高中数学第二章圆锥曲线与方程第16课时曲线与方程2导学案无答案苏教版选修

合集下载

2019-2020年高中数学苏教版选修2-1第2章《圆锥曲线与方程》(5)word学案

2019-2020年高中数学苏教版选修2-1第2章《圆锥曲线与方程》(5)word学案

2019-2020年高中数学苏教版选修2-1第2章《圆锥曲线与方程》(5)word 学案 [学习目标] 1.了解圆锥曲线的统一定义.2.能用坐标法解决一些与圆锥曲线有关的简单几何问题和实际问题.[知识链接]1.椭圆上一点到准线距离与它到对应焦点距离之比等于多少? 答:1e. 2.动点M 到一个定点F 的距离与到一条定直线l 的距离之比为定值的轨迹一定是圆锥曲线吗? 答:当F ∉l 时,动点M 轨迹是圆锥曲线.当F ∈l 时,动点M 轨迹是过F 且与l 垂直的直线. [预习导引]1.圆锥曲线的统一定义平面内到一个定点F 和到一条定直线l (F 不在l 上)的距离的比等于常数e 的点的轨迹. 0<e <1时,它表示椭圆;e >1时,它表示双曲线;e =1时,它表示抛物线.2.对于椭圆x 2a 2+y 2b 2=1 (a >b >0)和双曲线x 2a 2-y 2b2=1(a >0,b >0)中,与F (c,0)对应的准线方程是l :x =a 2c ,与F ′(-c ,0)对应的准线方程是l ′:x =-a 2c;如果焦点在y 轴上,则两条准线方程为y =±a 2c.要点一 统一定义的简单应用例1 椭圆x 225+y 29=1上有一点P ,它到左准线的距离等于2.5,那么,P 到右焦点的距离为________.答案 8解析 如图所示,PF 1+PF 2=2a =10,e =c a =45, 而PF 12.5=e =45,∴PF 1=2,∴PF 2=10-PF 1=10-2=8.规律方法 椭圆的两个定义从不同角度反映了椭圆的特征,解题时要灵活运用.一般地,如果遇到有动点到两定点距离和的问题,应自然联想到椭圆的定义;如果遇到有动点到一定点及一定直线距离的问题,应自然联想到统一定义;若两者都涉及,则要综合运用两个定义才行.跟踪演练1 已知椭圆x 24b 2+y 2b 2=1上一点P 到右焦点F 2的距离为b (b >1),求P 到左准线的距离.解 方法一 由x 24b 2+y 2b 2=1,得a =2b ,c =3b ,e =32.由椭圆第一定义, PF 1+PF 2=2a =4b ,得PF 1=4b -PF 2=4b -b =3b .由椭圆第二定义,PF 1d 1=e ,d 1为P 到左准线的距离, ∴d 1=PF 1e =23b ,即P 到左准线的距离为23b . 方法二 ∵PF 2d 2=e ,d 2为P 到右准线的距离. e =c a =32,∴d 2=PF 2e =233b . 又椭圆的两准线的距离为2·a 2c =833b , ∴P 到左准线的距离为833b -233b =23b . 要点二 应用统一定义转化求最值例2 已知椭圆x 28+y 26=1内有一点P (1,-1),F 是椭圆的右焦点,在椭圆上求一点M ,使MP +2MF 之值为最小.解 设d 为M 到右准线的距离.∵e =c a =12,MF d =12, ∴MF 12=d ,即d =2MF (如图). 故MP +2MF =MP +MM ′.显然,当P 、M 、M ′三点共线时,所求的值为最小,从而求得点M 的坐标为(2315,-1).规律方法 本例中,利用统一定义,将椭圆上点M 到焦点F 的距离转化为到准线的距离,再利用图形的形象直观,使问题得到简捷的解决.跟踪演练2 已知双曲线x 29-y 216=1的右焦点为F ,点A (9,2),试在双曲线上求一点M ,使MA +35MF 的值最小,并求这个最小值. 解 过M 作MN 垂直于双曲线的右准线l 于N ,由第二定义可知MN =MF e(如图). 又a =3,b =4,c =5,e =53, ∴MN =35MF ,∴MA +35MF =MA +MN ,显然当M 、N 、A 三点共线时MA +MN =AN 为最小,即MA +35MF 取得最小值,此时AN =9-a 2c =9-95=365,∴MA +35MF 的最小值为365,此时点M (352,2). 要点三 圆锥曲线统一定义的综合应用例3 已知A 、B 是椭圆x 2a 2+y 2925a 2=1上的点,F 2是右焦点,且AF 2+BF 2=85a ,AB 的中点N 到左准线的距离等于32,求此椭圆方程. 解 设F 1为左焦点,则根据椭圆定义有:AF 1+BF 1=2a -AF 2+2a -BF 2=4a -(AF 2+BF 2)=4a -85a =125a . 再设A 、B 、N 三点到左准线距离分别为d 1,d 2,d 3,由梯形中位线定理有d 1+d 2=2d 3=3,而已知b 2=925a 2, ∴c 2=1625a 2,∴离心率e =45, 由统一定义AF 1=ed 1,BF 1=ed 2,∴AF 1+BF 1=125a =e (d 1+d 2)=125,∴a =1, ∴椭圆方程为x 2+y 2925=1. 规律方法 在圆锥曲线有关问题中,充分利用圆锥曲线的共同特征,将曲线上的点到准线的距离与到焦点的距离相互转化是一种常用方法.跟踪演练3 设P (x 0,y 0)是椭圆x 2a 2+y 2b 2=1(a >b >0)上任意一点,F 1为其左焦点. (1)求PF 1的最小值和最大值;(2)在椭圆x 225+y 25=1上求一点P ,使这点与椭圆两焦点的连线互相垂直. 解 (1)对应于F 1的准线方程为x =-a 2c, 根据统一定义:PF 1x 0+a 2c=e , ∴PF 1=a +ex 0.又-a ≤x 0≤a ,∴当x 0=-a 时,(PF 1)min =a +c a×(-a )=a -c ; 当x 0=a 时,(PF 1)max =a +c a·a =a +c . (2)∵a 2=25,b 2=5,∴c 2=20,e 2=45. ∵PF 21+PF 22=F 1F 22,∴(a +ex 0)2+(a -ex 0)2=4c 2. 将数据代入得25+45x 20=40.∴x 0=±532. 代入椭圆方程得P 点的坐标为⎝⎛⎭⎫532,52,⎝⎛⎭⎫532,-52,⎝⎛⎭⎫-532,52,⎝⎛⎭⎫-532,-52.1.已知方程(1+k )x 2-(1-k )y 2=1表示焦点在x 轴上的双曲线,则k 的取值范围为________. 答案 -1<k <1解析 由题意得⎩⎪⎨⎪⎧ 1+k >0,1-k >0,解得⎩⎪⎨⎪⎧ k >-1,k <1,即-1<k <1. 2.已知点F 1,F 2分别是椭圆x 2+2y 2=2的左,右焦点,点P 是该椭圆上的一个动点,那么|PF→1+PF →2|的最小值是________. 答案 2解析 设P (x 0,y 0),则PF →1=(-1-x 0,-y 0),PF →2=(1-x 0,-y 0),∴PF →1+PF →2=(-2x 0,-2y 0),∴|PF →1+PF →2|=4x 20+4y 20=22-2y 20+y 20=2-y 20+2.∵点P 在椭圆上,∴0≤y 20≤1,∴当y 20=1时,|PF →1+PF →2|取最小值为2.3.已知F 1、F 2是椭圆的两个焦点.满足MF 1→·MF 2→=0的点M 总在椭圆内部,则椭圆离心率的取值范围是________.答案 (0,22) 解析 ∵MF 1→·MF 2→=0,∴M 点轨迹方程为x 2+y 2=c 2,其中F 1F 2为直径,由题意知椭圆上的点在圆x 2+y 2=c 2外部,设点P 为椭圆上任意一点,则OP >c 恒成立,由椭圆性质知OP ≥b ,其中b 为椭圆短半轴长,∴b >c ,∴c 2<b 2=a 2-c 2,∴a 2>2c 2,∴(c a )2<12,∴e =c a <22. 又∵0<e <1,∴0<e <22. 4.已知椭圆x 2a 2+y 2b 2=1(a >b >0)与双曲线x 2m 2-y 2n2=1(m >0,n >0),有相同的焦点(-c,0)和(c,0),若c 是a 、m 的等比中项,n 2是2m 2与c 2的等差中项,则椭圆的离心率是________.答案 12解析 由题意,得⎩⎪⎨⎪⎧ a 2-b 2=c 2, ①m 2+n 2=c 2,②c 2=am ,③2n 2=2m 2+c 2,④由②④可得m 2+n 2=2n 2-2m 2,即n 2=3m 2,⑤⑤代入②得4m 2=c 2⇒c =2m ,⑥⑥代入③得4m 2=am ⇒a =4m .所以椭圆的离心率e =c a =12.1.三种圆锥曲线的共同特征是曲线上的点到定点的距离与它到定直线距离的比是常数.2.利用圆锥曲线的统一定义可实现曲线上的点到焦点的距离与到准线距离的相互转化.一、基础达标1.若直线ax -y +1=0经过抛物线y 2=4x 的焦点,则实数a =______.答案 -1解析 焦点为(1,0),代入直线方程,可得a =-1.2.已知椭圆的准线方程为y =±4,离心率为12,则椭圆的标准方程为____________. 答案 x 23+y 24=1 解析 由⎩⎨⎧ a 2c =4,c a =12,解得⎩⎪⎨⎪⎧ a =2,c =1. 所以b 2=a 2-c 2=3,所以椭圆的标准方程为x 23+y 24=1. 3.双曲线3x 2-y 2=9,P 是双曲线上一点,则P 点到右焦点的距离与P 点到右准线的距离的比值为________.答案 2解析 由统一定义,所求距离之比即为双曲线的离心率.双曲线方程可化为x 23-y 29=1, 得a 2=3,b 2=9,c 2=a 2+b 2=12,所以e =c a =123=2. 4.椭圆x 225+y 216=1上一点P 到左焦点F 1的距离为3,则点P 到左准线的距离为________. 答案 5解析 依题意e =35,所以点P 到左准线的距离d =PF 1e=5. 5.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为3,右准线方程为x =33,则双曲线方程为__________.答案 x 2-y 22=1 解析 由⎩⎨⎧c a =3,a 2c =33,得⎩⎪⎨⎪⎧a =1,c =3,所以b 2=3-1=2. 所以双曲线方程为x 2-y 22=1. 6.已知抛物线y 2=2px 的准线与双曲线x 2-y 2=2的左准线重合,则抛物线的焦点坐标为________.答案 (1,0)解析 双曲线的左准线为x =-1,抛物线的准线为x =-p 2,所以p 2=1,所以p =2. 故抛物线的焦点坐标为(1,0).7.已知双曲线的渐近线方程为3x ±4y =0,一条准线方程为y =95,求该双曲线的标准方程. 解 由已知可设双曲线的标准方程为y 2a 2-x 2b2=1(a >0,b >0). 由题意有⎩⎨⎧a 2c =95,ab =34,a 2+b 2=c 2,解得⎩⎪⎨⎪⎧a 2=9,b 2=16. 所以所求双曲线方程为y 29-x 216=1. 二、能力提升8.已知点P 在椭圆x 216+y 225=1上,F 1、F 2是椭圆的上、下焦点,M 是PF 1的中点,OM =4,则点P 到下准线的距离为________.答案 403解析 因为OM 是△F 1F 2P 的中位线,所以PF 2=2OM =8.又e =35,所以P 到下准线的距离d =PF 2e =8×53=403. 9.若双曲线x 2a 2-y 2b 2=1(a >0,b >0)上横坐标为3a 2的点到右焦点的距离大于它到左准线的距离,则双曲线的离心率的取值范围是________.答案 (2,+∞)解析 由已知得(3a 2-a 2c )e >3a 2+a 2c,即3c 2>5ac +2a 2, 所以3e 2-5e -2>0,解得e >2或e <-13(舍去). 10.在给定的椭圆中,过焦点且垂直于长轴的弦长为2,焦点到相应的准线的距离为1,则椭圆的离心率为________.答案 22解析 设椭圆的方程为x 2a 2+y 2b2=1(a >b >0), 则右焦点F (c,0),右准线l :x =a 2c. 把x =c 代入椭圆的方程得y 2=b 2(1-c 2a 2)=b 4a 2,即y =±b 2a. 依题设知2b 2a =2且a 2c -c =b 2c=1, 所以e =c a =b 2a ·c b 2=22×1=22. 11.已知双曲线过点(3,-2),且与椭圆4x 2+9y 2=36有相同的焦点.(1)求双曲线的标准方程;(2)求以双曲线的右准线为准线的抛物线的标准方程.解 (1)椭圆的焦点为(5,0),(-5,0),它也是双曲线的焦点.设双曲线的标准方程为x 2a 2-y 2b2=1(a >0,b >0). 则由题设得⎩⎪⎨⎪⎧ 9a 2-4b 2=1,a 2+b 2=5,解得⎩⎪⎨⎪⎧a 2=3,b 2=2. 所以双曲线的标准方程为x 23-y 22=1. (2)由(1)可知双曲线的右准线为x =a 2c =355. 它也是抛物线的准线,所以p 2=355, 故抛物线的标准方程为y 2=-1255x . 12.设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1、F 2,离心率e =22,点F 2到右准线l 的距离为 2.(1)求a 、b 的值;(2)设M 、N 是l 上的两个动点,F 1M →·F 2N →=0,证明:当|MN →|取最小值时,F 2F 1→+F 2M →+F 2N →=0.(1)解 因为e =c a ,F 2到l 的距离d =a 2c-c , 所以由题设得⎩⎨⎧ c a =22,a 2c -c =2,解得c =2,a =2.由b 2=a 2-c 2=2,得b = 2.故a =2,b = 2.(2)证明 由c =2,a =2得F 1(-2,0),F 2(2,0),l 的方程为x =22, 故可设M (22,y 1),N (22,y 2).由F 1M →·F 2N →=0知(22+2,y 1)·(22-2,y 2)=0,得y 1y 2=-6,所以y 1y 2≠0,y 2=-6y 1. |MN →|=|y 1-y 2|=|y 1+6y 1|=|y 1|+6|y 1|≥26, 当且仅当y 1=±6时,上式取等号,此时y 2=-y 1,所以,F 2F 1→+F 2M →+F 2N →=(-22,0)+(2,y 1)+(2,y 2)=(0,y 1+y 2)=0.三、探究与创新13.如图所示,已知某椭圆的焦点是F 1(-4,0)、F 2(4,0),过点F 2作垂直于x 轴的直线与椭圆的一个交点为B ,且F 1B +F 2B =10,椭圆上不同的两点A (x 1,y 1),C (x 2,y 2)满足条件:F 2A 、F 2B 、F 2C 成等差数列.(1)求该椭圆的方程;(2)求弦AC 中点的横坐标.解 (1)由椭圆定义及条件知,2a =F 1B +F 2B =10,得a =5,又c =4,所以b =a 2-c 2=3.故椭圆方程为x 225+y 29=1.(2)由点B (4,y B )在椭圆上,得F 2B =y B =95. 因为椭圆右准线方程为x =254,离心率为45, 根据椭圆定义,有F 2A =45⎝⎛⎭⎫254-x 1,F 2C =45⎝⎛⎭⎫254-x 2,由F 2A 、F 2B 、F 2C 成等差数列,得 45⎝⎛⎭⎫254-x 1+45⎝⎛⎭⎫254-x 2=2×95,由此得出x 1+x 2=8.设弦AC 的中点为P (x 0,y 0),则x 0=x 1+x 22=4.。

高中数学 第二章《圆锥曲线与方程》2.6曲线与方程学案 新人教版选修2-1-新人教版高二选修2-1数

高中数学 第二章《圆锥曲线与方程》2.6曲线与方程学案 新人教版选修2-1-新人教版高二选修2-1数

2.6 曲线与方程一、学习内容、要求及建议二、预习指导 1.预习目标(1)了解曲线的方程和方程的曲线的意义,了解曲线与方程的对应关系,并能根据定义作简单的判断与推理.;(2)掌握求曲线方程的一般步骤, 注意建立适当坐标系;(3)理解两条直线的交点与两曲线的方程所组成的方程组的解之间的关系,掌握求两曲线的交点坐标的方法.2.预习提纲(1)回顾直线与圆以及圆锥曲线相关知识,回答下列问题:①求上述曲线的方程的过程有何共同之处?②怎样求两条直线的交点?(2)阅读课本第56-62页,回答下列问题:①如果曲线C 上点的坐标(x ,y )都是方程f (x ,y )=0的解,且_______________________________,那么方程f (x ,y )=0叫做曲线C 的方程,曲线C 叫做方程f (x ,y )=0的曲线;②请用流程图表示求曲线方程的一般步骤;③思考如何求两条曲线的交点?(3)课本第56页例1判断点与圆的位置关系,思考一般情况下,如何判断点与曲线的位置关系?第56页例2在必修2中是求“圆拱所在圆的方程”,这里是求圆拱的方程,两者有什么区别?第59页例1,例2都是求动点的轨迹,希望同学们能进一步熟悉求曲线方程的一般步骤.第61页例1是圆锥曲线光学性质的应用,要注意解的实际意义.思考,经过点P (0,4),且与抛物线216y x 只有一个公共点的直线有_______条,这样的直线的方程是____________________.3. 典型例题(1)在建立了直角坐标系之后,点M 与有序实数对(x ,y )、曲线C 与方程f(x ,y ) = 0之间建立了一一对应关系:按某种规律运动点M曲线C几何意义x,y的制约关系坐标(x,y) 方程f(x,y) = 0代数意义从本质上说,曲线和方程是同一关系下两种不同的表现形式,曲线的性质完全地反映在方程上,方程的性质又同样反映在它的曲线上.因此,我们通过方程来研究曲线,又通过曲线来研究方程,这就是解析几何处理问题的基本思想.例1 设A(1,3),B(-1,1),能不能说线段AB的方程为x–y + 2 = 0?并说明理由.分析:本题考查曲线和方程的概念.解:不能说线段AB的方程为x–y + 2 = 0.因为线段AB上的任意一点的坐标都满足方程x–y + 2 = 0,但以方程x–y + 2 = 0的解为坐标的点却不都在线段AB上,例如点(2,4)的坐标是方程x–y + 2 = 0的一个解,但点(2,4)不在线段AB上,所以线段AB的方程不是x- y + 2 = 0.点评:线段AB的方程是x-y + 2 = 0(-1≤x≤1).(2)如果曲线C的方程是f(x,y)=0,那么点P0(x0,y0)在曲线C上的充要条件是f(x0,y0)=0,我们可以由此判断点是否在曲线上,以及如果点在曲线上那么该点的坐标的特点.例2 曲线L的方程为(3x– 4y– 12) lg(x + 2y + 1 ) = 0,试判断点A(0,-3),B(0,4),C(4,0),D(1,12-)是否在曲线上.解:把A点坐标代入方程左边,无意义,故A L∉;把B点坐标代入方程左边,得- 28lg9≠0,故B L∉;把C点坐标代入方程左边,得0·lg5 = 0,故C∈L;把D点坐标代入方程左边,得-7·lg1 = 0,故D∈L.∴C,D在曲线上,A,B不在曲线上.点评:方程表示的曲线是一条直线x + 2y = 0和一条射线3x– 4y– 12 = 0(x + 2y + 1 >0)--直线3x – 4y– 12 = 0在直线x+2y+1=0右上方半平面部分的那条射线.(3)根据已知条件求平面曲线的方程,这是解析几何两个主要问题中的第一个,也是用代数方法研究几何问题的基础.①求曲线的方程时,首先应观察原题条件中有没有坐标系.没有坐标系时应先建立坐标系,否则曲线不能转化为方程,选定坐标系是把曲线和方程统一起来的基础.如果曲线是轴对称图形,那么可以选它的对称轴为坐标轴;也可以选曲线上的特殊点作为原点.建立坐标系应建得适当,这样可使运算过程简单,所得的方程形式也相应简单.②求曲线的方程,关键在于找出动点的横,纵坐标x,y所满足的等式f(x,y) = 0,然后进行化简.根据曲线上的点适合的条件列出等式时,常用到平面几何、三角函数等知识.我们要仔细审题,分析已知条件以及曲线的特征,抓住曲线上与任意点M有关的等量关系列出方程,并进行化简.③求得方程以后,要证明以所得方程的解为坐标的点在曲线上(通常这一步可以省略).特别要注意的是,如果化简前后方程的解集不同,那么应删去增加的解,或补上失去的解,保证其等价性.例3 点M到两条互相垂直的直线的距离相等,求点M的轨迹方程.分析:初步掌握求曲线的方程的方法.解:取已知两条互相垂直的直线为坐标轴,建立如图所示的直角坐标系,设M(x,y),点M的轨迹就是到坐标轴距离相等的点的集合P={M| |MR| = |MQ|},其中Q、R分别是M到x轴、y轴的垂线的垂足.∵M 到x 轴、y 轴的距离分别是它的纵坐标和横坐标的绝对值,∴|x | = |y |,即x ±y = 0 ①(1) 由求方程的过程可知,曲线上的点的坐标都是方程①的解;(2) 设点M 1的坐标(x 1,y 1)是方程①的解,则x 1±y 1 = 0即|x 1| = |y 1|,而|x 1|、|y 1|正是点M 1到y 轴、x 轴的距离,∴点M 1到x 轴、y 轴的距离相等,点M 1是曲线上的点.由(1)(2)可知,方程①是所求的轨迹的方程.点评:建立适当的坐标系能使求轨迹方程的过程较简单,所求方程的形式也较“整齐”.例4 过点P (2,4)作两条互相垂直的直线l 1,l 2,若l 1交x 轴于A 点,l 2交y 轴于B 点,求线段AB 的中点M 的轨迹方程.分析:如图所示,可利用l 1⊥l 2这一几何条件列方程,关键是如何表示A ,B 两点的坐标.解:法一 设M (x ,y ) ∵M 是AB 的中点,∴A (2x ,0),B (0,2y )∵l 1,l 2过P (2,4),且l 1⊥l 2 ∴k PA ·k PB = -1. 而)1(,0224,2204≠--=--=x y k x k PB PA ∴)1(11212≠-=-⋅-x y x , 整理得:x + 2y – 5 = 0 (x ≠1)∵当x = 1时,A (2,0),B (0,4),∴AB 中点坐标是(1,2),满足方程x + 2y – 5 = 0.综上所述,点M 的轨迹方程是x + 2y – 5 = 0.法二 设M (x ,y ),则A (2x ,0),B(0,2y ). ∵11⊥l 2,∴△PAB 为直角三角形 ∴PM =12AB . 又2222(2)(4),(2)(2)PM x y AB x y =-+-=+,∴22224421)4()2(y x y x +=-+-, 化简,得x + 2y – 5 = 0为所求点M 的轨迹方程.点评:因为解法二中没有利用斜率公式,所以避开了x ≠1和x = 1的讨论.例5 如图,两定点A (-6,0),B (2,0),O 为坐标原点,动点P 对线段AO ,BO 所张的角相等,求动点P 的轨迹方程.分析:由图可知,OP 为∠APB 的角平分线,因此利用平面几何中的角平分线定理(可以补充)建立等量关系.解:设P (x ,y ),∵P 对线段AO ,BO 所张的角相等,∴∠APO = ∠BPO .由角平分线定理, ,BO AO PB PA = ∴3)2()6(2222=+-++yx y x , 整理得x 2 + y 2– 6x =0由方程可知,它过原点,但当P 与原点重合时无意义,故x ≠0.又由题意,当P 点落在x 轴上除线段AB 以外的任何点处,均有∠APO =∠BPO =0,故有方程y = 0(x < -6或x > 2 )合题意.综上所述,动点P 的轨迹方程为x 2 + y 2– 6x = 0(x ≠0)和y = 0(x < -6或x > 2).点评:求轨迹方程时,经常遇到“去”和“补”的问题,即当所求的方程包括不合题意的点时,必须去掉,当所求方程不含其他合乎条件的点时,必须补出来.例6 已知△ABC 中,A (-2,0),B (0,-2),第三个顶点C 在曲线y = 3x 2 –1上移动,求△ABC 的重心G 的轨迹方程.分析:题中动点G 随着点C 的变化而变化,可用“动点转移法”求解.解:设△ABC 的重心为G (x ,y ),顶点C 的坐标为(x 1,y 1), 由重心坐标公式⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧+=+=+-=++-=,2323,3203021111y y x x y y x x 得 代入y 1 = 213x -1,得3y + 2 = 3 (3x + 2)2– 1, 即 y = 9x 2+ 12x + 3为所求重心的轨迹方程.点评:题中动点C 与G 之间有关系,写出点C 和G 之间的坐标关系,并用点G 的坐标表示点C 的坐标(动点转移),而后代入点C 的坐标所满足的关系式,化简整理即得点G 的方程,这种方法称为“动点转移法”.本题也可设C (a ,3a 2 – 1),找到x ,y 与参数a 的关系,再消去a 即得所求,这就是所谓的“参数法”.(4)求曲线的交点就是求曲线的方程组成的方程组的实数解.曲线交点的个数就是方程组解的个数,曲线无交点,方程组无解.例7 已知直线l :y = kx +2,曲线C :y 2 = 4x ,当k 为何值时,两曲线有且只有一个公共点?分析:两条曲线的交点的坐标应是两个曲线方程的公共实数解,即两个方程组成的方程组的实数解.题中两曲线有且仅有一个公共点,可以转化为两个曲线方程所组成的方程组有且仅有一组实数解. 解:方程组⎩⎨⎧=+=x y kx y 422消x 后,得方程 ky 2 – 4y + 8 = 0 (*)当k = 0时,(*)方程化为 - 4y + 8 = 0,∴y = 2,x = 1,这时两曲线有且只有一个公共点(1,2);当k ≠0时,(*)方程是一元二次方程,由△=0即16 – 32k = 0得21=k ,这时(*)有两等根,原方程组有且只有一解,即两曲线有且只有一个公共点. 得上所述,当k = 0或k =21时,两曲线有且只有一个公共点. 点评:(1)方程组解的个数,对应着两曲线交点的个数,但在消元化为一元方程时,若二次项系数含有字母,则应对二次方程的二次项系数是否为零进行分类讨论.(2)题中直线与抛物线有且只有一个公共点包括两种情形:相交有一个公共点和相切有一个公共点.4.自我检测 (1)以O (0,0)为圆心,以2为半径的圆的方程是y =吗?为什么?____________________________.(2)方程|x |=|2y |表示的图形是_________________________________.(3)若点P (-2,3)在曲线221x ay -=上,则a 的值为_______________.(4)曲线22330y x ++=与曲线22450x y x +--=的公共点的个数为______. (5)若椭圆22()14x y a +-=与抛物线22x y =有公共点,则实数a 的取值范围是__________.三、课后巩固练习A 组1.点P(2,-3)在曲线x 2 –ay 2= 1上,则a = ____________.2.P(a +1,a +4) 在抛物线y = x 2 + 5x + 3 上,则a 的值是____________.3.在第四象限内到原点的距离为3的点的轨迹方程为_______.4.定长为6的线段AB ,其端点A ,B 分别在x 轴,y 轴上移动,则AB 中点的轨迹方程为________ .5.若曲线C 的方程是F (x ,y ) = 0,则曲线C 关于直线y = x 对称的曲线方程是_____.6.已知点A (-1,0),B (1,0),动点M 满足MA – MB = 2,则点M 的轨迹方程是_______.7.过曲线y = x 2与y 2 = x 交点的直线方程是______.8.已知方程6x + by + c = 0的曲线经过点A (1,0)和点B (3,2),求b ,c 的值.9.求方程(x + y – 1)(x – y + 2) = 0表示的曲线.10.求到两坐标轴距离之积等于2的点的轨迹方程.11.已知线段AB 的长为10,动点P 到A ,B 两点的距离的平方和为122,求动点P 的轨迹方程.12.设动点P 到点(2,1)的距离与P 到直线x = -2的距离相等,求动点P 的轨迹方程.13.动点P 到直线l : x = 5的距离与P 到点A (1,0)的距离之比为3,求P 点的轨迹方程.14.点P 在曲线C :y = x 2 – 1上运动,定点A (2,0),延长PA 到Q ,使AQ = 2AP ,求动点Q 的轨迹方程.15.如图,圆1O 与圆2O 的半径都是1,421=O O ,过动点P分别作圆1O 、圆2O 的切线PM 、PN (M 、N 分别为切点),使得PN PM 2=.试建立适当的坐标系,并求动点P 的轨迹方程.B 组16.已知点A (a ,b )在曲线y = x 2+ 2x + 1上,当a = 1时,b = _______;当b 是a 的4倍时,点A 的坐标是____________.17.到直线4x + 3y – 5 = 0的距离为1的点的轨迹方程为_________ .18.方程4x 2 – y 2 + 6x – 3y = 0表示的图形是__________ .19.与y 轴相切,且和曲线x 2+y 2=4(0≤x ≤2)相内切的动圆圆心的轨迹方程是______.20.已知M (-2,0),N (2,0),则以MN 为斜边的直角三角形的直角顶点P 的轨迹方程是__________________.21.直线x – 2y – 2k = 0与y = x + k 的交点在曲线x 2 + y 2 = 25上,则k = ________.22.若抛物线y = kx 2 +x + k 与x 轴无交点,则实数k 的取值范围是__________. 23.直线y ―kx ―1=0与椭圆2215x y m+=恒有公共点,则m 的取值范围是_____.24.椭圆22143x y +=的左焦点为F ,直线x m =与椭圆相交于点A 、B ,当FAB ∆的周长最大时,FAB ∆的面积是____________.25.曲线C 是平面内与两个定点F 1(– 1,0)和F 2(1,0)的距离的积等于常数2(1)a a >的点的轨迹.给出下列三个结论:① 曲线C 过坐标原点;② 曲线C 关于坐标原点对称;③若点P 在曲线C 上,则△F 1PF 2的面积大于212a . 其中,所有正确结论的序号是____________.26.已知点P (x 0,y 0)在曲线f (x ,y ) = 0上,P 也在曲线g (x ,y )=0上.求证:P 在曲线f (x ,y ) + λg (x ,y )=0上(λ∈R).27.一动圆M 与圆A :x 2+y 2+6y +5=0外切,同时与圆B :x 2+y 2-6y -91=0内切,(1)求圆A 与B 的圆心和半径,并判断两圆的位置关系;(2)求动圆圆心M 轨迹方程.C 组28.设圆C 位于抛物线22y x =与直线x =3所围成的封闭区域(包含边界)内,求圆C 的半径能取到的最大值.29.平面内与两定点12(,0),(,0)(0)A a A a a ->连续的斜率之积等于非零常数m 的点的轨迹,加上12A A 、两点所成的曲线C 可以是圆、椭圆成双曲线.求曲线C 的方程,并讨论C 的形状与m 值的关系.30.线段AB 与CD 互相垂直平分于点O ,AB = 2a ,CD =2b ,动点P 满足PA ·PB =PC ·PD ,求动点P 的轨迹方程.31.如图,M 是抛物线上y 2=x 上的一点,动弦ME 、MF 分别交x 轴于A 、B 两点,且|MA|=|MB|.(1)若M 为定点,证明:直线EF 的斜率为定值;(2)若M 为动点,且∠EMF=90°,求△EMF 的重心G 的轨迹方程.32.在平面直角坐标系x O y 中, 已知点A (0,-1),B 点在直线3y =-上,M 点满足MB OA ,MA AB MB BA =,M 点的轨迹为曲线C .(1)求C 的方程;(2)P 为C 上动点,l 为C 在点P 处的切线,求O 点到l 距离的最小值.知识点题号 注意点 求曲线的方程或判断轨迹3~7,9~15,17~20,25,27,29,30~32 注意除去不满足条件的点 点与曲线的位置关系1,2,8,16,26 方程思想 直线与曲线的位置关系21~24,28 几何法与代数法的灵活应用四、学习心得五、拓展视野熊猫走钢丝如图所画的场面,并不是马戏团表演镜头的真实写照,而只是根据数学原理设计的一个小玩具.玩具的底座上有一个圆洞,洞内有一块圆板,熊猫的模型通过细杆连接在圆板边缘上.把圆板沿圆洞边缘滚动(注意不要有滑动),就会看到细杆上端的熊猫一边沿钢丝滑动,一边还转动着肥胖的身体,非常有趣.如果想自己动手做一个这样的玩具,必须注意两个关键:第一,圆洞的直径要正好等于圆板直径的2倍;第二,牵钢丝的两根柱子竖立在底座上的位置,应该位于圆洞的一条直径的延长线上.换句话说,钢丝在底座平面内的正射影应该是圆洞的一条直径,这个玩具的基本原理,就是下面的轨迹定理:当半径为r的动圆C在半径为2r的定圆O内无滑动地滚动时,动圆圆周上一点M的轨迹是圆0的一条直径.现在证明上述事实.如图,取O为坐标原点,并且选取x轴,使得动圆的圆心落在x轴正半轴上时,动圆C上的M点到O的距离最远,即这时M(x,y)将落在圆O与x轴正半轴的交点A处.设动圆C继续滚动到图中实线所示位置,这时的圆心为C(a,b),切点为B,∠AOB=θ,则a=r cosθ,b=r sinθ.又因为滚动时没有滑动,所以小圆的BM弧与大圆的BA弧长度相等.所以,如果记∠BCM=Φ,就有rΦ=(2r)θ,所以Φ=2θ.另一方面,∠COM=∠CMO=0.5Φ=θ,所以M点必落在x轴上.由OM OC CM=+得(x,y)=( r cosθ,r sinθ)+(r cos(-θ),r sin(-θ))=(2r cosθ,0).这样就证明了点M(x,y)的轨迹是x轴上的线段-2r≤x≤2r,即定圆O的直径GA.2.6 曲线与方程自我检测(1)不是,该方程只表示以O(0,0)为圆心,以2为半径的圆在x轴上方的半圆(含x轴上的点)(2)两条相交直线 (3)1 3(4)1 (5)17 [1,]8 -课后巩固练习A 组1. 31 2. a = –1或a = -5 3. 29x y --=(0<x < 3) 4. x2 + y 2 = 95. F(y ,x ) = 06. y = 0 (x ≥1) 7. x – y = 08. b = c = -6, 9. 直线x + y –1 = 0和x – y + 2 = 010. xy = ±211. 以AB 的中点为原点,以AB 所在的直线为x 轴,建立直角坐标系,x 2 + y 2 = 3612. (y –1)2 = 8x 13. 2x 2 + 3y 2 + 4x – 22 = 014. x 2 – 12x + 2y + 32 = 015.33)6(22=+-y xB 组16. 4;(1,4) 17. 4x + 3y – 10 = 0和4x + 3y = 018.直线2x – y = 0和直线2x + y + 3 = 0 19. y 2=-4(x -1)(0<x ≤1)20. x 2 + y 2 = 4(x ≠±2) 21. ±122. 2121>-<k k 或 23. [1,5)∪(5,+∞)) 24. 3 25. ②③26. 略27.(1)圆A 可化为x 2+(y +3)2=4, ∴圆A 的圆心(0,-3),半径2,圆B 可化为x 2+(y -3)2=100∴圆B 的圆心(0,3),半径10∵AB =6<10-2,∴圆A 与圆B 内含(2)设动圆的半径为r∵动圆M 与圆A :x 2+y 2+6y +5=0外切,∴MA =2+r∵动圆M 与圆 B :x 2+y 2-6y -91=0内切,∴MB =10-r∴MA +MB =12 ,M 在以A 、B 为焦点的椭圆上,且2a =12,2c =6∴M 的轨迹方程为1273622=+x y C 组28.1-29.曲线C 的方程为222.mx y ma -= 当1,m <-时曲线C 的方程为22221,x y C a ma+=-是焦点在y 轴上的椭圆; 当1m =-时,曲线C 的方程为222x y a +=,C 是圆心在原点的圆; 当10m -<<时,曲线C 的方程为22221x y a ma +=-,C 是焦点在x 轴上的椭圆; 当0m >时,曲线C 的方程为22221,x y a ma-=C 是焦点在x 轴上的双曲线。

(典型题)高中数学选修1-1第二章《圆锥曲线与方程》测试(答案解析)

(典型题)高中数学选修1-1第二章《圆锥曲线与方程》测试(答案解析)

一、选择题1.已知椭圆2222:1(0)x y C a b a b+=>>的左焦点为F ,过点F 的直线0x y -+=与椭圆C 相交于不同的两点A B 、,若P 为线段AB 的中点,O 为坐标原点,直线OP 的斜率为12-,则椭圆C 的方程为( ) A .22132x y +=B .22143x y +=C .22152x y +=D .22163x y +=2.已知椭圆2222:1(0)x y E a b a b+=>>,设直线l 与椭圆相交于A ,B 两点,与x 轴,y 轴分别交于C ,D 两点,记椭圆E 的离心率为e ,直线l 的斜率为k ,若C ,D 恰好是线段AB 的两个三等分点,则( ) A .221k e -=B .221k e +=C .2211e k-= D .2211e k+=3.已知()5,0F 是双曲线()2222:=10,0x y C a b a b->>的右焦点,点(A .若对双曲线C 左支上的任意点M ,均有10MA MF +≥成立,则双曲线C 的离心率的最大值为( )A B .5C .52D .64.已知点()P m n ,是抛物线214y x =-上一动点,则A .4B .5C D .65.过椭圆:T 2212x y +=上的焦点F 作两条相互垂直的直线12l l 、,1l 交椭圆于,A B 两点,2l 交椭圆于,C D 两点,则AB CD +的取值范围是( )A .3⎡⎢⎣B .3⎡⎢⎣C .3⎡⎢⎣D .3⎡⎢⎣ 6.已知双曲线E :22221(0,0)x y a b a b-=>>的左,右焦点为1F ,2F ,过2F 作一条渐近线的垂线,垂足为M ,若1MF =,则E 的离心率为( )A .3B .2C .5D .27.如图,F 是抛物线28x y =的焦点,过F 作直线交抛物线于A 、B 两点,若AOF 与BOF 的面积之比为1:4,则AOB 的面积为( )A .10B .8C .16D .128.已知双曲线()222210,0x y a b a b-=>>的左、右焦点分别为1F 、2F ,若双曲线右支上存在一点P ,使得2F 关于直线1PF 的对称点恰在y 轴上,则该双曲线的离心率e 的取值范围为( ) A .231e <<B .23e >C .3e >D .13e <<9.设抛物线2:4(0)C x y p =>的焦点为F ,准线为l ,过点F 的直线交抛物线C 于,M N 两点,交l 于点P ,且PF FM =,则||MN =( )A .2B .83C .5D .16310.己知直线l 过抛物线y 2=4x 的焦点F ,并与抛物线交于A ,B 两点,若点A 的纵坐标为4,则线段AB 的长为( ) A .253B .496C .436D .25411.已知点P 在双曲线()222210,0x y a b a b-=>>上,点()2,0A a ,当PA 最小时,点P不在顶点位置,则该双曲线离心率的取值范围是( )A .)+∞B .)+∞C .(D .(12.已知过点(,0)A a 的直线与抛物线22(0)y px p =>交于M.N 两点,若有且仅有一个实数a ,使得16OM ON ⋅=-成立,则a 的值为( ) A .4-B .2C .4D .8二、填空题13.双曲线22221(0,0)x y a b a b-=>>右焦点(c,0)F 关于直线2y x =的对称点Q 在双曲线上,则双曲线的离心率是______.14.过双曲线221x y -=上的任意一点(除顶点外)作圆221x y +=的切线,切点为,A B ,若直线AB 在x 轴、y 轴上的截距分别为,m n ,则2211m n-=___________. 15.已知拋物线()2:20C y px p =>的焦点为F ,O 为坐标原点,C 的准线为l 且与x 轴相交于点B ,A 为C 上的一点,直线AO 与直线l 相交于E 点,若BOE BEF ∠=∠,6AF =,则C 的标准方程为_____________.16.设F 是椭圆2222:1(0)x y C a b a b +=>>的一个焦点,P 是椭圆C 上的点,圆2229a x y +=与线段PF 交于A ,B 两点,若A ,B 三等分线段PF ,则椭圆C 的离心率为____________.17.在双曲线22221x y a b-=上有一点P ,12,F F 分别为该双曲线的左、右焦点,121290,F PF F PF ∠=︒的三条边长成等差数列,则双曲线的离心率是_______.18.椭圆()222210x y a b a b+=>>的左焦点为F ,(),0A a -,()0,B b ,()0,C b -分别为其三个顶点.直线CF 与AB 交于点D ,若椭圆的离心率13e =,则tan BDC ∠=___________.19.已知抛物线2:4C y x =的焦点为F ,准线为l ,过点F 的直线与抛物线交于两点11(,)P x y ,22(,)Q x y .①抛物线24y x =焦点到准线的距离为2; ②若126x x +=,则8PQ =;③2124y y p =-;④过点P 和抛物线顶点的直线交抛物线的准线为点A ,则直线AQ 平行于 抛物线的对称轴;⑤绕点(2,1)-旋转且与抛物线C 有且仅有一个公共点的直线至多有2条. 以上结论中正确的序号为__________.20.已知双曲线2222:1(0,0)x y E a b a b-=>>,点F 为E 的左焦点,点P 为E 上位于第一象限内的点,P 关于原点的对称点为Q ,且满足||3||PF FQ =,若||OP b =,则E 的离心率为_________.三、解答题21.已知椭圆具有如下性质:若椭圆的方程为()222210x y a b a b+=>>,则椭圆在其上一点()'',A x y 处的切线方程为''221x y x ya b+=,试运用该性质解决以下问题:在平面直角坐标系xOy 中,已知椭圆C :()222210x y a b a b +=>>的离心率为2,且经过点21,A ⎛⎫ ⎪ ⎪⎝⎭. (1)求椭圆C 的方程;(2)设F 为椭圆C 的右焦点,直线l 与椭圆C 相切于点P (点P 在第一象限),过原点O 作直线l 的平行线与直线PF 相交于点Q ,问:线段PQ 的长是否为定值?若是,求出定值;若不是,说明理由.22.已知椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为1F 、2F ,若C 过点31,2A ⎛⎫⎪⎝⎭,且124AF AF +=. (1)求C 的方程;(2)过点2F 且斜率为1的直线与C 交于点M 、N ,求OMN 的面积.23.在平面直角坐标系中,动点(),P x y (0y >)到定点()0,1M 的距离比到x 轴的距离大1.(1)求动点P 的轨迹C 的方程;(2)过点M 的直线l 交曲线C 于A ,B 两点,若8AB =,求直线l 的方程.24.已知椭圆()2222:10x y C a b a b +=>>过点421,3P ⎛⎫ ⎪ ⎪⎝⎭,离心率为53.(1)求椭圆C 的方程;(2)直线l 与圆22:1O x y +=相切,且与椭圆C 交于M ,N 两点,Q 为椭圆C 上一个动点(点O ,Q 分别位于直线l 两侧),求四边形OMQN 面积的最大值. 25.已知是抛物线2:2C y px=(0)p >的焦点,(1,)M t 是抛物线上一点,且||2MF =.(1)求抛物线C 的方程;(2)过点O (坐标原点)分别作,OA OB 交抛物线C 于,A B 两点(,A B 不与O 重合),且.2OA OB k k =.求证:直线AB 过定点.26.如图,已知抛物线()2:20C y px p =>,焦点为F ,过点()2,0G p 作直线l 交抛物线C 于A 、B 两点,设()11,A x y 、()22,B x y .(1)若124x x ⋅=,求抛物线C 的方程;(2)若直线l 与x 轴不垂直,直线AF 交抛物线C 于另一点M ,直线BF 交抛物线C 于另一点N .求证:直线l 与直线MN 斜率之比为定值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】设出,A B 两点的坐标,代入椭圆方程,作差变形,利用斜率公式和中点坐标可求得结果. 【详解】设(,0)F c -,因为直线30x y -+=过(,0)F c -,所以030c --+=,得3c =所以2223a b c -==, 设1122(,),(,)A x y B x y ,由22112222222211x y a b x y ab ⎧+=⎪⎪⎨⎪+=⎪⎩,得2222121222x x y y a b --=-,得2121221212y y x x b x x a y y -+=-⋅-+, 因为P 为线段AB 的中点,O 为坐标原点,所以1212(,)22x x y y P ++,1212121212202OP y y y y k x x x x +-+===-++-,所以221222122(2)ABy y b b k x x a a-==-⋅-=-,又,A B在直线0x y -+=上,所以1AB k =,所以2221b a =,即222a b =,将其代入223a b -=,得23b =,26a =,所以椭圆C 的方程为22163x y +=.故选:D 【点睛】方法点睛:本题使用点差法求解,一般涉及到弦的中点和斜率问题的题目可以使用点差法,步骤如下:①设出弦的两个端点的坐标;②将弦的两个端点的坐标代入曲线方程; ③作差变形并利用斜率公式和中点坐标公式求解.2.B解析:B 【分析】首先利用点,C D 分别是线段AB 的两个三等分点,则211222x x y y =-⎧⎪⎨=⎪⎩,得1112y k x =⋅,再利用点差法化简得2212214y b x a=,两式化简得到选项.【详解】设()11,A x y ,()22,B x y ,,C D 分别是线段AB 的两个三等分点,()1,0C x ∴-,10,2y D ⎛⎫ ⎪⎝⎭,则112,2y B x ⎛⎫- ⎪⎝⎭ ,得211222x x y y =-⎧⎪⎨=-⎪⎩,1121121131232y y y y k x x x x -===⋅-,利用点差法22112222222211x y a bx y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得()()()()12121212220x x x x y y y y a b +-+-+=, 整理得到2212214y b x a =,即222222244b a c k k a a-=⇒=, 即221k e +=故选:B 【点睛】关键点点睛:本题的关键利用三等分点得到211222x x y y =-⎧⎪⎨=-⎪⎩,再将斜率和离心率表示成坐标的关系,联立判断选项.3.C解析:C 【分析】设E是双曲线的左焦点,利用双曲线的定义把MF 转化为ME 后易得MA ME +的最小值,从而得a 的最小值,由此得离心率的最大值. 【详解】设E 是双曲线的左焦点,M 在左支上,则2MF ME a -=,2MF ME a =+,22MA MF MA ME a EA a +=++≥+,当且仅当E A M ,,三点共线时等号成立.则222(5)(11)210EA a a +=-++≥,2a ≥,所以552c e a a ==≤. 故选:C .【点睛】思路点睛:本题考查双曲线的定义的应用.在涉及双曲线上的点与一个焦点和另外一个定点距离和或差的最值时,常常利用双曲线的定义把到已知焦点的距离转化为到另一焦点的距离,从而利用三点共线取得最值求解.4.D解析:D 【分析】 先把抛物线214y x =-化为标准方程,求出焦点F (0,-1),运用抛物线的定义,找到2222(1)(4)(5)m n m n +++-++的几何意义,数形结合求最值.【详解】 由214y x =-,得24x y =-. 则214y x =-的焦点为()0,1F -.准线为:1l y =. 2222(1)(4)(5)m n m n +++-++几何意义是点()P m n ,到()0,1F-与点()4,5A -的距离之和,如图示:根据抛物线的定义点()P m n ,到()0,1F -的距离等于点()P m n ,到l 的距离,2222(1)(4)(5)m n m n ++-++|PF |+|PA |=|PP 1|+|PA |,所以当P 运动到Q 时,能够取得最小值. 最小值为:|AQ 1|=()156--=. 故选:D. 【点睛】解析几何问题解题的关键:解析几何归根结底还是几何,根据题意画出图形,借助于图形寻找几何关系可以简化运算.5.C解析:C【分析】当直线12l l 、有一条斜率不存在时,可直接求得AB CD +=12l l 、的斜率都存在且不为0时,不妨设直线1l 的斜率为k ,则直线2l 的斜率为1k-,则可得直线1l 的方程,与椭圆联立,根据韦达定理及弦长公式,可求得AB 的表达式,同理可求得CD 的表达式,令21k t +=,则可得2112t tAB CD +=+-,令2112y t t =+-,根据二次函数的性质,结合t 的范围,即可求得AB CD +的范围,综合即可得答案. 【详解】当直线12l l 、有一条斜率不存在时,不妨设直线1l 斜率不存在,则直线2l 斜率为0,此时AB =,22b CD a ===所以AB CD +=当直线12l l 、的斜率都存在且不为0时,不妨设直线1l 的斜率为k ,则直线2l 的斜率为1k-, 不妨设直线12l l 、都过椭圆的右焦点(1,0)F , 所以直线1:(1)l y k x =-,直线21:(1)l y x k=--, 联立1l 与椭圆T 22(1)12y k x x y =-⎧⎪⎨+=⎪⎩,可得2222)202142(-=+-+x k x k k , 22222(4)4(12)(22)880k k k k ∆=--+-=+>,22121222422,1212k k x x x x k k-+=⋅=++,所以12AB x =-=22)12k k +==+,同理22221))2112k k CD k k ⎛⎫+- ⎪+⎝⎭==+⎛⎫+- ⎪⎝⎭,所以2222))122k k B k C k A D +++=+++,令21k t +=,因为0k ≠,所以1t >,所以22222))122211(21)(1)k k AB t D k k t t t C +++=+=++--++=+=22211212t t t t =+-+-,令2211119224y t t t ⎛⎫=+-=--+ ⎪⎝⎭, 因为1t >,所以1(0,1)t∈,所以92,4y ⎛⎤∈ ⎥⎦⎝,所以141,92y ⎡⎫∈⎪⎢⎭⎣,所以1AB CD y +=∈⎢⎣, 综上AB CD +的取值范围是3⎡⎢⎣. 故选:C 【点睛】解题的关键是设出直线的方程,结合韦达定理及弦长公式,求得AB CD +的表达式,再根据二次函数性质求解,易错点为需求直线12l l 、中有一个不存在时,AB CD +的值,考查计算求值的能力,属中档题.6.A解析:A 【分析】由点到直线的距离公式可得2||MF b =,由勾股定理可得||OM a =,则1MF =,1cos aFOM c∠=-,由此利用余弦定理可得到a ,c 的关系,由离心率公式计算即可得答案. 【详解】由题得2(,0)F c ,不妨设:0l bx ay -=,则2||MF b ==,OM a ==,1MF =,12cos cos aFOM F OM c ∠=-∠=-, 由余弦定理可知222222111||||622OM OF MF a c a a OM OF ac c+-+-==-⋅,化为223c a =,即有==ce a故选:A . 【点睛】方法点睛:离心率的求解在圆锥曲线的考查中是一个重点也是难点,一般求离心率有以下几种情况:①直接求出,a c ,从而求出e ;②构造,a c 的齐次式,求出e ;③采用离心率的定义以及圆锥曲线的定义来求解;④根据圆锥曲线的统一定义求解.7.A解析:A 【分析】设直线AB 的方程为2y kx =+,设点()11,A x y 、()11,B x y ,将直线AB 的方程与抛物线的方程联立,列出韦达定理,结合已知条件可得出214x x =-,结合韦达定理求出2k 的值,进而可得出AOB 的面积为1212OAB S OF x x =⋅-△,即可得解. 【详解】易知抛物线28x y =的焦点为()0,2F .若直线AB 与x 轴垂直,此时直线AB 与抛物线28x y =有且只有一个公共点,不合乎题意.设直线AB 的方程为2y kx =+,设点()11,A x y 、()11,B x y , 联立228y kx x y=+⎧⎨=⎩,消去y 并整理得28160x kx --=, 由韦达定理可得128x x k +=,1216x x =-,由于AOF 与BOF 的面积之比为1:4,则4BF FA =,则()()2211,24,2x y x y --=-,所以,214x x =-,则12138x x x k +=-=,可得183k x =-, 2221218256441639k k x x x ⎛⎫=-=-⨯-=-=- ⎪⎝⎭,可得2916k =,所以,OAB 的面积为1211222OAB S OF x x =⋅-=⨯△29646464641016k =+=⨯+=. 故选:A. 【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.8.B解析:B 【分析】设点()2,0F c ,设点P 在第一象限,设2F 关于直线1PF 的对称点为点M ,推导出12MF F △为等边三角形,可得出tan 30ba >,再由公式21b e a ⎛⎫=+ ⎪⎝⎭可求得该双曲线离心率的取值范围. 【详解】 如下图所示:设点()2,0F c ,设点P 在第一象限,由于2F 关于直线1PF 的对称点在y 轴上,不妨设该点为M ,则点M 在y 轴正半轴上, 由对称性可得21122MF MF F F c ===,22113MO MF OF c =-=,所以,1260MF F ∠=,则1230PF F ∠=,所以,双曲线的渐近线by xa=的倾斜角α满足30α>,则123tan3bPF Fa>∠=,因此,该双曲线的离心率为2222222313c c a b bea a a a+⎛⎫====+>⎪⎝⎭.故选:B.【点睛】方法点睛:求解椭圆或双曲线的离心率的方法如下:(1)定义法:通过已知条件列出方程组,求得a、c的值,根据离心率的定义求解离心率e的值;(2)齐次式法:由已知条件得出关于a、c的齐次方程,然后转化为关于e的方程求解;(3)特殊值法:通过取特殊位置或特殊值,求得离心率.9.D解析:D【分析】由题意作出MD垂直于准线l,然后得2PM MD=,得30∠=︒DPM,写出直线方程,联立方程组,得关于y的一元二次方程,写出韦达定理,代入焦点弦公式计算.【详解】如图,过点M做MD垂直于准线l,由抛物线定义得MF MD=,因为PF FM=,所以2PM MD=,所以30∠=︒DPM,则直线MN方程为3(1)x y=-,联立23(1)4x yx y⎧=-⎪⎨=⎪⎩,,消去x得,231030y y-+=,设()()1122,,,M x y N x y,所以121210,13y y y y+==,得121016||2233MN y y=++=+=.故选:D.【点睛】(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系;(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式12||=++AB x x p 或12||=++AB y y p ,若不过焦点,则必须用一般弦长公式.10.D解析:D 【分析】首先利用,,A F B 三点共线,求点B 的坐标,再利用焦点弦长公式求AB . 【详解】4y =时,1644x x =⇒=,即()4,4A ,()1,0F ,设2,4y B y ⎛⎫ ⎪⎝⎭,利用,,A F B 三点共线可知24314y y =-,化简得2340y y --=,解得:1y =-或4y =(舍)当1y =-时,14x =,即()4,4A ,1,14B ⎛⎫- ⎪⎝⎭, 所以121254244AB x x p =++=++=. 故选:D 【点睛】关键点点睛:本题考查直线与抛物线相交,焦点弦问题,重点是求点B 的坐标.11.C解析:C 【分析】把P 的坐标表示出来,PA 转化为二次函数,利用二次函数最值取得条件求离心率的范围. 【详解】 设00(,)P x y ,则||PA ==又∵点P 在双曲线上,∴2200221x y a b -=,即2222002b x y b a=-,∴||PA ===.当PA 最小时,0224202a ax e e -=-=>. 又点P 不在顶点位置,∴22aa e>,∴22e <,∴e < ∵双曲线离心率1e >,∴1e <<故选:C . 【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.12.C解析:C 【分析】设出直线方程与抛物线方程联立,利用韦达定理得出1212,y y y y +及12x x ,把16OM ON ⋅=-用坐标表示代入上述值结合已知条件可得答案.【详解】设直线MN 的直线方程为x ty a =+,1122(,),(,)M x y N x y , 由题意得22x ty a y px=+⎧⎨=⎩,整理得2220y pty pa --=, 所以12122,2y y pt y y pa +==-,()()()2212121212x x ty a ty a t y y at y y a =++=+++ ()()2222t ap at pt a =-++,因为16OM ON ⋅=-,所以121216x x y y +=-, 所以()()2222216tpa at pt a pa -++-=-,22160a pa -+=,因为方程有且仅有一个实数a ,所以()22640p ∆=-=,解得4p =,或4p =-(舍去), 故选:C. 【点睛】本题考查了直线和抛物线的位置关系,关键点是利用韦达定理求出1212,y y y y +及12x x ,然后16OM ON ⋅=-坐标表示列出等式,考查了学生分析问题、解决问题的能力.二、填空题13.【分析】由题意可得Q 点坐标代入双曲线方程计算即可得出离心率【详解】设则中点由题意可得由在双曲线上可得两边同除可得解得(舍)故答案为:【点睛】关键点点睛:齐次式方程两边同除可得关于离心率的方程即可求出【分析】由题意可得Q 点坐标,代入双曲线方程,计算即可得出离心率. 【详解】设(,)Q m n ,则FQ 中点(,)22+m c n,=-FQ n k m c由题意可得325224215c nm c m n c n m c +⎧⎧=-=⨯⎪⎪⎪⎪⇒⎨⎨⎪⎪⨯=-=⎪⎪-⎩⎩,由(,)Q m n 在双曲线上,可得222242242222234()()91655119502502525()--=⇒-=⇒-+=-c c c c c a c a a b a c a 两边同除4a ,可得42950250e e -+=,解得==e e (舍)【点睛】关键点点睛:齐次式方程,两边同除可得关于离心率的方程,即可求出离心率.本题考查了计算能力和逻辑推理能力,属于中档题目.14.1【分析】设出三点坐标表示出直线利用方程思想得到直线的方程算出可计算得到解【详解】设双曲线上任意一点为过作圆的切线切点为不是双曲线的顶点故切线存在斜率且则故直线化简得:即同理有又均过点有故直线故答案解析:1 【分析】设出,,P A B 三点坐标,表示出直线,PA PB ,利用方程思想,得到直线MN 的方程,算出,m n ,可计算2211m n-得到解.【详解】设双曲线上任意一点为()11,P x y ,()22,A x y ,()33,B x y 过()11,P x y 作圆221x y +=的切线,切点为,A B()11,P x y 不是双曲线的顶点,故切线存在斜率且OA PA ⊥,则221PA OA x k k y =-=-故直线()2222:xPA y y x xy-=--化简得:222222y y y x x x-=-+即2222221x x y y x y+=+=同理有33:1PB x x y y+=又,PA PB均过点()11,P x y,有313131311,1x x y y x x y y+=+=故直线11:1MN x x y y+=1111,m nx y==221222111x xm n-=-=故答案为:115.【分析】推导出求出可得出直线的方程联立直线与抛物线的方程求出点的坐标利用抛物线的定义求出的值即可得出抛物线的标准方程【详解】因为即所以则直线的方程为联立直线与抛物线方程解得所以解得因此抛物线标准方程解析:28y x=【分析】推导出OBE EBF△△,求出tan BOE∠,可得出直线AO的方程,联立直线AO与抛物线C的方程,求出点A的坐标,利用抛物线的定义求出p的值,即可得出抛物线C的标准方程.【详解】因为BOE BEF∠=∠,90OBE EBF∠=∠=,OBE EBF∴△△,OB BEBE BF∴=,即2222p pBE OB BF p=⋅=⨯=,2BE p∴=,所以tan 2BEBOE OB∠==,则直线AO 的方程为2y x =, 联立直线OA 与抛物线方程222y xy px⎧=⎪⎨=⎪⎩ 解得(),2A p p , 所以3622p pAF p =+==,解得4p =, 因此,抛物线标准方程为28y x =. 故答案为:28y x =. 【点睛】方法点睛:求抛物线的标准方程的主要方法是定义法与待定系数法:(1)若题目已给出抛物线的方程(含有未知数p ),那么只需求出p 即可; (2)若题目未给出抛物线的方程:①对于焦点在x 轴上的抛物线的标准方程可统一设为()20y ax a =≠的正负由题设来定;②对于焦点在y 轴上的抛物线的标准方程可统一设为()20x ay a =≠,这样就减少了不必要的讨论.16.【分析】取AB 中点H 后证明H 为PF 中点从而在直角三角形OFH 中利用勾股定理找到求出离心率【详解】如图示取AB 中点H 连结OH 则OH ⊥AB 设椭圆右焦点E 连结PE ∵AB 三等分线段PF ∴H 为PF 中点∵O 为E 解析:175【分析】取AB 中点H 后,证明H 为PF 中点,从而在直角三角形OFH 中,利用勾股定理,找到221725a c =,求出离心率.【详解】如图示,取AB 中点H ,连结OH ,则OH ⊥AB ,设椭圆右焦点E ,连结PE ∵AB 三等分线段PF ,∴ H 为PF 中点. ∵O 为EF 中点,∴OH ∥PE设OH=d,则PE=2d ,∴PF=2a-2d ,BH=3a d- 在直角三角形OBH 中,222OB OH BH =+,即22293a a d d -⎛⎫=+ ⎪⎝⎭,解得:5a d =. 在直角三角形OFH 中,222OF OH FH =+,即()222c d a d =+-,解得:221725a c =,∴离心率5c e a ==.【点睛】求椭圆(双曲线)离心率的一般思路:根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.17.5【分析】首先根据双曲线的定义和等差数列的形式可设的三边长表示为最后根据勾股定理得到根据齐次方程求解离心率【详解】设并且的三边成等差数列最长的边为则三边长表示为又整理为两边同时除以得解得:或(舍)所解析:5 【分析】首先根据双曲线的定义和等差数列的形式,可设12PF F △的三边长表示为24,22,2c a c a c --,最后根据勾股定理得到22650c ac a -+=,根据齐次方程求解离心率. 【详解】设12PF PF >,并且122PF PF a -=,12PF F △的三边成等差数列,最长的边为2c ,则三边长表示为24,22,2c a c a c --, 又1290F PF ∠=,()()22224224c a c a c ∴-+-=,整理为22650c ac a -+=,两边同时除以2a 得,2650e e -+=,解得:5e =或1e =(舍),所以双曲线的离心率是5. 故答案为:5 【点睛】方法点睛:本题考查直线与双曲线的位置关系的综合问题,求离心率是圆锥曲线常考题型,涉及的方法包含1.根据,,a b c 直接求,2.根据条件建立关于,a c 的齐次方程求解,3.根据几何关系找到,,a b c 的等量关系求解.18.【分析】做出图像可知:利用两角和的正切表示有根据离心率可求出代入正切公式即可求出结果【详解】由图像可知:所以因为离心率可设那么极有代入上式得故答案为:【点睛】本题考查了椭圆的基本性质与平面几何的转化 解析:82-【分析】做出图像可知:BDC BAO CFO ∠=∠+∠,利用两角和的正切表示tan BDC ∠,有tan ,tan bb BAO CFO ac ∠=∠=,根据离心率可求出22b a =,22b c=,代入正切公式即可求出结果. 【详解】 由图像可知:BDC BAO DFA BAO CFO ∠=∠+∠=∠+∠所以tan tan tan tan()1tan tan 1b b BAO CFO a c BDC BAO CFO b bBAO CFO a c+∠+∠∠=∠+∠==-∠∠-⋅ 因为离心率13c e a ==,可设3a m =,c m =,那么22b m =,极有22b a =,22b c =,代入上式得22228235221223+=--⨯. 故答案为:825-【点睛】本题考查了椭圆的基本性质与平面几何的转化,考查了两角和的正切公式的应用,属于中档题型,思路点睛:(1)根据平面几何将所求角进行转化,BDC BAO CFO ∠=∠+∠; (2)结合两角和的正切公式,直角三角形内求角的正切,将问题转化为,,a b c 的比值问题.(3)根据离心率求出,,a b c 的比值,代入可求.19.①②④【分析】焦点到准线的距离为即可判断①;利用焦点弦的弦长公式即可判断②;设出直线方程与抛物线方程联立利用韦达定理可判断③;求出两点坐标计算斜率即可判断④;时与抛物线只有一个交点设过点的直线为与抛解析:①②④ 【分析】焦点到准线的距离为p 即可判断①;利用焦点弦的弦长公式即可判断②;设出直线PQ 方程与抛物线方程联立,利用韦达定理可判断③;求出,A Q 两点坐标,计算AQ 斜率即可判断④;1y =时与抛物线只有一个交点,设过点(2,1)-的直线为2x ky k =--,与抛物线方程联立,利用0∆=求出k 的值,即可得出有一个公共点的直线条数,可判断⑤,进而可得正确答案. 【详解】抛物线2:4C y x =可得2p =,()1,0F对于①:抛物线24y x =焦点为()1,0F ,准线l 为1x =-,所以焦点到准线的距离为2,故①正确;对于②:根据抛物线的对义可得:121286222p px x x P p Q x +++=++=+==, 对于③:设直线PQ 方程为:1x ky =+与2:4C y x =联立可得2440yky --=,可得124y y =-,因为2p =,所以2124y y p ≠-,故③不正确;对于④:11(,)P x y ,所以OP :11y y x x = ,由111y y x x x ⎧=⎪⎨⎪=-⎩可得11y y x =-, 所以111,y A x ⎛⎫-- ⎪⎝⎭,因为22(,)Q x y ,124y y =- 解得:214y y -=,所以214,Q x y ⎛⎫- ⎪⎝⎭, 因为11(,)P x y 在抛物线2:4C y x =上,所以2114y x =,所以21114x y =,1114y x y -=-所以141,A y ⎛⎫-- ⎪⎝⎭,因为214,Q x y ⎛⎫- ⎪⎝⎭,所以0AQ k =,所以//AQ x 轴,即直线AQ 平行于抛物线的对称轴,故④正确;对于⑤:1y =时,显然与抛物线只有一个交点,设过点(2,1)-的直线为2x ky k =--, 由224x ky k y x=--⎧⎨=⎩可得:24480y ky k -++=,令()2164480k k ∆=-+= 可得2k =或1k =-,故过点(2,1)-且与抛物线C 有且仅有一个公共点的直线有3条.,故⑤不正确, 故答案为:①②④ 【点睛】结论点睛:抛物线焦点弦的几个常用结论设AB 是过抛物线22y px =()0p >的焦点F 的弦,若()11,A x y ,()22,B x y ,则:(1)2124p x x =,212y y p =-;(2)若点A 在第一象限,点B 在第四象限,则1cos p AF α=-,1cos pBF α=+,弦长1222sin pAB x x p α=++=,(α为直线AB 的倾斜角); (3)112||||FA FB p+=; (4)以AB 为直径的圆与准线相切; (5)以AF 或BF 为直径的圆与y 轴相切.20.【分析】由题意设即有由双曲线定义及已知可得且结合点在曲线上联立方程得到关于的齐次方程即可求得离心率【详解】令则且①由题意知:E 的左准线为结合双曲线第二定义知:又∴解得②∵知:∴联立①②得:整理得∴故 解析:3【分析】由题意设00(,)P x y ,即有00(,)Q x y --,由双曲线定义及已知可得22003()a a x x c c +=-且22200x y b +=,结合点在曲线上联立方程得到关于,a c 的齐次方程,即可求得离心率.【详解】令00(,)P x y ,00,0x y >则00(,)Q x y --且2200221x y a b-=①,由题意知:E 的左准线为2a x c =-,结合双曲线第二定义知:20||()a PF e x c=+,20||()a FQ e x c =-,又||3||PF FQ =,∴22003()a a x x c c +=-,解得202a x c=②, ∵||OP b =知:22200x y b +=,∴联立①,②得:42222244(1)a a b b c c+-=,整理得223a c =,∴e =【点睛】关键点点睛:根据双曲线第二定义:曲线上的点到焦点距离与该点到对应准线的距离之比为常数e ,可得点P 的横坐标为22ac;结合点在曲线上及勾股定理即可得关于,a c 的齐次方程求离心率即可.三、解答题21.(1)2212x y +=;(2.【分析】(1)根据椭圆离心率为2,以及椭圆经过点2A ⎛⎫ ⎪ ⎪⎝⎭,结合椭圆的性质列方程求解即可;(2)设()00,P x y ,题意可知,切线l 的方程为0022x x y y +=,过原点O 且与l 平行的直线'l 的方程为0020x x y y +=,求出Q 的坐标,表示出PQ 的长,再化简即可得结论. 【详解】(1)由题意知222221112c aa b a b c ⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩1a b ⎧=⎪⇒⎨=⎪⎩ ∴椭圆C 的方程为2212x y +=.(2)设()00,P x y ,题意可知,切线l 的方程为0022x x y y +=, 过原点O 且与l 平行的直线'l 的方程为0020x x y y +=, 椭圆C 的右焦点()1,0F ,所以直线PF 的方程为()00010y x x y y ---=,联立()000001020y x x y y x x y y ⎧---=⎨+=⎩,所以2000002,22y x y Q x x ⎛⎫-⎪--⎝⎭,所以PQ =====为定值. 【点睛】方法点睛:探索圆锥曲线的定值问题常见方法有两种:① 从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;② 直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.22.(1)22143xy +=;(2. 【分析】(1)利用椭圆的定义可求出a 的值,将点A 的坐标代入椭圆C 的方程,求出2b 的值,进而可得出椭圆C 的方程;(2)设点()11,M x y 、()22,N x y ,写出直线MN 的方程,联立直线MN 与椭圆C 的方程,列出韦达定理,利用三角形的面积公式结合韦达定理可求得OMN 的面积. 【详解】(1)由椭圆的定义可得1224AF AF a +==,可得2a =,椭圆C 的方程为22214x y b+=, 将点A 的坐标代入椭圆C 的方程可得291414b +=,解得23b =,因此,椭圆C 的方程为22143x y +=;(2)易知椭圆C 的右焦点为()21,0F ,由于直线MN 的斜率为1,所以,直线MN 的方程为1y x =-,即1x y =+, 设点()11,M x y 、()22,N x y ,联立221143x y x y =+⎧⎪⎨+=⎪⎩,消去x 得27690y y +-=,364793680∆=+⨯⨯=⨯>,由韦达定理可得1267y y +=-,1297y y =-,212112277OMNSOF y y =⋅-===⨯=.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()11,x y 、()22,x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,必要时计算∆; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x 的形式; (5)代入韦达定理求解.23.(1)24x y =;(2)1y x =+或1y x =-+. 【分析】(1)由1PM y =+,结合两点间的距离公式得出轨迹方程;(2)由题直线l 斜率存在,设出直线l 的方程,联立轨迹C 的方程,由韦达定理以及抛物线的定义求出直线l 的方程. 【详解】(1)动点(),P x y (0y >)到x 轴的距离为y ,到点M 的距离为PM =由动点(),P x y 到定点()0,1M 的距离比到x 轴的距离大1,1y =+,两边平方得:24x y =,所以轨迹C 的方程:24x y =; (2)显然直线l 的斜率存在,设直线l 的斜率为k ,则直线l 的方程为:1y kx =+,由241x y y kx ⎧=⎨=+⎩,消去x 整理得()222410y k y -++=, ∴21224y y k +=+,∴2122428AB y y p k =++=++=, 解得21k =,即1k =±,∴直线l 的方程为1y x =+或1y x =-+. 【点睛】方法点睛:求轨迹方程的常用方法:(1)直接法,(2)定义法,(3)相关点法.24.(1)22194x y +=;(2)最大值为.(1)将1,3P ⎛ ⎝⎭的坐标代入椭圆方程中,再结合3c a =和222a b c =+可求出,a b 的值,进而可求得椭圆的方程;(2)当MN 斜率存在时,设MN 与圆O 的切线为y kx n =+,要使四边形OMQN 的面积最大,则Q 到MN 距离要最大,此时过Q 点MN 的平行线必与椭圆C 相切,设为y kx m =+,易得Q 到MN 距离与O 到MN 距离之和等于O 到直线y kx m =+的距离,然后利用点到直线的距离公式求出O 到直线y kx m =+的距离d ,利用弦长公式求出MN 的值,从而有12OMN QMN OMQN S S S MN d =+=⨯四边形△△,化简可求得其范围,当MN 斜率不存在时,直接可得OMQN S =四边形 【详解】(1)因为椭圆C过点1,3P ⎛⎫⎪ ⎪⎝⎭,所以2213219a b +=,c a = 又222a b c =+,所以得22194x y +=;(2)(i )当MN 斜率存在时,设MN 与圆O 的切线为y kx n =+,要使四边形OMQN 的面积最大,则Q 到MN 距离要最大,此时过Q 点MN 的平行线必与椭圆C 相切,设为y kx m =+,易得Q 到MN 距离与O 到MN 距离之和等于O 到直线y kx m =+的距离,设O 到直线y kx m =+的距离记为d,则d =,联立22,1,94y kx n x y =+⎧⎪⎨+=⎪⎩,消去y 得()()2229418940k x knx n +++-=,设()11,M x y ,()22,N x y ,1221894kn x x k +=-+,()21229494n x x k -=+,所以12294MN x k =-=+, 因为y kx n =+与圆O1=,因为y kx m =+与椭圆相切,所以2294k m +=,1122OMN QMNOMQN S S S MN d =+=⨯=四边形△△=== 可得OMQN S 四边形随k的增大而增大,即OMQN S <四边形(ii )当MN斜率不存在时,不妨取1,3M ⎛ ⎝⎭,1,3N ⎛- ⎝⎭,此时()3,0Q ,OMQN S =四边形综上所得四边形OMQN的面积的最大值为【点睛】关键点点睛:此题考查椭圆方程的求法,考查直线与椭圆的位置关系,考查计算能力,解题的关键是当MN 斜率存在时,设MN 与圆O 的切线为y kx n =+,要使四边形OMQN 的面积最大,则Q 到MN 距离要最大,此时过Q 点MN 的平行线必与椭圆C 相切,设为y kx m =+,易得Q 到MN 距离与O 到MN 距离之和等于O 到直线y kx m =+的距离,从而可得2112294OMN QMNOMQN S S S MN d k =+=⨯=⨯+四边形△△,化简可得结果,属于中档题25.(1)24y x =;(2)直线AB 过定点(2,0)-,证明见解析. 【分析】(1)由抛物线的定义求得p ,得抛物线方程;(2)设直线AB 方程为x my b =+, 11(,)A x y ,22(,)B x y ,直线方程代入抛物线方程,由判别式大于0得参数满足的条件,应用韦达定理得1212,y y y y +,计算由2OA OB k k =可得128y y =,从而求得参数b ,并可得出m 的范围.此时由直线方程可得定点坐标. 【详解】(1)由抛物线定义可知:122p+=,则2p =, 所以抛物线C 的方程为24y x =(2)设直线AB 方程为x my b =+, 11(,)A x y ,22(,)B x y联立24y x x my b⎧=⎨=+⎩得2440y my b --=,则216160m b ∆=+>即20()m b +>*。

苏教版高中数学选修2-1第2章圆锥曲线与方程2.1含答案

苏教版高中数学选修2-1第2章圆锥曲线与方程2.1含答案

§2.1圆锥曲线学习目标 1.了解当一个平面截一个圆锥面时,所截得的图形的各种情况.2.初步掌握椭圆、双曲线、抛物线的定义及其几何特征.3.通过平面截圆锥面的实验和对有关天体运动轨道的了解,知道圆锥曲线在我们身边广泛存在.知识点一椭圆的定义观察图形,思考下列问题:思考1如图,把细绳两端拉开一段距离,分别固定在图板上的两点F1,F2处,套上铅笔,拉紧绳子,移动笔尖,画出的轨迹是什么图形?答案椭圆思考2图中移动的笔尖始终满足怎样的几何条件?答案PF1+PF2是常数(大于F1F2).梳理平面内到两个定点F1,F2的距离的和等于常数(大于F1F2)的点的轨迹叫做椭圆,两个定点F1,F2叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.知识点二双曲线的定义观察图示,若固定拉链上一点F1或F2,拉开或闭拢拉链,拉链头M经过的点可画出一条曲线,思考下列问题:思考1图中动点M的几何性质是什么?答案|MF1-MF2|为一个正常数.思考2若MF1-MF2=F1F2,则动点M的轨迹是什么?答案以F2为端点,向F2右边延伸的射线.梳理平面内到两个定点F1,F2的距离的差的绝对值等于常数(小于F1F2的正数)的点的轨迹叫做双曲线,两个定点F1,F2叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.知识点三抛物线的定义观察图形,思考下列问题:思考如图,定点C和定直线EF,用三角板画出到定点的距离等于到定直线的距离的动点D的轨迹.则动点D的轨迹是什么?其满足什么条件?答案抛物线,动点D到定点C和定直线EF距离相等,且C不在EF上.梳理平面内到一个定点F和一条定直线l(F不在l上)的距离相等的点的轨迹叫做抛物线,定点F叫做抛物线的焦点,定直线l叫做抛物线的准线.椭圆、双曲线、抛物线统称为圆锥曲线.1.平面内到两定点的距离之和为常数的点的轨迹是椭圆.(×)2.平面内到两定点的距离之差的绝对值为常数的点的轨迹是双曲线.(×)3.抛物线上的点到焦点的距离与到准线的距离相等.(√)类型一 圆锥曲线定义的理解例 1 平面内动点 M 到两点 F 1(-3,0),F 2(3,0)的距离之和为 3m ,问 m 取何值时 M 的轨迹 是椭圆?解 ∵MF 1+MF 2=3m ,∴M 到两定点的距离之和为常数,当 3m 大于 F 1F 2 时,由椭圆定义知,M 的轨迹为椭圆, ∴3m >F 1F 2=3-(-3)=6,∴m >2,∴当 m >2 时,M 的轨迹是椭圆.反思与感悟 在深刻理解圆锥曲线的定义的过程中,一定要注意定义中的约束条件(1)在椭圆中,和为定值且大于 F 1F 2.(2)在双曲线中,差的绝对值为定值且小于 F 1F 2. (3)在抛物线中,点 F 不在定直线上.跟踪训练 1 (1)命题甲:动点 P 到两定点 A ,B 的距离之和 P A +PB =2a (a >0,a 为常数);命题乙:P 点轨迹是椭圆,则命题甲是命题乙的________条件.(2)动点 P 到两个定点 A (-2,0),B(2,0)构成的三角形的周长是 10,则点 P 的轨迹是________. 答案 (1)必要不充分 (2)椭圆解析 (1)若 P 点轨迹是椭圆,则 PA +PB =2a (a >0,且为常数),∴甲是乙的必要条件.反之,若 P A +PB =2a (a >0,且是常数),不能推出 P 点轨迹是椭圆.因为仅当 2a >AB 时,P 点轨迹才是椭圆;而当 2a =AB 时,P 点轨迹是线段 AB ;当 2a <AB时,P 点无轨迹,∴甲不是乙的充分条件.综上,甲是乙的必要不充分条件.(2)由题意知 P A +PB +AB =10,又 AB =4,∴PA +PB =6>4.∴点 P 的轨迹是椭圆.类型二 圆锥曲线轨迹的探究例 2 如图,已知动圆 C 与圆 F 1,F 2 均外切(圆 F 1 与圆 F 2 相离),试问:动点 C 的轨迹是什 么曲线?解 设动圆 C 的半径为 R ,圆 F 1,F 2 的半径分别为 r 1,r 2,则 CF 1=R +r 1,CF 2=R +r 2. 所以 CF 1-CF 2=r 1-r 2.跟踪训练 3 在△ABC 中,BC 固定,顶点 A 移动.设 BC =m ,且|sin C -sin B |= sin A ,则解 因为|sin C -sin B |= sin A ,由正弦定理可得|AB -AC |= BC = m ,且 m <BC ,又 CF 1-CF 2=r 1-r 2<F 1F 2,故动圆圆心 C 的轨迹是以 F 1,F 2 为焦点的双曲线靠近 F 2 的一支. 引申探究若把原题中“外切”换成“内切”再求解,结论如何?解 动点 C 的轨迹是以 F 1,F 2 为焦点的双曲线靠近 F 1 的一支.反思与感悟 紧扣圆锥曲线的定义,写出动点满足的条件,然后得到相应的轨迹.跟踪训练 2 已知动点 P 到点 A (-3,0)的距离比它到直线 x =1 的距离大 2,试判断动点 P 的轨迹.解 因点 P 到 A 的距离比它到直线 x =1 的距离大 2,所以点 P 到点 A 的距离等于它到直线 x =3 的距离.因为点 A 不在直线 x =3 上,所以点 P 的轨迹是抛物线.类型三 圆锥曲线定义的应用例 3 在△ABC 中,B (-6,0),C (0,8),且 sin B ,sin A ,sin C 成等差数列.(1)顶点 A 的轨迹是什么? (2)指出轨迹的焦点和焦距.解 (1)由 sin B ,sin A ,sin C 成等差数列,得 sin B +sin C =2sin A .由正弦定理可得 AB +AC=2BC .又 BC =10,所以 AB +AC =20,且 20>BC ,所以点 A 的轨迹是椭圆(除去直线 BC 与椭圆的交点).(2)椭圆的焦点为 B ,C ,焦距为 10.反思与感悟 利用圆锥曲线的定义可以判定动点的轨迹,在判定时要注意定义本身的限制条件,如得到 MF 1+MF 2=2a (a 为大于零的常数)时,还需要看 2a 与 F 1F 2 的大小,只有 2a >F 1F 2 时,所求轨迹才是椭圆.若得到MF 1-MF 2=2a (0<2a <F 1F 2),轨迹仅为双曲线的一支.除了 圆锥曲线定义本身的限制条件外,还要注意题目中的隐含条件.12顶点 A 的轨迹是什么?121 1 12 2 2所以点 A 的轨迹是双曲线(除去双曲线与 BC 的两交点).F FF1.设F1,2是两个定点,1F2=6,动点M满足MF1+MF2=10,则动点M的轨迹是________.答案椭圆解析因MF1+MF2=10>F1F2=6,由椭圆的定义得动点的轨迹是椭圆.2.若F1,2是两个定点且动点P1满足PF1-PF2=1,又F1F2=3,则动点P的轨迹是________.答案双曲线靠近点F2的一支解析因PF1-PF2=1<F1F2=3,故由双曲线定义判断,动点P的轨迹是双曲线靠近点F2的一支.3.到定点(1,0)和定直线x=-1距离相等的点的轨迹是________.答案抛物线解析依据抛物线定义可得.4.到两定点F1(-3,0),F2(3,0)的距离之差的绝对值等于6的点M的轨迹是________.答案两条射线解析据题|MF1-MF2|=F1F2,得动点M的轨迹是两条射线.5.如图,在正方体ABCD-A1B1C1D1中,P是侧面BB1C1C内一动点,若点P到直线BC与直线C1D1的距离相等,则动点P的轨迹是________.答案抛物线解析由正方体的性质可知,点P到C1D1的距离为PC1,故动点P到定点C1和到定直线BC的距离相等,且点C1不在直线BC上,符合抛物线的定义,所以动点P的轨迹是抛物线.1.若MF1+MF2=2a(2a>F1F2),则动点M的轨迹是椭圆.若点M在椭圆上,则MF1+MF2=2a.2.若|MF1-MF2|=2a(0<2a<F1F2),则动点M的轨迹为双曲线.若动点M在双曲线上,则|MF1-MF2|=2a.3.抛物线定义中包含三个定值,分别为一个定点,一条定直线及一个确定的比值.2”一、填空题1.平面内到两定点F1(-3,0),F2(3,0)的距离的和等于6的点P的轨迹是________.答案线段F1F2解析依题意得PF1+PF2=6=F1F2,故动点P的轨迹是线段F1F2.2.到定点(0,7)和到定直线y=7的距离相等的点的轨迹是________.答案直线解析因定点(0,7)在定直线y=7上,故符合条件的点的轨迹是直线.3.已知定点F1(-2,0),F2(2,0),在满足下列条件的平面内,动点P的轨迹为双曲线的是________.(填序号)①|PF1-PF2|=3;②|PF1-PF2|=4;③|PF1-PF2|=5;④PF1-PF2=±4.答案①解析根据双曲线定义知P到F1,F2的距离之差的绝对值要小于F1F2.4.到定点A(2,0)和B(4,0)的距离之差为2的点的轨迹是________.答案一条射线解析要注意两点:一是“差”而不是“差的绝对值;二是“常数”等于两定点间的距离.5.已知△ABC的顶点A(-5,0),B(5,0),△ABC的内切圆圆心在直线x=3上,则顶点C的轨迹是____________.答案以A,B为焦点的双曲线的右支(除去点(3,0))解析如图,AD=AE=8.BF=BE=2,CD=CF,所以CA-CB=8-2=6<AB=10.根据双曲线定义,所求轨迹是以A,B为焦点的双曲线的右支(除去点(3,0)).6.已知点M(x,y)的坐标满足(x-1)2+(y-1)2-(x+3)2+(y+3)2=±4,则动点M的轨迹是________.答案双曲线解析点(x,y)到(1,1)点及到(-3,-3)点的距离之差的绝对值为4,而(1,1)与(-3,-3)距3 10.已知点 A (-1,0),B (1,0).曲线 C 上任意一点 P 满足P A 2-PB 2=4(|P A |-|PB |)≠0.则曲线解析 由P A 2-PB 2=4(|P A |-|PB |)≠0,得|P A |+|PB |=4,且 4>AB .| 离为 4 2,由定义知动点 M 的轨迹是双曲线.7.下列说法中正确的有________.(填序号)①已知 F 1(-6,0),F 2(6,0),到 F 1,F 2 两点的距离之和等于 12 的点的轨迹是椭圆; ②已知 F 1(-6,0),F 2(6,0),到 F 1,F 2 两点的距离之和等于 8 的点的轨迹是椭圆;③到点 F 1(-6,0),F 2(6,0)两点的距离之和等于点 M (10,0)到 F 1,F 2 的距离之和的点的轨迹 是椭圆;④到点 F 1(-6,0),F 2(6,0)距离相等的点的轨迹是椭圆. 答案 ③解析 椭圆是到两个定点 F 1,F 2 的距离之和等于常数(大于 F 1F 2)的点的轨迹,应特别注意 椭圆的定义的应用.①中 F 1F 2=12,故到 F 1,F 2 两点的距离之和为常数 12 的点的轨迹是线段 F 1F 2. ②中点到 F 1,F 2 两点的距离之和 8 小于 F 1F 2,故这样的点不存在.③中点 M (10,0)到 F 1,F 2 两点的距离之和为 (10+6)2+02+ (10-6)2+02=20>F 1F 2=12, 故③中点的轨迹是椭圆.④中点的轨迹是线段 F 1F 2 的垂直平分线. 故正确的是③.8.若动点 P 到定点 F (1,1)和到直线 l :x +y -4=0 的距离相等,则动点 P 的轨迹是________. 答案 直线解析设动点 P 的坐标为(x ,y ),则 (x -1)2+(y -1)2=|3x +y -4|.整理,得 x -3y +2=0,10所以动点 P 的轨迹为直线.9.平面内有两个定点 F 1,F 2 及动点 P ,设命题甲:PF 1-PF 2|是非零常数,命题乙:动点P 的轨迹是以 F 1,F 2 为焦点的双曲线,则甲是乙的________条件.(“充分不必要”“必要不 充分”“充要”“既不充分又不必要”)答案 必要不充分解析 由双曲线的定义可知,若动点 P 的轨迹是以 F 1,F 2 为焦点的双曲线,则|PF 1-PF 2| 是非零常数,反之则不成立.→ → → →C 的轨迹是______.答案 椭圆→ → → →→ →故曲线 C 的轨迹是椭圆.(解析把轨迹方程5x2+y2=|3x+4y-12|写成x2+y2=,∴动点M到原点的=BD,MC=CE,于是MB+MC=BD+CE=(BD+CE)=×39=26>24=BC. 11.已知动圆M过定点A(-3,0),并且在定圆B:(x-3)2+y2=64的内部与其相内切,则动圆圆心M的轨迹为________.答案椭圆解析设动圆M的半径为r.因为动圆M与定圆B内切,所以MB=8-r.又动圆M过定点A,MA=r,所以MA+MB=8>AB=6,故动圆圆心M的轨迹是椭圆.二、解答题12.点M到点F(0,-2)的距离比它到直线l:y-3=0的距离小1,试确定点M的轨迹.解由题意得点M与点F的距离等于它到直线y-2=0的距离,且点F不在直线l上,所以点M的轨迹是抛物线.13.如图所示,已知点P为圆R:x+c)2+y2=4a2上一动点,Q(c,0)为定点(c>a>0,为常数),O为坐标原点,求线段PQ的垂直平分线与直线RP的交点M的轨迹.解由题意,得MP=MQ,RP=2a.MR-MQ=MR-MP=RP=2a<RQ=2c.∴点M的轨迹是以R,Q为两焦点,2a为实轴长的双曲线的右支.三、探究与拓展14.已知动点M的坐标满足方程5x2+y2=|3x+4y-12|,则动点M的轨迹是__________.答案抛物线|3x+4y-12|5距离与到直线3x+4y-12=0的距离相等.∵原点不在直线3x+4y-12=0上,∴点M的轨迹是以原点为焦点,直线3x+4y-12=0为准线的抛物线.△15.在ABC中,BC=24,AC,AB边上的中线长之和等于△39,求ABC的重心的轨迹.解如图所示,以BC的中点O为坐标原点,线段BC所在直线为x轴,线段BC的中垂线为y轴建立平面直角坐标系xOy.设M为△ABC的重心,BD是AC边上的中线,CE是AB边上的中线,由重心的性质知M B 222222333333根据椭圆的定义知,点M的轨迹是以B,C为两焦点,26为实轴长的椭圆去掉点(-13,0),(13,0).。

高中数学第2章圆锥曲线与方程2.3.2双曲线的几何性质学案苏教版选修2-1(2021年整理)

高中数学第2章圆锥曲线与方程2.3.2双曲线的几何性质学案苏教版选修2-1(2021年整理)

2018-2019高中数学第2章圆锥曲线与方程2.3.2 双曲线的几何性质学案苏教版选修2-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019高中数学第2章圆锥曲线与方程2.3.2 双曲线的几何性质学案苏教版选修2-1)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019高中数学第2章圆锥曲线与方程2.3.2 双曲线的几何性质学案苏教版选修2-1的全部内容。

2.3。

2 双曲线的几何性质学习目标1。

了解双曲线的几何性质(范围、对称性、顶点、实轴长和虚轴长等)。

2。

理解离心率的定义、取值范围和渐近线方程。

3。

掌握标准方程中a,b,c,e间的关系.知识点一双曲线的性质标准方程错误!-错误!=1(a〉0,b〉0)错误!-错误!=1 (a>0,b>0)图形性质范围x≥a或x≤-a,y∈R x∈R,y≤-a或y≥a 对称性对称轴:坐标轴;对称中心:原点顶点顶点坐标:A1(-a,0),A2(a,0)顶点坐标:A1(0,-a),A2(0,a)渐近线y=±错误!x y=±错误!x离心率e=错误!,e∈(1,+∞),其中c=错误!a,b,c间的关系c2=a2+b2(c〉a〉0,c>b>0)知识点二等轴双曲线思考求下列双曲线的实半轴长、虚半轴长,并分析其共同点.(1)x2-y2=1;(2)4x2-4y2=1.答案(1)的实半轴长为1,虚半轴长为1(2)的实半轴长为错误!,虚半轴长为错误!。

它们的实半轴长与虚半轴长相等.梳理实轴和虚轴等长的双曲线叫作等轴双曲线,其渐近线方程为y=±x,离心率为 2.1.双曲线错误!-错误!=1与错误!-错误!=1(a>0,b>0)的形状相同.(√)2.双曲线x2a2-错误!=1与错误!-错误!=1(a>0,b>0)的渐近线相同.(×)3.等轴双曲线的离心率为错误!。

高中数学第二章圆锥曲线与方程2

高中数学第二章圆锥曲线与方程2
∴抛物线方程为 y2=-8x 或 x2=-y.故选 B. [答案] B
14/85
2.焦点在 x 轴上,顶点到焦点的距离为 4 的抛物线
的标准方程是( )
A.y2=16x
B.y2=8x
C.y2=±8x
D.y2=±16x
15/85
[解析] 由已知p2=4,∴p=8,而抛物线开口是向左 还是向右无法确定,∴抛物线方程为 y2=±16x.故选 D.
6/85
④离心率 抛物线上的点 M 到焦点的距离和它到准线的距离之 比,叫做抛物线的________,用 e 表示,由定义可知,e =1.
7/85
(2)注意三个结论 ①抛物线只有一个焦点,一个顶点,一条对称轴, 一条准线,没有中心. ②抛物线 y2=2px(p>0)上任意一点 P(x0,y0)的焦半 径为 x0+p2. ③过抛物线的焦点且垂直于抛物线对称轴的一条 弦,称为抛物线的通径,通径长为 2p.
准线 ________ ________ ________ ________
性 范围 ________ ________ ________ ________
质 轴
____ ____ x轴
____
____
y轴
顶点
O(0,0)
离心率
e=1
10/85
[答案] 1.抛物线的轴 顶点 离心率 2.Fp2,0 F-p2,0 F0,p2 F0,-p2 x= -p2 x=p2 y=-p2 y=p2 x≥0,y∈R x≤0,y∈R x∈R,y≥0 x∈R,y≤0
所以中点为 P(3,2).
39/85
方法二:设直线 y=x-1 与抛物线 y2=4x 交于点 A(x1,y1),B(x2,y2),其中点为 P(x0,y0).则 y22=4x2, y12=4x1,y22-y21=4x2-4x1,∴y2-xy21-yx21+y1=4.因为 xy22--xy11=kAB=1,y2+y1=4,y0=2,x0=y0+1=3,故中 点为 P(3,2).

2019-2020学年苏教版数学(选修1-1)本章练测:第2章-圆锥曲线与方程(含答案)

2019-2020学年苏教版数学(选修1-1)本章练测:第2章-圆锥曲线与方程(含答案)

,椭圆的左焦点为 ,且直
线 与此圆相切,则椭圆的离心率
为.
9.若点 O 和点 F 分别为椭圆 最大值为 .
的中心和左焦点,点 P 为椭圆上的任意一点,则

10. 已知方程 ax2 + by2 = ab 和 ax+ by+ c = 0 ,其中 ab构0,a b,c > 0 , 它们所表示的曲线可能是下列图象中的.
,得直线 l 的方程为

消去 ,得 y 2 + 2 py - p2 = 0 .
由题意得 D = (2 p)2 + 4 p2 > 0 , y1 + y2 = - 2 p, y1 y2 = - p2 . 设直线 与抛物线交于 A( x1 , y1 ), B( x2 , y2 ), 则 | AB |= 3 .
y= ? b x. a
设直线 与 轴的交点为 ,因为△
为等边三角形,则有
× 所以 c-
a2 =
c
3 2
骣???桫acb +
acb÷÷÷÷,即
c2 - a2 c
=
3 ab ,
c
MF = 3 PQ , 2
解得 b = 3a ,
.所以 e = c = 2 . a
( 2)由( 1)得双曲线
的方程为
x2 -
a2
2019-2020 学年苏教版数学精品资料
第 2 章 圆锥曲线与方程(苏教版选修 1-1 )
建议用时 120 分钟
实际用时
满分 160 分
实际得分
一、填空题 ( 本题共 14 小题,每小题 5 分,共 70 分 )
x2 y2 1. 若椭圆 2 2 1(a b 0) 的离心率是

高中数学第二章圆锥曲线与方程第17课时圆锥曲线与方程复习1导学案无答案苏教版选修(1)

高中数学第二章圆锥曲线与方程第17课时圆锥曲线与方程复习1导学案无答案苏教版选修(1)

第17课时 圆锥曲线与方程复习(1)【学习目标】1.掌握椭圆.双曲线.抛物线的定义及标准方程; 2.掌握椭圆.双曲线.抛物线的几何性质; 3.能解决直线与圆锥曲线的一些问题. 【问题情境】【合作探究】如何判断方程221mx ny +=表示的圆锥曲线的类型?【展示点拨】例1.已知[]0,απ∈,试讨论方程22sin cos 1x y αα+=所表示的曲线的类型.例2.已知椭圆C :22221x y a b+= (a >b >0)的离心率为12,且经过点P (1,32).(1)求椭圆C 的方程;(2)设F 是椭圆C 的左焦点,判断以PF 为直径的圆与以椭圆长轴为直径的圆的位置关系,并说明理由.例3.设1F ,2F 分别为椭圆C :22221x y a b+= (a >b >0)的左.右焦点,过2F 的直线l 与椭圆C 相交于A ,B 两点,直线l 的倾斜角为60,1F 到直线l 的距离为(1)求椭圆C 的焦距;(2)如果222AF F B u u u r u u u r=,求椭圆C 的方程.例4 .已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,离心率为2,且过点M (4,-10).(1)求双曲线方程;(2)若点N (3,m )在双曲线上,求证:120NF NF uuu r uuu r ⋅=;(3)求△F 1NF 2的面积.【学以致用】1.已知椭圆2212x y m+=的离心率e =12,则m = .2.已知双曲线22221x y a b-=()0,0a b >>的一条渐近线方程是y =,它的一个焦点在抛物线224y x =的准线上,则双曲线的方程为________________________________.3.已知双曲线22221(0b 0)x y a a b-=>,>的两条渐近线均和圆C:22650x y x +-+=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为___________________________.4.根据下列条件判断方程22194x y k k+=--表示什么曲线:()14k < ;()249k <<.5.求圆锥曲线的标准方程:(1)顶点在原点且以双曲线2213x y -=的右准线为准线的抛物线的标准方程; (2)已知圆C :226480x y x y +--+=,以圆C 与x 轴交点分别作为双曲线的一个焦点和一个顶点,求双曲线的标准方程.第17课时 圆锥曲线与方程复习(1)【基础训练】1. 已知椭圆的中心在原点,焦点在x 轴上,且长轴长为12,离心率为31,则椭圆的方程是______________.2.双曲线22a x -22by =1的两条渐近线互相垂直,那么它的离心率为_______.3. 若椭圆221x my +=,则它的长半轴长为__________. 4.经过点P (-2,-4)的抛物线的标准方程是_____________.5.已知△ABC 的顶点B .C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是_______________.6.把椭圆2212516x y +=的长轴AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部分于1234567,,,,,,P P P P P P P 七个点,F 是椭圆的一个焦点, 则1234567PF P F PF P F PF P F P F ++++++= _. 【思考应用】7.已知定点Q (7,2),抛物线y 2=2x 上的动点P 到焦点的距离为d ,求d+PQ 的最小值,并确定取最小值时P 点的坐标.8.某隧道横断面由抛物线及矩形的三边组成,尺寸如图,某卡车空车时能通过此隧道,现载一集装箱,箱宽3m ,车与箱共高4.5m ,此车能否通过此隧道?说明理由.9.已知双曲线2222x y a b-=1的右准线l 1与一条渐近线l 交于点P ,F 是双曲线的焦点.(1)求证:PF⊥l ;(2)若PF=3,且双曲线的离心率等于54,求双曲线方程.10.已知三点P (5,2).1F (-6,0).2F (6,0). (1)求以1F .2F 为焦点且过点P 的椭圆的标准方程;(2)设点P .1F .2F 关于直线y =x 的对称点分别为P '.'1F .'2F ,求以'1F .'2F 为焦点且过点P '的双曲线的标准方程.【拓展提升】11.若椭圆2x 10+2y m =1与双曲线x 22y b -=1有相同的焦点,且椭圆与双曲线交于点P (3,y ),求椭圆及双曲线的方程.12.已知椭圆的中心在原点O,短轴长为F(c,0),右准线l与x轴相交于A,OF=2FA,过点A的直线与椭圆相交于P.Q两点.(1)求椭圆的方程及离心率;(2)若以PQ为直径的圆经过原点,求直线PQ的方程.。

【高中教育】最新高中数学第2章圆锥曲线与方程261曲线与方程学案苏教版选修2

【高中教育】最新高中数学第2章圆锥曲线与方程261曲线与方程学案苏教版选修2

——教学资料参考参考范本——【高中教育】最新高中数学第2章圆锥曲线与方程261曲线与方程学案苏教版选修2______年______月______日____________________部门学习目标1。

了解曲线上的点与方程的解之间的一一对应关系。

2。

初步领会“曲线的方程”与“方程的曲线”的概念。

3。

学会分析、判断曲线与方程的关系,强化“形”与“数”的统一以及相互转化的思想方法.知识点曲线与方程的概念思考到两坐标轴距离相等的点的轨迹方程是什么?为什么?答案y=±x。

在直角坐标系中,到两坐标轴距离相等的点M的坐标(x0,y0)满足y0=x0或y0=-x0,即(x0,y0)是方程y=±x的解;反之,如果(x0,y0)是方程y=x或y=-x的解,那么以(x0,y0)为坐标的点到两坐标轴距离相等.梳理如果曲线C上点的坐标(x,y)都是方程f(x,y)=0的解(条件①,即纯粹性),且以方程f(x,y)=0的解(x,y)为坐标的点都在曲线C上(条件②,即完备性),那么,方程f(x,y)=0叫做曲线C的方程,曲线C叫做方程f(x,y)=0的曲线.特别提醒:(1)曲线的方程和方程的曲线是两个不同的概念,是从不同角度出发的两种说法.曲线C的点集和方程f(x,y)=0的解集之间是一一对应的关系,曲线的性质可以反映在它的方程上,方程的性质又可以反映在曲线上.定义中的条件①说明曲线上的所有点都适合这个方程;条件②说明适合方程的点都在曲线上而毫无遗漏.(2)曲线的方程和方程的曲线有着紧密的关系,通过曲线上的点与实数对(x,y)建立了一一对应关系,使方程成为曲线的代数表示,通过研究方程的性质可间接地研究曲线的性质.1.过点A(3,0)且垂直于x轴的直线的方程为x=3。

(√)2.到y轴距离为2的点的直线方程x=-2。

(×)3.方程=1表示斜率为1,在y轴上的截距是2的直线.(×)类型一曲线与方程的概念例1 命题“曲线C上的点的坐标都是方程f(x,y)=0的解”是正确的,下列命题中正确的是________.(填序号)①方程f(x,y)=0的曲线是C;②方程f(x,y)=0的曲线不一定是C;③f(x,y)=0是曲线C的方程;④以方程f(x,y)=0的解为坐标的点都在曲线C上.答案②解析不论方程f(x,y)=0是曲线C的方程,还是曲线C是方程f(x,y)=0的曲线,都必须同时满足两层含义:曲线上的点的坐标都是方程的解,以方程的解为坐标的点都在曲线上,所以①,③,④错误.反思与感悟解决“曲线”与“方程”的判定这类问题(即判定方程是不是曲线的方程或判定曲线是不是方程的曲线),只要一一检验定义中的“两性”是否都满足,并作出相应的回答即可.判断点是否在曲线上,就是判断点的坐标是否适合曲线的方程.跟踪训练1 设方程f(x,y)=0的解集非空,如果命题“坐标满足方程f(x,y)=0的点都在曲线C上”是不正确的,给出下列命题:①坐标满足方程f(x,y)=0的点都不在曲线C上;②曲线C上的点的坐标都不满足方程f(x,y)=0;③坐标满足方程f(x,y)=0的点有些在曲线C上,有些不在曲线C上;④一定有不在曲线C上的点,其坐标满足f(x,y)=0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第15课时曲线与方程(2)
【学习目标】
1.通过具体实例的研究,掌握求曲线方程的一般步骤,会求简单的曲线方程;
2.掌握求动点的轨迹方程(曲线的方程)的三种常用方法.
【问题情境】
1.回忆求椭圆,双曲线,抛物线方程的过程.
2.求曲线的方程的一般步骤是什么?
【合作探究】
求曲线方程的一般步骤:
步骤简记为:建坐标系→设点→列式→化简→证明.
【展示点拨】
例1.长为2a(a是正常数)的线段AB的两端点,A B分别在相互垂直的两条直线上滑动,求线段AB中点M的轨迹.
例2.求平面内到两定点,A B 的距离之比等于2的动点M 的轨迹方程.
变式:求到两不同定点距离之比为一常数λ(λ≠0)的动点的轨迹方程.
例3.过点(2,1)A 的直线l 与椭圆2
212
x y +=相交,求l 被截得的弦的中点的轨迹方程.
例4.已知⊙O:42
2=+y x ,点A (4,0),B 为⊙O 上任意一点,若2=,求动点P 的轨迹方程
【学以致用】
1.△ABC 一边的两个端点是B(0,6)和C(0,-6),另两边斜率的积是
49,求顶点A 的轨迹.
2.两定点的距离为6,点M 到这两个定点的距离的平方和为26,求点M 的轨迹方程.
3.已知点M 与x 轴的距离和点M 与点F (0,4)的距离相等,求点M 的轨迹方程.
4.中心在坐标原点,焦点在x 轴上的椭圆,它的离心率为
2
3,与直线x +y -1=0相交于两点M .N ,且OM ⊥ON .求椭圆的方程.
5.过定点()
0,3-M 作直线与椭圆1342
2=+y x 相交于A.B两点,O为原点,求AOB ∆面积的最大值,并求出此时的直线方程.
第15课时 曲线与方程(2)
【基础训练】
1、 已知A B C ∆中,B(-3,0),C(3,0),周长为16,则顶点A 的轨迹方程
为 .
2.将圆92
2=+y x 上的点的横坐标保持不变,纵坐标变为原来的一半,求所得曲线方程 .3.已知点M 与椭圆112
1322
22=+y x 的左焦点和右焦点的距离之比为2:3,则点M 的轨迹方程 .
4.直线032=+-y x 关于点P (1,1)对称的直线方程是 .
5.动点P (x ,y )到定点A (3,0)的距离比它到定直线x= -5的距离少2.则动点P 的轨迹方程为 .
6.(2,0)是⊙O:162
2=+y x 内的一点,经过点A 作⊙O 的弦BC,则线段BC 的中点的轨迹方程是 .
【思考应用】 7.设P 为双曲线14
22
=-y x 上一动点,O 为坐标原点,M 为线段OP 的中点,求点M 的轨迹方程.
8.两条直线ax+y+1=0和x-ay-1=0(a≠±1)的交点的轨迹方程是
9.若一直线l 被直线064:1=++y x l 和0653:2=--y x l 截得的线段中点为(1,-2),求直线l 的方程.
10.等腰直角三角形ABC 中,斜边BC 长为24,一个椭圆以C 为其中一个焦点,另一个焦点在线段AB 上,且椭圆经过点A ,B .求该椭圆方程.
【拓展提升】
11.已知一条长为6的线段的两端点A,B 分别在x 轴.y 轴上滑动,点M 在线段AB 上,且AM :MB=1:2,求动点M 的轨迹方程.
12.已知直角坐标平面上点Q (2,0) 和圆O : 122=+y x ,动点M 到圆O 的切线长与|MQ |的比等于常数 ()0>λλ,求动点M 的轨迹方程,并说明它表示什么曲线?。

相关文档
最新文档