中考数学专题总复习-相似的应用
2020年九年级中考数学复习专题训练:《相似综合 》(含答案)
2020年九年级中考数学复习专题训练:《相似综合》1.如图1,点P从菱形ABCD的顶点B出发,沿B→D→A匀速运动到点A,BD的长是;图2是点P运动时,△PBC的面积y(cm2)随时间x(s)变化的函数图象.(1)点P的运动速度是cm/s;(2)求a的值;(3)如图3,在矩形EFGH中,EF=2a,FG﹣EF=1,若点P、M、N分别从点E、F、G三点同时出发,沿矩形的边按逆时针方向匀速运动,当点M到达点G(即点M与点G重合)时,三个点随之停止运动;若点P不改变运动速度,且点P、M、N的运动速度的比为2:6:3,在运动过程中,△PFM关于直线PM的对称图形是△PF'M,设点P、M、N的运动时间为t(单位:s).①当t=s时,四边形PFMF'为正方形;②是否存在t,使△PFM与△MGN相似,若存在,求t的值;若不存在,请说明理由.2.如图1,四边形ABCD中,AD∥BC,∠A=90°,AD=3,AB=4,BC=6,动点P从点A出发以1个单位/秒的速度沿AB运动,动点Q同时从点C出发以2个单位/秒的速度沿CB 运动,过点P作EP⊥AB,交BD于E,连接EQ.当点Q与点B重合时,两动点均停止运动,设运动的时间为t秒.(1)当t=1时,求线段EP的长;(2)运动过程中是否存在某一时刻,使△BEQ与△ABD相似?若存在,请求出所有满足要求的t的值;若不存在,请说明理由;(3)如图2,连接CE,求运动过程中△CEQ的面积S的最大值.3.如图1,在△ABC中,AB=AC=10,,点D为BC边上的动点(点D不与点B,C 重合).以D为顶点作∠ADE=∠B,射线DE交AC边于点E,过点A作AF⊥AD交射线DE于点F,连接CF.(1)求证:△ABD∽△DCE;(2)当DE∥AB时(如图2),求AE的长;(3)点D在BC边上运动的过程中,是否存在某个位置,使得DF=CF?若存在,求出此时BD的长;若不存在,请说明理由.4.如图(1),在矩形ABCD中,AD=nAB,点M,P分别在边AB,AD上(均不与端点重合),且AP=nAM,以AP和AM为邻边作矩形AMNP,连接AN,CN.【问题发现】(1)如图(2),当n=1时,BM与PD的数量关系为,CN与PD的数量关系为.【类比探究】(2)如图(3),当n=2时,矩形AMNP绕点A顺时针旋转,连接PD,则CN与PD之间的数量关系是否发生变化?若不变,请就图(3)给出证明;若变化,请写出数量关系,并就图(3)说明理由.【拓展延伸】(3)在(2)的条件下,已知AD=4,AP=2,当矩形AMNP旋转至C,N,M三点共线时,请直接写出线段CN的长.5.如图,在△ABC中,∠C=90°,AB=10,AC=8,D、E分别是AB、BC的中点.连接DE.动点P从点A出发,以每秒5个单位长度的速度沿AB向终点B运动.同时,动点Q从点C 出发,沿折线CE﹣ED向终点D运动,在CE、ED上的速度分别是每秒3个单位长度和4个单位长度,连接PQ,以PQ、PD为边作▱DPQM.设▱DPQM与四边形ACED重叠部分图形的面积是S(平方单位),点P的运动时间为t(s).(1)当点P在AD上运动时,PQ的长为(用含t的代数式表示);(2)当▱DPQM是菱形时,求t的值;(3)当0<t<2时,求S与t之间的函数关系式;(4)当△DPQ与△BDE相似时,直接写出t的值.6.如图,在平行四边形ABCD中,AC为对角线,过点D作DE⊥DC交直线AB于点E,过点E 作EH⊥AD于点H,过点B作BF⊥AD于点F.(1)如图1,若∠BAD=60°,AF=3,AH=2,求AC的长;(2)如图2,若BF=DH,在AC上取一点G,连接DG、GE,若∠DGE=75°,∠CDG=45°﹣∠CAB,求证:DG=CG.7.(1)问题引入:如图1所示,正方形ABCD和正方形AEFG,则BE与DG的数量关系是,=;(2)类比探究:如图2所示,O为AD、HG的中点,正方形EFGH和正方形ABCD中,判断BE和CF的数量关系,并求出的值;(3)解决问题:①若把(1)中的正方形都改成矩形,且==,则(1)中的结论还成立吗?若不能成立,请写出BE与GD的关系,并求出值;②若把(2)中的正方形也都改成矩形,且==2n,请直接写出BE和CF的关系以及的8.在正方形ABCD中,点E是直线AB上动点,以DE为边作正方形DEFG,DF所在直线与BC 所在直线交于点H,连接EH.(1)如图1,当点E在AB边上时,延长EH交GF于点M,EF与CB交于点N,连接CG,①求证:CD⊥CG;②若tan∠HEN=,求的值;(2)当正方形ABCD的边长为4,AE=1时,请直接写出EH的长.9.如图a,在正方形ABCD中,E、F分别为边AB、BC的中点,连接AF、DE交于点G.(1)求证:AF⊥DE;(2)如图b,连接BG,BD,BD交AF于点H.①求证:GB2=GA•GD;②若AB=10,求三角形GBH的面积.10.如图1,在矩形ABCD中,P为CD边上一点(DP<CP),∠APB=90°.将△ADP沿AP 翻折得到△AD′P,PD′的延长线交边AB于点M,过点B作BN∥MP交DC于点N.(1)求证:AD2=DP•PC;(2)请判断四边形PMBN的形状,并说明理由;(3)如图2,连接AC分别交PM、PB于点E、F.若AD=3DP,探究EF与AE之间的的数量关系.11.△ABC中,∠C=90°,∠A=60°,AC=2cm.长为1cm的线段MN在△ABC的边AB上沿AB方向以1cm/s的速度向点B运动(运动前点M与点A重合).过M,N分别作AB的垂线交直角边于P,Q两点,线段MN运动的时间为ts.(1)当0≤t≤1时,PM=,QN=(用t的代数式表示);(2)线段MN运动过程中,四边形MNQP有可能成为矩形吗?若有可能,求出此时t的值;若不可能,说明理由;(3)t为何值时,以C,P,Q为顶点的三角形与△ABC相似?12.如图,四边形ABCD是矩形,AB=6,BC=4,点E在边AB上(不与点A、B重合),过点D作DF⊥DE,交边BC的延长线于点F.(1)求证:△DAE∽△DCF.(2)设线段AE的长为x,线段BF的长为y,求y与x之间的函数关系式.(3)当四边形EBFD为轴对称图形时,则cos∠AED的值为.13.如图,矩形ABCD中,AB=3,BC=2,点M在BC上,连接AM,作∠AMN=∠AMB,点N 在直线AD上,MN交CD于点E.(1)求证:△AMN是等腰三角形;(2)求证:AM2=2BM•AN;(3)当M为BC中点时,求ME的长.14.如图,在平面直角坐标系中,过原点O及A(8,0)、C(0,6)作矩形OABC,连接AC,一块直角三角形PDE的直角顶点P始终在对角线AC上运动(不与A、C重合),且保持一边PD始终经过矩形点B,PE交x轴于点Q(1)=;(2)在点P从点C运动到点A的过程中,的值是否发生变化?如果变化,请求出其变化范围,如果不变,请说明理由,并求出其值;(3)若将△QAB沿直线BQ折叠后,点A与点P重合,则PC的长为.15.如图,在矩形OABC中,点A,B的坐标分别为A(4,0),B(4,3),动点N,P分别从点B,A同时出发,点N以1单位/秒的速度向终点C运动,点P以5/4单位/秒的速度向终点C运动,连结NP,设运动时间为t秒(0<t<4)(1)直接写出OA,AB,AC的长度;(2)求证:△CPN∽△CAB;(3)在两点的运动过程中,若点M同时以1单位/秒的速度从点O向终点A运动,求△MPN的面积S与运动的时间t的函数关系式(三角形的面积不能为0),并直接写出当S =时,运动时间t的值.16.如图,在正方形ABCD中,点E在边CD上(不与点C,D重合),连结AE,BD交于点F.(1)若点E为CD中点,AB=2,求AF的长.(2)若tan∠AFB=2,求的值.,(3)若点G在线段BF上,且GF=2BG,连结AG,CG,=x,四边形AGCE的面积为S1,求的最大值.△ABG的面积为S217.如图1,在△ABC中,AB=AC,点D,E分别是边BC,AC上的点,且∠ADE=∠B.(1)求证:AB•CE=BD•CD;(2)若AB=5,BC=6,求AE的最小值;(3)如图2,若△ABC为等边三角形,AD⊥DE,BE⊥DE,点C在线段DE上,AD=3,BE =4,求DE的长.18.如图,△ABC中,AB=AC,点P为BC边上一动点(不与B,C重合),以AP为边作∠APD=∠ABC,与BC的平行线AD交于点D,与AC交于点E,连结CD.(1)求证:△ABP∽△DAE.(2)已知AB=AC=5,BC=6.设BP=x,CE=y.①求y关于x的函数表达式及自变量x的取值范围;=时,求CE的值.②当S△ACD19.如图,在矩形ABCD的边AB上取一点E,连接CE并延长和DA的延长线交于点G,过点E作CG的垂线与CD的延长线交于点H,与DG交于点F,连接GH.(1)当tan∠BEC=2且BC=4时,求CH的长;(2)求证:DF•FG=HF•EF;(3)连接DE,求证:∠CDE=∠CGH.20.定义:若一个四边形能被其中一条对角线分割成两个相似三角形,则称这个四边形为“友好四边形”.(1)如图1,在4×4的正方形网格中,有一个网格Rt△ABC和两个网格四边形ABCD与ABCE,其中是被AC分割成的“友好四边形”的是;(2)如图2,将△ABC绕点C逆时针旋转得到△A'B'C,点B'落在边AC,过点A作AD∥A'B'交CA'的延长线于点D,求证:四边形ABCD是“友好四边形”;(3)如图3,在△ABC中,AB≠BC,∠ABC=60°,△ABC的面积为6,点D是∠ABC 的平分线上一点,连接AD,CD.若四边形ABCD是被BD分割成的“友好四边形”,求BD 的长.参考答案1.解:(1)由图2可知,s点P从点B运动到点D,∵BD=,∴点P的运动速度=÷=1(cm/s),故答案为:1;(2)如图1,作DQ⊥BC于点Q,当点P在BD上时,a=×BC×DP,∵四边形ABCD为菱形,点P的运动速度为1,∴AD=BC=1×a=a,∴a=×a×DP,解得,DQ=2,在Rt△BDQ中,BQ==1,∴CQ=a﹣1,在Rt△CDQ中,CD2=CQ2+DQ2,即a2=(a﹣1)2+22,解得,a=;(3)①∵点P的运动速度1cm/s,点P、M的运动速度的比为2:6 ∴点M的运动速度3cm/s,由题意得,EF=2a=5,∵FG﹣EF=1,∴FG=6,∴PF=5﹣t,FM=3t,由翻转变换的性质可知,PF=PF′,FM=FM′,当PF=FM时,PF=PF′=FM=FM′,∴四边形PFMF'为菱形,又∠F=90°,∴四边形PFMF'为正方形,∴5﹣t=3t,即t=1.25时,四边形PFMF'为正方形,故答案为:1.25;②存在,∵点P的运动速度1cm/s,点P、M、N的运动速度的比为2:6:3,∴点M的运动速度3cm/s,点N的运动速度1.5cm/s,∴PF=5﹣t,FM=3t,GN=1.5t,∵点M的运动速度3cm/s,FG=6,∴0≤t≤2,当△PFM∽△MGN时,=,即=,解得,t=,当△PFM∽△NGM时,=,即=,解得,t1=﹣7﹣(舍去),t2=﹣7+,综上所述,当t=或﹣7+时,△PFM与△MGN相似.2.解:(1)当t=1时,则AP=1,∴BP=AB﹣AP=3,∵EP⊥AB,∴∠EPB=∠A=90°,∴EP∥AD,∴△BPE∽△BAD,∴,∴,∴EP=;(2)∵∠A=90°,AD=3,AB=4,∴BD===5,∵EP⊥AB,∴∠EPB=∠A=90°,∴EP∥AD,∴△BPE∽△BAD,∴,∴,∴BE=5﹣t,∵AD∥BC,∴∠ADB=∠EBQ,若∠BEQ=∠A=90°,∴△BAD∽△QEB,∴,∴=,∴t=28(不合题意舍去),若∠BQE=∠A=90°,∴△BAD∽△EQB,∴,∴t=,(3)∵S=×CQ×PB=×2t×(4﹣t)=﹣(t﹣2)2+4,∴当t=2时,S最大值为4,∴△CEQ的面积S的最大值为4.3.证明:(1)∵AB=AC,∴∠B=∠ACB,∵∠ADE+∠CDE=∠B+∠BAD,∠ADE=∠B,∴∠BAD=∠CDE,∴△BAD∽△DCE;(2)如图2中,作AM⊥BC于M.在Rt△ABM中,设BM=4k,∵=,∴,由勾股定理,得到AB2=AM2+BM2,∴102=(3k)2+(4k)2,∴k=2或﹣2(舍弃),∴AM=6,BM=8,∵AB=AC,AM⊥BC,∴BC=2BM=2×2k=16,∵DE∥AB,∴∠BAD=∠ADE,∵∠ADE=∠B,∠B=∠ACB,∴∠BAD=∠ACB,∵∠ABD=∠CBA,∴△ABD∽△CBA,∴,∴=,∵DE∥AB,∴,∴=.(3)点D在BC边上运动的过程中,存在某个位置,使得DF=CF.理由:作FH⊥BC于H,AM⊥BC于M,AN⊥FH于N.则∠NHM=∠AMH=∠ANH=90°,∴四边形AMHN为矩形,∴∠MAN=90°,MH=AN,∵AB=AC,AM⊥BC,∵AB=10,∴BM=CM=8,∴BC=16,在Rt△ABM中,由勾股定理,得AM=6,∵AN⊥FH,AM⊥BC,∴∠ANF=90°=∠AMD,∵∠DAF=90°=∠MAN,∴∠NAF=∠MAD,∴△AFN∽△ADM,∴,∴,∴CH=CM﹣MH=CM﹣AN=8﹣=,当DF=CF时,由点D不与点C重合,可知△DFC为等腰三角形,∵FH⊥DC,∴CD=2CH=7,∴BD=BC﹣CD=16﹣7=9,∴点D在BC边上运动的过程中,存在某个位置,使得DF=CF,此时BD=9.4.解:(1)BM=PD,,理由如下:当n=1,则AD=AB,AP=AM,∴AD﹣AP=AB﹣AM,∴DP=BM,∵四边形ABCD是矩形,四边形AMNP是矩形,∴AD=CD=AB,AP=AM=NP,∠ADC=∠APN=90°,∴AC=AD,AN=AP,∴AC﹣AN=(AD﹣AP),∴CN=PD,故答案为:BM=PD,;(2)CN与PD之间的数量关系发生变化,,理由如下:如图(1)在矩形ABCD和矩形AMNP中,∵当n=2.AD=2AB,AP=2AM,∴,,∴.,如图(3)连接AC,∵矩形AMNP绕点A顺时针旋转,∴∠NAC=∠PAD,∴△ANC∽△APD,∴,∴;(3)如图,当点N在线段CM上时,∵AD=4,AD=2AB,∴AB=CD=2,∴AC===,∵AP=2,AP=2AM,∴AM=1,∴CM===,∴CN=CM﹣MN=﹣2;如图,当点M在线段CN上时,同理可求CM=,∴CN=CM+MN=+2;综上所述:线段CN的长为或.5.解:(1)∵∠C=90°,AB=10,AC=8,∴BC===6,∵D、E分别是AB、BC的中点.∴DE∥AC,DE=AC=4,BD=AD=5,BE=CE=3,∵动点P从点A出发,以每秒5个单位长度的速度沿AB向终点B运动,∴AP=5t,∴BP=10﹣5t,∵DE∥AC,∴△BPQ∽△BAC,∴,∴∴PQ=8﹣4t,故答案为:8﹣4t;(2)当点P在AD上运动时,∵四边形DPQM是菱形,∴PD=PQ,∴5﹣5t=8﹣4t,∴t=﹣3(不合题意舍去),当点P在BD上运动时,过点P作PH⊥DQ于H,∵四边形DPQM是菱形,∴PD=PQ,且PH⊥DQ,∴DH=HQ=DQ=[4﹣4(t﹣1)]=4﹣2t,∵DE∥AC,∴∠DEB=∠ACB=90°=∠PHD,∴PH∥BE,∴△PDH∽△BDE,∴,∴,∴t=,PH=3t﹣3,综上所述:当t=时,▱DPQM是菱形;(3)当0<t<1时,S=×(8﹣4t+4)×(3﹣3t)=6t2﹣24t+18,当t=1时,不能作出▱DPQM,当1<t<2时,S=×(8﹣4t)×(3t﹣3)=﹣6t2+18t﹣12;(4)当点P在AD上时,不存在△DPQ与△BDE相似,当点P在BD上时,则∠PDQ=∠BDE,若∠PQD=∠DEB=90°时,∴△PDQ∽△BDE,∴,∴∴t=,若∠DPQ=∠DEB=90°时,∴△QPD∽△BED,∴,∴∴t=综上所述:当t=或时,△DPQ与△BDE相似.6.解:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,CD=AB,CD∥AB,∵BF⊥AD于F,∴∠AFB=90°,∵∠BAD=60°,∴AB=2AF=6,BF=AF=3,∵EH⊥AD于H,∴AE=2AH=4,EH=AH=2,∵DE⊥DC交AB于E,∴∠DEA=90°,∴AD=2AE=8,∴CB=AD=8,如图1,作AM⊥CB于M,则∠ABM=∠BAD=60°,∴BM=(1/2)AB=3,AM=BM=3,∴CM=CB+BM=11,在Rt△ACM中:AC===2.(2)如图2,作EN⊥AC于N,连接DN、CE,则∠CNE=90°.∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,CD=AB,CD∥AB,∵DE⊥DC交AB于E,∴∠CDE=∠DEA=90°,∵EH⊥AD于H,∴∠DHD=∠EHA=90°,∵BF⊥AD于F,∴∠DFB=∠AFB=90°,∴∠DHE=∠BFA,∵∠DEH+∠HEA=∠HEA+∠BAF=90°,∴∠DEH=∠BAF,∵DH=BF,∴△DEH≌△BAF(AAS),∴DE=BA=CD,∴△CDE是等腰直角三角形,∠DCE=∠DEC=45°,∵∠CDE=∠CNE=90°,∴C、D、N、E四点共圆,∴∠DNC=∠DEC=45°,∵∠CDG=45°﹣∠CAB,∴∠CDG+∠CAB=45°,∵CD∥AB,∴∠CAB=∠DCG,∴∠DGN=∠DCG+∠CDG=45°=∠DNC,∴△DGN是等腰直角三角形,∠GDN=90°,DG=DN,∵∠CDG+∠GDE=∠GDE+∠EDN=90°,∴∠CDG=∠EDN,∴△CDG≌△EDN(SAS),∴EN=CG,∵∠CGD=75°,∴∠CGN=∠CGD﹣∠DGN=30°,∴GN=EN=CG,∴DG=GN=CG7.解:(1)如图1中,连接AC,AF.∵四边形ABCD,四边形AEFG都是正方形,∴AB=AD,AE=AG,∠BAD=∠EAG=90°,AC=AB,AF=AE,∠BAC=45°,∠EAF=45°,∴∠BAE=∠DAG,∴△BAE≌△DAG(SAS),∴BE=DG,∵AC=AB,AF=AE,∴=,∵∠BAC=∠EAF=45°,∴∠BAE=∠CAF,∴△BAE∽△CAF,∴==,∵DG=BE,∴=.故答案为:BE=DG,.(2)如图2中,连接OB,OE,OF,OC.∵四边形ABCD是正方形,OA=OD,∴∠A=∠CDO=90°,AB=CD,∴△AOB≌△DOC(SAS),∴OB=OC,同法可证OE=OF,∴∠OBC=∠OCB,∠OEF=∠OFE,∵BC∥AD,∴∠CBO=∠AOB,∴tan∠CBO=tan∠AOB=2,同法可证:tan∠FEO=2,∴tan∠CBO=tan∠FEO,∴∠CBO=∠FEO,∴∠OBC=∠OCB=∠OEF=∠OFE,∴∠BOC=∠EOF,∴∠EOB=∠FOC,∵OE=OF,OB=OC,∴△OEB≌△OFC(SAS),∴BE=FC,∵tan∠COD=tan∠COD=2,∴∠FOG=∠COD,∴∠FOC=∠GOD,∵==,∴△FOG∽△GOD,∴==.(3)①如图3中,结论不成立,BE=3DG.连接BE,AC,AF,CF.∵四边形ABCD,四边形AEFG都是矩形,∴∠BAD=∠EAG=90°,∴∠BAE=∠DAG,∵AB=3AD,AE=3AG,∴△BAE∽△DAG,∴==3,∴BE=3DG,由题意:=,=,∴=,∴=,∵tan∠BAC=tan∠EAF=,∴∠BAC=∠EAF,∴∠BAE=∠CAF,∴△BAE∽△CAF,∴==,∴=.②如图4中,连接OE,OB,OF,OC.由(2)可知,∠BOC=∠EOF,OE=OF,OB=OC,∴∠EOB=∠FOC,∴△EOB≌△FOC(SAS),∴BE=CF.同法可证△FOC∽△GOD,∴=,设EH=k,则GH=2nk,∴OG=nk,∴OF==•k,∵BE=CF,∴==.8.证明:(1)①∵四边形ABCD和四边形DEFG是正方形,∴∠A=∠ADC=∠EDG=90°,AD=CD,DE=DG,∴∠ADE=∠CDG,在△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴∠A=∠DCG=90°,∴CD⊥CG;②如图1,过点N作NP∥DE,∵四边形DEFG是正方形,∴EF=GF,∠EFH=∠GFH=45°,且HF=HF,∴△EFH≌△GFH(SAS),∴EH=GH,∠HEF=∠HGF,∵∠HEF=∠HGF,EF=GF,∠EFM=∠GFN,∴△EFM≌△GFN(ASA),∴FM=NF,EM=GN,∵tan∠HEN==,∴EF=4MF=4NF=GF,∴GM=3MF=EN=3NF,∴NP∥DE,∴△PNE∽△MFE,∴,∴PN=MF,∵NP∥DE,∴=,∴;(2)如图1,∵AD=4,AE=1,∴DE===,∴EF=GF=,∴NF=EF=,∵GN2=GF2+NF2,∴GN=,∵∴GH=GN=,∴EH=GH=若点E在点A左侧,如图2,设AB与DH于点O,过点F作FN⊥AB,∵∠DEA+∠FEB=90°,∠DEA+∠ADE=90°,∴∠ADE=∠FEB,且∠DAE=∠FNE=90°,DE=EF,∴△ADE≌△NEF(AAS)∴AE=NF=1,DA=EN=4,∴AN=3,BN=1,∵DA∥NF,∴,∴ON=,∴BO=,∴AO=∵DA∥BH,∴,∴BH=,∴EH===9.证明:(1)∵正方形ABCD,E、F分别为边AB、BC的中点,∴AD=BC=DC=AB,AE=BE=AB,BF=CF=BC,∴AE=BF,∵在△ADE和△BAF中,∴△ADE≌△BAF(SAS)∴∠BAF=∠ADE,∵∠BAF+∠DAF=90°∴∠ADE+∠DAF=90°=∠AGD,∴AF⊥DE;(2)①如图b,过点B作BN⊥AF于N,∵∠BAF=∠ADE,∠AGD=∠ANB=90°,AB=AD,∴△ABN≌△ADG(AAS)∴AG=BN,DG=GN,∵∠AGE=∠ANB=90°,∴EG∥BN,∴,且AE=BE,∴AG=GN,∴AN=2AG=DG,∵BG2=BN2+GN2=AG2+AG2,∴BG2=2AG2=2AG•AG=GA•DG;②∵AB=10,∴AE=BF=5,∴DE===5,∵×AD×AE=×DE×AG,∴AG=2,∴GN=BN=2,∴AN=DG=4,∴△DGH∽△BNH,∴==2,∴GH=2HN,且GH+HN=GN=2,∴GH=,=×GH×BN=××2=.∴S△GHB10.(1)证明:过点P作PG⊥AB于点G,如图1所示:则四边形DPGA和四边形PCBG是矩形,∴AD=PG,DP=AG,BG=PC,∵∠APB=90°,∴∠APG+∠GPB=∠GPB+∠PBG=90°,∴∠APG=∠PBG,∴△APG∽△PBG,∴=,∴PG2=AG•BG,即AD2=DP•PC;(2)解:四边形PMBN是菱形;理由如下:∵四边形ABCD是矩形,∴AB∥CD,∵BM∥PN,BN∥MP,∴四边形PMBN是平行四边形,∵DP∥AB,∴∠DPA=∠PAM,由题意可知:∠DPA=∠APM,∴∠PAM=∠APM,∵∠APB﹣∠PAM=∠APB﹣∠APM,即∠ABP=∠MPB∴AM=PM,PM=MB,∴四边形PMBN是菱形;(3)解:∵AD=3DP,∴设DP=1,则AD=3,由(1)可知:AG=DP=1,PG=AD=3,∵PG2=AG•BG,∴32=1•BG,∴BG=PC=9,AB=AG+BG=10,∵CP∥AB,∴△PCF∽△BAF,∴==,∴=,∵PM=MB,∴∠MPB=∠MBP,∵∠APB=90°,∴∠MPB+∠APM=∠MBP+∠MAP=90°,∴∠APM=∠MAP,∴PM=MA=MB,∴AM=AB=5,∵AB∥CD,∴△PCE∽△MAE,∴==,∴=,∴EF=AF﹣AE=AC﹣AC=AC,∴==.11.解:(1)由题意得:AM=t,∵PM⊥AB,∴∠PMA=90°,∵∠A=60°,∴∠APM=30°,∴PM=AM=t.∵∠C=90°,∴∠B=90°﹣∠A=30°,∴AB=2AC=4,BC=AC=2,∵MN=1,∴BN=AM﹣AM﹣1=3﹣t,∵QN⊥AB,∴QN=BN=(3﹣t);故答案为:tcm,(3﹣t)cm.(2)四边形MNQP有可能成为矩形,理由如下:由(1)得:QN=(3﹣t).由条件知,若四边形MNQP为矩形,则需PM=QN,即t=(3﹣t),∴t=.∴当t=s时,四边形MNQP为矩形;(3)由(2)知,当t=s时,四边形MNQP为矩形,此时PQ∥AB,∴△PQC∽△ABC.除此之外,当∠CPQ=∠B=30°时,△QPC∽△ABC,此时=tan30°=.∵=cos60°=,∴AP=2AM=2t.∴CP=2﹣2t.∵=cos30°=,∴BQ=(3﹣t).又∵BC=2,∴CQ=2 .∴.综上所述,当s或s时,以C,P,Q为顶点的三角形与△ABC相似.12.证明:(1)∵四边形ABCD是矩形,∴AD∥BC,∠A=∠BCD=∠ADC=90°,AD=BC=4,AB=CD=6,∴∠ADE+∠EDC=90°,∵DF⊥DE,∴∠EDC+∠CDF=90°,∴∠ADE=∠CDF,且∠A=∠DCF=90°,∴△DAE∽△DCF;(2)∵△DAE∽△DCF,∴,∴∴y=x+4;(3)∵四边形EBFD为轴对称图形,∴DE=BE,∵AD2+AE2=DE2,∴16+AE2=(6﹣AE)2,∴AE=,∴DE=BE=,∴cos∠AED==,故答案为:.13.(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠NAM=∠BMA,∵∠AMN=∠AMB,∴∠AMN=∠NAM,∴AN=MN,即△AMN是等腰三角形;(2)证明:∵四边形ABCD是矩形,∴AD∥BC,AD=BC=2,AB=CD=3,∴∠NAM=∠BMA,作NH⊥AM于H,如图所示:∵AN=MN,NH⊥AM,∴AH=AM,∵∠NHA=∠ABM=90°,∠NAM=∠BMA,∴△NAH∽△AMB,∴=,∴AN•BM=AH•AM=AM2,∴AM2=2BM•AN;(3)解:∵M为BC中点,∴BM=CM=BC=×2=1,由(2)得:AM2=2BM•AN,即:AM2=2AN,∵AM2=AB2+BM2=32+12=10,∴10=2AN,∴AN=5,∴DN=AN﹣AD=5﹣2=3,设DE=x,则CE=3﹣x,∵AN∥BC,∴△DNE∽△CME∴=,即=,解得:x=,即DE=,∴CE=DC﹣DE=3﹣=,∴ME===.14.解:(1)∵A(8,0)、C(0,6),∴OA=8,OC=6,∵四边形OABC是矩形,∴∠ABC=∠OAB=90°,BC=OA=8,AB=OC=6,∴==,故答案为:;(2)的值不发生变化,=,理由如下:∵∠OAB=∠BPQ=90°,∴∠AOB+∠BPQ=180°,∴A、B、P、Q四点共圆,∴∠PQB=∠PAB,∵∠ABC=∠BPQ=90°,∴△PBQ∽△BCA,∴==;(3)设BQ交AP于M,如图所示:在Rt△ABC中,由勾股定理得:AC===10,由折叠的性质得:BQ⊥AP,PM=AM,∴∠AMB=90°=∠ABC,∵∠BAM=∠CAB,∴△ABM∽△ACB,∴=,即=,解得:AM=3.6,∴PA=2AM=7.2,∴PC=AC﹣PA=10﹣7.2=2.8;故答案为:2.8.15.(1)证明:∵四边形OABC是矩形,A(4,0),B(4,3),∴OA=BC=4,AB=OC=3,∠AOC=90°,∴AC===5;(2)解:由题意得:BN=t,AP=t,∵=,==,∴=,∴PN∥AB,∴△CPN∽△CAB;(3)解:分两种情况:①当0<t<2时,延长NP交OA于D,如图1所示:由(2)得:PD∥AB,∴△APD∽△ACO,∴==,即==,解得:PD=t,AD=t,∴PN=3﹣t,DM=4﹣t﹣t=4﹣2t,∴△MPN的面积S=PN×DM=×(3﹣t)×(4﹣2t)=t2﹣t+6,即S=t2﹣t+6(0<t<2);②当2<t<4时,延长NP交OA于D,如图2所示:由(2)得:PD∥AB,∴△APD∽△ACO,∴==,即==,解得:PD=t,AD=t,∴PN=3﹣t,DM=t+﹣4t=2t﹣4,∴△MPN的面积S=PN×DM=×(3﹣t)×(2t﹣4)=﹣t2+t﹣6,即S=﹣t2+t﹣6(2<t<4);当S=,0<t<2时,则t2﹣t+6=,整理得:t2﹣6t+6=0,解得:t=3﹣,或t=3+(不合题意舍去),∴t=3﹣;当S=,2<t<4时,则﹣t2+t﹣6=,整理得:t2﹣6t+10=0,∵△=36﹣40<0,∴此方程无解;综上所述,当S=时,运动时间t的值为(3﹣)秒.16.解:(1)∵点E为CD中点,AB=AD=CD=2,∴DE=,∴AE===5,∵AB∥CD,∴△ABF∽△EDF,∴,∴AF=2EF,且AF+EF=5,∴AF=;(2)如图1,连接AC,∵四边形ABCD是正方形,∴AB=BC=CD=AD,BD=AB,AO⊥BD,AO=BO=CO=DO,∴AO=DO=BO=AB,∵tan∠AFB==2,∴OF=AO=AB,∴DF=OD﹣OF=AB,BF=OB+OF=AB,∴;(3)如图2,设AB=CD=AD=a,则BD=a,∵=x,∴DE=xa,∴S△ADE=×AD×DE=xa2,∵△ABF∽△EDF,∴=x,∴DF=x•BF,∴S△ABF=a2,∵GF=2BG,∴S2=S△ABG=S△ABF=,∵AB=CB,∠ABG=∠CBG,BG=BG,∴△ABG≌△CBG(SAS)∴S△ABG =S△CBG,∴S1=四边形AGCE的面积=a2﹣xa2﹣2×∴=﹣3x2+3x+4=﹣3(x﹣)2+∴当x=时,的最大值为.17.(1)证明:∵AB=AC,∴∠B=∠C,∵∠ADC为△ABD的外角,∴∠ADE+∠EDC=∠B+∠DAB,∵∠ADE=∠B,∴∠BAD=∠CDE,又∠B=∠C,∴△ABD∽△DCE,∴=,∴AB•CE=BD•CD;(2)解:设BD=x,AE=y,由(1)得,5×(5﹣y)=x×(6﹣x),整理得,y=x2﹣x+5=(x﹣3)2+,∴AE的最小值为;(3)解:作AF⊥BE于F,则四边形ADEF为矩形,∴EF=AD=3,AF=DE,∴BF=BE﹣EF=1,设CD=x,CE=y,则AF=DE=x+y,由勾股定理得,AD2+CD2=AC2,CE2+BE2=BC2,AF2+BF2=AB2,∵△ABC为等边三角形,∴AB=AC=BC,∴32+x2=AC2,y2+42=BC2,(x+y)2+12=AC2,∴x2﹣y2=7,y2+2xy=8,解得,x=,y=,∴DE=x+y=.18.(1)证明:∵AB=AC,∴∠ABC=∠ACB,∵∠APC=∠ABC+∠BAP,∠APC=∠APD+∠EPC,∠APD=∠ABC,∴∠BAP=∠EPC,∴△ABP∽△PCE,∵BC∥AD,∴△PCE∽△DAE,∴△ABP∽△DAE;(2)解:①∵△ABP∽△PCE,∴=,即=,∴y=﹣x2+x(0<x<6);②∵△ABP∽△DAE,∴=,即=,∴AD=,∵AD∥BC,∴,∵,∴,∴,即13x2+24x﹣100=0,∴x=2,(舍去)1∴.19.(1)解:在Rt△BCE中,当tan∠BEC=2,∴=2,即=2,解得,BE=2,由勾股定理得,CE===2,∵四边形ABCD为矩形,∴AB∥CD,∴∠ECH=∠BEC,∴tan∠ECH==2,即=2,∴EH=4,∴CH==10;(2)证明:∵∠FEG=∠FDH=90°,∠EFG=∠DFH,∴△EFG∽△DFH,∴=,∴DF•FG=HF•EF;(3)证明:∵△EFG∽△DFH,∴∠CGD=∠CHE,又∠GCD=∠HCE,∴△GCD∽△HCE,∴=,又∠GCD=∠HCE,∴△CDE∽△CGH,∴∠CDE=∠CGH.20.解:(1)AB=2,BC=1,AD=4,由勾股定理得,AC==,CD==,AE==2,CE==5,===,∴△ABC∽△EAC,∴四边形ABCE是“友好四边形”,≠,∴△ABC与△ACD不相似,∴四边形ABCD不是“友好四边形”,故答案为:四边形ABCE;(2)证明:根据旋转的性质得,∠A'CB'=∠ACB,∠CA'B'=∠CAB,∵AD∥A'B',∴∠CA'B'=∠D,∴∠CAB=∠D,又∠A'CB'=∠ACB,∴△ABC∽△DAC,∴四边形ABCD是“友好四边形”;(3)如图3,过点A作AM⊥BC于M,在Rt△ABM中,AM=AB•sin∠ABC=AB,∵△ABC的面积为6,∴BC×AB=6,∴BC×AB=24,∵四边形ABCD是被BD分割成的“友好四边形”,且AB≠BC,∴△ABD∽△DBC∴,∴BD2=AB×BC=24,∴BD==2.。
初中数学中考复习考点知识与题型专题讲解33 相似形(解析版)
初中数学中考复习考点知识与题型专题讲解专题33相似形【知识要点】考点知识一相似图形及比例线段相似图形:在数学上,我们把形状相同的图形称为相似图形.相似多边形:若两个边数相同的多边形,它们的对应角相等、对应边成比例,则这两个多边形叫做相似多边形。
特征:对应角相等,对应边成比例。
比例线段:对于四条线段a、b、c、d,如果其中两条线段的比与另两条线段的比相等,如a:b=c:d,我们就说这四条线段是成比例线段,简称比例线段。
考点知识二相似三角形相似图形的概念:形状相同的图形叫做相似图形。
相似图形的概念:对应角相等、对应边成比例的两个三角形叫做相似三角形。
相似用符号“∽”,读作“相似于”。
相似比的概念:相似三角形对应边的比叫做相似比相似三角形的判定:判定方法(一):平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似.判定方法(二):如果两个三角形的三组对应边的比相等,那么这两个三角形相似.判定方法(三):如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.判定方法(四):如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.判定方法(五):斜边和任意一条直角边成比例的两个直角三角形相似。
相似三角形的性质:1.相似三角形的对应角相等,对应边的比相等;2.相似三角形中的重要线段的比等于相似比;相似三角形对应高,对应中线,对应角平分线的比都等于相似比.3.相似三角形的面积比等于相似比的平方.相似三角形与实际应用:关键:巧妙利用相似三角形性质,构建相似三角形求解。
考点知识三位似位似图形定义:如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心.注意:1.位似图形是相似图形的一种特殊形式。
2.位似图形的对应顶点的连线所在直线相交与一点,位似图形的对应边互相平行或者共线。
位似中心的位置:形内、形外、形上。
2021年中考数学 专题汇编:相似三角形及其应用(含答案)
2021中考数学 专题汇编:相似三角形及其应用一、选择题(本大题共10道小题)1. 如图,在△ABC 中,D ,E 分别是AB ,AC 边上的点,DE ∥BC ,若AD=2,AB=3,DE=4,则BC 等于 ( )A .5B .6C .7D .82. (2020·永州)如图,在ABC 中,2//,3AE EF BC EB =,四边形BCFE 的面积为21,则ABC 的面积是( )A. 913B. 25C. 35D. 633. (2020·嘉兴) 如图,在直角坐标系中,△OAB 的顶点为O (0,0),A (4,3),B (3,0).以点O 为位似中心,在第三象限内作与△OAB 的位似比为13的位似图形△OCD ,则点C 坐标为( )A .(﹣1,﹣1)B .(4,13--) C .(41,3--) D .(﹣2,﹣1)4. (2019•巴中)如图ABCD ,F 为BC 中点,延长AD 至E ,使13DE AD =∶∶,连接EF 交DC 于点G ,则:DEG CFG S S △△=A .2∶3B .3∶2C .9∶4D .4∶95. (2020·河南)如图,在△ABC 中,∠ACB=90°,边BC 在x 轴上,顶点A ,B的坐标分别为(-2,6)和(7,0).将正方形OCDE 沿x 轴向右平移,当点E 落在AB 边上时,点D 的坐标为( )A. (32,2)B. (2,2)C. (114,2) D. (4,2)6. (2020·河北) 在图5所示的网格中,以点O 为位似中心,四边形ABCD 的位似图形是A.四边形NPMQB.四边形NPMRC.四边形NHMQD.四边形NHMR7. (2019•贺州)如图,在ABC △中,D E ,分别是AB AC ,边上的点,DE BC ∥,若23AD AB ==,,4DE =,则BC 等于A .5B .6C.7 D.88. 如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB 的垂直平分线,垂足为E.若BC=3,则DE的长为()A. 1B. 2C. 3D. 49. (2020•丽水)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连结EG,BD相交于点O、BD与HC相交于点P.若GO=GP,则ABCDEFGHSS正方形正方形的值是()A.12+B.22+C.52-D.15410. (2020·新疆)如图,在△ABC中,∠A=90°,D是AB的中点,过点D作BC的平行线交AC于点E,作BC的垂线交BC于点F,若AB=CE,且△DFE 的面积为1,则BC的长为·······················································()A.25B.5 C.45D.10二、填空题(本大题共8道小题)11. 如图,在△ABC中,∠ACD=∠B,若AD=2,BD=3,则AC长为.12. 在某一时刻,测得一根高为1.8 m的竹竿的影长为3 m,同时同地测得一栋楼的影长为90 m,则这栋楼的高度为m.13. (2020·郴州)在平面直角坐标系中,将AOB∆以点O为位似中心,32为位似比作位似变换,得到11OBA∆.已知)3,2(A,则点1A的坐标是.14. 如图,在R t△ABC中,∠ACB=90°,AC=3,BC=4,CD⊥AB,垂足为D,E为BC的中点,AE与CD交于点F,则DF的长为_________.FE DBC A15. (2019•泸州)如图,在等腰Rt ABC△中,90C=︒∠,15AC=,点E在边CB上,2CE EB=,点D在边AB上,CD AE⊥,垂足为F,则AD长为__________.16. (2020·杭州)如图是一张矩形纸片,点E在AB边上,把BCE△沿直线CE对折,使点B落在对角线AC上的点F处,连接DF.若点E,F,D在同一条直线上,2AE=,则DF=______,BE=______.FDBEAC17. 如图,在Rt△ABC中,∠BAC=90°,AB=15,AC=20,点D在边AC上,AD=5,DE⊥BC于点E,连接AE,则△ABE的面积等于________.18. (2020·长沙)如图,点P 在以MN 为直径的半圆上运动,(点P 与M ,N 不重合)PQ ⊥MN ,NE 平分∠MNP ,交PM 于点E ,交PQ 于点F . (1)PMPEPQPF +=____________. (2)若MN PM PN •=2,则NQMQ=____________. F E NMP三、解答题(本大题共4道小题) 19. (2020·凉山州)(7分)如图,一块材料的形状是锐角三角形ABC ,边BC =120 mm ,高AD =80mm ,把它加工成正方形零件,使正方形的一边在BC 上,其余两个顶点分别在AB 、AC 上,这个正方形零件的边长是多少?20. 如图,在Rt △ABC 中,∠ACB=90°,AB=10,BC=6,CD ∥AB ,∠ABC 的平分线BD 交AC 于点E ,求DE 的长.HKFEBA21. 已知:在等边△ABC中,D 、E 分别是AC 、BC 上的点,且∠BAE =∠CBD<60°,DH ⊥AB ,垂足为点H .(1)如图①,当点D 、E 分别在边AC 、BC 上时,求证:△ABE ≌△BCD ;(2)如图②,当点D 、E 分别在AC 、CB 延长线上时,探究线段AC 、AH 、BE 的数量关系;(3)在(2)的条件下,如图③,作EK ∥BD 交射线AC 于点K ,连接HK ,交BC 于点G ,交BD 于点P ,当AC =6,BE =2时,求线段BP 的长.22. 已知在△ABC中,AB 边上的动点D 由A 向B 运动(与A ,B 不重合),同时,点E 由点C 沿BC 的延长线方向运动(E 不与C 重合),连接DE 交AC 于点F ,点H 是线段AF 上一点.(1)如图①,若△ABC 是等边三角形,DH ⊥AC ,且D ,E 的运动速度相等,求HFAC的值.(2)如图②,若在△ABC 中,∠ABC=90°,∠ADH=∠BAC=30°,且点D ,E的运动速度之比是:1,求HFAC的值;(3)如图③,若在△ABC 中,AB=AC ,∠ADH=∠BAC=36°,记ACBC=m ,且点D ,E 的运动速度相等,试用含m 的代数式表示HFAC的值.图① 图② 图③2021中考数学 专题汇编:相似三角形及其应用-答案一、选择题(本大题共10道小题) 1. 【答案】B [解析]∵DE ∥BC ,∴△ADE ∽△ABC , ∴=,即=,解得BC=6,故选B .2. 【答案】B【详解】解:∵//EF BC ∴AEF B AFE C ∠=∠∠=∠, ∴AEF ABC ∽ ∵23AE EB = ∴25AE AB = ∴255242AEB ABCS S ⎛⎫==⎪⎝⎭ ∴421AEBBCFESS =四边形 ∵21BCFE S =四边形 ∴AEBS =4∴=25ABCS故选:B .3. 【答案】B【解析】本题考查了在坐标系中,位似图形点的坐标.在平面直角坐标系中,如果以原点为位似中心,画出一个与原图形位似的图形,使它与原图形的相似比为k ,那么与原图形上的点(x ,y )对应的位似图形上的点的坐标为(kx ,ky )或(–kx ,–ky ).由A (4,3),位似比k =13,可得C (413,--)因此本题选B .4. 【答案】D【解析】设DE x =,∵13DE AD =∶∶,∴3AD x =, ∵四边形ABCD 是平行四边形,∴AD BC ∥,3BC AD x ==, ∵点F 是BC 的中点,∴1322CF BC x ==, ∵AD BC ∥,∴DEG CFG △∽△,∴224()()392DEG CFG S DE x S CF x ===△△,故选D .5. 【答案】B【解析】∵点A ,B 的坐标分别为(-2,6)和(7,0),∴OC=2,AC=6,OB=7, ∴BC=9,正方形的边长为2.将正方形OCDE 沿x 轴向右平移,当点E 落在AB 边上时,设正方形与x 轴的两个交点分别为G 、F ,∵EF ⊥x 轴,EF=GF=DG=2,∴EF ∥AC ,D ,E 两点的纵坐标均为2, ∴EF BF AC BC ,即269BF ,解得BF=3.∴OG=OB-BF-GF=7-3-2=2,∴ D 点的横坐标为2,∴点D 的坐标为 (2,2).6. 【答案】A【解析】解析:连接AO 并延长AO 至点N ,连接BO 并延长PO 至点P, 连接CO 并延长CO 至点M, 连接DO 并延长DO 至Q ,可知12AO BO CO DO NO PO MO QO ====,所以以点O 为位似中心,四边形ABCD 的位似图形是四边形NPMQ ,故答案为A.7. 【答案】B【解析】∵DE BC ∥,∴ADE ABC △∽△, ∴AD DE AB BC=,即243BC =,解得:6BC =,故选B .8. 【答案】A【解析】∵AD 是∠BAC 的平分线,AC ⊥BC ,AE ⊥DE, ∴DC =DE ,AE =AC .又∵DE 是AB 的垂直平分线,∴BE =AE ,即AB =2AE =2AC, ∴∠B =30°.设DE =x ,则BD =3-x .在Rt △BDE 中,x 3-x=12,解得x =1,∴DE的长为1.9. 【答案】C【解析】∵四边形EFGH 为正方形,∴∠EGH =45°,∠FGH =90°,∵OG =GP ,∴∠GOP =∠OPG =67.5°,∴∠PBG =22.5°,又∵∠DBC =45°,∴∠GBC =22.5°,∴∠PBG =∠GBC ,∵∠BGP =∠BG =90°,BG =BG ,∴△BPG ≌△BCG ,∴PG =CG .设OG =PG =CG =x ,∵O为EG,BD的交点,∴EG=2x,FG2=x.∵四个全等的直角三角形拼成“赵爽弦图”,∴BF=CG=x,∴BG=x2+x,∴BC2=BG2+CG2()2222(21)422x x x=++=+,∴()22422222ABCDEFGHxSS x+==+正方形正方形,因此本题选D.10. 【答案】A【解析】本题考查了相似三角形的判定与性质,三角形的中位线定理.如答图,过点E作EG⊥BC于G,过点A作AH⊥BC于H.又因为DF⊥BC,所以DF∥AH∥EG,四边形DEGF是矩形.所以△BDF∽△BAH,DF=EG,所以DFAH=BDBA,因为D为AB中点,所以BDBA=12,所以DFAH =12.设DF=EG=x,则AH=2x.因为∠BAC=90°,所以∠B+∠C=90°,因为EG⊥BC,所以∠C+∠CEG=90°,所以∠B=∠CEG,又因为∠BHA=∠CGE=90°,AB=CE,所以△ABH≌△CEG,所以CG=AH=2x.同理可证△BDF∽△ECG,所以BFEG=BDEC,因为BD=12AB=12CE,所以BF=12EG=12x.在R t△BDF中,由勾股定理得BD=22DF BF+=221()2x x+=5x,所以AD=5x,所以CE=AB=2AD=5x.因为DE∥BC,所以AEAC=ADAB=12,所以AE=12AC=CE=5x.在R t△ADE中,由勾股定理得DE=22AD AE+=225()(5)2x x+=52x.因△DEF的面积为1,所以12DE·DF=1,即12×52x·x=1,解得x=255,所以DE=52×255=5,因为AD=BD,AE=CE,所以BC=2DE=25,因此本题选D.二、填空题(本大题共8道小题)11. 【答案】[解析]∵∠ACD=∠B,∠CAD=∠BAC,∴△ACD∽△ABC,∴=,即=,∴AC=或AC=-(舍去).12. 【答案】5413. 【答案】(,2)【解析】∵将△AOB 以点O 为位似中心,为位似比作位似变换,得到△A 1OB 1,A (2,3),∴点A 1的坐标是:(×2,×3),即A 1(,2).故答案为:(,2).14. 【答案】5485【解析】本题考查平行线分线段成比例定理,相似三角形的判定与性质.已知∠ACB =90°,AC =3, BC =4,由勾股定理,得AB =5.CD ⊥AB ,由三角形的面积,得CD =AC BC AB ⋅=125.易得△ABC ∽△ACD ∽△CBD ,由相似三角形对应边成比例,得AD =AC AC AB ⋅=95,BD =BC BC AB ⋅=165.过点E 作EG ∥AB 交CD于点G ,由平行线分线段成比例,得DG =12CD =65,EG =85,所以DF ADGF EG=,即956855DF DF =-,所以DF =,故答案为5485. GF E DB CA15. 【答案】92【解析】如图,过D 作DH AC ⊥于H ,则∠AHD =90°,∵在等腰Rt ABC △中,90C =︒∠,15AC =, ∴15AC BC ==,45CAD ∠=︒, ∴∠ADH =90°–∠CAD =45°=∠CAD , ∴AH DH =,∴CH =AC –AH =15–DH ,∵CF AE ⊥,∴90DHA DFA ∠=∠=︒,又∵∠ANH =∠DNF ,∴HAF HDF ∠=∠,∴ACE DHC △∽△,∴DH CH AC CE =, ∵2CE EB =,CE +BE =BC =15,∴10CE =, ∴151510DH DH -=, ∴9DH =,∴2292AD AH DH =+=,故答案为:92.16. 【答案】2 5-1【解析】设BE =x ,则AB =AE +BE =2+x .∵四边形ABCD 是矩形,∴CD =AB =2+x ,AB ∥CD ,∴∠DCE =∠BEC .由折叠得∠BEC =∠DEC ,EF =BE =x ,∴∠DCE =∠DEC .∴DE =CD =2+x .∵点D ,F ,E 在同一条直线上,∴DF =DE -EF =2+x -x =2.∵AB ∥CD ,∴△DCF ∽△EAF ,∴DC EA =DF EF .∴22x +=2x ,解得x 1=5-1,x 2=-5-1.经检验,x 1=5-1,x 2=-5-1都是分式方程的根.∵x >0,∴x =5-1,即BE =5-1.17. 【答案】78 【解析】如解图,过A 作AH ⊥BC ,∵AB =15,AC =20,∠BAC =90°,∴由勾股定理得,BC =152+202=25,∵AD =5,∴DC =20-5=15,∵DE ⊥BC ,∠BAC =90°,∴△CDE ∽△CBA ,∴CE CA =CD CB ,∴CE =1525×20=12.法一:BC·AH =AB·AC ,AH =AB·AC BC =15×2025=12,S △ABE =12×12×13=78.法二:DE =152-122=9,由△CDE ∽△CAH 可得,CD CA =ED HA ,∴AH =9×2015=12,S △ABE =12×12×13=78.18. 【答案】1;215- 【解析】本题考查了圆的基本性质,角平分线性质,平行相似,相似判定与性质,(1)作EH ⊥MN ,又∵MN 是直径,NE 平分∠MNP ,PQ ⊥MN ,∴易证出PE =EH =HF =PF ,EH ∥PQ ,∴△EMH ∽△PMQ ,∴PQ PF PQ EH PM ME ==,∴1=+=+PM PE PM ME PM PE PQ PF ; (2)由相似基本图射影型得:解得MN QN PN •=2又∵MN PM PN •=2,∴QN =PM ,设QN =PM =a ,MQ =b ,由相似基本图射影型得:解得MN MQ PM •=2,∴()b a b a +=2解得()251a b +-=或()251a b --=(舍去)∴215-==a b NQ MQ ; 因此本题答案为1;215-. F EQ N M P三、解答题(本大题共4道小题)19. 【答案】解:设这个正方形零件的边长为x mm ,则△AEF 的边EF 上的高AK =(80-x)mm .∵四边形EFHG 是正方形,∴EF ∥GH ,即EF ∥BC .∴△AEF ∽△ABC . ∴EF AK BC AD =,即8012080x x -=.∴x =48.∴这个正方形零件的边长是48 mm .20. 【答案】解:∵BD 平分∠ABC ,∴∠ABD=∠CBD.∵AB ∥CD ,∴∠D=∠ABD ,∴∠CBD=∠D ,∴CD=BC=6.在Rt △ABC 中,AC===8.∵AB ∥CD ,∴△ABE ∽△CDE ,∴====,∴CE=AE ,DE=BE ,即CE=AC=×8=3.在Rt △BCE 中,BE===3, ∴DE=BE=×3=.21. 【答案】(1)证明:∵△ABC 为等边三角形,∴∠ABC =∠C =∠CAB =60°,AB =BC ,在△ABE 和△BCD 中,⎩⎨⎧∠BAE =∠CBDAB =BC∠ABE =∠BCD, ∴△ABE ≌△BCD (ASA);(2)解:∵△ABC 为等边三角形,∴∠ABC =∠CAB =60°,AB =BC ,∴∠ABE =∠BCD =180°-60°=120°.∴在△ABE 和△BCD 中,⎩⎨⎧∠BAE =∠CBDAB =BC∠ABE =∠BCD, ∴△ABE ≌△BCD (ASA),∴BE =CD .∵DH ⊥AB ,∴∠DHA =90°,∵∠CAB =60°,∴∠ADH =30°,∴AD =2AH ,∴AC =AD -CD =2AH -BE ;(3)解:如解图,作DS ⊥BC 延长线于点S ,作HM ∥AC 交BC 于点M ,解图∵AC =6,BE =2,∴由(2)得AH =4,BH =2,与(1)同理可得BE =CD =2,CE =8,∵∠SCD =∠ACB =60°,∴∠CDS =30°,∴CS =1,SD =3,BS =7,∵BD 2=BS 2+SD 2=72+(3)2,∴BD =213,∵EK ∥BD ,∴△CBD ∽△CEK ,∴CB CE =CD CK =BD EK ,∴CK =CD ·CE CB =2×86=83,EK =CE ·BD CB =8×2136=8133. ∵HM ∥AC ,∴∠HMB =∠ACB =60°,∴△HMB 为等边三角形,BM =BH =HM =2, CM =CB -BM =4,又∵HM ∥AC ,∴△HMG ∽△KCG ,∴HM KC =MG CG ,即382=MG 4-MG,∴MG =127,BG =267,EG =407, ∵EK ∥BD ,∴△GBP ∽△GEK ,∴BP EK =GB GE , ∴BP =261315.22. 【答案】(1)过点D 作DG ∥BC 交AC 于点G ,解图①∵△ABC 是等边三角形,∴△AGD 是等边三角形,∴AD =GD ,由题意知CE =AD ,∴CE =GD∵DG ∥BC ,∴∠GDF =∠CEF ,在△GDF 与△CEF 中,GDF CEF GFD EFC CE GD ⎧⎪⎨⎪=∠=∠∠∠⎩=, ∴△GDF ≌△CEF (AAS ),∴CF =GF , ∵DH ⊥AG ,∴AH =GH ,∴AC =AG +CG =2GH +2GF =2(GH +GF )=2HF , ∴AC HF=2; (2)如解图②,过点D 作DG ∥BC 交AC 于点G ,解图②由题意知,点D ,E 3:1, ∴3,AD CE = ∵∠ABC =90°,∠BAC =30°,∴3,AD GD = ∴,AD AD CE GD = ∴GD =CE ,∵DG ∥BC ,∴∠GDF=∠CEF ,在△GDF 和△CEF 中,,GDF CEF GFD EFC GD CE ∠=∠∠=∠⎧⎪⎨⎪⎩=∴△GDF ≌△CEF (AAS ),∴CF =GF ,∵∠ADH =∠BAC =30°,∴AH =HD ,∵∠AGD =∠HDG =60°,∴GH =HD ,∴AH =HG ,∴AC =AG +CG =2GH +2GF =2(GH +GF )=2HF , ∴AC HF=2; (3)如解图③,过点D 作DG ∥BC 交AC 于点G ,解图③∵DG ∥BC ,∴△AGD ∽△ACB ,∴=,GD BC m AG AC = ∵∠ADH =∠BAC =36°,AC=AB ,∴∠GHD =∠HGD =72°,∴GD =HD =AH , ∴=,AH GD m AG AG= ∵AD =CE , ∴==,GD GD GD m AD AG CE = ∵DG ∥BC ,∴△GDF ∽△ECF ,∴=,GD GF m CE CF= ∴GH +FG =m (AH +FC )=m (AC-HF ), 即HF =m (AC-HF ),∴1.=AC m HF m +。
中考数学专题复习 专题20 相似三角形问题(学生版)
中考专题20 相似三角形问题一、比例1.成比例线段(简称比例线段):对于四条线段a 、b 、c 、d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即dcb a =(或a :b=c :d),那么,这四条线段叫做成比例线段,简称比例线段。
如果作为比例内项的是两条相同的线段,即cbb a =或a :b=b :c ,那么线段b 叫做线段a ,c 的比例中项。
2.黄金分割:用一点P 将一条线段AB 分割成大小两条线段,若小段与大段的长度之比等于大段与全长之比,则可得出这一比值等于0·618…。
这种分割称为黄金分割,分割点P 叫做线段AB 的黄金分割点,较长线段叫做较短线段与全线段的比例中项。
3.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例。
4.两条直线被一组平行线所截,所得的对应线段成比例。
5.平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例。
二、相似、相似三角形及其基本的理论1. 相似:相同形状的图形叫相似图形。
相似图形强调图形形状相同,与它们的位置、大小无关。
2.相似三角形:对应角相等,对应边成比例的两个三角形叫做相似三角形。
相似多边形对应边的比叫做相似比。
3.三角形相似的判定方法(1)定义法:对应角相等,对应边成比例的两个三角形相似。
(2)平行法:平行于三角形一边的直线和其他两边(或两边延长线)相交,构成的三角形与原三角形相似。
(3)两个三角形相似的判定定理判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似。
判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应相等,并且夹角相等,那么这两个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似。
判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简述为三边对应成比例,两三角形相似。
相似三角形的应用-2022年中考数学一轮复习考点(浙江专用)(解析版)
考点15 相似三角形的应用【命题趋势】相似三角形的应用在中考中主要考察热点有:8字图、A字图等简单相似模型。
出题类型可以是选择填空这类小题,也可以是18~19这类解答题,难度通常不大,问题背景多以现实中的实物如树高、楼高、物体尺寸等为背景,提炼出数学模型,进而利用(或构造)简单相似模型求解长度等问题。
【中考考查重点】一、相似三角形在实际生活中的应用二、位似图形三、相似三角形与函数综合考向一:相似三角形在实际生活中的应用相似三角形在实际生活中的应用:(一)建模思想:建立相似三角形的模型(二)常见题目类型:1.利用投影、平行线、标杆等构造相似三角形求解2.测量底部可以到达的物体的高度3.测量底部不可以到达的物体的高度4.测量河的宽度【同步练习】1.如图,小明周末晚上陪父母在马路上散步,他由灯下A处前进4米到达B处时,测得影子BC长为1米,已知小明身高1.6米,他若继续往前走4米到达D处,此时影子DE长为()A.1米B.2米C.3米D.4米【分析】依据△CBF∽△CAP,即可得到AP=8,再依据△EDG∽△EAP,即可得到DE 长.【解答】解:由FB∥AP可得,△CBF∽△CAP,∴=,即=,解得AP=8,由GD∥AP可得,△EDG∽△EAP,∴=,即=,解得ED=2,故选:B.2.《九章算术》中记载了一种测量古井水面以上部分深度的方法.如图所示,在井口A处立一根垂直于井口的木杆AB,从木杆的顶端B观察井水水岸D,视线BD与井口的直径AC交于点E,如果测得AB=1米,AC=1.6米,AE=0.4米,那么CD为()A.2米B.3米C.米D.米【分析】由题意知:△ABE∽△CDE,得出对应边成比例即可得出CD.【解答】解:由题意知:AB∥CD,则∠BAE=∠C,∠B=∠CDE,∴△ABE∽△CDE,∴=,∴=,∴CD=3米,故选:B.3.在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB=2m,它的影子BC=1.5m,木竿PQ的影子有一部分落在了墙上,它的影子QN=1.8m,MN=0.8m,木竿PQ的长度为.【分析】根据同一时刻物高与影长成正比列式求解即可.【解答】解:设木竿PQ长为xm,依题意得=,解得x=1.6,答:木竿PQ长度为1.6m,故答案为:1.6m.4.如图,有一块三角形余料,它的边BC=100m,高线AH=80m,要把它加工成矩形零件,使矩形的一边EF在BC上,其余两个顶点D、G分别在边AB、AC上,设矩形DEFG的一边长DE=xm,矩形DEFG的面积为S.(1)矩形DEFG的另一边长DG是多少?(用关于x的代数式表示)(2)求S关于x的函数表达式和自变量x的取值范围.(3)当x为多少时,矩形DEFG的面积S有最大值?最大值是多少?【分析】(1)利用矩形的性质,DG∥EF,利用同位角相等,证△ADG∽△ABC,利用相似三角形的性质求解即可;(2)由(1)可知,DG=(80﹣x),然后即可求出用x表示的矩形面积的关系式.(3)利用配方法求出最大值即可.【解答】解:(1)∵四边形DEFG是矩形,∴DG∥EF,∴∠ADG=∠ABC,∠AGD=∠ACB,∴△ADG∽△ABC,∴=,∴=,∴DG=(80﹣x)(m);(2)矩形面积S=x•(80﹣x)=﹣x2+100x(0<x<80);(3)∵S=﹣(x2﹣80x)=﹣(x﹣40)2+2000,∵﹣<0,∴x=40时,S的值最大,最大值为2000.答:当x=40时,S的值最大,最大值为2000m2.考向二:位似图形位似图形满足的条件:①所有经过对应点的直线都相交于同一点(该点叫做位似中心);②这个交点到两个对应点的距离之比都相等(这个比值叫做位似比)【同步练习】1.如图,BC∥ED,下列说法不正确的是()A.AE:AD是相似比B.点A是两个三角形的位似中心C.B与D、C与E是对应位似点D.两个三角形是位似图形【分析】根据位似变换的概念和性质判断即可.【解答】解:A、当BC∥ED时,△AED∽△ACB,AE:AC是相似比,本选项说法不正确,符合题意;B、点A是两个三角形的位似中心,本选项说法正确,不符合题意;C、B与D、C与E是对应位似点,本选项说法正确,不符合题意;D、两个三角形是位似图形,本选项说法正确,不符合题意;故选:A.2.如图,已知△ABC和△ADE是以点A为位似中心的位似图形,且△ABC和△ADE的周长比为2:1,则△ABC和△ADE的位似比是()A.1:4B.4:1C.1:2D.2:1【分析】利用位似的性质求解.【解答】解:∵△ABC和△ADE是以点A为位似中心的位似图形,∴△ABC∽△ADE,位似比等于相似比,∵△ABC和△ADE的周长比为2:1,∴△ABC和△ADE的相似比为2:1,∴△ABC和△ADE的位似比是2:1.故选:D.3.如图,在网格图中,以O为位似中心,把△ABC缩小到原来的,则点A的对应点为()A.D点B.E点C.D点或G点D.D点或F点【分析】作射线AO,根据位似变换的概念判断即可.【解答】解:作射线AO,由图可知,点D和点G都在射线AO上,且=,=,则点A的对应点为D点或G点,故选:C.4.如图,在7×4方格纸中,点A,B,C都在格点上,用无刻度直尺作图.(1)在图1中的线段AC上找一个点E,使AE=AC;(2)在图2中作一个格点△CDE,使△CDE与△ABC相似.【分析】(1)构造相似比为的相似三角形即可解决问题;(2)利用勾股定理的逆定理判断出∠ACB=90°,从而解决问题.【解答】解:(1)如图,构造相似比为的相似三角形,则点E即为所求;(2)如图,∵BC2=5,AC2=20,AB2=25,∴BC2+AC2=AB2,∴∠ACB=90°,AC=2BC,∴△CDE即为所求.5.如图,在平面直角坐标系中,△ABC的顶点为A(2,1),B (1,3),C(4,1),若△A1B1C1与△ABC是以坐标原点O为位似中心的位似图形,点A、B、C的对应点分别为A1、B1、C1,且A1的坐标为(4,2).(1)请在所给平面直角坐标系第一象限内画出△A1B1C1;(2)分别写出点B1、C1的坐标.【分析】(1)(2)利用点A和点A1的坐标特征确定位似比为2,然后把点B、C的横纵坐标都乘以2得到点B1、C1的坐标,然后描点即可.【解答】解:(1)如图,△A1B1C1;(2)点B1的坐标为(2,6),点C1的坐标为(8,2).考向三:相似三角形与函数综合【方法提炼】【同步练习】1.(2021•无棣县二模)如图(1)所示,E为矩形ABCD的边AD上一点,动点P,Q同时从点B出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5;②;③当0<t≤5时,;④当秒时,△ABE∽△QBP;其中正确的结论是()A.①②③B.②③C.①③④D.②④【分析】据图(2)可以判断三角形的面积变化分为三段,可以判断出当点P到达点E 时点Q到达点C,从而得到BC、BE的长度,再根据M、N是从5秒到7秒,可得ED 的长度,然后表示出AE的长度,根据勾股定理求出AB的长度,然后针对各小题分析解答即可.【解答】解:根据图(2)可得,当点P到达点E时,点Q到达点C,∵点P、Q的运动的速度都是1cm/秒,∴BC=BE=5,∴AD=BE=5,故①小题正确;又∵从M到N的变化是2,∴ED=2,∴AE=AD﹣ED=5﹣2=3,相似三角形与函数的综合重点是利用相似三角形的性质,设置参数,构建对应函数模型,再利用函数的性质求解后续问题在Rt△ABE中,AB===4,∴cos∠ABE==,故②小题错误;过点P作PF⊥BC于点F,∵AD∥BC,∴∠AEB=∠PBF,∴sin∠PBF=sin∠AEB==,∴PF=PB sin∠PBF=t,∴当0<t≤5时,y=BQ•PF=t•t=t2,故③小题正确;当t=秒时,点P在CD上,此时,PD=﹣BE﹣ED=﹣5﹣2=,PQ=CD﹣PD=4﹣=,∵=,==,∴=,又∵∠A=∠Q=90°,∴△ABE∽△QBP,故④小题正确.综上所述,正确的有①③④.故选:C.2.(2020•达州)如图,在梯形ABCD中,AB∥CD,∠B=90°,AB=6cm,CD=2cm.P 为线段BC上的一动点,且和B、C不重合,连接P A,过点P作PE⊥P A交射线CD于点E.聪聪根据学习函数的经验,对这个问题进行了研究:(1)通过推理,他发现△ABP∽△PCE,请你帮他完成证明.(2)利用几何画板,他改变BC的长度,运动点P,得到不同位置时,CE、BP的长度的对应值:当BC=6cm时,得表1:BP/cm…12345…CE/cm…0.83 1.33 1.50 1.330.83…当BC=8cm时,得表2:BP/cm…1234567…CE/cm… 1.17 2.00 2.50 2.67 2.50 2.00 1.17…这说明,点P在线段BC上运动时,要保证点E总在线段CD上,BC的长度应有一定的限制.①填空:根据函数的定义,我们可以确定,在BP和CE的长度这两个变量中,的长度为自变量,的长度为因变量;②设BC=mcm,当点P在线段BC上运动时,点E总在线段CD上,求m的取值范围.【分析】(1)根据两角对应相等两三角形相似证明即可.(2)①根据函数的定义判断即可.②设BP=xcm,CE=ycm.利用相似三角形的性质构建二次函数,利用二次函数的性质求出y的最大值即可解决问题.【解答】(1)证明:∵AB∥CD,∴∠B+∠C=180°,∵∠B=90°,∴∠B=∠C=90°,∵AP⊥PE,∴∠APE=90°,∴∠APB+∠EPC=90°,∵∠EPC+∠PEC=90°,∴∠APB=∠PEC,∴△ABP∽△PCE.(2)解:①根据函数的定义,我们可以确定,在BP和CE的长度这两个变量中,BP的长度为自变量,EC的长度为因变量,故答案为:BP,EC.②设BP=xcm,CE=ycm.∵△ABP∽△PCE,∴=,∴=,∴y=﹣x2+mx=﹣(x﹣m)2+,∵﹣<0,∴x=m时,y有最大值,∵点E在线段CD上,CD=2cm,∴≤2,∴m≤4,∴0<m≤4.1.如图,小明探究课本“综合与实践”板块“制作视力表”的相关内容:当测试距离为5m时,标准视力表中最大的“”字高度为72.7mm,当测试距离为3m时,最大的“”字高度为()A.121.17mm B.43.62mm C.29.08mm D.4.36mm【分析】直接利用平行线分线段成比例定理列比例式,代入可得结论.【解答】解:由题意得:CB∥DF,,∵AD=3m,AB=5m,BC=72.7mm,,∴DF=43.62(mm),故选:B.2.如图,点A,B都在格点上,若BC=,则AC的长为()A.B.C.2D.3【分析】根据相似三角形的判定和性质可以得到AB的长,然后由图可知AC=AB﹣BC,然后代入数据计算即可.【解答】解:作CD⊥BD于点D,作AE⊥BD于点E,如右图所示,则CD∥AE,∴△BDC∽△BEA,∴,∴=,解得BA=2,∴AC=BA﹣BC=2﹣=,故选:B.3.国旗法规定:所有国旗均为相似矩形,在下列四面国旗中,其中只有一面不符合标准,这面国旗是()A.B.C.D.【分析】根据已知条件分别求出矩形的长与宽的比,即可得到结论.【解答】解:A、=,B、=,C、=,D、=,∵==≠,∴B选项不符合标准,故选:B.4.如图,△ABC与△A′B′C′位似,位似中心为点O,,△ABC的面积为9,则△A′B′C′面积为()A.B.6C.4D.【分析】根据位似图形的概念得到△ABC∽△A′B′C′,根据相似三角形的面积之比等于相似比的平方解答.【解答】解:根据题意知,△ABC∽△A′B′C′,∵,∴△ABC的面积:△A′B′C′面积=9:4.又∵△ABC的面积为9,∴△A′B′C′面积为4.故选:C.5.如图,△ABC和△A′B′C′是以点O为位似中心的位似图形,若OA:AA′=2:5,则△ABC与△A′B′C′的周长比为()A.2:3B.4:3C.2:9D.4:9【分析】根据题意求出OA:OA′=2:3,根据相似三角形的性质求出AC:A′C′,根据相似三角形的性质计算即可.【解答】解:∵OA:AA′=2:5,∴OA:OA′=2:3,∵△ABC和△A′B′C′是以点O为位似中心的位似图形,∴AC∥A′C′,△ABC∽△A′B′C′,∴△AOC∽△A′OC′,∴AC:A′C′=OA:OA′=2:3,∴△ABC与△A′B′C′的周长比为2:3,故选:A.6.小明的身高为1.6m,某一时刻他在阳光下的影子长为2m,与他邻近的一棵树的影长为10m,则这棵树的高为m.【分析】在同一时刻物高和影长成正比,即在同一时刻的两个问题物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.【解答】解:设这棵树的高度为xm,根据相同时刻的物高与影长成比例,则可列比例为:,解得:x=8.故答案为:8.7.据《墨经》记载,在两千多年前,我国学者墨子和他的学生做了“小孔成像”实验,阐释了光的直线传播原理.小孔成像的示意图如图所示,光线经过小孔O,物体AB在幕布上形成倒立的实像CD(点A、B的对应点分别是C、D).若物体AB的高为6cm,小孔O到物体和实像的水平距离BE、CE分别为8cm、6cm,则实像CD的高度为cm.【分析】根据相似三角形的判定和性质定理即可得到答案.【解答】解:∵AB∥CD,∴△OAB∽△OCD,∴,∴,∴CD=4.5,答:实像CD的高度为4.5cm,故答案为:4.5.8.小丽想利用所学知识测量旗杆AB的高度,如图,小丽在自家窗边看见旗杆和住宅楼之间有一棵大树DE,小丽通过调整自己的位置,发现半蹲于窗边,眼睛位于C处时,恰好看到旗杆顶端A、大树顶端D在一条直线上,小丽用测距仪测得眼睛到大树和旗杆的水平距离CH、CG分别为7米、28米,眼睛到地面的距离CF为3.5米,已知大树DE的高度为7米,CG∥BF交AB于点G,AB⊥BF于点B,DE⊥BF于点E,交CG于点H,CF⊥BF于点F.求旗杆AB的高度.【分析】根据相似三角形的判定与性质得出比例式求解即可.【解答】解:由题意知BG=HE=CF=3.5米,∴DH=DE﹣CF=7﹣3.5=3.5(米),∵AB⊥BF,DE⊥BF,∴AG∥DH,∴△CDH∽△CAG,∴=,即,∴AG=14米,∴AB=AG+GB=14+3.5=17.5(米),∴旗杆AB的高度为17.5米.9.如图,△ABC是一块锐角三角形余料,边BC=120mm,高AD=80mm,要把它加工成矩形零件PQMN,使一边在BC上,其余两个顶点分别在边AB、AC上.(1)求证:△APQ∽△ABC;(2)若这个矩形的边PN:PQ=1:2,则这个矩形的长、宽各是多少?【分析】(1)根据矩形的对边平行得到BC∥PQ,利用“平行于三角形的一边的直线截其他两边或其他两边的延长线,得到的三角形与原三角形相似”判定即可.(2)设宽为xmm,则长为2xmm,同(1)列出比例关系求解即可.【解答】解:(1)∵四边形PNQM为矩形,∴MN∥PQ,即PQ∥BC,∴△APQ∽△ABC;(2)设边宽为xmm,则长为2xmm,∵四边形PNMQ为矩形,∴PQ∥BC,∵AD⊥BC,∴PQ⊥AD,∵PN:PQ=1:2,∴PQ为长,PN为宽,∵PQ∥BC,∴△APQ∽△ABC,∴=,由题意知PQ=2xmm,AD=80mm,BC=120mm,PN=xmm,∴=,解得x=,2x=.即长为mm,宽为mm.答:矩形的长mm,宽为mm.10.(2022•禅城区校级模拟)如图①,四边形ABCD是矩形,AB=1,BC=2,点E是线段BC上一动点(不与B、C两点重合),点F是线段BA延长线的一动点,连接DE,EF,DF,EF交AD于点G,设BE,AF=y,已知y与x之间的函数关系式如图②所示,(1)图②中y与x的函数关系式为;(2)求证:△CDE∽△ADF;(3)当△DEG是等腰三角形时,求x的值.【分析】(1)利用待定系数法可得y与x的函数表达式.(2)利用两边成比例夹角相等证明△CDE∽△ADF即可.(3)分三种情况:①若DE=DG,则∠DGE=∠DEG,②若DE=EG,如图①,作EH ∥CD,交AD于H,③若DG=EG,则∠GDE=∠GED,分别列方程计算可得结论.【解答】(1)解:设y=kx+b,由图象得:当x=1时,y=2,当x=0时,y=4,代入得:,,∴y=﹣2x+4(0<x<2).故答案为:y=﹣2x+4(0<x<2).(2)证明:∵BE=x,BC=2∴CE=2﹣x,∴==,=,∴=,∵四边形ABCD是矩形,∴∠C=∠DAF=90°,∴△CDE∽△ADF,∴∠ADF=∠CDE.(3)解:假设存在x的值,使得△DEG是等腰三角形,①若DE=DG,则∠DGE=∠DEG,∵四边形ABCD是矩形,∴AD∥BC,∠B=90°,∴∠DGE=∠GEB,∴∠DEG=∠BEG,在△DEF和△BEF中,,∴△DEF≌△BEF(AAS),∴DE=BE=x,CE=2﹣x,在Rt△CDE中,由勾股定理得:1+(2﹣x)2=x2,x=.②若DE=EG,如图①,作EH∥CD,交AD于H,∵AD∥BC,EH∥CD,∴四边形CDHE是平行四边形,∴∠C=90°,∴四边形CDHE是矩形,∴EH=CD=1,DH=CE=2﹣x,EH⊥DG,∴HG=DH=2﹣x,∴AG=2x﹣2,∵EH∥CD,DC∥AB,∴EH∥AF,∴△EHG∽△F AG,∴=,∴=,∴x1=,x2=(舍),经检验x=是分式方程的解,∴x=.③若DG=EG,则∠GDE=∠GED,∵AD∥BC,∴∠GDE=∠DEC,∴∠GED=∠DEC,∵∠C=∠EDF=90°,∴△CDE∽△DFE,∴=,∵△CDE∽△ADF,∴==,∴=,∴2﹣x=,∴x=.综上,x=或或.1.(2021·浙江绍兴)如图,树AB在路灯O的照射下形成投影AC,已知路灯高PO=5m,树影AC=3m,树AB与路灯O的水平距离AP=4.5m,则树的高度AB长是()A.2m B.3m C.m D.m【分析】利用相似三角形的性质求解即可.【解答】解:∵AB∥OP,∴△CAB∽△CPO,∴,∴,∴AB=2(m),故选:A.2.(2021·浙江嘉兴)如图,在直角坐标系中,△ABC与△ODE是位似图形,则它们位似中心的坐标是.【分析】根据图示,对应点所在的直线都经过同一点,该点就是位似中心.【解答】解:如图,点G(4,2)即为所求的位似中心.故答案是:(4,2).3.(2021·浙江温州)如图,图形甲与图形乙是位似图形,O是位似中心,位似比为2:3,点A,B的对应点分别为点A′,B′.若AB=6,则A′B′的长为()A.8B.9C.10D.15【分析】根据位似图形的概念列出比例式,代入计算即可.【解答】解:∵图形甲与图形乙是位似图形,位似比为2:3,AB=6,∴=,即=,解得,A′B′=9,故选:B.4.(2021·浙江金华)如图1是一种利用镜面反射,放大微小变化的装置.木条BC上的点P处安装一平面镜,BC与刻度尺边MN的交点为D,从A点发出的光束经平面镜P反射后,在MN上形成一个光点E.已知AB⊥BC,MN⊥BC,AB=6.5,BP=4,PD=8.(1)ED的长为.(2)将木条BC绕点B按顺时针方向旋转一定角度得到BC′(如图2),点P的对应点为P′,BC′与MN的交点为D′,从A点发出的光束经平面镜P′反射后,在MN上的光点为E′.若DD′=5,则EE′的长为.【分析】(1)由题意可得,△ABP∽△EDP,则=,进而可得出DE的长;(2)过点E′作∠E′FG=∠E′D′F,过点E′作E′G⊥BC′于点G,易得△ABP′∽△E′FP′,由此可得=,在Rt△BDD′中,由勾股定理可求出BD′的长,可求出∠BD′D的正切值,设P′F的长,分别表示E′F和E′D′及FG和GD′的长,再根据BD′=13,可建立等式,可得结论.【解答】解:(1)如图,由题意可得,∠APB=∠EPD,∠B=∠EDP=90°,∴△ABP∽△EDP,∴=,∵AB=6.5,BP=4,PD=8,∴=,∴DE=13;故答案为:13.(2)如图2,过点E′作∠E′FD′=∠E′D′F,过点E′作E′G⊥BC′于点G,∴E′F=E′D′,FG=GD′,∵AB∥MN,∴∠ABD′+∠E′D′B=180°,∴∠ABD′+∠E′FG=180°,∵∠E′FB+∠E′FG=180°,∴∠ABP′=∠E′FP′,又∠AP′B=∠E′P′F,∴△ABP′∽△E′FP′,∴=即,=,设P′F=4m,则E′F=6.5m,∴E′D′=6.5m,在Rt△BDD′中,∠BDD′=90°,DD′=5,BD=BP+PD=12,由勾股定理可得,BD′=13,∴cos∠BD′D=,在Rt△E′GD′中,cos∠BD′D==,∴GD′=2.5m,∴FG=GD′=2.5m,∵BP′+P′F+FG+GD′=13,∴4+4m+2.5m+2.5m=13,解得m=1,∴E′D′=6.5,∴EE′=DE+DD′﹣D′E′=13+5﹣6.5=11.5.故答案为:11.5.5.(2021·浙江湖州)已知在平面直角坐标系xOy中,点A是反比例函数y=(x>0)图象上的一个动点,连结AO,AO的延长线交反比例函数y=(k>0,x<0)的图象于点B,过点A作AE⊥y轴于点E.(1)如图1,过点B作BF⊥x轴,于点F,连接EF.①若k=1,求证:四边形AEFO是平行四边形;②连结BE,若k=4,求△BOE的面积.(2)如图2,过点E作EP∥AB,交反比例函数y=(k>0,x<0)的图象于点P,连结OP.试探究:对于确定的实数k,动点A在运动过程中,△POE的面积是否会发生变化?请说明理由.【分析】(1)①设点A的坐标为(a,),则当点k=1时,点B的坐标为(﹣a,﹣),得出AE=OF,AE∥OF,由平行四边形的判定可得出结论;②过点B作BD⊥y轴于点D,如图1,证明△AEO∽△BDO,由相似三角形的性质得出,则可得出答案;(2)过点P作PH⊥x轴于点H,PE与x轴交于点G,设点A的坐标为(a,),点P 的坐标为(b,),则AE=a,OE=,PH=﹣,证明△AEO∽△GHP,由相似三角形的性质得出,解方程得出,由三角形面积公式可得出答案.【解答】(1)①证明:设点A的坐标为(a,),则当点k=1时,点B的坐标为(﹣a,﹣),∴AE=OF=a,∵AE⊥y轴,∴AE∥OF,∴四边形AEFO是平行四边形;②解:过点B作BD⊥y轴于点D,如图1,∵AE⊥y轴,∴AE∥BD,∴△AEO∽△BDO,∴,∴当k=4时,,即,∴S△BOE=2S△AOE=1;(2)不改变.理由如下:过点P作PH⊥x轴于点H,PE与x轴交于点G,设点A的坐标为(a,),点P的坐标为(b,),则AE=a,OE=,PH=﹣,∵四边形AEGO是平行四边形,∴∠EAO=∠EGO,AE=OG,∵∠EGO=∠PGH,∴∠EAO=∠PGH,又∵∠PHG=∠AEO,∴△AEO∽△GHP,∴,∵GH=OH﹣OG=﹣b﹣a,∴,∴﹣k=0,解得,∵a,b异号,k>0,∴,∴S△POE=×OE×(﹣b)=×(﹣b)=﹣,∴对于确定的实数k,动点A在运动过程中,△POE的面积不会发生变化.1.(2021•温州模拟)如图,在正六边形桌面中心正上方有一盏吊灯,在灯光下,桌面在水平地面的投影是一个面积为m2的正六边形,已知桌子的高度为0.75m,桌面边长为1m,则吊灯距地面的高度为()A.2.25m B.2.3m C.2.35m D.2.4m【分析】首先根据正六边形的面积可得正六边形的边长,进而可通过构造相似三角形,由相似三角形性质求出.【解答】解:设正六边形的边长是xm,则x•x••6=,解得x=1.5,如图,依题意知DF=FE=0.5米,FG=0.75米,CG=0.75米,∵DE∥BC,∴△F AE∽△GAC,∴,即=,解得:AF=1.5,∴AG=1.5+0.75=2.25(m),答:吊灯距地面的高度为2.25m.故选:A.2.(2021•临海市一模)如图,为测量楼高AB,在适当位置竖立一根高2m的标杆MN,并在同一时刻分别测得其落在地面上的影长AC=20m,MP=2.5m,则楼高AB为()A.15m B.16m C.18m D.20m【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.根据相似三角形的对应边的比相等,即可求解.【解答】解:∵,即,∴楼高=16米.故选:B.3.(2022•温州模拟)如图,在4×7的方格中,点A,B,C,D在格点上,线段CD是由线段AB位似放大得到,则它们的位似中心是()A.点P1B.点P2C.点P3D.点P4【分析】延长CA、DB交于点P 1,根据位似中心的概念得到答案.【解答】解:延长CA、DB交于点P1,则点P1为位似中心,故选:A.4.(2021•嘉兴二模)如图,在直角坐标系中,△ABC的顶点B的坐标为(﹣1,1),现以坐标原点O为位似中心,作与△ABC的位似比为的位似图形△A'B'C',则B'的坐标为()A.B.C.或D.或【分析】根据以原点为位似中心的对应点的坐标关系,把B点的横纵坐标都乘以或﹣得到B'的坐标.【解答】解:∵位似中心为坐标原点,作与△ABC的位似比为的位似图形△A'B'C',而B的坐标为(﹣1,1),∴B'的坐标为(﹣,)或(,﹣).故选:C.5.(2021•嘉善县一模)如图,在平面直角坐标系中,点A的坐标为(1,0),点D的坐标为(3,0),若△ABC与△DEF是位似图形,则的值是()A.B.C.D.【分析】根据位似图形的概念得到AC∥DF,【解答】解:∵点A的坐标为(1,0),点D的坐标为(3,0),∴OA=1,OD=3,即=,∵△ABC与△DEF是位似图形,∴AC∥DF,∴△OAC∽△ODF,∴==,故选:B.6.(2021•瑞安市一模)数学兴趣小组计划测量公路上路灯的高度AB,准备了标杆CD,EF及皮尺,按如图竖直放置标杆CD与EF.已知CD=EF=2米,DF=2米,在路灯的照射下,标杆CD的顶端C在EF上留下的影子为G,标杆EF在地面上的影子是FH,测得FG=0.5米,FH=4米,则路灯的高度AB=米.【分析】延长CG交FH于M,根据相似三角形的判定和性质解答即可.【解答】解:如图,延长CG交FH于M,∵∠GMF=∠CMD,∠GFM=∠CDM=90°,∴△GFM∽△CDM,∴,设FM为a米,则a=(a+2)×,解得:a=,设BD=x米,AB=y米,同理可得,△CMD∽△AMB,∴,,可得,,整理得:,解得:,经检验是分式方程组的解,∴AB=5米.故答案为:5.7.(2022•鹿城区校级一模)如图,在8×8的网格中,△ABC是格点三角形,请分别在图1和图2中按要求作图.(1)在图1中以O为位似中心,作格点三角形△A1B1C1,使其与△ABC位似比为1:2.(2)在图2中作格点线段BM⊥AC.【分析】(1)连接OA,OB,OC,取OA,OB,OC的中点A1,B1,C1,连接A1B1,B1C1,C1A1即可;(2)利用数形结合的思想作出线段BM即可.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,线段BM即为所求.8.(2021•永嘉县校级模拟)已知一块等腰三角铁板废料如图所示,其中AB=AC=50cm,BC=60cm,现要用这块废料裁一块正方形DEFG铁板,使它的一边DE落在△ABC的一腰上,顶点F、G分别落在另一腰AB和BC上,求;(1)等腰三角形ABC的面积S△ABC;(2)正方形DEFG的边长.【分析】(1)过A作AH⊥BC于H,根据等腰三角形的性质得到BH=BC=30(cm),根据勾股定理得到AH===40(cm),由三角形的面积公式即可得到结论;(2)过B作BM⊥AC交FG于N,根据三角形的面积公式得到BM=48(cm),根据正方形的性质得到FG∥DE,根据相似三角形的性质即可得到结论.【解答】解:(1)过A作AH⊥BC于H,∵AB=AC=50cm,BC=60cm,∴BH=BC=30(cm),∴AH===40(cm),∴S△ABC=BC•AH=60×40=1200(cm2);(2)过B作BM⊥AC交FG于N,则S△ABC=AC•BM=1200,∵AC=50cm,∴BM=48(cm),∵四边形DEFG是正方形,∴FG∥DE,∴BN⊥FG,△BFG∽△BAC,∴=,∴,∴FG=,∴正方形DEFG的边长为.9.(2021•海曙区模拟)如图是某公园的一台滑梯,滑梯着地点B与梯架之间的距离BC=4m.(1)现在某一时刻测得身高1.8m的小明爸爸在阳光下的影长为0.9m,滑梯最高处A在阳光下的影长为1m,求滑梯的高AC;(2)若规定滑梯的倾斜角(∠ABC)不超过30°属于安全范围,请通过计算说明这架滑梯的倾斜角是否符合安全要求?【分析】(1)直接利用同一时刻太阳光下影长与物体高度成比例进而得出答案;(2)直接利用锐角三角函数关系得出∠ABC的取值范围.【解答】解:(1)由题意可得:=,解得:AC=2(m),答:滑梯的高AC为2m;(2)∵tan∠ABC===<tan30°=,∴∠ABC<30°,∴这架滑梯的倾斜角符合安全要求.10.(2021•婺城区校级模拟)已知在菱形ABCD中,AB=4,∠BAD=120°,点P是直线AB上任意一点,联结PC.在∠PCD内部作射线CQ与对角线BD交于点Q(与B、D 不重合),且∠PCQ=30°.(1)如图,当点P在边AB上时,如果BP=3,求线段PC的长;(2)当点P在射线BA上时,设BP=x,CQ=y,求y关于x的函数解析式及定义域;(3)联结PQ,直线PQ与直线BC交于点E,如果△QCE与△BCP相似,求线段BP的长.【分析】(1)如图1中,作PH⊥BC于H.解直角三角形求出BH,PH,在Rt△PCH中,理由勾股定理即可解决问题.(2)如图1中,作PH⊥BC于H,连接PQ,设PC交BD于O.证明△POQ∽△BOC,推出∠OPQ=∠OBC=30°=∠PCQ,推出PQ=CQ=y,推出PC=y,在Rt△PHB 中,BH=x,PH=x,根据PC2=PH2+CH2,可得结论.(3)分两种情形:①如图2中,若直线QP交直线BC于B点左侧于E.②如图3中,若直线QP交直线BC于C点右侧于E.分别求解即可.【解答】解:(1)如图1中,作PH⊥BC于H.∵四边形ABCD是菱形,∴AB=BC=4,AD∥BC,∴∠A+∠ABC=180°,∵∠A=120°,∴∠PBH=60°,∵PB=3,∠PHB=90°,∴BH=PB•cos60°=,PH=PB•sin60°=,∴CH=BC﹣BH=4﹣=,∴PC===.(2)如图1中,作PH⊥BC于H,连接PQ,设PC交BD于O.∵四边形ABCD是菱形,∴∠ABD=∠CBD=30°,∵∠PCQ=30°,∴∠PBO=∠QCO,∵∠POB=∠QOC,∴△POB∽△QOC,∴=,∴=,∵∠POQ=∠BOC,∴△POQ∽△BOC,∴∠OPQ=∠OBC=30°=∠PCQ,∴PQ=CQ=y,∴PC=y,在Rt△PHB中,BH=x,PH=x,∵PC2=PH2+CH2,∴3y2=(x)2+(4﹣x)2,∴y=(0≤x<8).(3)①如图2中,若直线QP交直线BC于B点左侧于E.此时∠CQE=120°,∵∠PBC=60°,∴△PBC中,不存在角与∠CQE相等,此时△QCE与△BCP不可能相似.②如图3中,若直线QP交直线BC于C点右侧于E.则∠CQE=∠B=QBC+∠QCP=60°=∠CBP,∵∠PCB>∠E,∴只可能∠BCP=∠QCE=75°,作CF⊥AB于F,则BF=2,CF=2,∠PCF=45°,∴PF=CF=2,此时PB=2+2,③如图4中,当点P在AB的延长线上时,∵△QCE与△BCP相似,∴∠CQE=∠CBP=120°,∴∠QCE=∠PCB=15°,作CF⊥AB于F.∵∠FCB=30°,∴∠FCP=45°,∴BF=BC=2,CF=PF=2,∴PB=2﹣2.综上所述,满足条件的PB的值为2+2或2﹣2.。
初三中考数学专题复习:二次函数综合题(相似三角形问题)含答案
中考数学专题复习:二次函数综合题(相似三角形问题)1.如图①,二次函数y =﹣x 2+bx +c 的图象与x 轴交于点A (﹣1,0)、B (3,0),与y 轴交于点C ,连接BC ,点P 是抛物线上一动点.(1)求二次函数的表达式.(2)当点P 不与点A 、B 重合时,作直线AP ,交直线BC 于点Q ,若①ABQ 的面积是①BPQ 面积的4倍,求点P 的横坐标.(3)如图①,当点P 在第一象限时,连接AP ,交线段BC 于点M ,以AM 为斜边向①ABM 外作等腰直角三角形AMN ,连接BN ,①ABN 的面积是否变化?如果不变,请求出①ABN 的面积;如果变化,请说明理由.2.如图,二次函数2314y x bx =++的图像经过点()8,3A ,交x 轴于点B ,C (点B 在点C 的左侧),与y 轴交于点D .(1)填空:b = ______;(2)点P 是第一象限内抛物线上一点,直线PO 交直线CD 于点Q ,过点P 作x 轴的垂线交直线CD 于点T ,若PQ QT =,求点P 的坐标;(3)在x 轴的正半轴上找一点E ,过点E 作AE 的垂线EF 交y 轴于F ,若AEF 与EFO △相似,求OE 的长.3.如图,已知抛物线2y ax bx c =++与x 轴相交于点()1,0A -,()3,0B ,与y 轴的交点()0,6C .(1)求抛物线的解析式;(2)点(),P m n 在平面直角坐标系第一象限内的抛物线上运动,设PBC 的面积为S ,求S 关于m 的函数表达式(指出自变量m 的取值范围)和S 的最大值;(3)点M 在抛物线上运动,点N 在y 轴上运动,是否存在点M 、点N 使得①CMN =90°,且∆CMN 与OBC ∆相似,如果存在,请求出点M 和点N 的坐标.4.如图,抛物线L 1:y =ax 2﹣2x +c (a ≠0)与x 轴交于A 、B (3,0)两点,与y 轴交于点C (0,﹣3),抛物线的顶点为D .抛物线L 2与L 1关于x 轴对称.(1)求抛物线L 1与L 2的函数表达式;(2)已知点E 是抛物线L 2的顶点,点M 是抛物线L 2上的动点,且位于其对称轴的右侧,过M 向其对称轴作垂线交对称轴于P ,是否存在这样的点M ,使得以P 、M 、E 为顶点的三角形与△BCD 相似,若存在请求出点M 的坐标,若不存在,请说明理由.5.如图,在平面直角坐标系中,已知直线4y x =+与x 轴、y 轴分别相交于点A 和点C ,抛物线21y x kx k =++-的图象经过点A 和点C ,与x 轴的另一个交点是点B .(1)求出此抛物线的解析式; (2)求出点B 的坐标;(3)若在y 轴的负半轴上存在点D .能使得以A ,C ,D 为顶点的三角形与①ABC 相似,请求出点D 的坐标.6.如图1,已知抛物线23y ax bx =++经过点()1,5D ,且交x 轴于A ,B 两点,交y 轴于点C ,已知点()1,0A -,(),P m n 是抛物线在第一象限内的一个动点,PQ BC ⊥于点Q .(1)求抛物线的解析式;(2)当PQ =m 的值;(3)是否存在点P ,使BPQ 与BOC 相似?若存在,请求出P 点的坐标;若不存在,请说明理由.7.如图,在平面直角坐标系中,直线y =12x +2与x 轴交于点A ,与y 轴交于点C .抛物线y =ax 2+bx +c的对称轴是x=-32且经过A、C两点,与x轴的另一交点为点B.(1)求二次函数y=ax2+bx+c的表达式;(2)点P为线段AB上的动点,求AP+2PC的最小值;(3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A,M,N为顶点的三角形与①ABC 相似?若存在,求出点M的坐标;若不存在,请说明理由.8.如图,抛物线y=−x2+bx+c与x轴相交于A(−1,0),B(3,0)两点,与y轴交于点C,顶点为点D,抛物线的对称轴与BC相交于点E,与x轴相交于点F.(1)求抛物线的函数关系式;(2)连结DA,求sin A的值;(3)若点H线段BC上,BOC与BFH△相似,请直接写出点H的坐标.9.如图,抛物线y=1-2x2+bx+c与x轴交于点A(﹣2,0)和点B(8,0),与y轴交于点C,顶点为D,连接AC,BC,BC与抛物线的对称轴l交于点E.(1)求抛物线的表达式;(2)点P 是第一象限内抛物线上的动点,连接PB ,PC ,当S △PBC =720S △ABC 时,求点P 的坐标; (3)点N 是对称轴l 右侧抛物线上的动点,在射线ED 上是否存在点M ,使得以点M ,N ,E 为顶点的三角形与①OBC 相似?若存在,求点M 的坐标;若不存在,请说明理由.10.如图,抛物线23y ax bx =++与x 轴交于1,0A 、()3,0B -两点,与y 轴交于点C ,设抛物线的顶点为D .(1)求该抛物线的表达式与顶点D 的坐标; (2)试判断BCD △的形状,并说明理由;(3)探究坐标轴上是否存在点P ,使得以P 、A 、C 为顶点的三角形与BCD △相似?若存在,请求出点P 的坐标;若不存在,请说明理由.11.如图,抛物线y =ax 2﹣2ax ﹣3a (a ≠0)与x 轴交于点A ,B .与y 轴交于点C .连接AC ,BC .已知ABC 的面积为2.(1)求抛物线的解析式;(2)平行于x 轴的直线与抛物线从左到右依次交于P ,Q 两点.过P ,Q 向x 轴作垂线,垂足分别为G ,H .若四边形PGHQ 为正方形,求正方形的边长;(3)抛物线上是否存在一点N ,使得①BCN =①CAB ﹣①CBA ,若存在,请求出满足条件N 点的横坐标,若不存在请说明理由.12.如图,二次函数2y x bx c =-++的图像与x 轴交于点A (-1,0),B (2,0),与y 轴相交于点C .(1)求这个二次函数的解析式;(2)若点M 在此抛物线上,且在y 轴的右侧.①M 与y 轴相切,过点M 作MD ①y 轴,垂足为点D .以C ,D ,M 为顶点的三角形与①AOC 相似,求点M 的坐标及①M 的半径长.13.如图,在平面直角坐标系中,抛物线2()0y ax bx c ac =++≠与x 轴交于点A 和点B (点A 在点B 的左侧),与y 轴交于点C .若线段OA OB OC 、、的长满足2OC OA OB =⋅,则这样的抛物线称为“黄金”抛物线.如图,抛物线22(0)y ax bx a =++≠为“黄金”抛物线,其与x 轴交点为A ,B (其中B 在A 的右侧),与y 轴交于点C .且4OA OB =(1)求抛物线的解析式;(2)若P 为AC 上方抛物线上的动点,过点P 作PD AC ⊥,垂足为D . ①求PD 的最大值;①连接PC ,当PCD 与ACO △相似时,求点P 的坐标.14.如图,在平面直角坐标系xOy 中,已知抛物线2y x bx c =++与x 轴交于点A 、B 两点,其中1,0A ,与y 轴交于点()0,3C .(1)求抛物线解析式;(2)如图1,过点B 作x 轴垂线,在该垂线上取点P ,使得①PBC 与①ABC 相似,请求出点P 坐标;(3)如图2,在线段OB 上取一点M ,连接CM ,请求出12CM BM +最小值.15.如图,抛物线y =ax 2+k (a >0,k <0)与x 轴交于A ,B 两点(点B 在点A 的右侧),其顶点为C ,点P 为线段OC 上一点,且PC =14OC .过点P 作DE ①AB ,分别交抛物线于D ,E 两点(点E 在点D 的右侧),连接OD ,DC .(1)直接写出A ,B ,C 三点的坐标;(用含a ,k 的式子表示) (2)猜想线段DE 与AB 之间的数量关系,并证明你的猜想;(3)若①ODC =90°,k =﹣4,求a 的值.16.如图,抛物线223y x bx c =++与x 轴交于A ,B 两点,与y 轴交于C 点,连接AC ,已知B (﹣1,0),且抛物线经过点D (2,﹣2).(1)求抛物线的表达式;(2)若点E 是抛物线上第四象限内的一点,且2ABES=,求点E 的坐标;(3)若点P 是y 轴上一点,以P ,A ,C 三点为顶点的三角形是等腰三角形,求P 点的坐标.17.如图,在直角坐标系xOy 中,抛物线y =ax 2+bx +2(a ≠0)与x 轴交于点A (﹣1,0)和B (4,0),与y 轴交于点C ,点P 是抛物线上的动点(不与点A ,B ,C 重合).(1)求抛物线的解析式;(2)当点P 在第一象限时,设①ACP 的面积为S 1,①ABP 的面积为S 2,当S 1=S 2时,求点P 的坐标; (3)过点O 作直线l ①BC ,点Q 是直线l 上的动点,当BQ ①PQ ,且①BPQ =①CAB 时,请直接写出点P 的坐标.18.如图,在平面直角坐标系xOy中,直线y=﹣x+3与两坐标轴交于A、B两点,抛物线y=x2+bx+c 过点A和点B,并与x轴交于另一点C,顶点为D.点E在对称轴右侧的抛物线上.(1)求抛物线的函数表达式和顶点D的坐标;(2)若点F在抛物线的对称轴上,且EF①x轴,若以点D,E,F为顶点的三角形与①ABD相似,求出此时点E的坐标;(3)若点P为坐标平面内一动点,满足tan①APB=3,请直接写出①P AB面积最大时点P的坐标及该三角形面积的最大值.19.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于点A、B,与y轴交于点C,且OC=2OB=6OA=6,点P是第一象限内抛物线上的动点.(1)求抛物线的解析式;(2)连接BC与OP,交于点D,当S△PCD:S△ODC的值最大时,求点P的坐标;(3)点M在抛物线上运动,点N在y轴上运动,是否存在点M、点N.使①CMN=90°,且①CMN与①BOC 相似,若存在,请求出点M、点N的坐标.20.如图,抛物线y=x2+bx+12(b<0)与x轴交于A,B两点(A点在B点左侧),且OB=3OA.(1)请直接写出b=,A点的坐标是,B点的坐标是;(2)如图(1),D点从原点出发,向y轴正方向运动,速度为2个单位长度/秒,直线BD交抛物线于点E,若BE=5DE,求D点运动时间;(3)如图(2),F点是抛物线顶点,过点F作x轴平行线MN,点C是对称轴右侧的抛物线上的一定点,P 点在直线MN上运动.若恰好存在3个P点使得①P AC为直角三角形,请求出C点坐标,并直接写出P点的坐标.答案1.(1)y =﹣x 2+2x +3.(2)P 352或 (3)①ABN 的面积不变,为4.2.(1)2-(2)5⎛ ⎝⎭或5⎛ ⎝⎭(3)4或493.(1)2246y x x =-++(2)S 关于m 的函数表达式为239(03)S m m m =-+<<,S 的最大值是274 (3)存在,M (1,8),N (0,172)或M (74,558),N (0,838)或M (94,398),N (0,38)或M (3,0),N (0,﹣32)4.(1)抛物线L 1:223y x x =--,抛物线L 2:2y x 2x 3=-++;(2)435(,)39M 或(4,5)M -.5.(1)254y x x =++(2)点B 的坐标为(-1,0)(3)点D 的坐标是(0,-203) 6.(1)215322y x x =-++ (2)1或5(3)存在;P (53,529)7.(1)抛物线表达式为:213222y x x =--+;(2)AP +2PC 的最小值是4;(3)存在M(0,2)或(-3,2)或(2,-3)或(5,-18),使得以点A 、M 、N 为顶点的三角形与ABC 相似.8.(1)y =-x 2+2x +3(3)点H 的坐标为(1,2)或(2,1)9.(1)21382y x x =++ (2)P 1(1,10.5),P 2(7,4.5)(3)存在,(3,8)或(3,5或(3,11)30.(1)y =﹣x 2﹣2x +3,(﹣1,4);(2)直角三角形,理由见解析;(3)存在,(0,0)或(0,﹣13)或(-9,0)11.(1)y =﹣13x 2+23x +1(2)﹣6﹣(3)存在,5或11712.(1)22y x x =-++; (2)M 的坐标为(12,94),(32, 54 ),(3,-4),①M 的半径长为12或32或313.(1)213222y x x =--+(2)①PD ①P 坐标为(3,2)-或325()28,-14.(1)243y x x =-+(2)P 点坐标为()3,9或()3,215.(1)点A 、B 、C 的坐标分别为(、、(0,k ) (2)DE =12AB(3)a =1316.(1)224233y x x =--(2)E ,-1)(3)P 点的坐标(0,2)或(02)或(0,﹣2或(0,54)17.(1)213222y x x =-++ (2)点P 的坐标为(103,139)(3)点P 的坐标为(32,﹣2)或(32,﹣2)或(173,﹣509)18.(1)y =x 2﹣4x +3,(2,﹣1)(2)(5,8)或(73,89-)(3)①P AB ,此时P )19.(1)y =﹣2x 2+4x +6 (2)点P 的坐标为(32,152) (3)存在,M 、N 的坐标分别为(3,0)、(0,﹣32)或(94,398)、(0,38)或(1,8)、(0,172)或(74,558)、(0,838)20.(1)﹣8,(2,0),(6,0)(2)3秒或212秒 (3)C 点坐标为(143,﹣329),P 点的坐标为(103,﹣4)或(﹣103,﹣4)或(11027,﹣4)。
2015年河北中考数学总复习课件(第32课时_相似的应用)
解 析 ∵△ABC 与△A′B′C′是位似图形,且△ABC 与 △A′B′C′的位似比是 1∶2,△ABC 的面积是 3,∴△ABC 与 △A′B′C′的面积比为 1∶4,△A′B′C′的面积是 12.故选 D.
冀考解读
课前热身
考点聚焦
冀考探究
第32课时┃ 相似的应用
3. [2014· 武汉 ] 如图 32- 1,线段 AB 两个端点的坐标分别 为 A(6,6),B(8,2),以原点 O 为位似中心,在第一象限内将线 1 段 AB 缩小为原来的 后得到线段 CD,则端点 C 的坐标为( A ) 2
注意:位似图形是相似图形的一个特例,位似图形一定是 相似图形,但相似图形不一定是位似图形.
冀考解读 课前热身 考点聚焦 冀考探究
第32课时┃ 相似的应用
考点3 位似变换与作图
以坐标原点 在平面直角坐标系中,如果位似是以原点为位 为位似中心 似中心, 相似比为 k, 那么位似图形对应点的坐 的位似变换 标的比等于________ k 或-k (1)确定位似中心 O; (2)连接图形各顶点与位似中心 O 的线段(或延 位似作图 长线); (3)按照相似比取点; (4)顺次连接各点,所得图形就是所求的图形
第32课时┃ 相似的应用
解 析
冀考解读
课前热身
考点聚焦
冀考探究
第32课时┃ 相似的应用
考 点 聚 焦
考点1 相似多边形的概念和性质
如果两个边数相同的多边形的对应角相等,对应 相似多 边成比例,这两个多边形叫做相似多边形,相似 边形 多边形对应边的比叫做相似比 相似多 (1)相似多边形周长的比等于相似比 边形的 (2)相似多边形的面积比等于相似比的平方 性质
冀考解读
课前热身
中考数学一轮复习专题解析—相似三角形
中考数学一轮复习专题解析—相似三角形复习目标1.了解相似图形和相似三角形的概念。
2.掌握三角形相似的判定方法和性质并学会运用。
考点梳理一、相似图形1.形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.2.比例线段的相关概念如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是nm b a =,或写成n m b a ::=. 注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位. 在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注意:(1)当两个比例式的每一项都对应相同,两个比例式才是同一比例式.(2)比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:ad c b =. 3. 比例的性质基本性质:(1)bc ad d c b a =⇔=::;(2)b a c b c c a ⋅=⇔=2::.注意:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=.更比性质(交换比例的内项或外项):()()()a b c d a c d c b d b ad b c a ⎧=⎪⎪⎪=⇒=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项 反比性质(把比的前项、后项交换):cd a b d c b a =⇒=. 合比性质:dd c b b a d c b a ±=±⇒=. 注意:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间 发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=d c d c b a b a c c d a a b d c b a 等等. 等比性质: 如果)0(≠++++====n f d b n m f e d c b a ,那么b a n f d b m e c a =++++++++ . 注意:(1)此性质的证明运用了“设k 法” ,这种方法是有关比例计算,变形中一种常用方法.(2)应用等比性质时,要考虑到分母是否为零.(3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.4.比例线段的有关定理平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.推论:(1)平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.(2)平行于三角形一边并且和其它两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例.定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形第三边.5.黄金分割把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 215-=≈0.618AB 例1.如果0ab cd =≠,则下列正确的是( )A .::a c b d =B .::a d c b =C .::a b c d =D .::d c b a = 【答案】B【分析】根据比例的基本性质,列出比例式即可.【详解】解:∵0ab cd =≠,∵::a d c b =,故选:B .例2.两个相似多边形的一组对应边的长分别为6cm ,9cm ,那么它们的相似比为( )A .23B C .49 D .94【答案】A【分析】根据相似多边形的性质求解即可;【详解】两个相似多边形一组对应边的长分别为6cm ,9cm ,∵它们的相似比为:6293=.故选A .二、相似三角形的概念对应角相等,对应边成比例的三角形,叫做相似三角形.相似用符号“∵”表示,读作“相似于” .相似三角形对应边的比叫做相似比(或相似系数).相似三角形对应角相等,对应边成比例.注意:∵对应性:即两个三角形相似时,通常把表示对应顶点的字母写在对应位置上,这样写比较容易找到相似三角形的对应角和对应边.∵顺序性:相似三角形的相似比是有顺序的.∵两个三角形形状一样,但大小不一定一样.∵全等三角形是相似比为1的相似三角形.二者的区别在于全等要求对应边相等,而相似要求对应边成比例.三、相似三角形的等价关系(1)反身性:对于任一ABC ∆有ABC ∆∵ABC ∆.(2)对称性:若ABC ∆∵'''C B A ∆,则'''C B A ∆∵ABC ∆.(3)传递性:若ABC ∆∵C B A '∆'',且C B A '∆''∵C B A ''''''∆,则ABC ∆∵C B A ''''''∆.四、相似三角形的基本定理定理:平行于三角形一边的直线和其它两边(或两边延长线)相交,所构成的三角形与原三角形相似.定理的基本图形:五、三角形相似的判定方法1、定义法:对应角相等,对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似.6、判定直角三角形相似的方法:(1)以上各种判定均适用.(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似.直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。
中考数学专题复习:二次函数压轴题(相似三角形问题)
中考数学专题复习:二次函数压轴题(相似三角形问题)一、解答题(共16小题)1.如图抛物线y =ax 2+ax +c (a ≠0)与x 轴的交点为A 、B (A 在B 的左边)且AB =3,与y 轴交于C ,若抛物线过点E (﹣1,2).(1)求抛物线的解析式;(2)在x 轴的下方是否存在一点P 使得△PBC 的面积为3?若存在求出P 点的坐标,不存在说明理由;(3)若D 为原点关于A 点的对称点,F 点坐标为(0,1.5),将△CEF 绕点C 旋转,在旋转过程中,线段DE 与BF 是否存在某种关系(数量、位置)?请指出并证明你的结论.2.如图,直线y =﹣x +3与x 轴、y 轴分别交于点B 、点C ,经过B 、C 两点的抛物线y =x 2+bx +c 与x 轴的另一个交点为A ,顶点为P .(1)求该抛物线的解析式;(2)连接AC ,在x 轴上是否存在点Q ,使以P 、B 、Q 为顶点的三角形与△ABC 相似?若存在,请求出点Q 的坐标;若不存在,请说明理由.3.如图,在平面直角坐标系中,抛物线y 212x =-+bx +c 与x 轴交于A (﹣2,0)、B (4,0)两点(点A 在点B 的左侧),与y 轴交于点C ,连接AC 、BC ,点P为直线BC 上方抛物线上一动点,连接OP 交BC 于点Q .(1)求抛物线的函数表达式;(2)当PQ OQ 的值最大时,求点P 的坐标和PQOQ的最大值;(3)把抛物线y 212x =-+bx +c 沿射线AC y ',M是新抛物线上一点,N 是新抛物线对称轴上一点,当以M 、N 、B 、C 为顶点的四边形是平行四边形时,直接写出N 点的坐标.4.如图,抛物线212y x mx n =++与直线132y x =-+交于,A B 两点,交x 轴与,D C 两点,连接,,AC BC 已知()()0,3,3,0A C .(1)求抛物线的解析式;(2)求证:ABC 是直角三角形;(3)P 为y 轴右侧抛物线上一动点,连接PA ,过点P 作PQ PA ⊥交y 轴于点Q ,问:是否存在点P 使得以A 、P 、Q 为顶点的三角形与ACB △相似?若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.5.如图,已知抛物线y =ax 2+bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,D 为OC 的中点,直线AD 交抛物线于点E (2,6),且△ABE 与△ABC 的面积之比为3∶2.(1)求直线AD 和抛物线的解析式;(2)抛物线的对称轴与轴相交于点F ,点Q 为直线AD 上一点,且△ABQ 与△ADF 相似,直接写出点Q 点的坐标.第5题图第6题图6.如图,抛物线y =-x ²+b x+c 与x 轴交于点A (-1,0)和B (3,0),与y 轴交于点C .(1)求抛物线的解析式;(2)若P 为抛物线的顶点,动点Q 在y 轴右侧的抛物线上,是否存在点Q 使∠QCO =∠PBC ?若存在,请求出点Q 的坐标.若不存在,请说明理由.7.已知抛物线()20y ax bx c a =++>与x 轴交于点()0A 1,和()40B ,,与y 轴交于点C ,O 为坐标原点,且OB OC =.(1)求抛物线的解析式;(2)如图1,点P 是线段BC 上的一个动点(不与点B 、C 重合),过点P 作x 轴的垂线交抛物线于点Q ,连接OQ .当四边形OCPQ 恰好是平行四边形时,求点Q 的坐标;(3)如图2,在(2)的条件下,D 是OC 的中点,过点Q 的直线与抛物线交于点E ,且2DQE ODQ ∠=∠,在直线QE 上是否存在点F ,使得BEF △与ADC △相似?若存在,求点F 的坐标:若不存在,请说明理由.8.如图,抛物线y=mx 2+8mx +12m (m >0)与x 轴交于A ,B 两点(点B 在点A 的左侧),与y 轴交于点C ,顶点为D ,其对称轴与x 轴交于点E ,联接AD ,OD .(1)求顶点D 的坐标(用含m 的式子表示);(2)若OD ⊥AD ,求该抛物线的函数表达式;(3)在(2)的条件下,设动点P 在对称轴左侧该抛物线上,PA 与对称轴交于点M ,若△AME 与△OAD 相似,求点P 的坐标.9.抛物线23y x bx =-++与x 轴交于(3,0),(1,0)A B -两点,与y 轴交于点C ,点D 为抛物线的顶点.(1)求抛物线的表达式及顶点D 的坐标;(2)在直线AC 上方的抛物线上找一点P ,使12ACP ACD S S =,求点P 的坐标;(3)在坐标轴上找一点M ,使以点B ,C ,M 为顶点的三角形与ACD 相似,直接写出点M 的坐标.10.如图.在平面直角坐标系中,抛物线2()20y ax x c a =++≠与x 轴交于点A 、B ,与y 轴交于点C ,点A 的坐标为()1,0-,对称轴为直线1x =.点M 为线段OB 上的一个动点,过点M 作直线l 平行于y 轴交直线BC 于点F ,交抛物线2()20y ax x c a =++≠于点E .(1)求抛物的解析式;(2)当以C 、E 、F 为顶点的三角形与ABC 相似时,求线段EF 的长度:(3)如果将ECF △沿直线CE 翻折,点F 恰好落在y 轴上点N 处,求点N 的坐标.11.如图,已知:抛物线y =x 2+bx+c 与x 轴交于A (﹣1,0),B (3,0)两点,与y 轴交于点C ,点D 为顶点,连接BD ,CD ,抛物线的对称轴与x 轴交于点E .(1)求抛物线解析式及点D 的坐标;(2)G 是抛物线上B ,D 之间的一点,且S 四边形CDGB =4S △DGB ,求出G 点坐标;(3)在抛物线上B ,D 之间是否存在一点M ,过点M 作MN ⊥CD ,交直线CD 于点N ,使以C ,M ,N 为顶点的三角形与△BDE 相似?若存在,求出满足条件的点M 的坐标,若不存在,请说明理由.12.如图,已知抛物线y=ax 2+bx+c (a≠0)经过A (-1,0),B (4,0),C (0,2)三点.(1)求这条抛物线的解析式;(2)E 为抛物线上一动点,是否存在点E ,使以A 、B 、E 为顶点的三角形与△COB 相似?若存在,试求出点E 的坐标;若不存在,请说明理由;(3)若将直线BC 平移,使其经过点A ,且与抛物线相交于点D ,连接BD ,试求出∠BDA 的度数.13.如图,抛物线22y ax bx =+-经过点()4,0A 、()10B ,两点,点C 为抛物线与y 轴的交点.(1)求此抛物线的解析式;(2)P 是x 轴上方抛物线上的一个动点,过P 作PM x ⊥轴,垂足为M ,问:是否存在点P ,使得以A 、P 、M 为顶点的三角形与OAC ∆相似若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由;(3)在直线AC 上方的抛物线上找一点D ,过点D 作x 轴的垂线,交AC 于点E ,是否存在这样的点D ,使DE 最长,若存在,求出点D 的坐标,以及此时DE 的长,若不存在,请说明理由.14.如图,在同一直角坐标系中,抛物线1L :28y ax bx =++与x 轴交于()8,0A -和点C ,且经过点()2,12B -,若抛物线1L 与抛物线2L 关于y 轴对称,点A 的对应点为'A ,点B 的对应点为B'.(1)求抛物线2L 的表达式;(2)现将抛物线2L 向下平移后得到抛物线3L ,抛物线3L 的顶点为M ,抛物线3L 的对称轴与x 轴交于点N ,试问:在x 轴的下方是否存在一点M ,使MNA ' 与ACB '△相似?若存在,请求出抛物线的3L 表达式;若不存在,说明理由.15.已知抛物线21:(0)L y ax a =>上一点(,)M m n ,点(,)M m n 在第一象限,过点M 分别作y 轴、x 轴的垂线段,MA MB ,垂足分别是,A B .(1)如图1,若四边形MAOB 是正方形,则m 和a 的数量关系是_______________.(2)若抛物线21:(0)L y ax a =>与直线1:2l y x =-的一个交点C 的纵坐标是12.①求抛物线21:(0)L y ax a =>的解析式.②如图2,将抛物线21:(0)L y ax a =>沿着直线l 平移,平移过程中抛物线的顶点始终在直线l 上.若平移前的抛物线1L 与平移后的抛物线2L 恰好相交于点M ,四边形MAOB 也是正方形,求抛物线2L 的顶点E 的坐标.③在②的条件下继续平移抛物线21:(0)L y ax a =>,得到抛物线33,L L 的顶点D 的横坐标大于点E 的横坐标,:5:OE OD b ,抛物线3L 与x 轴的两个交点,F H (点F 在点H 的左边)之间的距离是6.连接,MF MBF 与DGO △是否相似?请说明理由.16.在平面直角坐标系中,已知抛物线y =mx 2+4mx +4m +6(m <0)与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为点D .(1)当m =﹣6时,直接写出点A ,B ,C ,D 的坐标;(2)如图1,直线DC 交x 轴于点E ,若tan ∠AED=43,求m 的值及直线DE 的解析式;(3)如图2,在(2)的条件下,若点Q 为OC 的中点,连接AQ ,动点P 在第二象限的抛物线上运动,过点P 作x 轴的垂线.垂足为H ,交AQ 于点M ,过点M 作MN ⊥DE ,垂足为N ,求PM +MN 的最大值.参考答案1.(1)y =﹣x 2﹣x +2;(2)存在,P (3,﹣10);(3)DE ⊥BF 且DE =2BF ,2.(1)抛物线解析式为y =x 2﹣4x +3;(2)Q 点的坐标为(0,0)或(73,0).3.(1)2142y x x =-++(2)PQ OQ取得最大值12,此时,(2,4)P .(3)15(2,)2N ,211(2,)2N -,35(2,2N -.4.(1)215322y x x =-+;(2)22;(3)存在,满足条件的点P 的坐标为1136(,),1314,39⎛⎫ ⎪⎝⎭,1744,39⎛⎫⎪⎝⎭.5.(1).234y x x =-++;(2)Q (1,4)或Q (352,)6.(1)223y x x =-++;(2)()512-,7.(1)抛物线的解析式为254y x x =-+;(2)()22Q -,(3)存在,()142F ,,281455F ⎛⎫- ⎪⎝⎭,8.(1)(4,-4m);(2)22y x =-+;(3)(0,1,2)9.(1)223y x x =--+;(1,4)D -;(2)35,22⎛⎫-- ⎪⎝⎭P 或35,22⎛⎫- ⎪⎝⎭;(3)点M 的坐标为(0,0)或(9,0)-,或10,3⎛⎫- ⎪⎝⎭.10.(1)223y x x =-++;(2)94EF =(3)N 的的坐标是1)+11.(1)2=23y x x --;顶点D (1,-4);(2)(2,3)G -;(3)存在,点720,39M ⎛⎫- ⎪⎝⎭或532,39⎛⎫- ⎪⎝⎭.12.(1)抛物线的解析式为:y=-12x 2+32x+2.(2)存在.E 点坐标为(0,2),(3,2).(3)∠ADB=45°.13.(1)215222y x x =-+-;(2)(2,1);(3)(2,1),214.(1)抛物线2L 的解析式为21382y x x =-++.(2)函数3L 的解析式为:2121322y x x =-+-或2126323y x x =-+-.15.(1)am =1;(2)①212y x =;②5(5,)2E -;③MBF V 与DGO △相似16.(1)(﹣3,0),(﹣1,0),(0,﹣18),(﹣2,6)(2)m 23=-,y 43=-x 103+(3)263。
中考数学复习《相似》专题训练-附带有答案
中考数学复习《相似》专题训练-附带有答案一、单选题1.已知△ABC∽△A′B′C′,BCA′C′=23,ABA′B′=34则△ABC与△A′B′C′的面积之比为()A.49B.23C.916D.342.在△ABC中,点D、E分别在边AB、AC上,联结DE,那么下列条件中不能判断△ADE和△ABC相似的是()A.DE∥BC B.∠AED=∠BC.AE:AD=AB:AC D.AE:DE=AC:BC3.如图,已知△ABC和△ADE均为等边三角形,D在BC上,DE与AC相交于点F,AB=9,BD=3,则CF等于()A.1 B.2 C.3 D.44.如图,E是矩形ABCD的边CD上的点,BE交AC于O,已知△COE与△BOC的面积分别为2和8,则四边形AOED的面积为()A.16 B.32 C.38 D.405.如图,线段CD两个端点的坐标分别为C(1,2)、D(2,0),以原点为位似中心,将线段CD放大得到线段AB,若点B的坐标为(6,0),则点A的坐标为()A.(3,5)B.(3,6)C.(2,6)D.(3,8)6.如图,直线,直线AC分别交,和于点A,B,C,直线DF分别交,和于点D,E,F,AC与DF相交于点G,且AG=2,GB=1,BC=5,则的值为()A.B.2 C.D.7.如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,如果矩形OA′B′C′与矩形OABC关于点O位似,且矩形OA′B′C′的面积等于矩形OABC面积的14,那么点B′的坐标是()A.(-2,3)B.(2,-3)C.(3,-2)或(-2,3)D.(-2,3)或(2,-3)8.两千多年前,古希腊数学家欧多克索斯发现了黄金分割,即:如图,点P是线段AB上一点(AP>BP),若满足BPAP =APAB,则称点P是AB的黄金分割点,世界上最有名的建筑物中几乎都包含“黄金分割”,若图中AB=8,则BP的长度是()A.12−4√5B.4+4√5C.4√5−4D.2二、填空题9.如图,在Rt△ABC中,∠A=30°,D是斜边AB的中点,G是Rt△ABC的重心,GE⊥AC于点E.若BC=6 cm,则GE= cm.10.如图,△ABC中,AB=AC,点D、E分别是边AB、AC的中点,点G、F在BC边上,四边形DEFG是正方形.若DE=2cm,则AC的长为.的图象11.如图,一次函数y=x+b(b>0)的图象与x轴交于点A,与y轴交于点B,与反比例函数y=8x交于点C,若AB=BC,则b的值为.12.如图,线段CD两个端点的坐标分别为C(1,2)、D(2,0),以原点为位似中心,将线段CD放大得到线段AB,若点B坐标为(5,0),则点A的坐标为.13.如图,⊙O是△ABC的外接圆,已知AD平分∠BAC交⊙O于点D,交BC于点E,若BD=6,AE=5,AB =7,则AC=.三、解答题14.如图,F为平行四边形ABCD的边AD的延长线上的一点,BF分别交于CD、AC于G、E,若EF=32,GE=8,求BE.15.在△ABC中,点D、E、F分别在AC、AB、BC上,且DE=3,BF=4.5,ADAC =AEAB=25求证:EF∥AC.16.将三角形纸片(△ABC)按如图所示的方式折叠,使点B落在边AC上,记为点B′,折痕为EF.已知AB=AC=3,BC=4,若以点B′、F、C为顶点的三角形与△ABC相似,求BF的长度.17.如图,AB是⊙O的弦,点C是AB⌢的中点,连接BC,过点A作AD∥BC交⊙O于点D.连接CD,延长DA 至E,连接CE,使CD=CE.(1)求证:CE是⊙O的切线;(2)若AB=6,AE=4求AD的长.18.如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且ADAC =DFCG.(1)求证:△ADF∽△ACG;(2)若ADAC =12,求AFFG的值.答案1.C2.D3.B4.C5.B6.D7.D8.A9.210.2√5cm11.212.(2.5,5)13.45714.解答:设BE=x∵EF=32,GE=8∴ FG=32-8=24∵平行四边形ABCD∴AD∥BC∴△AFE∽△CBE∴EFEB =AFBC则32x =AD+DFBC=DFBC+1∵DG∥AB∴△DFG∽△CBG∴DFBC =FGBG则DFBC =248+x则32x =248+x+1解得:x=±16(负数舍去)故BE=16.15.证明:∵AD AC=AE AB =25∠DAE =∠CAB ∴△ADE ∽△ACB ∴DE BC =AD AC =25,∠AED =∠B ∴DE ∥BC ∵DE =3 ∴BC =7.5 ∵BF =4.5∴CF =BC −BF =7.5−4.5=3=DE又∵DE ∥CF∴四边形CDEF 是平行四边形 ∴EF ∥CD ,即EF ∥AC .16.解:设BF=x ,则CF=4﹣x ,由翻折的性质得B ′F=BF=x ,当△B ′FC ∽△ABC ,∴B′FAB =CFBC 即x3=4−x 4解得x=127,即BF=127.当△FB ′C ∽△ABC ,∴FB′AB =FCAC 即x3=4−x 4,解得:x=2.∴BF 的长度为:2或127.17.(1)证明:连接OC ,如图所示:∵AB ⌢=AB ⌢,OC 过圆心 ∴OC ⊥AB ∵CD =CE ∴∠E =∠D ∵AD ∥BC ∴∠DAB =∠B ∵∠B =∠D ∴∠B =∠DAB ∴AB ∥EC ∵OC ⊥AB∴OC ⊥EC ∵OC 为半径 ∴CE 是⊙O 的切线(2)解:连接AC ,如图所示:∵AE ∥BC ,AB ∥EC∴四边形AECB 是平行四边形∠ACE =∠CAB ∴EC =AB =6 ∵AC⌢=BC ⌢ ∴∠CAB =∠B ∴∠ACE =∠B ∵∠B =∠D ∴∠D =∠ACE ∵∠E =∠E ∴△CDE ∽△ACE ∴ECAE =ED EC∵EC =6,AE =4 ∴ED =9∴AD =ED −AE =9−4=518.(1)证明:∵∠AED=∠B ,∠DAE=∠DAE ∴∠ADF=∠C ∵AD AC =DFCG ∴△ADF ∽△ACG(2)解:∵△ADF ∽△ACG ∴AD AC = AFAG又∵AD AC =12 ∴AFAG = 12∴AF FG=1。
九年级中考复习数学考点训练——几何专题:《相似综合》(二)(word版,带答案)
九年级中考复习数学考点训练——几何专题:《相似的综合》(二)1.已知:如图,在Rt△ACB中,∠C=90°,AC=4cm,BC=3cm,点P由B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t<2),当t为何值时,以A、P、Q为顶点的三角形与△ABC相似?2.如图1,在四边形ABCD中,点E、F分别是AB、CD的中点,过点E作AB的垂线,过点F作CD的垂线,两垂线交于点G,连接AG、BG、CG、DG,且∠AGD=∠BGC.(1)求证:∠GDA=∠GCB;(2)连接FE,求证:∠GDA=∠GFE;(3)如图2,若AD、BC所在直线互相垂直,试判断是否为定值,若为定值请求出;若不存在定值请说明理由.3.如图,在△ABC中,点D,E分别在边AB,BC上,AE与CD相交于点F,过点E作EG ∥CD交AC的延长线于点G.若AE平分∠BAC,CE=CF.(1)①求证:∠ABC=∠ACD;②求证:△EGC∽△CBD(2)如图2,若∠BAC=90°,AD=2,BD=6,求CG的长.4.如图,点A(10,0),B(0,20),连接AB,动点M、N分别同时从点A,O出发,以1单位长度/秒和2单位长度/秒的速度向终点O、B移动,当其中一点到达终点时停止运动,移动时间为t秒.(1)用含t的代数式表示点M的坐标为(,),点N的坐标为(,);(2)当四边形AMNB的面积恰好为76时,求此时t的值;(3)当t为何值时,△MON与△AOB相似.5.如图,在▱ABCD中,对角线AC、BD交于点O,M为AD中点,连接OM、CM,且CM 交BD于点N,ND=1.(1)证明:△MNO~△CND;(2)求BD的长.6.如图,已知锐角△ABC,AD、CE分别是BC、AB边上的高.(1)证明:△ABD∽△CBE;(2)若△ABC和△BDE的面积分别是24和6,DE=2,求点B到直线AC的距离.7.如图1,正方形ABCD的边长为4,把三角板的直角顶点放置BC中点E处,三角板绕点E旋转,三角板的两边分别交边AB、CD于点G、F.(1)求证:△GBE∽△ECF;(2)设BG=x,CF=y,求y关于x的函数表达式,并写出自变量的取值范围;(3)如图2,连接AC交GF于点Q,交EF于点P.当△AGQ与△CEP相似,求线段AG的长.8.我们做如下的规定:如果一个三角形在运动变化时保持形状和大小不变,则把这样的三角形称为三角形板.把两块边长为4的等边三角形板ABC和DEF叠放在一起,使三角形板DEF的顶点D与三角形板ABC的AC边中点O重合,把三角形板ABC固定不动,让三角形板DEF绕点O旋转,设边DE与边AB相交于点M,边DF与边BC相交于点N.(1)如图1,当边DF经过点B,即点N与点B重合时,易证△ADM∽△CND.此时,AMCN=.(2)将三角形板DEF绕点O沿逆时针方向旋转得到图2,问AMCN的值是否改变?说明你的理由.(3)在(2)的条件下,设AM=x,两块三角形板重叠面积为y,则y与x的函数关系式为.9.如图,在Rt△ABC中,∠C=90°,AC=8,BC=4,点P从点A出发,以每秒2个单位长度的速度沿AB向点B运动,过点P作PD⊥AB交边AC或边BC于点D,点E是射线PB上的一点,且PE=2PD,以PD、PE为邻边作矩形PEFD.设矩形PEFD与△ABC重叠部分图形的面积为S,点P的运动时间为t(秒).(1)用含t的代数式表示线段PE的长.(2)当点F落在BC上时,求t的值.(3)当矩形PEFD与△ABC重叠部分图形为四边形时,求S与t之间的函数关系式.(4)若△ABC重心为G,矩形DPEF中心为O,当点O与点G到直线AB距离相同时,请直接写出t的值.10.在Rt△ABC中,∠ACB=90°,AC=BC,CD⊥AB于点D,点E为AC边上一点,连接BE交CD于点F,过点E作EG⊥BE交AB于点G,(1)如图1,当点E为AC中点时,线段EF与EG的数量关系是;(2)如图2,当,求的值;(3)如图3,当,不需要求解过程,直接写出的值.参考答案1.解:∵∠C=90°,AC=4cm,BC=3cm,∴AB==5,则BP=t,AQ=2t,AP=5﹣t,∵∠P AQ=∠BAC,当=时,△APQ∽△ABC,即=,解得t=;当=时,△APQ∽△ACB,即=,解得t=;答:t为s或s时,以A、P、Q为顶点的三角形与△ABC相似.2.(1)证明:∵点E是AB的中点,GE⊥AB,∴GE是AB的垂直平分线,∴GA=GB,同理:GD=GC,在△AGD和△BGC中,,∴△AGD≌△BGC(SAS),∴∠GDA=∠GCB;(2)证明:∵∠AGD=∠BGC,∴∠AGB=∠DGC,∵=,∴△AGB∽△DGC,∴=,∵∠AGE=∠DGF,∴∠AGD=∠EGF,∴△AGD∽△EGF,∴∠GDA=∠GFE;(3)解:如图1,延长AD交GB于点M,交BC的延长线于点H,则AH⊥BH,∵△AGD≌△BGC,∴∠GAD=∠GBC,在△GAM和△HBM中,∠GAD=∠GBC,∠GMA=∠HMB,∴∠AGB=∠AHB=90°,∴∠AGE=∠AGB=45°,∴=,∵△AGD∽△EGF,∴==.3.解:(1)①证明:∵CE=CF,∴∠CEF=∠CFE.∵AE平分∠BAC,∴∠BAE=∠CAE,又∵∠CEF=∠ABC+∠BAE,∠CFE=∠ACD+∠CAE,∴∠ABC=∠ACD;②证明:∵EG∥CD,∴∠CEG=∠DCB,∠ACD=∠G,∵∠ABC=∠ACD,∴∠ABC=∠G,∴△EGC∽△CBD;(2)在△AEB和△AEG中,∴△AEB≌△AEG(AAS),∴AG=AB.∠ABC=∠G,∵AD=2,BD=6,∴AB=AD+BD=2+6=8,∴AG=8.∵∠ABC=∠ACD,∠BAC=∠CAD,∴△ABC∽△ACD,∴AB:AC=AC:AD,∴AC2=ABAD=8×2=16,∴AC=4(舍负),∴CG=AG﹣AC=8﹣4=4.4.解:(1)∵ON=2tcm,OM=(10﹣t)cm,∴N(0,2t),M(10﹣t,0);故答案为:0,2t,10﹣t,0;(2)∵S四边形AMNB=S△ABO﹣S△MON,∴76=×10×20﹣×2t×(10﹣t),∴t=4或6,∴当t=4或6时,四边形AMNB的面积为76cm2.(3)∵△MON与△AOB相似,∠MON=∠AOB=90°,∴=或∴或,解得:t=5或2,∴当t=5或2时,△MON与△AOB相似.5.∵OM是△ACD的中位线,∴OM=CD.∵由(1)知,△MNO~△CND,ND=1,∴==,∴ON=,∴OD=ON+ND=,∴BD=2OD=3.6.解:(1)证明:∵AD、CE分别是BC、AB边上的高,∴∠ADB=∠CEB=90°,又∵∠B=∠B,∴△ABD∽△CBE;(2)∵△ABD∽△CBE,∴=,又∵∠B=∠B,∴△BED∽△BCA,∴=.∵△ABC和△BDE的面积分别是24和6,DE=2,∴=,∴AC=4,∴点B到直线AC的距离为:==6.7.解:如图1,延长FE交AB的延长线于F',∵点E是BC的中点,∴BE=CE=2,∵四边形ABCD是正方形,∴AB∥CD,∴∠F'=∠CFE,在△BEF'和△CEF中,,∴△BEF'≌△CEF(SSA),∴BF'=CF,EF'=EF,∵∠GEF=90°,∴GF'=GF,∴∠BGE=∠EGF,∵∠GBE=∠GEF=90°,∴△GBE∽△GEF;(2)∵∠FEG=90°,∴∠BEG+∠CEF=90°,∵∠BEG+∠BGE=90°,∴∠BGE=∠CEF,∵∠EBG=∠C=90°,∴△BEG∽△CFE,∴,由(1)知,BE=CE=2,∵BG=x,CF=y,∴=,∴y=(0≤x≤4);(3)∵AC是正方形ABCD的对角线,∴∠BAC=∠BCA=45°,∵△AGQ与△CEP相似,∴①△AGQ∽△CEP,∴∠AGQ=∠CEP,由(2)知,∠CEP=∠BGE,∴∠AGQ=∠BGE,由(1)知,∠BGE=∠FGE,∴∠AGQ=∠BGQ=∠FGE,∴∠AGQ+∠BGQ+∠FGE=180°,∴∠BGE=60°,∴∠BEG=30°,在Rt△BEG中,BE=2,∴BG=,∴AG=AB﹣BG=4﹣,②△AGQ∽△CPE,∴∠AQG=∠CEP,∵∠CEP=∠BGE=∠FGE,∴∠AQG=∠FGE,∴EG∥AC,∴△BEG∽△BCA,∴=,∴,∴BG=2,∴AG=AB﹣BG=2,即:当△AGQ与△CEP相似,线段AG的长为2或4﹣.8.解:(1)∵∠A=∠C=∠EDB=60°,∴∠ADM+∠CDN=120°,∠ADM+∠AMD=120°,∴∠CDN=∠AMD,∴△ADM∽△CND,∴,∴AMCN=ADCD,∵顶点D与三角形板ABC的AC边中点O重合,∴AD=CD=2,∴AMCN=ADCD=2×2=4,故答案为:4;(2)AMCN的值不会改变.在△ADM与△CND中,∵∠A=∠C=60°,∠DNC=∠DBN+∠BDN=30°+α,∠ADM=30°+α,∴∠ADM=∠CND,∴△ADM∽△CND∴,∴AMCN=ADCD=2×2=4,∴AMCN的值不会改变;(3)情形1,当0°<α<60°时,1<AM<4,即1<x<4,此时两三角形板重叠部分为四边形DMBN,如图2,过D作DQ⊥AB于Q,DG⊥BC于G,∴DQ=DG=,由(2)知,AMCN=4,得CN=,于是y=AB2﹣AMDQ﹣CNDQ=4﹣x﹣(1<x<4);情形2,当60°≤α<90°时,AM≥4时,即x≥4,此时两三角形板重叠部分为△DPN,如图3,过点D作DH∥BC交AM于H,易证△MBP∽△MHD,∴,又∵MB=x﹣4,MH=x﹣2,DH=2,∴BP=,∴PN=4﹣﹣,于是y=PNDG=(4﹣﹣)=﹣,综上所述,y=.故答案为:y=.9.解:(1)∵∠C=90°,AC=8,BC=4,∴AB=,如图2,当D与C重合时,CP⊥AB,cos∠A=,即,AP=,tan∠A=,即,∴PD=t,∴当0<t≤时,如图1,PE=2PD=2×t=2t,如图3,AP=2t,∴PB=4﹣2t,tan∠DBP=,即,PD=8﹣4t,当<t≤4时,如图3,PE=2PD=2(8﹣4t)=16﹣8t;(2)当点F落在BC上时,如图4,BE=4﹣4t,EF=PD=t,∵EF=2BE,∴t=2×(4﹣4t),t=(秒);(3)当0<t≤时,如图1,矩形PEFD与△ABC重叠部分图形是矩形PEFD,S=PDPE=t2t=10t2;如图5,当E与B重合时,PB=2PD,则4﹣2t=2×,t=1,当1<t≤时,如图6,cos∠A=,即,AD=5t,∴CD=8﹣5t,∵DM∥AB,∴∠CDM=∠A,∴cos∠A=cos∠CDM=,即,DM=4﹣t,S=(4﹣t+4﹣2t)t=﹣t2+20t;综上,S与t之间的函数关系式是:S=.(4)∵AQ=QB,G是△ABC的重心,∴QG:GC=1:2,∵AC=8,BC=4,∴AB=,∴CK=,∵GJ∥CK,∴△QGJ∽△QCK,∴,∴,∴GJ=,当点O与点G到直线AB距离相同时,当0<t≤时,PD=,解得:t=,当<t≤4时,PD=,解得:t=,综上所述,当点O与点G到直线AB距离相同时,t的值为或.10.解:如图1,过E作EM⊥AB于M,EN⊥CD于N,∵CD⊥AB,∴四边形EMDN为矩形,∴∠MEN=90°,∵∠ACB=90°,AC=BC,∴∠A=∠ABC=45°,∴AD=CD,∵点E为AC的中点,CD⊥AB,EN⊥DC,∴EN=AD,同理可知,EM=CD,∴EN=EM,∵∠GEB=90°,∠MEN=90°,∴∠NEF=∠GEM,在△EFN和△EGM中,,∴△EFN≌△EGM(ASA),∴EF=EG,故答案为:EF=EG;(2)如图2,过点E作EP⊥AB于点P,作EQ⊥CD于点Q,则△CEQ和△APE均为等腰直角三角形,∴==,由(1)可知,∠QEF=∠PEG,∵∠EQF=∠EPG=90°,∴△EQF∽△EPG,∴==;(3)如图3,过点E作EH⊥AB于点H,作ER⊥CD于点R,则==,由(2)可知,△ERF∽△EHG,∴==.。
2020年九年级数学中考复习——图形的相似应用题专题训练(二)(有答案)
2020中考复习——图形的相似应用题专题训练(二)班级:___________姓名:___________ 得分:___________一、选择题1.已知一棵树的影长是30m,同一时刻一根长1.5m的标杆的影长为3m,则这棵树的高度是()A. 15mB. 60mC. 20mD. 10√3m2.如图,身高1.8m的某学生想测量一棵大树的高度,她沿着树影BA由B向A走去,当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3.2m,CA=0.8m,则树的高度为()A. 4.8mB. 6.4mC. 8mD. 9m3.如图是小明设计用手电筒来测量某古城墙高度的示意图,在地面上点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=18米,那么该古城墙的高度是().A. 6米B. 8米C. 12米D. 24米4.如图,A、B两地之间有一池塘,要测量A、B两地之间的距离.选择一点O,连接AO并延长到点C,使OC=12AO,连接BO并延长到点D,使OD=12BO.测得C、D间距离为30米,则A、B两地之间的距离为()A. 30米B. 45米C. 60米D. 90米5.制作一3m×2m长方形广告牌的成本是120元,在制作成本相同的情况下,将此广告牌的四边都扩大为原来的3倍,扩大后长方形广告牌的成本是()A. 360元B. 720元C. 1080元D. 2160元6.如图,小明在A时测得某树的影长DE为3m,B时又测得该树的影长EF为12m,若两次日照的光线互相垂直,则树的高度CE是()A. 3mB. 5mC. 8mD. 6m7.如图所示,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米.已知王华的身高是1.5米,那么路灯A的高度AB等于()A. 4.5米B. 6米C. 7.2米D. 8米8.如图,一只箱子沿着斜面向上运动,箱高AB=1.3cm,当BC=2.6m时,点B离地面的距离BE=1m,则此时点A离地面的距离是()A. 2.2mB. 2mC. 1.8mD. 1.6m9.王大伯要做一张如图的梯子,梯子共有7级互相平行的踏板,每相邻两级踏板之间的距离都相等.已知梯子最上面一级踏板的长度A1B1=0.5m,最下面一级踏板的长度A7B7=0.8m.则第5级踏板的长度为()A. 0.6mB. 0.65mC. 0.7mD. 0.75m10.如图,正方形ABCD的边长为1,E是边AB上一点,且AE=13,点F在边BC上,且BF=13,一束光线从点E射入到点F,若光线每碰到正方形的边时都会发生镜面反射.反射时反射角等于入射角,当光线再次经过点E时,光线发生反射的次数可能为()A. 4B. 5C. 6D. 7二、填空题11.如图,测小玻璃口径的量具ABC,AB的长为20mm,BC被分成40等分,如果小管口DE正好对着量具上15等分处(DE//AB),那么小玻璃管口径DE的长为__________mm.12.兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1m的竹竿的影长为0.4m,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得台阶上的影子长为0.2m,一级台阶高为0.3m,如图所示,若此时落在地面上的影长为4.4m,则树高为____________.13.如图,阳光通过窗口AB照射到室内,在地面上留下4米宽的亮区DE,已知亮区DE到窗口下的墙角距离CE=5米,窗口高AB=2米,那么窗口底边离地面的高BC=______ 米.14.如图,有一所正方形的学校,北门(点A)和西门(点B)各开在北、西面围墙的正中间.在北门的正北方30米处(点C)有一颗大榕树.如果一个学生从西门出来,朝正西方走750米(点D),恰好见到学校北面的大榕树,那么这所学校占地______ 平方米.15.有一块直角边AB=3cm,BC=4cm的Rt△ABC的铁片,现要将它加工成一个正方形(加工中的损耗忽略不计),则正方形的边长为______.16.如图1是夹文件用的铁(塑料)夹子在常态下的侧面示意图.AC,BC表示铁夹的两个面,O点是轴,OD⊥AC于D.已知AD=15mm,DC=24mm,OD=10mm已知文件夹是轴对称图形,利用图2,可求图1中A,B两点的距离是____________mm.17.在同一时刻两根竹竿在太阳光下的影子如图所示,其中竹竿AB=2m,它的影子BC=1.6m,竹竿PQ的影子有一部分落在了墙上,PM=1.2m,MN=0.8m,则竹竿PQ的长度为________m.三、解答题18.如图,△ABC是一块锐角三角形余料,AM⊥BC,BC=10,AM=6,要把它加工成两邻边:DEDG =53矩形零件,使矩形的一边GF在BC上,其余两个顶点分别在AB、AC上.求矩形DEFG的周长.19.小红家的阳台上放置了一个晒衣架,如图1,图2是晒衣架的侧面示意图,立杆AB、CD相交于点O,B、D两点在地面上,经测量得到AB=CD=136cm,OA=OC= 51cm,OE=OF=34cm,现将晒衣架完全稳固张开,扣链EF成一条线段,且EF= 32cm,垂挂在衣架上的连衣裙总长度小于多少时,连衣裙才不会拖在地面上?20.如图,为了测量一栋楼的高度OE,小明同学先在操场上A处放一面镜子,向后退到B处,恰好在镜子中看到楼的顶部E;再将镜子放到C处,然后后退到D处,恰好再次在镜子中看到楼的顶部E(O,A,B,C,D在同一条直线上),测得AC=2m,BD=2.1m,如果小明眼睛距地面髙度BF,DG为1.6m,试确定楼的高度OE.21.如图,小东将一张长AD为12、宽AB为4的矩形纸片按如下方式进行折叠:在纸片的一边BC上分别取点P,Q,使得BP=CQ,连结AP、DQ,将△ABP、△DCQ分别沿AP、DQ折叠得△APM,△DQN,连结MN.小东发现线段MN的位置和长度随着点P、Q的位置变化而发生改变.(1)请在图1中过点M,N分别画ME⊥BC于点E,NF⊥BC于点F.求证:①ME=NF;②MN//BC.(2)如图1,若BP=3,求线段MN的长;(3)如图2,当点P与点Q重合时,求MN的长.22.如图,铎山中心学校校园内有一块四边形空地ABCD,学校征集对这块空地种植的花草的设计中,选定如下方案:把这个四边形分成九块,种植三种不同的花草,其中E、F、G、H分别是AB、BC、CD、DA的中点,P、Q、R、K分别是EF、FG、GH、HE的中点,现要在四边形PQRK中种上红色的花,在△PFQ、△QGR、△RHK、△KEP中种上黄色的花,在△HAE、△EBF、△FCG、△GDH中种上紫色的花.已知种红、黄、紫三种花的单价分别为10元/m2、12元/m2、14元/m2,而种红花已用去了120元.请你用学过的数学知识计算出种满四边形ABCD这块空地的花共需要多少元?23.如图,一条东西走向的笔直公路,点A、B表示公路北侧间隔150米的两棵树所在的位置,点C表示电视塔所在的位置.小王在公路PQ南侧直线行走,当他到达点P的位置时,观察树A恰好挡住电视塔,即点P、A、C在一条直线上,当他继续走180米到达点Q的位置时,以同样方法观察电视塔,观察树B也恰好挡住电视塔.假设公路两侧AB//PQ,且公路的宽为60米,求电视塔C到公路南侧PQ的距离.24.一个小风筝与一个大风等形状完全相同,它们的形状如图所示,其中对角线AC⊥BD.已知它们的对应边之比为1:3,小风筝两条对角线的长分別为12cm和14cm.(1)小风筝的面积是多少?(2)如果在大风筝内装设一个连接对角顶点的十字交叉形的支撑架,那么至少需用多长的材料?(不记损耗)(3)大风筝要用彩色纸覆盖,而彩色纸是从一张刚好覆盖整个风筝的矩形彩色纸(如图中虚线所示)裁剪下来的,那么从四个角裁剪下来废弃不用的彩色纸的面积是多少?答案和解析1.A解:设这棵树的高度为xm,则1.53=x30,x=15,∴这棵树的高度是15m.2.D解:因为人和树均垂直于地面,所以和光线构成的两个直角三角形相似,设树高x米,则ACAB =1.8x,即0.80.8+3.2=1.8x,∴x=9.3.C解:∵∠APB=∠CPD,∠ABP=∠CDP=90°,∴△ABP∽△CDP∴ABCD =BPPD即1.2CD =1.818,解得:CD=12,故该古城墙的高度是12米.4.C解:∵△ABO和△CDO中,OCOA =ODOB=12,且∠AOB=∠COD,∴△AOB∽△COD,∴ABCD=2,又∵CD=30m,∴AB=60m.5.C解:3m×2m=6m2,∴长方形广告牌的成本是120÷6=20元/m2,将此广告牌的四边都扩大为原来的3倍,则面积扩大为原来的9倍,∴扩大后长方形广告牌的面积=9×6=54m2,∴扩大后长方形广告牌的成本是54×20=1080(元).6.D解:在Rt△CDF中,树高为CE,且∠DCF=90°,ED=3m,FE=12m,易得:Rt△EDC∽Rt△EFC,∴EC EF =DE EC,即EC2=ED⋅FE,则EC2=3×12=36,解得:EC=√36m=6m,∴树的高度CE是6m.7.B解:题意知△DGC∽△DAB,△FHE∽△FAB,利用已知线段可得两个只含有未知量AB 和BC的比例式,从而可求得AB.∵GC//AB,∴∠DGC=∠DAB.又∵∠GDC=∠ADB,∴△DGC∽△DAB,∴GCAB =CDBD,即1.5AB=1BC+1. ①同理,得△FHE∽△FAB,∴HEAB =EFBF,即1.5AB=2BC+5. ②由 ① ②可得BC =3,AB =6.8. A解:由题意可得:AD//EB ,则∠CFD =∠AFB =∠CBE ,△CDF∽△CEB , ∵∠ABF =∠CEB =90°,∠AFB =∠CBE ,∴△CBE∽△AFB , ∴BE FB =BC AF =EC AB , ∵BC =2.6m ,BE =1m , ∴EC =2.4(m),即1FB =2.6AF =2.41.3,解得:FB =1324,AF =169120,∵△CDF∽△CEB ,∴DF EB =CFCB ,即DF1=2.6−13242.6解得:DF =1924,故AD =AF +DF =1924+169120=2.2(m),答:此时点A 离地面的距离为2.2m .9. C解:因为每相邻两级踏板之间的距离都相等,所以A 4B 4为梯形A 1A 7B 7B 1的中位线,根据梯形中位线定理,A 4B 4=12(A 1B 1+A 7B 7)=12(0.5+0.8)=0.65m .作A 1C//B 1B 4,则DB 5=CB 4=A 1B 1=0.5m ,A 4C =0.65−0.50=0.15m ,于是A 1A 4A 1A 5=A 4C A 5D =34,即0.15A 5D =34,解得A 5D =0.2m .A 5B 5=0.2+0.5=0.7m .10.C解:根据已知中的点E,F的位置,可知入射角的正切值为12,第一次碰撞点为F,在反射的过程中,直线是平行的,利用平行关系及三角形的相似可得第二次碰撞点为G,在DA上,且DG=16,第三次碰撞点为H,在DC上,且DH=13,第四次碰撞点为M,在CB上,且CM=13,第五次碰撞点为N,在DA上,且AN=16,第六次回到E点,AE=13.故需要碰撞6次即可.11.7.5解:∵DE//AB,∴△CDE∽△CBA,∴DEAB =CDCB,即DE20=1540,∴DE=7.5(mm).12.11.8m解:根据题意可构造相似三角形模型如图,其中AB为树高,EF为树影在第一级台阶上的影长,BD为树影在地上部分的长,ED 的长为台阶高,并且由光沿直线传播的性质可知BC即为树影在地上的全长;延长FE交AB于G,则Rt△ABC∽Rt△AGF,∴AG:GF=AB:BC=物高:影长=1:0.4,∴GF=0.4AG,又∵GF=GE+EF,BD=GE,GE=4.4m,EF=0.2m,∴GF=4.6m,∴AG=11.5m,∴AB=AG+GB=11.8m,即树高为11.8m.13.2.5解:∵AD//BE,∴△BCE∽△ACD,∴BCAC =CECD,CD=CE+ED=4+5=9,AC=BC+AB=BC+2,∴BCBC+2=59,解得,BC=2.5.14.90000解:延长CA、DB相交于E,∵CA⊥FG,DE//FG可得△CDE是直角三角形,∵四边形FGHL是正方形,∴FB//CE,△DFB∽△DCE,设AE=x,则AE=FB=BE=12FL=x,∵AC=30m,DB=750m,∴DBDB+BE =FBAC+AE,即750750+x =xx+30,解得,x=150m,∴FL=150×2=300m.∴S矩形FGHL=FL2=3002=90000m2.15.6037解:如图,过点B作BP⊥AC,垂足为P,BP交DE于Q.∵S△ABC=12AB⋅BC=12AC⋅BP,∴BP=AB⋅BCAC =3×45=125.∵DE//AC,∴∠BDE=∠A,∠BED=∠C,∴△BDE∽△BAC,∴DEAC =BQBP.设DE=x,则有:x5=125−x125,解得x=6037,16.30解:如图,连接AB,与CO的延长线交于点E,∵夹子是轴对称图形,对称轴是CE,A、B为一组对称点,∴CE⊥AB,AE=EB.在Rt△AEC、Rt△ODC中,∵∠AEC=∠ODC=90°,∠OCD是公共角,∴Rt△AEC∽Rt△ODC,∴AEAC =ODOC,又OC=√OD2+DC2=√102+242=26,∴AE=AC⋅ODOC =39×1026=15,∴AB=2AE=30(mm).17.2.3解:过N点作ND⊥PQ于D,∴BCAB =DNQD,又∵AB=2,BC=1.6,PM=1.2,NM=0.8,∴QD=AB⋅DNBC=1.5,∴PQ=QD+DP=QD+NM=1.5+0.8=2.3(m).18.解:∵四边形DEFG是矩形,∴DE//BC,∴△ADE∽△ABC,∴AN:AM=DE:BC,∵DEDG =53,∴设DE=5x,则DG=NM=3x,∴AN=6−3x,∴(6−3x):6=5x:10解得:x=1,∴矩形DEFG的周长为2(DE+DG)=2×(5x+3x)=16.19.解:∵AB、CD相交于点O,∴∠AOC=∠BOD∵OA=OC,∴∠OAC=∠OCA=12(180°−∠BOD),同理可证:∠OBD=∠ODB=12(180°−∠BOD),∴∠OAC=∠OBD,∴AC//BD,在Rt△OEM中,OM=√OE2−EM2=30(cm),过点A作AH⊥BD于点H,同理可证:EF//BD,∴∠ABH=∠OEM,则Rt△OEM∽Rt△ABH,∴OEAB =OMAH,AH=30×13634=120(cm),所以垂挂在衣架上的连衣裙总长度小于120cm时,连衣裙才不会拖落到地面上.20.解:设E关于O的对称点为M,由光的反射定律知,延长GC、FA相交于点M,连接GF并延长交OE于点H,∵GF//AC,∴△MAC∽△MFG,∴ACFG =MAMF=MOMH,即:ACBD =OEMH=OEMO+OH=OEOE+BF,∴OEOE+1.6=22.1,∴OE=32,答:楼的高度OE为32米.21.解:(1)①∵四边形ABCD是矩形,∴∠B=∠C=90°,AB=CD.∵在△ABP和△DCQ中,{AB=DC ∠B=∠C BP=CQ,∴△ABP≌△DCQ,∴∠APB=∠DQG.∴∠MPE=180°−2∠APB=180°−2∠DQC=∠NQF.∴在△MEP和△NPQ中,{∠MPE=∠NQF ∠MEP=∠NPQ MP=NQ,∴△MEP≌△NPQ,∴ME=NF;②∵ME//NF,ME=NF,∴四边形EFMN是矩形,∴MN//BC;(2)延长EM、FN交AD于点G、H,∵AB=4,BP=3,∴AM=4,PM=3.∵AD//BC ,∴EM ⊥AD .∵∠AMP =∠MEP =∠MGA ,∴∠EMP =∠MAG .∴△EMP∽△MAG . ∴AG EM =MG EP =AM MP =43, 设AG =4a ,MG =3b .∵四边形ABEG 是矩形,∴{4a =3b +33a +4b =4,解得:{a =2425b =725,∴AG =9625,同理DH =9625.∴MN =10825;(3)设PM 、PN 分别交AD 于点E 、F .∵∠EPA =∠APB =∠PAE ,∴EA =EP .设EA =EP =x ,在直角△AME 中,42+(6−x)2=x 2,解得:x =139,∴EF =12−2×133=103,∵EF//MN ,∴△PEF∽△PMN ,∴EF MN =PE PM ,即103MN =1336,解得:MN =6013.22. 解:连结AC ,可知HG 是△DAC 的中位线,∴△DHG∽△DAC ,∴S △DHG =14S △DAC ,同理S △BEF =14S △BAC ,∴S △DHG +S △BEF =14S △DAC +14S △BAC =14S 四边形ABCD ,同理S △AEH +S △CFG =14S 四边形ABCD ,∴S△DHG+S△BEF+S△AEH+S△CFG,=14S四边形ABCD+14S四边形ABCD,=12S四边形ABCD,即种紫色花的面积是四边形ABCD面积的一半,同理:种黄色花的面积是四边形EFGH面积的一半,∴种黄色花的面积与种红色花的面积相等,种紫色花的面积是种红色花的面积的两倍,可知种红色花的面积是:120÷10=12㎡,故种黄色花的面积是12㎡,种紫色花的面积是24㎡,∴种满四边形ABCD这块空地的花共需要:120+12×12+14×24=600元.23.解:如图所示,作CE⊥PQ于E,交AB于D点,设CD为x,则CE=60+x,∵AB//PQ,∴△ABC∽△PQC,∴CDAB =CEPQ,即x150=x+60180,解得x=300,∴x+60=360米,答:电视塔C到公路南侧所在直线PQ的距离是360米.24.解:(1)∵AC⊥BD,∴小风筝的面积S=12AC⋅BD=12×12×14=84(cm)2;(2)∵小风筝与大风筝形状完全相同,∴假设大风筝的四个顶点为A′,B′,C′,D′,∴△ABC∽△A′B′C′,∵它们的对应边之比为1:3,∴A′C′=2AC=42cm,同理B′D′=3BD=36cm,∴至少需用42+36=78cm的材料;(3)从四个角裁剪下来废弃不用的彩色纸的面积=矩形的面积−大风筝的面积= 42×36−9×84=756(cm)2.。
中考数学总复习分层提分训练:图形的相似含答案(以2010-2012年真题为例)
图形的相似一级训练1.(2011年浙江台州)若两个相似三角形的面积之比为1∶4,则它们的周长之比为( )A .1∶2B .1∶4C .1∶5D .1∶16 2.下列各组线段(单位:cm)中,是成比例线段的是( )A .1,2,3,4B .1,2,2,4C .3,5,9,13D .1,2,2,33.(2012年陕西)如图6-4-17,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC =( )A .1∶2B .2∶3C .1∶3D .1∶4图6-4-17 图6-4-18 图6-4-19 图6-4-204.(2011年江苏无锡)如图6-4-18,四边形ABCD 的对角线AC ,BD 相交于点O ,且将这个四边形分成①、②、③和④四个三角形.若OA ∶OC =OB ∶OD ,则下列结论中一定正确的是( )A .①和②相似B .①和③相似C .①和④相似D .②和④相似 5.(2011年湖南怀化)如图6-4-19,在△ABC 中,DE ∥BC ,AD =5,BD =10,AE =3,则CE 的值为( )A .9B .6C .3D .46.如图6-4-20,正方形OABC 与正方形ODEF 是位似图形,O 为位似中心,相似比为1∶2,点A 的坐标为(1,0),则E 点的坐标为( )A .(2,0) B.⎝⎛⎭⎫32,32 C .(2,2) D .(2,2)7.若△ABC ∽△A ′B ′C ′,BC =3,B ′C ′=1.8,则△A ′B ′C ′与△ABC 的相似比为( )A .5∶3B .3∶2C .2∶3D .3∶58.(2012年黑龙江牡丹江)如图6-4-21,在平行四边形ABCD 中,过点B 的直线与对角线AC ,边AD 分别交于点E 和F ,过点E 作EG ∥BC ,交AB 于点G ,则图中相似三角形有( )A .4对B .5对C .6对D .7对图6-4-21 图6-4-229.如图6-4-22,已知在△ABC 中,P 是AB 上的一点,连接CP ,要使△ACP ∽△ABC ,只需添加条件____________(只要写出一种合适的条件).10.如果两个相似三角形的相似比是3∶5,周长的差为4 cm ,那么较大三角形的周长为______cm.11.(2010年广东佛山)一般认为,如果一个人的肚脐以上的高度与肚脐以下的高度符合黄金分割,则这个人好看.如图6-4-23,是一个参加空姐选拔的选手的身高情况,那么她应穿多高的鞋子才能好看(精确到1 cm)?⎝⎛⎭⎫参考数据:黄金分割比为5-12,5=2.236图6-4-23 12.已知:如图6-4-24,D ,E 分别在△ABC 的边BC ,AC 上,AD ,BE 交于点G ,AD ⊥BC ,点F 在AD 上,且△EFG ∽△BDG . 求证:△AEF ∽△ACD .图6-4-2413.(2012年湖南株洲)如图6-4-25,在矩形ABCD 中,AB =6,BC =8,沿直线MN 对折,使A ,C 重合,直线MN 交AC 于点O . (1)求证:△COM ∽△CBA ;(2)求线段OM的长度.图6-4-25二级训练14.如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x,那么x的值()A.只有1个B.可以有2个C.有2个以上但有限D.有无数个15.如图6-4-26,A,B两点分别位于一个池塘的两端,由于受条件限制无法直接度量A,B间的距离.小明利用学过的知识,设计了如下三种测量方法,如图6-4-26(1)、(2)、(3)所示(图中a,b,c表示长度,α,β,θ表示角度).(1)请你写出小明设计的三种测量方法中AB的长度:图6-4-26(1)AB=________,图6-4-26(2)AB=________,图6-4-26(3)AB=________;(2)请你再设计一种不同于以上三种的测量方法,画出示意图(不要求写画法),用字母标注需测量的边或角,并写出AB的长度.图6-4-2616.如图6-2-27,点C,D在线段AB上,△PCD是正三角形.(1)当AC,CD,DB满足怎样的关系时,△ACP∽△PDB;(2)当△ACP∽△PD B时,求∠APB的度数.图6-2-2717.如图6-4-28,江边同一侧有A,B两间工厂,它们都垂直于江边的小路,长度分别为3千米、2千米,且两条小路之间的距离为5千米,现要在江边建一个供水站向A,B两厂送水,欲使供水管最短,则供水站应建在距点E处多远的位置?图6-4-28三级训练18.(2011年湖南怀化)如图6-4-29,△ABC是一张锐角三角形的硬纸片,AD是边BC上的高,BC=40 cm,AD=30 cm,从这张硬纸片上剪下一个长HG是宽HE的2倍的矩形EFGH,使它的一边EF在BC上,顶点G,H分别在AC,AB上,AD与HG的交点为点M.(1)求证:AMAD=HGBC;(2)求这个矩形EFGH的周长.图6-4-29参考答案1.A 2.B 3.D 4.B 5.B 6.C7.D8.C9.∠APC=∠ACB10.1011.解:设其应穿x cm高的鞋子,根据题意,得6595+x=5-12.解得x≈10cm.12.证明:∵△EFG∽△BDG,∴∠EFG=∠GDB.又∵∠ADC=90°,∴∠EFG=90°.在△AEF和△ACD中,∠AFE=∠ADC,∠A=∠A,∴△AEF∽△ACD.13.(1)证明:∵点A与点C关于直线MN对称,∴AC⊥MN.∴∠COM=90°.在矩形ABCD中,∠B=90°,∴∠COM=∠B.又∵∠ACB=∠ACB,∴△COM∽△CBA.(2)解:∵在Rt△CBA中,AB=6,BC=8,∴AC=10.∴OC=5.∵△COM∽△CBA,∴OCCB=OMAB.∴OM=15 4.14.B15.解:(1)a·tanα2c b(2)(注:本题方法多种,下面列出3种供参考)方法一:如图D43.图D43 方法二:如图D44.图D44方法三:如图D45.图D4516.解:(1)当CD2=AC·DB时,△ACP∽△PDB.∵△PCD是等边三角形,∴∠PCD=∠PDC=60°.∴∠ACP=∠PDB=120°.若CD2=AC·DB,则根据相似三角形的判定定理,得△ACP∽△PDB.(2)当△ACP∽△PDB时,∠APC=∠PBD,∵∠PDB=120°,∴∠DPB+∠DBP=60°.∴∠APC+∠B PD=60°.∴∠APB=∠CPD+∠APC+∠BPD=120°.17.解:如图D46,作出B关于河岸的对称点C,连接AC,则BF+FA=CF+FA=CA,根据两点之间线段最短,可知水站建在F处时,供水管路最短.易得△ADF∽△CEF.∴设EF=x,则FD=5-x.根据相似三角形的性质,得EFFD=CEAD,x5-x=23,解得x=2.即EF=2千米.故应建在距点E2千米处的位置.图D46 18.(1)证明:∵四边形EFGH为矩形,∴EF∥GH.∴∠AHG=∠ABC.又∵∠HAG=∠BAC,∴△AHG∽△ABC.∴AMAD=HGBC.(2)解:由(1),得AMAD=HGBC,设HE=x,则HG=2x,AM=AD-DM=AD-HE=30-x.可得30-x30=2x40,解得x=12 ,即2x=24.∴矩形EFGH的周长为2×(12+24)=72(cm).。
中考数学考点23相似三角形总复习(原卷版)
相似三角形【命题趋势】在中考中.相似三角形在中考主要以选择题、填空题和解答题的简单类型为主;常考的3种相似模型经常以解答题形式考查.常结合二次函数、圆综合考查。
【中考考查重点】 一、比例线段及性质二、相似三角形性质与判定考点1:比例线段及性质1、比例线段的有关概念:在比例式a cb d=(::a b c d =)中.a 、d 叫外项.b 、c 叫内项.a 、c 叫前项.b 、d 叫后项.d 叫第四比例项.如果b c =.那么b 叫做a 、d 的比例中项.2、把线段AB 分成两条线段AC 和BC.使2·AC AB BC =.叫做把线段AB 黄金分割.C 叫做线段AB 的黄金分割点. 3比例性质:①基本性质:a b cdad bc =⇔=; ②合比性质:±±a b c d a b b c dd=⇒=; ③等比性质:……≠……a b c d m n b d n a c m b d n a b===+++⇒++++++=()0; 4、平行线分线段成比例定理(1)平行线分线段成比例定理:三条平行线截两条直线.所得的对应线段成比例.如图.已知1l ∥2l ∥3l .可得AB DE AB DE BC EF BC EF AB BCBC EF AC DF AB DF AC DF DE EF=====或或或或等.(2)推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.由DE∥BC可得:AD AE BD EC AD AEDB EC AD EA AB AC===或或.此推论较原定理应用更加广泛.(3)推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.此定理给出了一种证明两直线平行方法.即:利用比例式证平行线.(4)定理:平行于三角形的一边.并且和其它两边相交的直线.所截的三角形的三边与原三角形三边对应成比例.1.(2021秋•金安区校级期末)如图.已知直线l1∥l2∥l3.直线m、n分别与直线l1、l2、l3分别交于点A、B、C、D、E、F.若DE=3.DF=8.则的值为()A.B.C.D.2.(2021•兰州)如图.小明探究课本“综合与实践”板块“制作视力表”的相关内容:当测试距离为5m时.标准视力表中最大的“”字高度为72.7mm.当测试距离为3m 时.最大的“”字高度为()A.121.17mm B.43.62mm C.29.08mm D.4.36mm考点2 相似三角形的性质与判定性质(1)相似三角形的对应角相等;(2)相似三角形的对应边成比例;(3)相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比;(4)相似三角形周长的比等于相似比;(5)相似三角形面积的比等于相似比的平方;判定(1)两角对应相等.两个三角形相似;(2)两边对应成比例且夹角相等.两三角形相似;(3)三边对应成比例.两三角形相似;三大常考相似模型模型一A字型模型二8字型模型三K型3.(2021•河北)图1是装了液体的高脚杯示意图(数据如图).用去一部分液体后如图2所示.此时液面AB=()A.1cm B.2cm C.3cm D.4cm4.(2021秋•南岸区期末)如图.在△ABC中.D.E分别是AB和BC上的点.且DE∥AC...则△ABC与△DBE的面积之比为()A.B.C.D.5.(2021秋•椒江区期末)如图.点D.E分别在△ABC的边AB.AC上.且满足△ADE∽△ACB.∠AED=∠B.若AB=10.AC=8.AD=4.则CE的长是()A.2B.3C.4D.56.(2021秋•贞丰县期末)如图AC与BD相交于点E.AD∥BC.若AE:AC=1:3.S△AED:S△CEB为()A.1:9B.1:4C.D.7.(2021•临沂)如图.点A.B都在格点上.若BC=.则AC的长为()A.B.C.2D.38.(2021•韩城市模拟)如图.矩形ABCD中.E.F分别为CD.BC的中点.且AE⊥EF.BC=2.则AC的长为()A.B.2C.3D.2 9.(2021•安徽模拟)如图.在△ABC中.∠B=60°.∠C=45°.AB=4.E为AC中点.D 为AB上一点.连接DE.当∠AED=60°时.AD的长为()A.2B.C.3D.10.(2020秋•长安区期末)如图.△ABC中.CD⊥AB于D.AD=9.CD=6.如果△ADC与△CDB相似.则BD的长度为.11.(2021•连云港)如图.BE是△ABC的中线.点F在BE上.延长AF交BC于点D.若BF=3FE.则=.12.(2021•安徽模拟)(1)如图.Rt△ABC中.∠A=90°.AB=AC.D为BC中点.E、F 分别为AB、AC上的动点.且∠EDF=90°.求证:DE=DF;(2)如图2.Rt△ABC中.∠BAC=90°.AC=4.AB=3.AD⊥BC.∠EDF=90°.①求证:DF•DA=DB•DE;②求EF的最小值.13.(2021•靖西市模拟)如图.在△ABC中.点D.F.E分别在AB.BC.AC边上.DF∥AC.EF ∥AB.(1)求证:△BDF∽△FEC.(2)设.①若BC=15.求线段BF的长;②若△FEC的面积是16.求△ABC的面积.1.(2021春•永嘉县校级期中)如图.已知点C是线段AB的黄金分割点(其中AC>BC).则下列结论正确的是()A.B.C.AB2=AC2+BC2D.BC2=AC•BA2.(2021秋•南京期末)如图.在△ABC中.DE∥BC.=.则下列结论中正确的是()A.=B.=C.=D.=3.(2021•平南县三模)如图.在△ABC中.点D在AC上.点F是BD的中点.连接AF并延长交BC点E.BE:BC=2:7.则AD:CD=()A.2:3B.2:5C.3:5D.3:74.(2021•吉安模拟)如图平行四边形ABCD.F为BC中点.延长AD至E.使DE:AD=1:3.连结EF交DC于点G.若△DEG的面积是1.则五边形DABFG的面积是()A.11B.12C.D.5.(2021•蚌埠二模)如图.在△ABC中.点D是AB上一点.且∠A=∠BCD.S△ADC:S△BDC=5:4.CD=4.则AC长为()A.5B.6C.9D.6.(2021•东港区校级二模)如图.AB为⊙O的直径.BC为⊙O的切线.弦AD∥OC.直线CD交BA的延长线于点E.连接BD.求证:(1)△EDA∽△EBD;(2)ED•BC=AO•BE.1.(2021•阿坝州)如图.直线l1∥l2∥l3.直线a.b与l1.l2.l3分别交于点A.B.C和点D.E.F.若AB:BC=2:3.EF=9.则DE的长是()A.4B.6C.7D.12 2.(2021•巴中)两千多年前.古希腊数学家欧多克索斯发现了黄金分割.即:如图.点P是线段AB上一点(AP>BP).若满足.则称点P是AB的黄金分割点.黄金分割在日常生活中处处可见.例如:主持人在舞台上主持节目时.站在黄金分割点上.观众看上去感觉最好.若舞台长20米.主持人从舞台一侧进入.设他至少走x米时恰好站在舞台的黄金分割点上.则x满足的方程是()A.(20﹣x)2=20x B.x2=20(20﹣x)C.x(20﹣x)=202D.以上都不对3.(2021•巴中)如图.△ABC中.点D、E分别在AB、AC上.且==.下列结论正确的是()A.DE:BC=1:2B.△ADE与△ABC的面积比为1:3C.△ADE与△ABC的周长比为1:2D.DE∥BC4.(2021•湘西州)如图.在△ECD中.∠C=90°.AB⊥EC于点B.AB=1.2.EB=1.6.BC =12.4.则CD的长是()A.14B.12.4C.10.5D.9.3 5.(2021•温州)如图.图形甲与图形乙是位似图形.O是位似中心.位似比为2:3.点A.B 的对应点分别为点A′.B′.若AB=6.则A′B′的长为()A.8B.9C.10D.15 6.(2021•遂宁)如图.在△ABC中.点D、E分别是AB、AC的中点.若△ADE的面积是3cm2.则四边形BDEC的面积为()A.12cm2B.9cm2C.6cm2D.3cm2 7.(2021•南充)如图.在△ABC中.D为BC上一点.BC=AB=3BD.则AD:AC的值为.8.(2021•百色)如图.△ABC中.AB=AC.∠B=72°.∠ACB的平分线CD交AB于点D.则点D是线段AB的黄金分割点.若AC=2.则BD=.9.(2021•包头)如图.在Rt△ABC中.∠ACB=90°.过点B作BD⊥CB.垂足为B.且BD =3.连接CD.与AB相交于点M.过点M作MN⊥CB.垂足为N.若AC=2.则MN的长为.10.(2021•菏泽)如图.在△ABC中.AD⊥BC.垂足为D.AD=5.BC=10.四边形EFGH和四边形HGNM均为正方形.且点E、F、G、N、M都在△ABC的边上.那么△AEM与四边形BCME的面积比为.11.(2021•玉林)如图.在△ABC中.D在AC上.DE∥BC.DF∥AB.(1)求证:△DFC∽△AED;(2)若CD=AC.求的值.12.(2021•南通)如图.利用标杆DE测量楼高.点A.D.B在同一直线上.DE⊥AC.BC⊥AC.垂足分别为E.C.若测得AE=1m.DE=1.5m.CE=5m.楼高BC是多少?13.(2021•滨州)如图.在⊙O中.AB为⊙O的直径.直线DE与⊙O相切于点D.割线AC ⊥DE于点E且交⊙O于点F.连接DF.(1)求证:AD平分∠BAC;(2)求证:DF2=EF•AB.14.(2021•盐城)如图.O为线段PB上一点.以O为圆心.OB长为半径的⊙O交PB于点A.点C在⊙O上.连接PC.满足PC2=P A•PB.(1)求证:PC是⊙O的切线;(2)若AB=3P A.求的值.1.(2021•武都区二模)如图所示.若点C是AB的黄金分割点.AB=2.则AC的值为()A.B.C.D.22.(2021•香洲区二模)如图.AB∥CD∥EF.AF与BE相交于点G.若BG=2.GC=1.CE =5.则的值是()A.B.C.D.2.(2021•武进区校级模拟)如图.在△ABC中.DE∥BC..则下列结论中正确的是()A.B.C.D.3.(2021•镇江)如图.点D.E分别在△ABC的边AC.AB上.△ADE∽△ABC.M.N分别是DE.BC的中点.若=.则=.4.(2021秋•阳山县期末)如图.已知△ABC∽△AMN.点M是AC的中点.AB=6.AC=8.则AN=.5.(2021•兰州模拟)如图.已知△ABE∽△CDE.AD、BC相交于点E.△ABE与△CDE 的周长之比是.若AE=2、BE=1.则BC的长为()A.3B.4C.5D.6 6.(2021•云南模拟)如图.在Rt△ABC中.∠ABC=90°.BD⊥AC于点D.AD=4.AB=5.则AC长为()A.B.C.D.7.(2021•元阳县模拟)如图.点E是正方形ABCD的边CD上的一点.且=.延长AE交BC的延长线于点F.则△CEF和四边形ABCE的面积比为()A.B.C.D.8.(2021•滦南县二模)如图.某数学活动小组为测量校园内移动信号转播塔AB的高度.他们先在水平地面上一点E放置了一个平面镜.镜子与铁塔底端B的距离BE=16m.当镜子与观测者小芳的距离ED=2m时.小芳刚好从镜子中看到铁塔顶端A.已知小芳的眼睛距地面的高度CD=1.5m.铁塔AB的高度为()(根据光的反射原理.∠1=∠2)A.9m B.12m C.15m D.18m 9.(2021•城关区校级模拟)如图.AB、CD都是BD的垂线.AB=4.CD=6.BD=14.P是BD上一点.联结AP、CP.所得两个三角形相似.则BP的长是.10.(2021•二道区校级一模)如图.在△ABC中.∠ACB=90°.CD是斜边AB的中线.过点C、D分别作CE∥AB.DE∥AC交于点E.连结BE.(1)求证:四边形CDBE是菱形.(2)若AB=10.tan A=.则菱形CDBE的面积为.11.(2020•曹县二模)如图.AB是⊙O的直径.C为⊙O上一点.PC切⊙O于C.AE⊥PC 交PC的延长线于E.AE交⊙O于D.PC与AB的延长线相交于点P.连接AC、BC.(1)求证:AC平分∠BAD;(2)若PB:PC=1:2.PB=4.求AB的长.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
首页
末页
∴AAHI =DBCE,即61036-0 x=1x3. 13
解得 x=728209. ∵6107>728209, ∴最大边长为6107步.
课件目录
首页
末页
归类探究
类型之一 利用相似解决生活实际问题 [2018·陕西]周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测
量时,他们选择了河对岸岸边的一棵大树,将其底部作为点 A,在他们所在的岸 边选择了点 B,使得 AB 与河岸垂直,并在点 B 竖起标杆 BC,再在 AB 的延长线 上选择点 D,竖起标杆 DE,使得 E,C,A 三点共线.已知 CB⊥AD,ED⊥AD, 测得 BC=1 m,DE=1.5 m,BD=8.5 m,测量示意图如图所示.请根据相关测量 信息,求河宽 AB.
相交于点 G.若 AE=3ED,DF=CF,则AGGF的值是( C )
A.43
B.54
C.65
D.76
课件目录
首页
末页
【解析】 设正方形 ABCD 的边长为 4a. ∵AE=3ED,DF=CF, ∴AE=3a,ED=a,DF=CF=2a. 如答图,延长 BE,CD 交于点 M, 易得△ABE∽△DME, ∴DAEE=DAMB ,即3aa=M4aD.
课件目录
首页
末页
解:∵CB⊥AD,ED⊥AD, ∴∠ABC=∠ADE=90°. 又∵∠CAB=∠EAD, ∴△ABC∽△ADE. ∴DBCE=AADB. ∵BC=1 m,DE=1.5 m,BD=8.5 m, ∴11.5=ABA+B8.5.解得 AB=17 m. ∴河宽 AB 为 17 m.
课件目录
课件目录
首页
末页
【解析】 ∵AB⊥BD,CD⊥BD, ∴∠ABO=∠CDO=90°. 又∵∠AOB=∠COD, ∴△AOB∽△COD. ∴AAOB=CCOD,即14.6=C1D. ∴CD=0.4 m.故选 C.
课件目录
首页
末页
3.[2019·毕节]如图,在一块斜边长 30 cm 的直角三角形木板(Rt△ACB)上截取一
桌面上,里面盛有水,水面高为 6 cm,绕底面一棱长进行旋转倾斜后,水面恰好
触到容器口边缘,如图②,则图②中水面高度为( A )
24 A. 5 cm
32 B. 5 cm
12 34 C. 17 cm
20 34 D. 17 cm
课件目录
首页
末页
【解析】 如答图,设 DM=x,则 CM=8-x. 根据题意,得(8-x)·3×3+12·x·3×3=3×3×6, 解得 x=4,∴DM=4. ∵∠D=90°,由勾股定理,得 BM= BD2+DM2= 32+42=5, 过点 B 作 BH⊥AH 于点 H.
中考学练测·数学[人教]
第二部分 第十章 第33课时
第二部分 图形与几何
第十章 相似形 第33课时 相似的应用
考点管理 中考再现 归类探究 课时作业
课件目录
首页
末页
考点管理
1.相似三角形的应用 应 用:(1)几何图形的证明与计算,主要包括求解线段的数量关系、线段的长 度、图形的面积等问题,解决这类问题一般先根据题中条件,寻找出相似的三角 形,再利用相似三角形的性质来解答; (2)生活中与相似三角形有关的实际问题,如:①利用投影、平行线、标杆等构造 相似三角形求解问题;②测量底部可以到达的物体的高度;③测量底部不可以到 达的物体的高度;④测量不可以到达对岸的河的宽度等.
首页
末页
∴OFBA=OFAD. ∵BD∥x 轴,A(2,0),D(0,4), ∴OA=2,OD=4=BF. ∴24=A4F, ∴AF=8,
课件目录
首页
末页
∴OF=10,E(5,4). ∵双曲线 y=kx过点 E, ∴k=5×4=20.故选 B.
课件目录
首页
末页
1.[2018·泸州]如图,在正方形 ABCD 中,E,F 分别在边 AD,CD 上,AF 与 BE
课件目录
首页
末页
【解析】 如答图,连接 OC,BD. ∵将△AOD 沿 y 轴翻折,使点 A 落在 x 轴上的点 E 处, ∴OA=OE. ∵点 B 恰好为 OE 的中点, ∴OE=2OB, ∴OA=2OB.
课件目录
首页
末页
设 OB=BE=x,则 OA=2x, ∴AB=3x. ∵四边形 ABCD 是平行四边形, ∴CD=AB=3x. ∵CD∥AB, ∴△CDF∽△BEF, ∴CBDE=DEFF=3xx=13.
【解析】点 A 的对应点 C 的坐标是-2×12,4×12或-2×-12,4×-12,即(- 1,2)或(1,-2).
课件目录
首页
末页
课时作业
(67 分)
一、选择题(每题 5 分,共 35 分)
1.[2018·临沂]如图,利用标杆 BE 测量建筑物的高度 CD.已知标杆 BE 高 1.2 m,
测得 AB=1.6 m,BC=12.4 m,则建筑物 CD 的高是( B )
课件目录
首页
末页
∴MD=43a. ∴MF=MD+DF=130a. 又易得△ABG∽△FMG, ∴AFGG=FAMB =140a =65.
3a
课件目录
首页
末页
2.[2019·衢州]如图,在平面直角坐标系中,O 为坐标原点,▱ABCD 的边 AB 在 x 轴上,顶点 D 在 y 轴的正半轴上,点 C 在第一象限,将△AOD 沿 y 轴翻折,使点 A 落在 x 轴上的点 E 处,点 B 恰好为 OE 的中点,DE 与 BC 交于点 F.若 y=kx(k≠0) 的图象经过点 C,且 S△BEF=1,则 k 的值为 24 .
首页
末页
类型之三 坐标系中的位似变换 [2018·潍坊]在平面直角坐标系中,点 P(m,n)是线段 AB 上一点,以原点 O
为位似中心把△AOB 放大到原来的两倍,则点 P 的对应点的坐标为( B ) A.(2m,2n) B.(2m,2n)或(-2m,-2n) C.12m,12n D.12m,12n或-12m,-12n
(2)一般情况下,画已知图形的位似图形的结果不唯一; (3)将一个图形放大或缩小而保持形状不变.
课件目录
首页
末页
中考再现
1.[2019·邵阳]如图,以点 O 为位似中心,把△ABC 放大为原图形的 2 倍得到△ A′B′C′,以下说法中错误的是( C ) A.△ABC∽△A′B′C′ B.点 C、点 O、点 C′在同一直线上 C.AO∶AA′=1∶2 D.AB∥A′B′
-x)步.
根据题意易得△ADE∽△ABC,
∴AADB=DBCE,
即121-2 x=x5.
解得 x=6107.
第 2 题答图①
课件目录
首页
末页
(2)设正方形的边长为 x 步, 易得△ABC 的 BC 边上的高为6103步, 则 AI=6103-x步. 易得△ADE∽△ABC.
第 2 题答图②
课件目录
(2)位似图形是一种特殊的相似图形,它的每一组对应点所在的直线都经过同一个 点;
(3)位似是一种重要的图形变换方式,利用位似变换可以将一个图形放大或缩小.
课件目录
首页
末页
3.位似图形的性质 性 质:(1)位似图形上的任意一对对应点到位似中心的距离之比等于 位似比 ; (2)位似图形对应点的连线或延长线 相交于一点 ; (3)位似图形中的对应线段 平行且成比例 ; (4)位似图形的对应角 相等 .
课件目录
首页
末页
【解析】 当放大后的△A′OB′与△AOB 在原点 O 同侧时,点 P 的对应点的坐 标为(2m,2n);当放大后的△A′OB′与△AOB 在原点 O 两侧时,点 P 的对应点 的坐标为(-2m,-2n).故选 B.
课件目录
首页
末页
3.[2019·滨州]在平面直角坐标系中,△ABO 三个顶点的坐标分别为 A(-2,4),B(- 4,0),O(0,0).以原点 O 为位似中心,把这个三角形缩小为原来的12,得到△CDO, 则点 A 的对应点 C 的坐标是 (-1,2)或(1,-2) .
A.16
B.20
C.32
D.40
课件目录
首页
末页
【解析】 如答图,过点 B 作 BF⊥x 轴于点 F,则∠AFB=∠DOA=90°. ∵四边形 ABCD 是矩形, ∴ED=EB,∠DAB=90°, ∴∠OAD+∠BAF=∠BAF+∠ABF=90°, ∴∠OAD=∠FBA. ∴△AOD∽△BFA.
课件目录
首页
末页
类型之二 相似三角形与其他知识的综合运用
[2019·重庆 A 卷]如图,在平面直角坐标系中,矩形 ABCD 的顶点 A,D 分
k 别在 x 轴、y 轴上,对角线 BD∥x 轴,反比例函数 y=x(k>0,x>0)的图象经过矩
形对角线的交点 E.若点 A(2,0),D(0,4),则 k 的值为( B )
课件目录
首页
末页
【解析】∵以点 O 为位似中心,把△ABC 放大为原图形的 2 倍得到△A′B′C′, ∴△ABC∽△A′B′C′,点 C、点 O、点 C′在同一直线上,AB∥A′B′. AO∶AA′=1∶3.选项 C 错误,符合题意.故选 C.
课件目录
首页
末页
2.[2018·岳阳]《九章算术》是我国古代数学名著,书中有下列问题:“今有勾五
课件目录
首页
末页
4.画位似图形的步骤 步 骤:(1)确定位似中心; (2)将图形各顶点与位似中心连接(或延长); (3)按位似比取点; (4)顺次连接各点,即得所求的图形. 注 意:(1)位似中心可以是任意一点,这个点可以在多边形的内部或外部或在 多边形上,但具体问题一般要考虑画图方便且符合要求;
课件目录