐 所 硬
渐 降 低 。 由 4 Cr O Nb 的 化 而 2 M V 钢
物 几 乎 全 部 析 出 , 次 硬 化 的 作 用 减 二
断升 高 ,2 MO 4 Cr VNb 钢的 性 逐渐 提高 , 但提高 幅度 较小 ;2 r VNb 4 C Mo
钢 的 韧 性 随 同 火 温 度 的 提 高 而 不 断 提 高, 而且 大 幅 度 提 高 。
限 制 了 具 有 不 同 柏 氏 矢量 ( 述 位 错 描
4 Cr 高强度螺栓 钢 的 2 o N M V b 热处 理研究
■ 文/ 燕友增 孙 宏飞 高 鹏 李福村 山 东科技 大学材料 学院
螺 栓 是 一 种 应 用 非 常 广 泛 的 配 件 , 航 空航 天 到 日常生 活 都离 不开 从
高强度螺栓用ML25B钢的热处理工艺
除较 彻 底 。
从 冷水 江 钢 铁 有 限 责任 公 司
定 ,螺栓 用钢 材是碳 素钢和 为增
加 强 度 、淬 透 性 而 添 加 铬 、铜 、 镍 、锰 等 合 金 元 素的 合 金 钢 ,以 及耐蚀为主的不锈钢等。此外 , 还 有 添 加 微 量 硼 使 淬 透性 大 幅 度 提 高 的 碳 硼 钢 。而 钢 材 的 淬 透性 越 好 ,调 质后 的 屈 强 比也 越 大 , 屈 强 比 的 增 大 意 味着 能 更好 地 发
冷 镦 加 工 , 不 需 要 预 先 球 化 退
( 1 )碳 :碳 是影响 钢材 冷
塑性 变 形 的最 主要 元 素 。 含 碳量 越 高 ,钢 的 强 度越 高 ,而 塑性 越
挥钢 材的潜 力 ,这对 于满 足产品
规 定 的 抗 拉 强 度 和屈 强 比的 高 强
火 处 理 , 节 约 了螺 栓 的 制 造 成 本 。M L 2 5 B 是GB / T 6 4 7 8 ~2 0 l 5 ( ( 冷 镦 和 冷挤 压 用 钢 新标 准 中
I l 热处理 H ‰㈨
高强度螺栓用M L 2 5 B 钢的热处理工艺
付平安 ,罗艳 冰 ,张先 鸣
摘要 :ML 2 5 B ;  ̄ . . G B / T 6 4 7 8 -2 0 1 5《 冷镦和 冷 挤压 用钢》 新标 准中 的一个 新牌 号 ,探 讨 了ML 2 5 B 碳 硼钢 的 热处理 淬 火方 法 以
下 面 简述 M L 2 5 B 碳 硼钢 的 热
处 理 淬 火方 法 以 及 进 行 的 热 处 理
0 . 2 8 % ,尽 量 不 考 虑退 火 工 艺
处理 。 Leabharlann 工艺 试验 ,供 参 考 。
高强度螺栓生产加工工艺流程
高强度螺栓生产加工工艺流程高强度螺栓生产主要分为热轧盘条-(冷拨)-球化(软化)退火-机械除鳞-酸洗-冷拨-冷锻成形-螺纹加工-热处理-检验几步!一,钢材设计在紧固件制造中,正确选用紧固件材料是重要一环,因为紧固件的性能和其材料有着密切的关系。
如材料选择不当或不正确,可能造成性能达不到要求,使用寿命缩短,甚至发生意外或加工困难,制造成本高等,因此紧固件材料的选用是非常重要的环节。
冷镦钢是采用冷镦成型工艺生产的互换性较高的紧固件用钢。
由于它是常温下利用金属塑性加工成型,每个零件的变形量很大,承受的变形速度也高,因此,对冷镦钢原料的性能要求十分严格。
在长期生产实践和用户使用调研的基础上,结合GB/T6478-2001《冷镦和冷挤压用钢技术条件》GB/T699-1999《优质碳素结构钢》及目标JISG3507-1991《冷镦钢用碳素钢盘条》的特点,以8.8级,9.8级螺栓螺钉的材料要求为例,各种化学元素的确定。
C含量过高,冷成形性能将降低;太低则无法满足零件机械性能的要求,因此定为0.25%-0.55%。
Mn能提高钢的渗透性,但添加过多则会强化基体组织而影响冷成形性能;在零件调质时有促进奥氏体晶粒长大的倾向,故在国际的基础上适当提高,定为0.45%-0.80%。
Si能强化铁素体,促使冷成形性能降低,材料延伸率下降定为Si小于等于0.30%。
S.P.为杂质元素,它们的存在会沿晶界产生偏析,导致晶界脆化,损害钢材的机械性能,应尽可能降低,定为P小于等于0.030%,S小于等于0.035%。
B.含硼量最大值均为0.005%,因为硼元素虽然具有显著提高钢材渗透性等作用,但同时会导致钢材脆性增加。
含硼量过高,对螺栓,螺钉和螺柱这类需要良好综合机械性能的工件是十分不利的。
二,球化(软化)退火沉头螺钉,内六角圆柱头螺栓采用冷镦工艺生产时,钢材的原始组织会直接影响着冷镦加工时的成形能力。
冷镦过程中局部区域的塑性变形可达60%-80%,为此要求钢材必须具有良好的塑性。
高强度螺栓用ml25b钢的热处理工艺
高强度螺栓用ml25b钢的热处理工艺高强度螺栓ML25B钢热处理工艺:一、硫化:1、硫化温度:为了能够获得最佳力学性能,ML25B钢的硫化温度一般为820℃。
2、硫化时间:根据不同厚度和材料的不同,硫化时间也不同。
一般情况下,厚度大于2.5毫米的材料,需要硫化12小时##,厚度小于2.5毫米的材料,可缩短时间至8小时。
3、硫化方式:ML25B钢的硫化一般使用深度硫化的方式,即在温度下以恒定的渗透率,实现深度硫化。
二、回火:1、回火温度:在进行回火前,应将硫化后的ML25B钢在常温空气中,在150℃附近进行升温处理,实现先硫后回火,以获取最优的必要性能。
回火的温度主要根据最终的力学性能,一般在1050℃和860℃之间。
2、回火时间:根据最终要求的力学性能和部件的厚度,确定回火时间。
一般情况下,回火的时间为5~10分钟。
三、淬火:1、淬火温度:淬火有助于去除回火后的材料弹性应变,减少晶间析出和产生塑性应变,提高材料的坚硬度及耐磨性。
淬火首选低温淬火,通常温度维持在520℃附近。
2、淬火时间:一般情况下,厚度大于2.5毫米的材料,需要淬火6小时;厚度小于2.5毫米的材料,可缩短时间至3小时。
四、渗碳:1、渗碳温度:为了获取最佳的力学性能,ML25B钢的渗碳温度一般可设定为820℃的温度。
2、连续渗碳时间:根据不同厚度和材料的不同,连续渗碳时间也不同。
一般情况下,厚度大于2.5毫米的材料,需要进行12小时的渗碳;厚度小于2.5毫米的材料,可缩短时间至8小时。
以上就是ML25B钢的高强度螺栓的热处理工艺,主要包括硫化、回火、淬火和渗碳四个工序,对硫化、回火、淬火温度和时间都有一定的规定和要求,可以根据厚度多重要求调整温度和时间,严格按照热处理的程序来进行热处理,才能获得高强度的螺栓。
高强度螺栓连接施工的注意点
高强度螺栓连接施工的注意点屈丽娟李毅民钱亚臣By Qu lijuan Li Yimin Qian Yachen2006-2-21摘要:高强度螺栓在施工中经常出现连接板和母体间滑移或螺栓拉断等问题,本文结合生产实际提出施工方法和解决办法供施工者参考和借鉴。
关键字:高强度螺栓连接施工高强度螺栓连接已经普遍的被应用到建筑钢结构、桥梁、大型起重机械等钢结构上。
在某种意义上讲高强度螺栓已经部分取代了铆钉。
尽管国内早已有相关技术标准等文件对高强度螺栓的施工有所规定,但标准的种类较多。
相关的机械设计手册中的相关内容也各有所不同。
高强度螺栓在现场的施工中经常发生这样或那样的问题,影响了施工的进度和质量。
在此,本文结合生产实际和现代国家标准就高强度螺栓的连接现场施工问题作一讨论,说明在实际应用高强度螺栓最容易出现的常见问题供设计者和施工者参考。
1.高强度螺栓连接副的施工扭矩在高强度螺栓连接施工中,许多设计者在施工图纸中标明了在施工时终扭高强度螺栓螺母的扭矩,而最终经常出现两种情况,一是在安装结束后加载时出现结合面的滑移现象;二是在施工工程中出现了螺栓被扭断现象。
在技术文件和图纸中各个企业的给定扭矩各不相同甚至有些数据相差甚大,而实际上大家都选用符合同一国家标准的高强度螺栓。
而在采购时不同的企业不同的批号的高强度螺栓的扭矩系数也是不同的,所以,一般最好不在图纸中给出确定的扭矩数值,以免所给定的扭矩数值和实际的需要数值偏差过大而影响到施工的质量。
在施工现场,一些安装部门会遇到高强度螺栓被拉断或者结合面出现滑移现象而不得不更换螺栓或将结合面处的连接板焊上。
可见高强度螺栓的施工扭矩数值非常重要。
在施工前必须十分合理的确定其参数,以保证最终的施工质量。
高强度螺栓最早使用的时间大约在三十多年前,当时各个企业一般自己设计制造高强度螺栓。
国家标准对高强度螺栓的要求也未达到现在这样规范和完整。
高强度螺栓在制造时也不规范。
制造时螺栓或螺母的毛坯常常是由机械加工完成,而不是现代的模锻制造;在螺纹方面常常使用普通机床加工螺纹而不是使用滚丝机加工制造。
高强度双头螺栓磷化工艺
高强度双头螺栓磷化工艺高强度双头螺栓磷化工艺:1.什么是高强度双头螺栓磷化工艺?高强度双头螺栓磷化工艺是一种螺栓磷化处理技术,属于热处理工艺的家族,是在特定条件下将金属表面涂覆一层锈抗剂,使物料耐磷化、耐腐蚀,然后上面加一层连接层,改善工件表面粗糙程度,这样就能达到原材料的力学性能提高。
2.双头螺栓磷化工艺有哪些特点?(1)磷化层厚度可控、强度高;(2)提高螺栓的抗疲劳强度,能有效抗腐蚀和耐磨损;(3)磷化层可使双头螺栓有更高的抗腐蚀性,延长使用寿命。
3.双头螺栓磷化工艺的过程有哪些?(1)打磨,将双头螺栓表面的氧化层、污垢及杂质等清洁干净,使表面光洁;(2)酸洗,使表面上的残留物完全清除,为磷化做准备;(3)磷化处理,将螺栓通过导电杆连接电解槽内的液体,在高位电势作用下,形成锈蚀剂膜,防止表面腐蚀;(4)表面处理,采用磨镝、补镀等装饰工艺来完成表面整形,改善外观;(5)质量检测,通过专业仪器,检测出磷化层厚度和电阻率,判断螺栓的抗腐蚀性。
4.双头螺栓磷化工艺的优点有哪些?(1)磷化层厚度可控;(2)耐腐蚀和抗失去的强度;(3)结构简单,节省空间;(4)螺纹可保持良好的强度;(5)安全可靠;(6)抗疲劳勒可提高,耐磨损性好;(7)磷化处理后的表面变得光滑,对装配有显著提升。
5.双头螺栓磷化工艺的缺点有哪些?(1)磷化过程要求工艺控制严格,以获得良好的镀层;(2)磷化成本比较高,耗费的原料较多;(3)磷化过程中的气体排放会有一定的污染;(4)需要准备专用仪器,以及专业的磷化技术人员;(5)磷化之后不宜在高温环境中使用,以免损坏耐磷化层。
总结:高强度双头螺栓磷化工艺是一种可控制厚度、强度高的螺栓磷化处理技术,可以提高螺栓的抗疲劳强度,延长使用寿命。
磷化处理过程需要进行打磨、酸洗、磷化处理、表面处理和质量检测等多步,它有节省空间,安全可靠,抗腐蚀性好,装配有显著提升等优点,但成本较高,排放有污染,需要专用仪器及专业磷化技术人员,且不宜在高温环境中使用。
42CrMo钢用于高强度螺栓的热处理工艺
42CrMo钢用于高强度螺栓的热处理工艺乔岳云,郭荣【期刊名称】金属加工:热加工【年(卷),期】2014(000)019【总页数】3在不同气候条件下,用于固定风电塔筒紧固件的性能要求不达标问题逐步显现出来。
内蒙古西部地区的风沙较大,风沙侵蚀也较严重,风电塔筒紧固件就经常达不到强度、硬度等综合性能的要求。
本文针对风电塔筒紧固件在大风沙地区的使用环境下,42CrMo钢高强度螺栓的综合性能达不到要求这一问题,从调整42CrMo钢高强度螺栓淬火加热时的碳势、淬火冷却时的水溶性淬火冷却介质浓度和回火温度入手,通过测定高强度螺栓经热处理后的力学性能和显微组织分析等措施,最大限度地提高42CrMo钢的综合性能,以满足用于高强螺栓的42CrMo钢在特定使用环境下的高要求。
1.试验材料及方法(1)试验材料试验原材料是国内某钢厂生产的φ40mm双真空冶炼钢棒料,该材料经复验后得到的化学成分见表1。
(2)试验方法高强度螺栓的加工过程是将φ40mm的棒料经粗车→冲压→缩颈→退火→攻螺纹→淬火→回火→性能测试→高强度螺栓。
其中淬回火工序在托辊型网带炉生产线上进行,具体工艺为:将托辊型网带炉生产线的网带淬火炉升温至400℃,保温1h,继续升温到600℃,保温1h,当温度升高到800℃,开始通入甲醇和丙酮作为保护气氛,以免高强度螺栓表面脱碳及网带淬火炉炉膛被氧化,保温1h,继续升温到860℃并稳定在这一温度,当碳势稳定在0.4%时,开始放入待处理高强度螺栓,保温1.5h(本试验高强度螺栓的直径为36mm,所以保温时间为1.5h),出炉用水溶性淬火冷却介质进行冷却,然后在指定回火温度下回火,保温2h(同样,利用高强度螺栓的直径为36mm,确定出回火保温时间为2h),出炉水冷。
本文采用正交试验设计出3个热处理工艺参数的影响因素,通过正交试验以期找到它们之间的交互影响,确定出各因素的最佳参数。
2.试验结果及分析利用正交试验设计出42CrMo钢高强度螺栓进行热处理时的碳势、水溶性淬火冷却介质和回火温度3个参数因素及其3个水平,见表2。
螺栓的热处理方法
螺栓的热处理方法螺栓的热处理方法螺栓加工工艺为:热轧盘条-(冷拨)-球化(软化)退火-机械除鳞-酸洗-冷拨-冷锻成形-螺纹加工-热处理-检验一,钢材设计在紧固件制造中,正确选用紧固件材料是重要一环,因为紧固件的性能和其材料有着密切的关系。
如材料选择不当或不正确,可能造成性能达不到要求,使用寿命缩短,甚至发生意外或加工困难,制造成本高等,因此紧固件材料的选用是非常重要的环节。
冷镦钢是采用冷镦成型工艺生产的互换性较高的紧固件用钢。
由于它是常温下利用金属塑性加工成型,每个零件的变形量很大,承受的变形速度也高,因此,对冷镦钢原料的性能要求十分严格。
在长期生产实践和用户使用调研的基础上,结合GB/T6478-2001《冷镦和冷挤压用钢技术条件》GB/T699-1999《优质碳素结构钢》及目标JISG3507-1991《冷镦钢用碳素钢盘条》的特点,以级,级螺栓螺钉的材料要求为例,各种化学元素的确定。
C含量过高,冷成形性能将降低;太低则无法满足零件机械性能的要求,因此定为%%。
Mn能提高钢的渗透性,但添加过多则会强化基体组织而影响冷成形性能;在零件调质时有促进奥氏体晶粒长大的倾向,故在国际的基础上适当提高,定为%%。
Si能强化铁素体,促使冷成形性能降低,材料延伸率下降定为Si小于等于%。
.为杂质元素,它们的存在会沿晶界产生偏析,导致晶界脆化,损害钢材的机械性能,应尽可能降低,定为P小于等于%,S小于等于%。
B.含硼量最大值均为%,因为硼元素虽然具有显着提高钢材渗透性等作用,但同时会导致钢材脆性增加。
含硼量过高,对螺栓,螺钉和螺柱这类需要良好综合机械性能的工件是十分不利的。
二,球化(软化)退火沉头螺钉,内六角圆柱头螺栓采用冷镦工艺生产时,钢材的原始组织会直接影响着冷镦加工时的成形能力。
冷镦过程中局部区域的塑性变形可达60%-80%,为此要求钢材必须具有良好的塑性。
当钢材的化学成分一定时,金相组织就是决定塑性优劣的关键性因素,通常认为粗大片状珠光体不利于冷镦成形,而细小的球状珠光体可显着地提高钢材塑性变形的能力。
采煤机用高强度螺栓热处理工艺
≥2 0 J ・ c m 。。 。
2 . 煤矿用高强螺栓 工艺试 验
选 用4 2 C r Mo 与3 5 C r Mn S i 两 种高 强 度螺 栓材 料 进 行 工艺 试 验 ,材 料 化 学 成分 见表 1 。试 件 淬 火 工
艺 见表2 。 表 1 材 料化学成分 ( 质量分数 )
2 0 0 0( ( 紧 固件 力学性 能螺栓 、螺钉 、螺柱 》力学 性能 1 0 . 9 级标准 ,即:
9 0 0 N/ m m , ≥9 % ,a
。 ≥1 0 0 0 N / mm ,o - o . 2 m i n ≥
一
采 煤 机 用 高 强度 螺 栓 淬 火 后 硬 度 测 试 采 用HR 1 5 0 洛 氏硬 度 计 ,按 轴 向取 三 点 ,即 两端 和 中 间
4 2 C r M O 0 4 5
.
O. 3 7
0. 8 0
≤ 。 ・
热处理口诀 表 2淬 火 工 参 数 材 料 3 5 Cr Mn S i 4 2 Cr Mo
( ℃ )
回火
3 2 0 3 2 0
热处理安全常识 电
电器 设备和 仪 表 ,绝 缘接 地检 查好 , 电极 工件要 离开 ,五 十 毫米 不 能少 。
采 煤 机 用 高 强 度 螺 栓 M4 2 ×2 0 0 mm。 技 术 要 求 :淬 火 硬 度3 2 ~3 6 HRC,必须 符 合 GB 3 0 9 8 . I ~
3 5 Cr Mn S i
l l 6 0. 6 5
4 2 Cr Mo
1 3 0 9 . 2 7 1 2 3 8. 5 0
处理 后 硬度 均 匀 ,并 可确 保力 学性 能 参数 。 MW ( 2 0 1 3 0 1 0 9 )
钢结构高强度螺栓连接技术新进展
㊃综㊀述㊃钢结构(中英文),36(1),1-12(2021)DOI :10.13206/j.gjgS 20081901ISSN 2096-6865CN 10-1609/TF㊀㊀编者按:装配式钢结构建筑已经成为建筑行业发展的新方向和新趋势,其连接节点及结构体系的高效装配化是装配式钢结构建筑设计中的重点和难点之一㊂高强度螺栓连接作为20世纪70年代以来我国快速发展的一种钢结构施工技术,其拆装方便的特点很好地契合了装配式结构施工的特点,且具有节点刚度大㊁承载能力强㊁安全性能高等优点㊂近年来高强度螺栓的新品种㊁新技术㊁新工艺㊁新节点㊁新结构等不断涌现㊂基于此背景,本期邀请中冶建筑研究总院有限公司侯兆新大师作为专刊主编,集中报道中冶建筑研究总院有限公司与北京建筑大学联合团队在高强度螺栓连接㊁全螺栓连接节点及高效装配式钢结构体系方面的研究成果,以期为高强度螺栓连接和高效装配式钢结构体系的推广应用以及标准规范的制定提供技术支撑和参考㊂钢结构高强度螺栓连接技术新进展∗侯兆新1,2㊀龚㊀超1,2㊀张艳霞3㊀梁梓豪2㊀梁伟桥2㊀方五军2(1.中冶建筑研究总院有限公司,北京㊀100088;2.国家工业建筑诊断与改造工程技术研究中心,广东深圳㊀518055;3.北京建筑大学土木与交通工程学院,北京㊀100044)摘㊀要:高强度螺栓连接是钢结构现场连接的主要方式之一,在工程中广泛应用㊂随着科技的进步,高强度螺栓连接技术不断发展,高强度螺栓的新品种㊁新技术㊁新工艺㊁新设备不断涌现㊂对高强度螺栓连接技术新进展进行调查研究㊁总结概括,可以为高强度螺栓标准规范的修订提供参考,为设计㊁施工提供更多选择㊂高强度螺栓新品种主要包括12.9级及以上高强度螺栓㊁单向螺栓和环槽铆钉螺栓㊂目前国内对12.9级及以上高强度螺栓㊁单向螺栓和环槽铆钉螺栓进行了一定研究和工程示范,由于缺乏相关的标准规范支持,制约了其工程应用㊂针对高强度螺栓的新工艺调研了高强度螺栓预拉力指示器和防腐蚀技术,从这两种工艺的特点出发,对比分析了国内外学者的相关研究成果㊂新式预拉力指示器避免了传统预拉力指示器的人为施工误差,能够提高高强度螺栓预紧力施工的精确度;高强度螺栓镀锌防腐技术可以有效减缓螺栓腐蚀,减少后期维护保养㊂国内外对于高强度螺栓连接设计方法存在差异,将国内外的标准规范进行比较,能够为现有规范的修订提供参考㊂国内外规范中关于螺栓撬力计算方法㊁最小螺栓预拉力㊁摩擦型高强度螺栓和承压型高强度螺栓的承载力计算方法的对比表明:1)中国规范中螺栓撬力的计算结果较为保守㊂2)中国规范中高强度螺栓预拉力规定值比美国规范规定值平均约小15%,比欧洲规范规定值平均约小10%㊂3)各国规范关于摩擦型高强度螺栓的抗剪承载力的计算式基本一致,但对于接触面处理方法的定义及对应的抗滑移系数的规定则各不相同㊂4)对于承压型高强度螺栓的孔壁承压强度,按照美国规范计算得到的承压强度最大,欧洲规范次之,中国规范最为保守;对于承压型高强度螺栓的抗拉和抗剪强度,按照欧洲规范计算得到的设计值最大,美国规范次之,中国规范最小㊂总体上,中国规范较国外规范保守㊂关键词:高强度螺栓;高强度螺栓连接;设计方法;标准规范;新进展∗海口市国家海洋经济创新发展示范城市建设课题(HHCL201814)㊂第一作者:侯兆新,男,1963年出生,硕士,教授级高级工程师㊂通信作者:龚超,男,1981年出生,博士,教授级高级工程师,gongchao6330@㊂收稿日期:2020-11-280㊀引㊀言20世纪30年代,随着超高层钢结构在美国的推广应用,产生了高强度螺栓连接这一新型的钢结构连接方式;20世纪50年代末,我国开始高强度螺栓连接的研究,并在70年代投入使用后迅速发展,成为国内广泛应用的设计施工工艺;1988年,高强度螺栓连接列入我国GBJ 17 88‘钢结构设计规1侯兆新,等/钢结构(中英文),36(1),1-12,2021范“;1992年,原国家建设部组织编制了JGJ82 91‘钢结构高强度螺栓连接的设计㊁施工及验收规程“;2011年,中华人民共和国住房和城乡建设部发布修订后的JGJ82 2011‘钢结构高强度螺栓连接技术规程“[1-3]㊂近年来,钢结构建筑发展迅速,在愈来愈多的钢结构工程采用高强度螺栓连接的同时,对高强度螺栓及其连接节点的研究也一直在深入㊂更高性能等级的螺栓和新螺栓品种,如12.9级㊁14.9级高强度螺栓㊁单向螺栓㊁环槽铆钉等的出现使得高强度螺栓的种类更为丰富,镀锌防腐蚀螺栓㊁预拉力指示器等新工艺㊁新方法给高强度螺栓的设计施工带来了新的内容㊂本文将对这些新技术㊁新工艺进行介绍,可以为标准规范的修订提供参考㊂由于各个国家钢材的生产㊁螺栓的制作工艺和节点连接的设计原理存在差异,各个国家对于高强度螺栓连接设计规定也存在差异㊂对不同国家规范(包括美国规范ANSI/AISC360-10[4]㊁英国规范BS 5950-1ʒ2000[5]㊁欧洲规范EN1993-1-8[6])中关于高强度螺栓连接设计方法与中国GB50017 2017‘钢结构设计标准“[7]㊁中国JGJ82 2011‘钢结构高强度螺栓连接技术规程“[8]进行对比分析,可以为标准规范的修订提供参考㊂1㊀高强度螺栓新技术、新工艺介绍1.1㊀12.9级及以上高强度螺栓普通螺栓的强度等级一般分为4.4级㊁4.8级㊁5.6级和8.8级,高强度螺栓的强度等级一般分为8.8级㊁9.8级㊁10.9级和12.9级,其中10.9级较为常用㊂12.9级高强度螺栓主要应用于汽车发动机盖与缸体的连接,其工作应力高,并要求十分高的可靠性㊂12.9㊁14.9级高强度螺栓在原始表面状态下,一般在20h左右即发生延迟断裂;经涂装后,其抗延迟断裂的时间显著延长达到或接近标准要求[9];在建筑钢结构中,螺栓连接的节点应力相对较低,因此现如今12.9级及以上的高强度螺栓在建筑领域应用较少㊂随着高强度和高性能钢材在工程中的广泛应用,对高强度螺栓的设计和应用也提出了更高的要求㊂在材料方面,开发了42CrMoVNb等新螺栓钢种,在耐延迟性能和延性方面都得到了较大的改善;在性能研究方面,我国学者将12.9级螺栓应用在各种高强钢节点中进行研究,提出了高强度螺栓使用的方法和建议[10]㊂1.1.1㊀螺栓材料12.9级高强度螺栓通常采用SCM435合金钢材料制造,其抗拉强度达到1220MPa;对于12.9级以上的高强度螺栓,惠卫军等[11-13]在常用42CrMo 钢基础上,研制出高强度螺栓钢,其在1300MPa级的强度水平下具有良好的耐延迟断裂性能,同时设计出1500MPa级的高强度螺栓钢42CrMoVNb,可以用作14.9级高强度螺栓钢;蔡璐等[14-16]利用ADFI钢研制出1300MPa级高强度螺栓,并对其工艺和力学性能进行了试验;卢海波等[17]以ADFI高强度螺栓钢为基础,开发出性能满足14.9级的发动机缸盖螺栓,其抗拉强度为1.45~1.49GPa㊂1.1.2㊀性能研究Ana M Girao Coelho等[18-19]把12.9级螺栓用于端板连接,通过试验研究其节点性能及破坏模式,发现12.9级螺栓试件在破坏时具有脆断裂缝,基本没有塑性变形;PrimožMože和Darko Beg[20]㊁Cha-kherlou T N等[21-22]进行了12.9级螺栓用于双剪面情况下的高强度钢材节点性能的研究,研究表明:采用12.9级螺栓,螺栓剪切破坏时变形较小,原因是12.9级螺栓的材质为高强钢,塑性变形小㊂1.1.3㊀标准规范对于建筑工程应用领域,国际标准ISO898.1-2009[23]对12.9级螺栓材料性能及螺栓强度作了相关规定,见表1和表2㊂而在中国标准GB50017 2017[7]㊁中国规程JGJ82 2011[8]㊁美国规范ANSI/ AISC360-10[4]㊁英国规范BS5950-1ʒ2000[5]和欧洲规范EN1993-1-8[6]中均没有对12.9级螺栓进行相关的规定;对于机械工程应用领域,JB/T 7150 1993[24]中给出了12.9级螺栓在工程机械应用中的主要检查项目及检测方法㊂1.1.4㊀工程应用俄罗斯莫斯科市某超高层建筑采用了12.9级高强度螺栓连接,该建筑高340m,94层,主体结构采用钢筋混凝土剪力墙结构,32~36层钢桁架连接节点全部采用12.9级高强度螺栓连接[25]㊂1.2㊀单向螺栓在钢管结构中,闭口钢管相对于开口钢管有着更好的抗弯㊁抗扭刚度,闭口钢管与混凝土结合使用,能够实现较高的承载力㊂不过,闭口钢管采用普通螺栓进行连接会出现施工困难:普通螺栓在连接钢构件时需要在构件两边进行施拧,由于闭口钢管截面封闭,普通的螺栓无法完成紧固,单向螺栓的出2钢结构高强度螺栓连接技术新进展㊀㊀表1㊀ISO898.1-2009对高强度螺栓力学性能的相关规定Table1㊀Specifications of ISO898.1-2009about high strength bolt mechanical properties性能等级直径d/mmR m/MPa R p0.2/MPa正常值最小值正常值最小值S f p/MPa(正常值)S p,nomR p0.2,minA/%(最小值)Z/%(最小值)头部坚固性8.8ɤ168008006406405800.911252未断裂>168008306406406000.911252未断裂9.8ɤ169009007207206500.901048未断裂10.9 100010409009408300.88948未断裂12.9 12001220108011009700.88844未断裂㊀㊀注:R m为公称抗拉强度;R p0.2为机加工试样规定非比例伸长0.2%的应力;S f p为保证载荷下的应力;S p,nom/R p0.2,min为保证应力比;A为机加工试样的断面伸长率;Z为机加工试样的断面收缩率㊂表2㊀ISO898.1-2009对高强度螺栓钢材性能的相关规定Table2㊀Specifications of ISO898.1-2009about steel materials’mechanical properties for high strength bolt性能等级材料和热处理化学成分极限(熔炼分析)/%碳最小值最大值磷(最大值)硫(最大值)硼(最大值)回火温度(最小值)/ħ8.8f碳合金钢(如硼㊁锰或铬)淬火并回火0.150.400.0250.0250.003425中碳钢,淬火并回火0.250.550.0250.025合金钢,淬火并回火g0.200.550.0250.0259.8f碳合金钢(如硼㊁锰或铬)淬火并回火0.150.400.0250.0250.003425中碳钢,淬火并回火0.250.550.0250.025合金钢,淬火并回火g0.200.550.0250.02510.9f碳合金钢(如硼㊁锰或铬)淬火并回火0.200.550.0250.0250.003425中碳钢,淬火并回火0.250.550.0250.025合金钢,淬火并回火g0.200.550.0250.02512.9f,h,i合金钢,淬火并回火g0.300.500.0250.0250.003425 12.9f,h,i中碳合金钢(如硼㊁锰㊁铬或钼)淬火并回火0.280.500.0250.0250.003380㊀㊀注:f用于该性能等级的材料应具有良好的淬透性,以保证产品回火前,螺纹部位的核心有约90%的马氏体组织㊂g表示该合金钢应至少包含下列元素中的一种,最低含量如下:铬0.30%,镍0.30%,钼0.20%,钒0.10%;当所规定的是结合两种㊁三种或四种元素且含量少于上述值时,合金钢所使用的限制值由上述两种㊁三种或四种相关元素个别限制值的总和的70%来规定㊂h表示对于12.9/12.9级的表面不允许有能用金相法测出的白色磷化层,需要一个合适的检测方法㊂i表示必须注意考虑12.9/12.9级的用途,需要考虑制造者的能力,施拧方法和公共用途,因为环境的因素可能引起紧固件的应力腐蚀破坏㊂现很好地解决了这个问题㊂单向螺栓能够实现在单侧安装㊁单侧拧紧,并且能够达到普通高强度螺栓的力学性能㊂单向螺栓自20世纪80年代开始研发以来,国外已经出现许多不同的单向螺栓产品,例如英国Lindapter International公司的Hollo-Bolt以及改进的RMH㊁EHB螺栓;英国Advanced Bolting Solu-tions公司的Molabolt螺栓;英国Blind Bolt公司的Blind Bolt螺栓;美国LNA Solutions公司的Box Bolt螺栓;美国Huck International公司的BOM,HS-BB和Ultra-Twist螺栓;澳大利亚Ajax Engineered Fasteners公司的Oneside Fastener螺栓;荷兰Flow-drill BV公司的Flowdrill技术等㊂1.2.1㊀单向螺栓产品国内的学者也对单向螺栓进行了研究与开发㊂李国强等[26-27]对单向螺栓进行了较为详细的研究,申请了单边紧固螺栓的发明专利[28],研制开发出钢结构用国产自锁式8.8和10.9级单向螺栓STUCK-BOM,并进行了拉伸试验和剪切试验,探究单向螺栓连接钢板在轴向拉力和竖向剪切作用力下连接节点的承载能力和失效模式,试验表明单向螺栓抗剪承载力相较于同等级普通螺栓有较大的提高;同时从螺杆的拉伸变形㊁套筒的变形㊁锥头与套筒间的相对滑移三个方面分析,给出自锁螺栓的初始抗拉刚度的计算方法,计算结果与试验数据吻合较好,可以为工程应用提供参考㊂范圣刚等[29]以M20扭剪型高强度螺栓为原型,设计出一种新型单面螺栓 SHSOB螺栓,给出了其成型原理,安装步骤,并且对预紧力随时间变化趋势㊁破坏模式㊁荷载-位移曲线变化规律㊁抗剪承载力计算式等进行了试验探究和理论分析㊂刘康等[30]发明了一种新型单向螺栓 注脂单向螺栓㊂该种螺栓由螺母㊁螺杆㊁颈垫㊁橡胶垫圈㊁套筒㊁锥形螺母组成㊂螺母㊁颈垫和橡胶垫圈上留有注脂孔道㊂胶脂由孔道注入单向螺栓内部填充套筒与螺杆之间的间隙以及套筒与螺栓孔壁之间的间隙,能解决螺栓预紧力较小时螺栓在螺栓孔中滑移导致连接初始刚度较低的问题㊂陈珂璠等[31]提出了一种新型单边紧固螺栓专利 伞式展开螺栓紧固件以及旋转式展开螺栓紧固件㊂3侯兆新,等/钢结构(中英文),36(1),1-12,20211.2.2㊀单向螺栓节点性能王燕等[32]对比了在螺栓等级相同的条件下(8.8级),采用单向高强度螺栓连接和普通高强度螺栓连接的T型试件节点的破坏模式㊁节点承载力㊁试件刚度㊁变形等试验结果的差异,分析得出单向高强度螺栓相较于普通高强度螺栓,其抗拉极限承载力基本相同,T型试件的承载力与初始刚度也基本相同,但是单向高强度螺栓节点的塑性变形能力较弱㊂王静峰等[33]在欧洲规范EN1993-1-8基础上,通过数学推导与建模计算,得到圆形钢管混凝土柱高强度单向螺栓T型件的初始刚度计算方法;并且以10.9级高强度单向螺栓连接T型件与圆管混凝土柱为算例,用推导出的计算式结果与试验结果进行对比,两者吻合较好,且理论计算值相对于试验值偏小,可认为给出的算式偏于保守㊂王静峰等[34]还对钢管混凝土柱与组合梁单边高强度螺栓端板连接的两层框架进行拟动力试验研究,试件在加载中表现出良好的抗震性能和耗能能力,且在柱截面含钢率相同的情况下,随着输入加速度峰值的增大,采用单向螺栓端板连接的圆钢管混凝土框架的累积耗能大于半刚性方钢管混凝土框架㊂王培军等[35]建立有限元模型,模拟分析了3种带螺纹T型翼缘板不同厚度的单向高强度螺栓(8.8级)T型节点在8种温度作用下抗拉性能的差异,通过对比不同节点的破坏模式㊁抗拉强度和刚度,得出结论:单向高强度螺栓T型节点的抗拉强度的变化与钢材受高温影响材料性能的变化一致,高温下节点的破坏模式与常温下的破坏模式相同㊂1.2.3㊀工程应用国内对单向螺栓的工程应用有诸如厦门人行栈桥工程㊁武汉广电创新产业园大雨棚㊁凯尔科技大厦高层办公楼等案例,但总体上来讲单向高强度螺栓在国内的工程实践很少,缺乏相关的技术规程,国内单向高强度螺栓种类单一,也是推广单向螺栓工程应用的阻力之一㊂同济大学正主编‘高预紧力单向螺栓节点技术规程“,在相关的技术规程完善以及螺栓种类丰富之后,单向高强度螺栓也许会越来越受设计和施工者的青睐㊂1.3㊀环槽铆钉环槽铆钉,又称哈克(Huck)铆钉或哈克螺栓,是根据胡克定律发明的一种连接副(图1)㊂采用专用的铆接工具铆固后,铆钉受轴向力拉伸会径向挤压套环,使套环内径金属流动到铆钉的环槽中,形成永久的金属塑性变形连接㊂环槽铆钉具有连接强度高,防松性能优异,抗疲劳强度高的特点㊂图1㊀环槽铆钉示意Fig.1㊀Sketch of ring groove rivet1.3.1㊀节点性能张天雄等[36]对高强度不锈钢短尾环槽铆钉进行了铆钉原材料的单轴拉伸试验,单钉预紧力测量试验㊁单钉抗拉抗剪承载力试验及钉群铆接顺序试验,结果表明:环槽铆钉原材料05Cr17Ni4Cu4Nb满足10.9级高强度螺栓对材料力学性能的要求㊂环槽铆钉完成铆接后预紧力损失极小,预紧力实测值为205.6kN,建议取1.3的安全系数,采用155kN 作为设计值,与M20的10.9级高强度螺栓预紧力设计值保持一致㊂高强度不锈钢短尾环槽铆钉连接副的铆接顺序原则可参照JGJ82 2011中相关规定㊂张向峰等[37]和王永岩等[38]对环槽铆钉铆接件进行拉伸性能试验和疲劳性能试验,总结出环槽铆钉连接件的拉伸破坏过程规律㊁疲劳寿命规律和疲劳破坏原因,并根据有限元模拟结果对后期铆接件的改进以及铆钉的补强提供了基础数据支持㊂王利等[39]采用LMTF和LMTP两种套环与LMC铆钉配合使用,研究不同套环对连接强度的影响,结果表明:两种套环与LMC铆钉配合使用的轴向拉脱强度和剪切强度均符合‘铁路货车专用拉铆钉及铆接技术条件“的要求,使用LMTF套环的承载力更高㊂张钦等[40]基于Deform数值模拟方法,对LMDSM-T22-50环槽铆钉进行了有限元模拟,分析了铆接接头夹紧承载力㊁拉脱承载力㊁剪切承载力及其疲劳性能,并进行了相关的试验验证,结果表明:有限元模拟结果与试验数据吻合较好㊂该种型号的环形铆钉拉脱力平均值为375.5kN,剪切力为272.3kN,在经历200万次疲劳试验后未发生疲劳破坏,满足GB/T36993 2018‘环槽铆钉连接副技术条件“的要求㊂邓华等[41]和陈伟刚[42]用环槽铆钉对铝合金板进行搭接连接,分析了节点破坏模式及铆钉孔径㊁端距㊁边距等参数的影响,结果表明:节点破坏模式有4钢结构高强度螺栓连接技术新进展环槽铆钉剪切破坏㊁板件顶端纵向撕裂破坏与侧边横向撕裂破坏3种,控制端㊁边距能避免后两种破坏㊂环槽铆钉与连接板件间的摩擦力非常有限,属于承压型连接㊂剪力作用下,节点的位移-荷载曲线可分为弹性段(摩擦段㊁滑移段㊁承压段)和强化段,可用承压段的末端荷载值作为受剪承载力设计值㊂Wang等[43]对环槽铆钉连接的铝合金T型连接件进行了单调拉伸试验,研究其破坏模式㊁极限承载力和荷载-位移曲线,并总结了环槽铆钉连接的铝合金T型连接件承载力的计算式;另外Wang 等[44]对环槽铆钉连接的铝合金梁柱足尺节点单点荷载下转动刚度㊁变形能力与抗弯承载力进行了试验探究,发现欧洲规范对承载力计算偏保守,并给出了对应的修正式㊂王元清等[45]对环槽铆钉连接的铝合金箱形-工字形盘式节点进行了静力试验,并进行了有限元模拟分析,研究其在面外弯矩作用下的传力机理㊁变形性能㊁节点刚度㊁破坏模式和极限承载力㊂1.3.2㊀工程应用环槽铆钉于20世纪40年代在美国由Huck发明,最初是为了解决第二次世界大战中轰炸机在航母的频繁降落产生的巨大振动导致螺栓的松动失效㊂经过几十年的发展,环槽铆钉已经成功应用在航空航天㊁铁路车辆㊁铁路轨道㊁重型汽车和建筑钢结构等领域,解决了紧固件在恶劣工况下的连接失效问题㊂在国外,环槽铆钉广泛应用于铝合金网壳节点体系,其中最典型的应用是美国Temcor公司的专利 铝合金单层网壳节点体系,另外环槽铆钉还广泛应用于桥梁工程领域,例如澳大利亚新南威尔士州钢结构桥梁和美国旧金山奥克兰海湾大桥等㊂在国内,环槽铆钉作为紧固连接件广泛应用于矿山机械的振动筛㊁通信铁塔上等,还作为特种连接件应用于江门中微子探测器项目㊂另外,环槽铆钉还应用于我国的桥梁工程领域,如天府机场高速公路钢混组合桥和廊坊跨京沪高铁光明公路立交桥以及建筑工程领域,如中国现代五项赛事中心游泳击剑馆,宁波小学体育馆钢结构穹顶,北京嘉德艺术中心幕墙和雄安新区交通枢纽金属屋顶等㊂1.4㊀预拉力指示器高强度螺栓施加预紧力后,使得被连接构件之间紧固,从而产生较大的静摩擦力,来抵抗构件承受的横向荷载,避免螺栓发生剪切破坏,同时也阻止了构件间的水平滑移,增强连接的紧密性和刚性;另外,对螺栓施加预紧力可以提高螺栓的疲劳强度㊂预紧力的大小会影响构件承载力的大小,因此对于预紧力施加的大小需要加以控制㊂由于钢结构中应用的高强度螺栓数量庞大,所以施工方法的可靠和方便具有重要价值㊂因转角法的使用相对麻烦,国外研究采用 直接拉力指示器 来控制高强度螺栓的紧固轴力,并已逐步应用于建筑钢结构㊁桥梁㊁电站㊁风电设备㊁石化设备和体育会展场馆等方面㊂传统的预拉力指示器DTI(图2)是一个带有特殊凸起的垫圈,垫圈夹在螺栓连接件与螺母之间,通过观察垫圈凸起的被压缩程度,来获得对应施加预紧力的大小㊂观察垫圈被压缩程度有间隙测量法和彩胶目测法㊂间隙测量法顾名思义即是测量垫圈压缩后凸起的高度来表示垫圈的压缩程度;而彩胶目测法则是在垫圈上填充彩胶,当垫圈被压缩时,彩胶会喷出,用彩胶喷出量来表示垫圈的压缩程度㊂国外已有相关的DTI标准㊂图2㊀直接预拉力指示器DTIFig.2㊀Direct pre-tension indicator DTI陈纪平等[46-47]对传统直接拉力指示器及其施工技术进行了改良,研制出 自动控制垫圈 (ACW)㊂ 自动控制垫圈 (图3)的形式㊁尺寸和控制螺栓预拉力的原理与DTI基本相同,但是ACW的控制方法原理是 以力控制力 ㊂配套地使用超薄传感器(图3中的检测条)能够检测控制点与基准点的相对距离,并且能够输出到螺栓预紧力施工机器的控制电路中,在达到设计预紧力(控制点与基准点达到同一高度)时自动关闭预紧力施工机器,解决了DTI依靠人工控制(间隙测量法和彩胶目测法)而带来的偏差,提高高强度螺栓预紧力施加值的精确度,从而提高高强度螺栓工程应用的安全性㊂1.5㊀螺栓防腐蚀螺栓属于金属制品,在使用过程中螺栓容易受到周围环境的影响而发生腐蚀,而螺栓腐蚀后的力学性能会因此受到影响㊂作为节点连接的部件,高强度螺栓发生锈蚀容易造成节点的失效,降低结构整体的安全性㊁稳定性㊂因此,有必要对螺栓进行防腐蚀处理㊂易桂虎等[48]提出了一种新的螺栓防腐施工方5侯兆新,等/钢结构(中英文),36(1),1-12,20211 检测条输出端;2 基准点;3 控制点㊂图3㊀自动控制垫圈Fig.3㊀Auto-control gasket法,即在原渗锌加封闭漆的防腐形式不变的基础上涂装油漆㊂螺栓安装前先涂装螺杆,两端预留,在螺栓安装后涂装螺杆两端和螺母㊂这种方法虽然增加了现场施工工序,但是采用这种防腐做法可以大大降低渗锌涂层的消耗速度㊂同时,由于外露部分的螺母等是在安装后才进行涂装,可以对螺栓孔起到一定的封堵作用,减少水汽的进入㊂涂料加渗锌的双层保护,可以有效减缓腐蚀,减少后期维护保养㊂Henryk Kania等[49]提出了一种新型的热对流处理方法来给10.9级螺栓进行表面镀锌处理㊂该新型热处理方法将螺栓放进一个密闭的旋转容器内,锌粉将在旋转容器内被连续地撒播到螺栓表面,锌粉中还混合了ZnO作为填料㊁NH4Cl作为催化剂㊂试验证明,这种新型的螺栓镀锌处理能够使被处理的10.9级螺栓在保持原有力学性能下获得很好的防腐蚀保护,并且被处理的螺栓表面均匀,锌粉与螺栓表面接触良好,同时镀锌处理所需时间相对传统粉末镀锌更短㊂应付钊[50]针对工程中发现的问题,同时参考了美国规范中对高强度螺栓镀锌的相关内容,对高强度螺栓镀锌提出了建议:在石化㊁电力等行业进行大气防腐时,只能采用热浸镀锌的高强度螺栓,不能采用电镀锌高强度螺栓;当结构要求必须按规定对镀锌后的高强度螺栓施加预紧力时,建议采用转角法进行施工;由于热浸镀锌对高强度螺栓的丝扣强度有一定影响,在设计中需要引起注意,在进行承载力设计时建议预留一定的安全裕量;热浸镀锌构件表面的摩擦系数会有明显的降低,当按照摩擦型高强度螺栓进行设计时,建议对热浸镀锌构件的节点接触面采用手工钢丝刷进行处理㊂螺栓热浸锌后扭矩系数离散性极大,不宜采用扭矩法施加螺栓预紧力㊂程大勇等[51]对常州现代传媒中心主塔楼进行研究,通过对热浸锌高强度螺栓施工工艺进行反复论证和试验,最终确定使用转角法施工热浸锌高强度螺栓,工程效果理想,并总结出相应的工程经验:热浸锌高强度螺栓与普通高强度螺栓施拧方法不同,采用转角法施工时,同样分初拧和终拧,初拧由初拧扭矩值控制,终拧由终拧转角角度控制;高强度螺栓的初拧和终拧应按照紧固顺序进行,即从螺栓群中央开始,依次向外侧进行紧固㊂2㊀国内外规范对比分析2.1㊀螺栓类别何海荣[52]对中㊁美㊁欧规范关于螺栓类别的分类进行了对比,其中美国规范(AISC360-10)[4]中主要使用三种螺栓:A307螺栓㊁A325螺栓和A490螺栓,分别对应我国的C级螺栓㊁8.8级螺栓和10.9级螺栓㊂A325螺栓和A490螺栓用于高强度螺栓的承压型连接和摩擦型连接,设计时需要同时验证承载力极限状态(考虑螺栓受剪或承压破坏)和正常使用极限状态(考虑螺栓滑移位移)㊂欧洲规范(EN1993-1-8)[6]对抗剪螺栓分为三类:第一类相当于我国的普通螺栓,其性能等级包括4.6级㊁4.8级㊁5.6级㊁8.8级和10.9级,第一类螺栓不施加预拉力,同时对板件接触面不需要特殊处理;第二类为正常使用状态抗滑移螺栓连接,正常使用时不能有滑移,按承载能力极限状态计算考虑螺杆受剪处孔壁承压,第二类螺栓需要施加预拉力,同时需要对接触面做防锈处理;第三类为承载能力极限状态抗滑移螺栓连接,除了需要检验我国JGJ82 2011中的抗滑移要求,还需要验算极限状态下孔壁承压㊂另外,欧洲规范对螺栓抗拉分为两类:第一类螺栓不施加预拉力,螺栓等级包括4.6级㊁4.8级㊁5.6级㊁8.8级和10.9级;第二类螺栓施加螺栓预拉力,包括8.8级和10.9级高强度螺栓㊂2.2㊀高强度螺栓孔径对比王敬烨等[53]对比了中欧规范中有关高强度螺栓孔径大小的内容,具体如下:我国GB50017 2017‘钢结构设计标准“[7]中规定摩擦型连接高强度螺栓的孔径比螺栓直径大1.5~2mm,承压型连接高强度螺栓的孔径比螺栓直径大1~1.5mm㊂中国JGJ82 2011[8]对不同直径的螺栓给出了不同的孔径大小要求,欧洲规范(EN1993-1-8)[6]中也有类似的尺寸规定,不过JGJ82 2011的尺寸要求与EN1993-1-8的有差异,具体如表3所示㊂2.3㊀螺栓撬力计算对比分析高强度螺栓端板连接件节点受到较大拉力时,端板会发生弯曲变形,端板间会出现或多或少的缝隙,螺栓也因此受到附加的力,这种附加力便称为螺栓的撬力(图4)㊂高强度螺栓端板连接设计中引入撬力作用的影响,可以减小节点连接板的厚度并提6。
高强螺栓
高强螺栓高强螺栓螺栓是一种常见的机械连接元件,广泛应用于各行各业的机械设备中。
高强螺栓是指相对于普通螺栓而言,具有更高强度和更好的性能的一种螺栓。
它是目前工程实践中常用的一种连接元件,能够有效地保证设备的安全性和可靠性。
高强螺栓主要是通过其材料的选择和热处理工艺的改进来提高其强度和性能的。
通常情况下,高强度螺栓采用合金钢材料生产,通过淬火和回火等热处理工艺,使其具有较高的抗拉强度和抗疲劳性能。
同时,高强螺栓表面也会进行镀锌或者其他防腐处理,以提高其耐腐蚀性和使用寿命。
高强螺栓的使用主要分为两个方面:结构紧固和负荷传递。
在结构紧固方面,高强螺栓通常用于连接机械设备的各个部件,如底座、壳体、盖板等。
在这种情况下,高强螺栓需要具有足够的承载能力和抗疲劳性能,以确保设备不会出现松动和变形。
在负荷传递方面,高强螺栓则常用于连接受力较大的结构,如大型机械设备、桥梁、建筑物等。
这时,高强螺栓需要承受巨大的力和振动,确保结构的稳定和安全。
除了高强度和良好的性能外,高强螺栓还具有一些其他的特点。
首先,高强螺栓具有较低的抗压性能,因此在使用时需要特别注意。
其次,高强螺栓需要进行专门的装配和拆卸工艺,以保证其连接的可靠性和耐久性。
另外,高强螺栓的价格较普通螺栓要高一些,因此在使用前需要充分评估其性价比。
总的来说,高强螺栓是一种现代工程实践中常用的连接元件,它具有较高的强度和良好的性能。
其广泛应用于各个领域的机械设备中,为工程项目的安全和可靠运行做出了重要贡献。
在使用高强螺栓时,我们需要充分了解其特点和要求,并遵循正确的装配和拆卸工艺,以确保其连接的稳定性和可靠性。
提高螺栓抗拉疲劳性能的措施
详情可参阅日本人丸山一郎的论文塑性域缔结机械研究对重要预紧应力抗疲劳联接应作不同预紧应力的疲劳寿命试验才能确定正确而可用的预应结束语文中通过试验数措施有些已在实际应用中验证了其有效性有些经验数据和结论仍有待于得到理论上的进一步探讨和支持
10.9级高强度螺栓热处理工艺
10.9级高强度螺栓的热处理工艺如下:预处理:对原材料进行退火处理,以消除内部应力并提高塑性。
退火温度通常为830°C,保温时间约为60分钟。
淬火:将退火后的螺栓加热至850°C,保温60分钟,然后进行快速冷却。
淬火介质可以选择等温分级淬火油。
回火:淬火后的螺栓应进行回火处理,以恢复其韧性和塑性。
回火温度通常为450~600°C,保温时间根据螺栓的规格和要求而定。
表面处理:螺栓的表面需要进行防锈、防腐等处理,以提高其耐久性和美观度。
需要注意的是,10.9级高强度螺栓的热处理工艺需要根据具体的生产条件和要求进行调整和优化。
同时,热处理过程中需要注意控制加热速度、保温时间、冷却速度等参数,以避免出现过热、过冷等不良现象。
10.9级螺栓表面处理工艺
10.9级螺栓表面处理工艺
10.9级螺栓是一种高强度螺栓,通常用于需要承受较大载荷和抗震性能要求较高的场合。
为了提高其防腐蚀性能和延长使用寿命,常采用以下表面处理工艺:
1. 镀锌:将螺栓浸入锌溶液中进行电化学反应,形成锌层覆盖在螺栓表面,起到防腐蚀目的。
2. 热镀锌:将螺栓浸入熔化的锌液中,通过热反应将锌固定在表面。
这种方法可以提供更均匀、更厚实的锌层,提高防腐蚀性能。
3. 热处理:通过加热和冷却的方式改变螺栓的组织结构,提高其硬度和强度。
这种方法可以增加螺栓的抗拉、抗剪和抗扭矩能力。
4. 防酸处理:将螺栓浸入化学药液中进行处理,使螺栓表面形成一层酸化物保护膜,提高其抗腐蚀性能。
5. 防氧化处理:将螺栓表面进行氧化处理,形成一层氧化膜。
这种方法可以增加螺栓的耐高温能力和抗氧化性能。
需要注意的是,不同的表面处理工艺适用于不同的使用环境和要求,选择适合的表面处理工艺可以提高螺栓的性能和使用寿命。
风电螺栓热处理工艺优化与质量控制
风电螺栓热处理工艺优化与质量控制
陈佳宝;岳杰;张先鸣
【期刊名称】《金属加工(热加工)》
【年(卷),期】2024()1
【摘要】风电螺栓一般规格大于M30,要求螺栓热处理后抗拉强度≥1040MPa,-40℃冲击吸收能量≥27J。
由于材料存在韧脆转变温度,塔筒、叶片异形螺栓在此温度以下使用时存在断裂风险,因此提高螺栓用钢的低温冲击性能显得十分重要。
对风电螺栓热处理工艺持续改进与发展,从原材料缺陷、钢中带状组织、回火温度对螺栓钢力学性能等的影响进行探讨,最后提出了螺栓用钢成分新设计及风电螺栓质量控制的措施。
【总页数】7页(P82-88)
【作者】陈佳宝;岳杰;张先鸣
【作者单位】广东史特牢紧扣系统有限公司;浙江慈溪市汇诚金属制品有限公司;浙江衢州天力紧固件有限公司
【正文语种】中文
【中图分类】TG1
【相关文献】
1.电接触热处理—热镀锌连续生产线的工艺和质量控制
2.风电用高强度螺栓调质处理及质量控制
3.20Cr1Mo1VBbTiB高温螺栓钢热处理工艺的优化设计
4.兆瓦级风
电锁紧盘螺栓多同步拧紧工艺及智能化拧紧机的研究5.中国式现代化视野下的考试研究
因版权原因,仅展示原文概要,查看原文内容请购买。