随机信号处理考试试题

合集下载

随机信号处理-题目整理

随机信号处理-题目整理

第一章1、某离散时间因果LTI 系统,当输入)1()31(41)()31(x(n)1n -+=-n n n εε时,输出)()21()(y n n n ε= (1)确定系统的函数H(Z) (3分) (2)求系统单位序列相应h (n )(3分) (3)计算系统的频率特性H (e j θ)(3分)(4)写出系统的差分方程(3分)解:(1))41)(21()31(31413121)()()(1+--=-+--==-Z Z Z Z Z Z Z Z Z Z ZZ X Z Y Z H |Z|>21(2)497292)4)(2(31)(++-=+--=Z Z Z Z Z Z Z H |Z| >21)()41(97)()21(92)(h n n n n n εε-+=(3)因为H (z )收敛域为 |Z| >21,包含单位圆所以H (e j θ)存在41972192|)()(++-===θθθθθθj j j j e Z j e ee e Z H e H j(4)21121281-41131-181-4131)()()(-----=--==Z Z Z Z Z Z Z Z X Z Y Z H==>121)(31)()(81)(41)(----=--Z Z X Z X z z Y z z Y z Y )1(31)()2(81)1(41)(--=----n x n x n y n y n y2、x(n)的z 变换为X(z)=1(1-z -1)(1-2z -1) , ROC :1<│z │<2 ,z 的变换。

(12分) 设X(z)=A 1-z -1 +B1-2z -1 =X 1(z)+X 2(z) %写出此形式2分 则由部分分式分解法,可得A=(1-z -1)X(z)│z=1=-1, B=(1-2z -1)│z=2=2 %求出此结果6分 由ROC 的形式,可以判定x(n)是一个右边序列和一个左边序列之和。

《随机信号处理》重点题目、题型及相关知识点简介-推荐下载

《随机信号处理》重点题目、题型及相关知识点简介-推荐下载

其中
, ,

因此 与之对应的最小相位系统为: (公式:2.5.7)
系统的传递函数为:
差分方程为: (公式:2.5.9) 备注:参考 P41 页例 2.5.1。题目会有改动,谱分解+一个系统 2 h(n) x(n) h1(n) y(n) 再对输出求功率谱, h(n) :P39 页,新息 滤波器去噪。 h1(n) :最优线性滤波器或最小二乘滤波等。 再根据 P38 页 2.4.22 式对输出求功率谱。

4
1
4

(1)n 3
Z(Z 1)
(Z 1)(Z 1)
1- 1 Z 1 3
3
3

24
(n)
3
|Z| > 1 2

1 4
( 1 ) n 1 3
(n
|Z|> 1 2
1)
时,输出
2. 一个方差为 1 的白噪声激励一个线性系统产生一个随机信号,该随机信号的功 率谱为:
,求该系统的传递函数,差分方程。 解:由给定信号的功率谱,得
24
h(n) 2 (1)n (n) 7 ( 1)n (n)
92
LTI
Z
系统,当输入
Z
Z1 2
1 Z 1 Z
Z1 4 Z1
3
94

2 9
Z1
2
7 9
Z1
(3) 因为 H(z)收敛域为 |Z| > 1 ,包含单位圆,所以 H(ejθ)存在: 2
(4)
H (e j
)

H(Z) Y(Z)

2
e j0

E[Z (t )Z (t)] e j[[0 (2t )2]

随机信号处理考试试题

随机信号处理考试试题

(2)、如果不用匹配滤波器,而用滤波器为 信噪比为多少,你认为 的最佳值应该是多少? 解: (1)根据匹配滤波原理,输出的最大信噪比为:
,则输出最大
(4 分) (2)该系统为线性系统,满足线性可加性,输出包含两部分,一部分是 信号通过系统后的输出信号,另外一部分是白噪声通过系统后的输出噪 声,两部分没有差拍项,假设输出的信号为: ,噪声为: ,不难
的自相关函数可表示为
(4 分) , 如右图所示,
所以 2)按噪声等效通能带定义
(5 分)
, (可根据傅立业反变换在 点的取值)
七、计算题(共 1 小题,每小题 10 分,共 10) (5)
设线性滤波器输入为
,其中 的功率谱密度为
的白噪声, 为与 统计独立的矩形脉冲
求:(1)、利用匹配滤波器时,输出端的最大信噪比为多少?
得出,输出信号的最大值在 t=T 时刻,此时
使得信噪比最大的 值应该满足:
这时
,正是匹配滤波器的情况。
九、计算题(共 1 小题,每小题 10 分,共 10 分)
设有如下两种假设,观测次数为 N 次,
(6 分)
其中 服从均值为 0 方差为 的正态分布,假设 求
=0.5,
(1)、最小错误概率准则下的判决表达式;
3、设平稳随机序列 通过一个冲击响应为 表示,那么,下列正确的有:( a、d )
的线性系统,其输出用
(A)
(B)
(C)
(D)
4、 为 的希尔伯特变换,下列表达正确的有:(a、c、d )
(A) 与 的功率谱相等 (B)
(C)
(D) 与 在同一时刻相互正交
5、对于一个二元假设检验问题,判决表达式为:如果 T(z)>g,则判 成

随机信号习题及答案

随机信号习题及答案
Y = 3 X + 1 的分布函数。
3.
⎧0 ⎪ 已知随机变量 X 的分布函数为: FX ( x) = ⎨kx 2 ⎪1 ⎩
x<0 0 ≤ x < 1 ,求:①系数 k;②X 落在区间 x >1
0 < x < +∞,0 < y < +∞ 其它
(0.3,0.7)内的概率;③随机变量 X 的概率密度函数。
4.
⎧e − ( x + y ) 设二维随机变量(X,Y)的概率密度为: f ( x, y ) = ⎨ ⎩0
求:①
分布函数 FXY ( x, y ) ;②(X,Y)落在如图所示的三角形区域内的概率。
y x+y=1
0
x
5. (续上题)求③边缘分布函数 FX ( x) 和 FY ( y ) ;④求边缘概率 f X ( x) 和 fY ( y ) 。 6. ( 续 上 题 ) ⑤ 求 条 件 分 布 函 数 FX ( x y ) 和 FY ( y x) ; ⑥ 求 条 件 概 率 密 度 f X ( x
103
9 若两个随机过程 X (t ) = A(t )cos t 和 Y (t ) = B(t )sin t 都是非平稳过程,其中 A(t ) 和 B (t ) 为相互独立,且 各自平稳的随机过程,它们的均值为 0 ,自相关函数 R A (τ ) = RB (τ ) = R (τ ) 。试证这两个过程之和
和 Y 的相关性及独立性。
11. 已知随机变量 X 的均值 m X = 3 ,方差 σ 2 X = 2 ,且另一随机变量 Y = −6 X + 22 。讨论 X 和 Y 的相关性和正交性。 12. 设随机变量 Y 和 X 之间为线性关系 Y = aX + b ,a、b 为常数,且 a ≠ 0 。已知随机变量 X 为正态分布,即:

随机信号处理基础试卷样题

随机信号处理基础试卷样题

南京理工大学课程考试试卷(学生考试用)课程名称: 随机信号处理基础 学分: 2 教学大纲编号: 04036001-0试卷编号: A 考试方式: 闭卷 满分分值: 100 考试时间: 120分钟 组卷日期: 组卷老师(签字): 审定人(签字): 学生班级: 学生学号: 学生姓名: 一、填充题 (30分,做在试卷上!)1.给出随机变量X和Y相关系数的表达式 ,随机变量X和Y正交条件为 ;线性无关(不相关)的条件为 。

2.随机变量特征函数和其概率密度的关系为:。

3.随机过程和随机变量的关系描述为:。

4.在下图中标出哪个时自相关函数,哪个是自协方差函数?并在下图自相关函数图中标出与均值、方差和均方值有关的统计量?给出自相关函数和自协方差函数关系式,均值、方差和均方值的关系式说明均方值的物理含义 。

5.非因果维纳滤波器的传递函数为 ;因果维纳滤波器.给出经典检测中贝叶斯准则的判决规则 ,在何条件下等价于七、()()()t n t s t x +=,()()t n t s ,是互相正交的随机过程。

采用线性最小均方误差准则由()t x 估计()s t τ+。

(4) 八、讨论高斯白噪声中未知频率、未知幅度和未知到达时间的正弦信号检测和估计(注:本题方法不唯一,只要求给出方法思路)(6)五、设输入信号为一个视频编码的脉冲信号,脉冲内编码信号为5个码元[ 1 1 1 -1 1]−−,求该信号的匹配滤波器冲激响应?画出该匹配滤波器输出波形? (6)六、对参数θ进行N 次测量, 2i i x n θ=+,N i L 2,1=,i n 服从()2,0σN ,证明θ的最小二乘估计和最大似然估计等价。

(8)七、()()()t n t s t x +=,()()t n t s ,是互相正交的随机过程。

采用线性最小均方误差准则由()t x 估计()s t τ−。

(6)考察平稳随机过程()X t 和()Y t ,如果它们彼此统计独立,则两个随机过程相乘后所得随机过程是否是平稳的,为什么?。

(完整word版)随机信号分析习题.(DOC)

(完整word版)随机信号分析习题.(DOC)

随机信号分析习题一1. 设函数⎩⎨⎧≤>-=-0 ,0 ,1)(x x e x F x ,试证明)(x F 是某个随机变量ξ的分布函数.并求下列概率:)1(<ξP ,)21(≤≤ξP 。

2. 设),(Y X 的联合密度函数为(), 0, 0(,)0 , otherx y XY e x y f x y -+⎧≥≥=⎨⎩, 求{}10,10<<<<Y X P 。

3. 设二维随机变量),(Y X 的联合密度函数为⎥⎦⎤⎢⎣⎡++-=)52(21exp 1),(22y xy x y x f XY π 求:(1)边沿密度)(x f X ,)(y f Y(2)条件概率密度|(|)Y X f y x ,|(|)X Y f x y4. 设离散型随机变量X 的可能取值为{}2,1,0,1-,取每个值的概率都为4/1,又设随机变量3()Y g X X X ==-。

(1)求Y 的可能取值 (2)确定Y 的分布. (3)求][Y E 。

5. 设两个离散随机变量X ,Y 的联合概率密度为:)()(31)1()3(31)1()2(31),(A y A x y x y x y x f XY --+--+--=δδδδδδ试求:(1)X 与Y 不相关时的所有A 值。

(2)X 与Y 统计独立时所有A 值。

6. 二维随机变量(X ,Y )满足:ϕϕsin cos ==Y Xϕ为在[0,2π]上均匀分布的随机变量,讨论X ,Y 的独立性与相关性。

7. 已知随机变量X 的概率密度为)(x f ,求2bX Y =的概率密度)(y f .8. 两个随机变量1X ,2X ,已知其联合概率密度为12(,)f x x ,求12X X +的概率密度?9. 设X 是零均值,单位方差的高斯随机变量,()y g x =如图,求()y g x =的概率密度()Y f y\10. 设随机变量W 和Z 是另两个随机变量X 和Y 的函数222W X Y Z X⎧=+⎨=⎩ 设X ,Y 是相互独立的高斯变量。

随机信号处理习题2017

随机信号处理习题2017
6
3π π n ) 7 8
13 πn) 3
j( n π )
m
x(m)
2π π n ) 9 7

② y (n) [ x(n)]2 ③ y (n) x(n) sin(
④ y(n) = 3 × x(-n) ⑤ y ( n) n 2 x ( n)
⑥ y ( n) 1
x(m)

X (2) 3.2 2 j , X (0) 12 , 14.一个长度为 11 的实序列的 11 点离散傅立叶变换的 6 个样本为: X (3) 5.3 4.1 j , X (5) 6.5 9 j , X (7) 4.1 0.2 j , X (10) 3.1 5.2 j ,求余下的 5 个样本。
2 2 和方差分别为 E , E 和 , ,求 z (t ) 的自相关函数。
10. 求证: Rx (t i , t j ) C x (t i , t j ) m xi m xj 。 11. 令 x(n) 和 y (n) 不是相 关的随机信号,试证:若 w(n) x(n) y(n) ,则 mw m x m y 和
15. 若 两个 随机信 号 x (t ), y (t ) , 为 x(t ) A(t ) c ost , y(t ) B(t ) sin t , 其中 A(t ),B (t ) 均 各自 平 稳 、 零 均值、 相 互 独立的 随 机 信号, 且 E[ A2 (t )] E[ B 2 (t )] 。 试 证 明 z (t ) x(t ) y(t ) 是 广义平稳。 16. 设随机信号 x(t ) A cos( 0 t ) ,式中 A, 为统计独立的随机变量, 在 [0, 2π] 上均匀分 布。试讨论 x(t ) 的遍历性。 17. 随机序列 x(n) cos( 0 n ) , 在 [0, 2π] 上均匀分布, x ( n) 是否是广义平稳的? 18. 若正态随机信号 x (t ) 的相关函数为: ①

随机信号处理考题答案

随机信号处理考题答案

填空:1.假设连续随机变量的概率分布函数为F(x)则F(-∞)=0, F(+∞)=12.随机过程可以看成是样本函数的集合,也可以看成是随机变量的集合3.如果随机过程X(t)满足任意维概率密度不随时间起点的变化而变化,则称X(t)为严平稳随机过程,如果随机过程X(t)满足均值为常数,自相关函数只与时间差相关则称X(t)为广义平稳随机过程4.如果一零均值随机过程的功率谱,在整个频率轴上为一常数,则称该随机过程为白噪声,该过程的任意两个不同时刻的状态是不相关5. 宽带随机过程通过窄带线性系统,其输出近似服从正态分布,窄带正态噪声的包络服从瑞利分布,而相位服从均匀分布6.分析平稳随机信号通过线性系统的两种常用的方法是冲激响应法,频谱法7.若实平稳随机过程相关函数为Rx(τ)=25+4/(1+6τ),则其均值为5或-5,方差为4 7.匹配滤波器是输出信噪比最大作为准则的最佳线性滤波器。

1.广义各态历经过称的信号一定是广义平稳随机信号,反之,广义平稳的随机信号不一定是广义各态历经的随机信号2.具有高斯分布的噪声称为高斯噪声,具有均匀分布的噪声叫均匀噪声,而如果一个随机过程的概率谱密度是常数,则称它为白噪声3.白噪声通过都是带宽的线性系统,输出过程为高斯过程4.平稳高斯过程与确定的信号之和是高斯过程,确定的信号可以认为是该过程的数学期望5.平稳正态随机过程的任意概率密度只由均值和协方差阵确定1.白噪声是指功率谱密度在整个频域内均匀分布的噪声。

3.对于严格平稳的随机过程,它的均值与方差是与时间无关的函数,即自相关函数与时间间隔有关,与时间起点无关。

4.冲激响应满足分析线性输出,其均值为_____________________。

5.偶函数的希尔伯特变换是奇函数。

6.窄带随机过程的互相关函数公式为P138。

1.按照时间和状态是连续还是离散的,随机过程可分为四类,这四类是连续时间随机过程,离散型随机过程、随机序列、离散随机序列。

随机信号处理考试3

随机信号处理考试3

《随机信号分析与处理》期末自我测评试题(三)一、填空(20分,每小题2分)1、随机变量X的k阶中心矩的定义是____________________。

2、二维随机变量之间反映相互关系的数字特征是 ____ ____ 和______________。

3、白噪声在任意两个相邻时刻的状态是______ ____,其平均功率是____________。

4、匹配滤波器输出的最大信噪比只与__________________和 _有关,与_____________无关。

5、非线性变换的主要方法有________________、___________和。

6、希尔伯特变换器的相频特性为 ____________,因此其也称为。

7、典型的独立增量过程有______ _______与_________________。

8、在信号检测时,若难以确定代价因子和先验概率,则通常采用的判决准则是_____ ________。

9、对于齐次马尔可夫过程,任意有限维概率密度完全由___ _____和决定。

10、若检测判决式为,则虚警概率可表示为__________________。

二、(10分)选择题(正确的结果可能不止一个,请选出正确的结果)1、下列函数哪些是功率谱密度()(1) (2)(3) (4)2、噪声等效通能带的等效原则可由下式表示()(1)(2)(3)(4)3、假定随机X(n)为ARMA(1,1)过程,则其模型可用下式表示()(1)(2)(3)(4)4、下列信号可构成理想二元通信系统的是()(1) (2)(3) (4)5、对于最小二乘估计,下列说法正确的是()(1)需要知道被估计量的先验概率密度(2)需要知道被估计量的一、二阶矩(3)需要知道似然函数(4)不需要任何先验信息三、(10分)设随机过程,其中w为常数,X为标准正态随机变量,求X(t)的一维概率分布函数和协方差函数。

四、(10分)设线性系统的输入是平稳随机过程X(t),其功率谱密度为,线性系统输出为Y(t).(1)求误差过程E(t)=Y(t)-X(t)的功率谱密度函数(2)如下图所示,设输入到RC电路的平稳随机过程相关函数,求误差过程的功率谱密度。

随机信号处理习题2017

随机信号处理习题2017
6
3π π n ) 7 8
13 πn) 3
j( n π )
m
x(m)
2π π n ) 9 7

② y (n) [ x(n)]2 ③ y (n) x(n) sin(
④ y(n) = 3 × x(-n) ⑤ y ( n) n 2 x ( n)
⑥ y ( n) 1
x(m)
2 2 2 w x y ?
12. 试证明: 对平稳随机信号自相关函数的极限性质, 即: 当 0 时,Rx (0) Dx , C x (0) x 2 ; 13. 设 随机 信号 x(t ) A cos 0 t B sin 0 t , 0 为 正常 数, A, B 为 相互 独立的 随机 变量, 且
~ X (k ) X (e j ) | 2 πk / N X (e j 2 πk / N ), k
~ ~ x (n) 的离散傅立叶级数, 证明 X (k ) 是周期为 N ,自变量为 k 的周期序列,设 X (k ) 是周期序列 ~
证明:
x ( n) =
r=-¥
å x(n + rN )
x (t )
+1 T 2T 3T t
6.
设有一脉冲串,其脉宽为 1,脉冲可为正脉冲也可为负脉冲,幅度为+1 或-1,各脉冲取 +1 和-1 是相互独立的,脉冲的起始时间均匀分布于单位时间内,求此随机过程的相关 函数,此过程的一个样本函数如下图所示。
x (t )
+1 t
-1
7.
设 x(t ) A cos(t ) 随机过程,其中 A 是具有瑞利分布的随机变量,其概率密度为:
n ⑥ 令 x4 ( n) ( ) ,试画出 x4 (n) 波形; 2

(完整版)随机信号处理考题答案

(完整版)随机信号处理考题答案

填空:1.假设连续随机变量的概率分布函数为F(x)则F(-∞)=0, F(+∞)=12.随机过程可以看成是样本函数的集合,也可以看成是随机变量的集合3.如果随机过程X(t)满足任意维概率密度不随时间起点的变化而变化,则称X(t)为严平稳随机过程,如果随机过程X(t)满足均值为常数,自相关函数只与时间差相关则称X(t)为广义平稳随机过程4.如果一零均值随机过程的功率谱,在整个频率轴上为一常数,则称该随机过程为白噪声,该过程的任意两个不同时刻的状态是不相关5. 宽带随机过程通过窄带线性系统,其输出近似服从正态分布,窄带正态噪声的包络服从瑞利分布,而相位服从均匀分布6.分析平稳随机信号通过线性系统的两种常用的方法是冲激响应法,频谱法7.若实平稳随机过程相关函数为Rx(τ)=25+4/(1+6τ),则其均值为5或-5,方差为4 7.匹配滤波器是输出信噪比最大作为准则的最佳线性滤波器。

1.广义各态历经过称的信号一定是广义平稳随机信号,反之,广义平稳的随机信号不一定是广义各态历经的随机信号2.具有高斯分布的噪声称为高斯噪声,具有均匀分布的噪声叫均匀噪声,而如果一个随机过程的概率谱密度是常数,则称它为白噪声3.白噪声通过都是带宽的线性系统,输出过程为高斯过程4.平稳高斯过程与确定的信号之和是高斯过程,确定的信号可以认为是该过程的数学期望5.平稳正态随机过程的任意概率密度只由均值和协方差阵确定1.白噪声是指功率谱密度在整个频域内均匀分布的噪声。

3.对于严格平稳的随机过程,它的均值与方差是与时间无关的函数,即自相关函数与时间间隔有关,与时间起点无关。

4.冲激响应满足分析线性输出,其均值为_____________________。

5.偶函数的希尔伯特变换是奇函数。

6.窄带随机过程的互相关函数公式为P138。

1.按照时间和状态是连续还是离散的,随机过程可分为四类,这四类是连续时间随机过程,离散型随机过程、随机序列、离散随机序列。

随机信号处理与分析考试2

随机信号处理与分析考试2

姓名:
学号:
第1页(共7页)
5. 希尔伯特变换器的幅频特性为
亭苯绸魔踩志绑瑚歧 朽乍让荆

6. 窄带正态随机过程的幅度服从
随 机 信 号 处 理 与 分 析 考 试 2 第 1 页 ( 共 7 页 ) 《 随 机 信 号 分 析 与 处 理 》 考 试 试 卷 考 试 形 式 : 闭 卷 考 试 时 间 : 1 2 0 分 钟 满 分 : 10 0 分 。 题 号 一 二 三 四 五 六 七 总 分 得 分 评 阅 人 注 意 : 1 、 所 有 答 题 都 须 写 在 此 试 卷 纸 密 审 谈 稼 恿 未 弊 揣 滁 蝗 巨 屉 唤 壕 糙 虑 贷 芦 劣 柠 绦 电 矮 抑 侥 茄 褥 踏 别 乔 座 坪 永 敞 储 烧 驴 甜 柠 习 箩 纵 苞 峡 菏 匙 诈 帚 竹 疫 遍 驴
得分
七、计算题(共 1 小题,每小题 15 分,共 15 分)
-------------------------------------------------
密-
封-
线
------------------------------------------------------
乙 第 《 考 题 一 二 三 四 五 六 七 总 得 评 室 随 试 阅1 分雁 页 机 形 号 分 人 册 (信 式共 枕 号 : 7 匈 分页 原 析闭) 鲁 与卷 丁 处 献 理 倍 》 瑟 考考 楞 试试 疏 试时 逾 卷间 绚: 穴 同1 2 涂 0 泊 分呐 钟掐 敌 镰满 沃分 肉: 胰 虞 1 釉0 0 串 布分 懈。 族 晤 坷 嘛 兆 厕 瘦 嘱 阂 熬 箔 非 俯 共 给 档 墙 懊 挖 腿 措 魏 蕉 止 浅 矣 幌 娥 锹 燃 春 娶 琉 裁 韶 掇 献 坊 况 颤 袋 洽 操 炸 蛋 吓 兹 硷 舵 研 顿 伞 钡 吴 剪 锣 晦 董 守 诛 札 固 嘘 柿 郝 摧 持 醒 劫 纂 曳 戏 霜 忱 翰 蹲 稀 潜 景 贩 徘 龙 项 儒 艳 熄 痊 总 羹 毋 死 敞 芬 咬 舟 当 犁 皇 酗 买 妹 泌 咯 综 傍 茁 课 频 剂 胃 忠 蔚 内 蜀 延 颐 捧 缚 淹 霜 瞥 播 疏 削 阀 此 炒 喳 裙 抽 垃 盐 糙 蚁 欢 筐 兽 碎 勉 歧 宴 淑 狼 豢 锥 套 亏 松 局 驻 约 甥 撕 先 沫 悯 肆 者 篓 厕 家 盲 碾 骆 趾 丽 鸵 延 粹 伯 闰 序 戊 樱 症 只 每 棠 腺 刘 夕 练 椭 栋 那 畦 傍 彩 誊 讳 允 晰 棘 狼 兴 托 函 皆 乐 挡 慑 闹 麓 赫 夯 拾 戒 桌 枷 召 佃 睛 圣 尿 切 隘 锚 潮 粘 锚 因 随 机 信 号 处 理 与 分 析 考 试 2 狄 现 酚 洱 锅 梢 彬 咎 由 唐 骤 盒 识 深 联 帮 突 深 邯 饮 藤 邯 劈 驳 刑 鸡 捞 悦 杭 扎 岳 飘 噪 乡 乖 冯 奇 寺 寞 邹 度 胞 宣 梁 抗 泣 拂 裁 铂 峰 肪 赘 盒 眠 显 耀 即 衔 钾 晋 拘 君 状 禽 司 寂 指 鸟 凌 思 麻 蔑 渴 数 抵 蔡 隙 距 政 亥 责 咨 刮 掸 眺 闭 鹰 秘 坝 怯 期 墨 吼 如 绎 运 幂 扣 悉 泅 假 坏 畔 棋 完 势 垮 眉 津 放 悠 夫 柏 补 蜀 宵 蔗 果 郊 情 惑 癌 堆 茬 胆 击 汛 宾 狼 根 澜 掺 邹 落 糜 证 簧 础 开 涛 啪 簇 企 垫 士 气 齿 近 鞋 次 怖 黑 倒 汕 搐 慕 啼 开 吠 吉 其 舶 祝 蛰 超 泛 椎 来 残 戮 瑰 邵 懈 鼓 悍 狭 小 樟 憨 瑟 件 烬 曳 纪 徊 扁 啊 翌 乘 惧 兄 筐 斤 慢 花 整 衣 追 哭 握 甄 肠 珐 诫 氮 侯 亡 荤 任 散 慰 返 酣 修 摆 潦 穗 夕 每 矢 泥 殉 蝎 果 哺 肾 拌 馅 乞 蝎 亨 嫌 暑 跌 捶 汉 雅 莫 谬 喇 疡 氰 忠 柳 鞍 蜜 挠 钻 咏 宁 纸 杨 茁 槽 衡 底

随机信号处理答案(精选3篇)

随机信号处理答案(精选3篇)

随机信号处理答案(精选3篇)以下是网友分享的关于随机信号处理答案的资料3篇,希望对您有所帮助,就爱阅读感谢您的支持。

篇一:随机信号处理习题答案随机过程部分习题答案习题22.1 设随机过程X(t)=Vt+b,度、均值和相关函数。

解因V~N(0,1),所以EV=0,DV=1,X(t)=Vt+b也服从正态分布,t∈(0,+∞),b为常数,V~N(0,1),求X(t)的一维概率密E[X(t)]=E[Vt+b]=tEV+b=bD[X(t)]=D[Vt+b]=t2DV=t2所以X(t)~N(b,t2),X(t)的一维概率密度为f(x;t)=12πte-(x-b)22t2,x∈(-∞,+∞),t∈(0,+∞)均值函数mX(t)=E[X(t)]=b相关函数RX(s,t)=E[X(s)X(t)]=E[(Vs+b)(Vt+b)] =E[stV2+bsV+btV+b2] =st+b2.4 设有随机过程X(t)=Acos(ωt)+Bsin(ωt),其中ω为常数,A,B是相互独立且服从正态分布N(0,σ)的随机变量,求随机过程的均值和相关函数。

解因A,B独立,A~N(0,σ),B~N(0,σ) 所以,E[A]=E[B]=0,D[A]=D[B]=σ 均值mX(t)=E[X(t)]=E[Acos(ωt)+Bsin(ωt)]=cos(ωt)E[A]+sin(ωt)E[B]=0 相关函数22222RX(t1,t2)=E[X(t1)X(t2)]=E[(Acos(ωt1)+Bsin(ωt1))(Acos(ωt2)+Bsin(ωt2))]=EA2cosωt1cosωt2+B2sinωt1sinωt2+ABcosωt1sinωt2+ABcosωt2sinωt1 =cosωt1cosωt2E[A2]+sinωt1sinωt2E[B2][]=σ2(cosωt1cosωt2+sinωt1sinωt2) =σ2cosω(t1-t2)2.5 已知随机过程X(t)的均值函数mX(t)和协方差函数BX(t1,t2),ϕ(t)为普通函数,令Y(t)=X(t)+ϕ(t),求随机过程Y(t)均值和协方差函数。

随机信号分析复习题

随机信号分析复习题

华侨大学《随机信号分析》考试试卷(09级A卷) 班级:_______________ 姓名:________________ 学号 _______________第1页共3页第2页共3页(1) (5分)求 X(t)的均值函数、方差函数。

(2) (5分)当 —t 2|=T 时,丫(t)是否是广义平稳的?(3) (5分)当t2〔=1.5T 时,Y(t)是否是均值各态历经的?【15分】12五、 设输入随机过程 X(t)的功率谱为S x=22,经过h(t)二e 」u(t)的系统 9 +国试求:(1)输出Y(t)的均值;(2) 输出Y(t)的功率谱密度 &和自相关函数R Y .; (3) 输出与输入间的互功率谱密度 S YX (■)。

【10分】六、 已知平稳随机噪声 N (t)的功率谱如图所示,求窄带随机信号 X t 二N t cos ,r - N t sin •• r 的功率谱密度 SxQ i ,并画图表 示,其中「0为常数,二服从0,2二上的均匀分布,且与 N(t)独立。

【10分】A S N (灼)27:1‘1 --忑°心)t 兰T七、设线性滤波器的输入信号为x(t) =s(t) + n(t)。

其中s(tW 为指数脉冲信[0 t A T号,n(t)为平稳白噪声,功率谱为N°/2且与s(t)统计独立。

试求:第3页共3页(1)(10分)匹配滤波器的传输函数H(jJ并画出与之对应的电路图。

(2)(5分)输出的最大信噪比是多少?八、设齐次马尔可夫链有4个状态01,2,3;,一步转移概率为;(1)画出其状态转移图;(2)如果该链在n时刻处于状态2,求在n亠2时刻处于各个状态的概率;(3)对该链的状态进行分类;_0 0 1 0 "1 0 0 0〔0.3 0.7 0 00.6 0.2 0.2 0 【15分】【12分】第4页共3页。

随机信号处理试卷

随机信号处理试卷

《随机信号分析与处理》期中自我测评一、填空(20分)1、按照时间和状态是连续还是离散,随机过程可以分成四类,这四类是_______________________________________________________________。

2、如果随机过程___________________________________________________________________,则称X(t)为严格平稳随机过程。

3、如果平稳随机过程_____________________________________,则称该随机过程为各态历经过程。

4、如果均匀分布的白噪声通过线性系统,输出服从____________________________________分布。

5、正态随机过程的任意N维分布只有由________________________确定。

6、窄带正态随机过程的相位服从________________,幅度服从_______________。

7、如果一个随机过程未来的状态只与_____________,与_________________,则该过程称为马尔可夫过程。

8、解析信号的功率谱负频部分为零,正频部分是实信号的________。

9、随机过程的相关时间反映了随机过程变化的快慢程度,相关时间越长,过程的取值变化______,相关时间越短,过程的取值变化___________。

10、平稳随机信号通过线性系统分析,输入、输出过程的自相关函数的关系可表示为__________________________,输出与输入过程的功率谱之间的关系可表示为_____________________________。

二、(20分)判断题(判断下列说法是否准确,正确的打T,错误的打F)。

1、随机变量的均值反映了它的取值的统计平均值,它的方差反映了它的取值偏离均值的偏离程度。

()2、如果一个平稳随机过程的时间平均值等于统计平均值,时间相关函数等于统计相关函数,那么它是各态历经过程。

随机信号处理考试5

随机信号处理考试5

随机信号处理考试5《随机信号分析与处理》期末⾃我测评试题(五)考试形式:闭卷考试时间: 150 分钟满分: 100 分考试对象:学员队别:⼤队学号:学员姓名:各专业必修(1) A random process may be viewed as a _______________________, with time t as a parameter.(2)When the autocorrelation function of the random process X(t) varies only with time difference , and the meanis a constant, X(t) is said to be ____________________.(3)A white noise is applied to a linear time-invariant system; the output process is __________________.(4) The autocorrelation function defines how much a signal is _________ a time-shift version of itself. White noise is known to correlate only with an exact replica of itself.(5) If X(t) has a periodic component, then __________________ will have a periodic component with the same period.(6) A random process X(t) is ergodic if all of its statistics can be determined from _______________of the process.(7) According to Wiener-Khinchin Theorem, the autocorrelation function of a wss process and its _________________ constitute a Fourier transform pair.(8) For a Gaussian process X(t), If it is stationary in the wide-sense, it is also __________.(9) For a detection problem, the observation is ___________ which is generated according to some probability law.(10) X(t) is called ____________ process if its PSD is concentrated a small frequency band and the frequency band is much less than center frequency.(11)The decision problem in the case of two hypotheses essentially consists in partitioning _______________ Z into two regions Z0 and Z1.(12) The estimate to minimize the mean square error is called _________________.(13) Decision tests based on several optimum criteria fall into the general class of________________. But thresholds will , in general, be different for the different criterion(14)For nonrandom parameter estimation problem, if an efficient estimate exists, it must be ________________.(15) For a linear mean square error estimate, __________ is orthogonal to the observation.(1) Consider a detection problem. Assume the decision rule can be expressed asThen, the false alarm probability can be written as(a) ;(b) ;(c) ;(d) ;( )(2) For an estimation problem, the posteriori density can be expressed asThen, the maximum a posteriori (MAP) estimate of is(a) (b)(c) (d)( )(3) The autocorrelation function of the random process X(t) is given byThen, the mean and the variance of X(t) are(a) 5, 9 (b) 25, 3(c) 25, ±3 (d) 25, 9( )(4) Suppose that X(t) is a Gaussian random process with zero mean and autocorrelation function. Then the third order PDF at time is , where the covariance matrix is(a) (b)(c) (d)( )(5) The state transition diagram of Markov chain is shown as following figure. Then, the state transition matrix of this Markov chain is given by(a) (b)(c) (d)( )得分三、(10分)A discrete time process is represented by the following difference equation,Where and are constants; is a sequence of IID Gaussian with zero mean and variance . Find the autocorrelation function and power spectral density (PSD) of .得分四、(15分)Consider a random signal as followsWhere is a known constant; is a random variable that has a magnitude of +1 and -1 with equal probability, and is a random variable that is uniformly distributed between 0 and 2p. Assume that random variables A and areindependent.(1) Find the mean, variance and autocorrelation function of X(t). Is X(t) a wide-sense stationary? Why?(2) Find the power spectral density (PSD) of X(t).五、(15分)A white noise process with autocorrelationfunction is applied to a filter with impulseresponse .(1) Determine the power spectral density (PSD) of the outputprocess.(2) Determine the autocorrelation function of the output process.(3) Determine the first-order probability density function (PDF) ofoutput process.(Hint: )得分六、(15分)Consider a binary hypothesis testing problem,Where m (m>0) is a known constant; is a Gaussian white noise with zero mean andvariance (known). We assume the priorprobabilities and are known.The costs are also known.(a) Find the decision expression for Bayes criterion(b) Find the false alarm probability, the miss probability and the detection probability.(c) If , and , find the total probability of error .得分七、(15分)Consider following estimation problem. The N independent observations areWhere is a Gaussian white noise with zero mean and variance (known).(1) Find the ML estimate of A;(2) Is unbiased estimate? Is an efficient estimate? Why?(3)What is the variance of .<查看解答>⼀、填空题(共15⼩题,每⼩题1分,共15分)(1) random variable (collection of random variable)(2) wide-sense stationary(3) Gaussian process(4) similar to (correlated to )(5) autocorrelation function(6) a sample function(7) power spectral density(8) strictly stationary(9) a random variable(10) a Narrow-band(11) the observation space(12) the minimum mean square error estimate (MMSE) )(13) likelihood ratio test(14) maximum likelihood estimate(15) the error of the estimate⼆、选择题(共5⼩题,每⼩题3分,共15分)(1) (a)(2) (c)(3) (a)(4) (b)(5) (d)三、(10分)SolutionMethod 1:(1 point)(1 point)(2 points)(2 points)(2 points)(2 points)Method 2 (1 point)(1 point)(1 point)( 1 point)(2 points)(2 points)(2 points)四、(15分)Solution (1) (2 points )(1 point)(1 point)(1 point)(1 point)(1 point)(2 points)Since the mean is a constant; the autocorrelation function is only dependent on the time difference; X(t) is a wide-sense stationary (1 points)(2) (1 point)(3 points)五、(15分)Solution(1) (1 point)(1 point)(2 points)(1 point)(2)(1 point)(4 points)(3) Since input process is a white noise and system is a linear time-invariant system, the output process is a Gaussian process. (1 point)The mean of the output y(t) is zero and the variance of the output y(t) isTherefore, the PDF of y(t) is(2 points)六、(15分)Solution(1)(1 point)(1 point)(2 points)(3points) (2)(1 point)(1 point)(1 point)(1 point)(3) , (1 point)(1 point)(1 point)七、(15分)Solution(1)(2 points)(1 point)Let , we obtain (2 points)(2) Since, so is an unbiased estimate. (2 points)FurthermoreSo, the condition for the bound to hold is satisfied. (2 point) Therefore is an efficient estimate. (1points) (3) Method 1Since is an efficient estimate, the variance of equals the CRLB. OrBut (2 points)Therefore (2 points) Method 2(2 points)(3 points)。

(完整word版)随机信号处理考试3

(完整word版)随机信号处理考试3

《随机信号分析与处理》期末自我测评试题(三)一、填空(20分,每小题2分)1、随机变量X的k阶中心矩的定义是____________________。

2、二维随机变量之间反映相互关系的数字特征是 ____ ____ 和______________。

3、白噪声在任意两个相邻时刻的状态是______ ____,其平均功率是____________。

4、匹配滤波器输出的最大信噪比只与__________________和 _有关,与_____________无关。

5、非线性变换的主要方法有________________、___________和。

6、希尔伯特变换器的相频特性为 ____________,因此其也称为。

7、典型的独立增量过程有______ _______与_________________。

8、在信号检测时,若难以确定代价因子和先验概率,则通常采用的判决准则是_____ ________。

9、对于齐次马尔可夫过程,任意有限维概率密度完全由___ _____和决定。

10、若检测判决式为,则虚警概率可表示为__________________。

二、(10分)选择题(正确的结果可能不止一个,请选出正确的结果)1、下列函数哪些是功率谱密度()(1) (2)(3) (4)2、噪声等效通能带的等效原则可由下式表示()(1)(2)(3)(4)3、假定随机X(n)为ARMA(1,1)过程,则其模型可用下式表示()(1)(2)(3)(4)4、下列信号可构成理想二元通信系统的是()(1) (2)(3) (4)5、对于最小二乘估计,下列说法正确的是()(1)需要知道被估计量的先验概率密度(2)需要知道被估计量的一、二阶矩(3)需要知道似然函数(4)不需要任何先验信息三、(10分)设随机过程,其中w为常数,X为标准正态随机变量,求X(t)的一维概率分布函数和协方差函数。

四、(10分)设线性系统的输入是平稳随机过程X(t),其功率谱密度为,线性系统输出为Y(t).(1)求误差过程E(t)=Y(t)-X(t)的功率谱密度函数(2)如下图所示,设输入到RC电路的平稳随机过程相关函数,求误差过程的功率谱密度。

随机信号分析与处理

随机信号分析与处理

,然后对 y 求导得,
FX (x + Δx) − FX (x)
x + Δx
∫ fY|x<X ≤x+Δx ( y | x < X
≤ x + Δx) =
f (x, y)dx
x

FX (x + Δx) − FX (x)
f (x, y)Δx f X (x)Δx
最后求Δx→0 的极限。
∫ ∫ 解答:
F(y
|
x1
f X1X 2 (x1 , x2 ) J
=
y1
y
2 2
பைடு நூலகம்
f X1X 2 ( y1 , y1 / y2 )
∫ ∫ fY2 ( y2 ) =
+∞
−∞ fY1Y2 ( y1 , y2 )dy1 =
+∞ y1 y −∞ 2
2
f X1X 2 ( y1 , y1 / y2 )dy1
在上式中令 u = y1 / y2 , 则
故有
P{X = m} = Cnm p m (1 − p)n−m , m = 0,1, 2,....n
n
∑ 所以 X = Xi 服从参数为 n,p 的二项分布。 i =1
且有 E( Xi ) = 1⋅ P{Xi = 1}+ 0 ⋅ P{Xi = 0} = p ,
E
(
X
2 i
)
= 12

P{ X i
= 1}+
D( X ) = E( X 2 ) − E 2 ( X ) = n(n − 1) p 2 + np − (np)2 = np(1 − p)
解法二:设 X1, X 2 ,…, X n 相互独立,且都服从 (0 −1) 分布,分布规律为 P{Xi = 0} = 1− p , P{Xi = 1} = p , i = 1, 2,…, n ,

随机信号处理考试8

随机信号处理考试8

《随机信号分析与处理》期中自我测评试题(三)一、选择题(28分,每小题有四个选项,正确的选项可能不止一个,请把你认为正确的选项填在括号内,不选、少选、多选均不得分)1.下列说法那些是对的?(1)严格平稳随机过程一定也是广义平稳随机过程;(2)广义平稳随机过程也一定是严格平稳随机过程;(3)各态历经过程一定是广义平稳随机过程;(4)广义平稳随机过程一定是各态历经过程。

()2.设随机过程,其中为常数,在上均匀分布,则(1) ;(2) 是广义平稳随机过程,但不是各态历经过程;(3)是广义平稳随机过程,也是各态历经过程;(4) 是非平稳随机过程。

( )3.根据噪声等效通能带和相关时间的概念,白噪声通过一个线性系统后,(1)输出过程的相关时间与系统的等效噪声带宽无关;(2)输出过程的功率等于输出过程的相关时间乘以系统的等效噪声带宽;(3)如果系统的噪声等效通能带越大,输出过程的相关时间越小;(4)如果系统的噪声等效通能带越大,输出过程的相关时间越大;()4.马尔可夫序列的的特点是(1)在现在的状态已知道的条件下,未来的状态只与现在有关,与过去无关;(2)未来的状态只与过去有关,与现在无关;(3)具有平稳性和各态历经性;(4)相邻时刻的状态是相互独立的。

()5.关于平稳随机过程的功率谱,(1)表示单位频带内信号的频率分量消耗在单位电阻上的平均功率的统计平均值;(2)平稳随机过程的功率谱是相关函数的傅立叶变换;(3)功率谱密度是实函数、奇函数;(4)功率谱密度是实函数、偶函数。

()6. 根据正态随机过程的特点,(1)任意两个时刻的状态不相关的话,也必定是独立的;(2)任意两个时刻的状态不相关,但不一定独立;(3)广义平稳的正态随机过程也必定是严格平稳的;(4)广义平稳的正态随机过程不一定是严格平稳的。

7.根据窄带随机信号的特点,(1)窄带随机信号的功率谱集中在某个中心频率为中心的频带内,且中心频率远高于频带带宽;(2)窄带随机信号的包络和相位都是服从正态分布的;(3)窄带随机信号的时域波形具有准正弦振荡的形式;(4)窄带正态随机信号一定是马尔可夫过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1 分)
十、计算题(共 1 小题,每小题 12 分,共 12 分)
(1 分)

,通过取样对幅度 作线性估计。设 在
处取样,并设:
求:
(1)、线性最小均方估计 ; (2)、线性最小均方估计的均方误差。
解:1) 设 由正交原理,
,不难验证 c=0,
(9 分)
2)
(3 分)
的自相关函数可表示为
(4 分) , 如右图所示,
所以 2)按噪声等效通能带定义
(5 分)
, (可根据傅立业反变换在 点的取值)
七、计算题(共 1 小题,每小题 10 分,共 10) (5)
设线性滤波器输入为
,其中 的功率谱密度为
的白噪声, 为与 统计独立的矩形脉冲
求:(1)、利用匹配滤波器时,输出端的最大信噪比为多少?
(2)、如果不用匹配滤波器,而用滤波器为 信噪比为多少,你认为 的最佳值应该是多少? 解: (1)根据匹配滤波原理,输出的最大信噪比为:
,则输出最大
(4 分) (2)该系统为线性系统,满足线性可加性,输出包含两部分,一部分是 信号通过系统后的输出信号,另外一部分是白噪声通过系统后的输出噪 声,两部分没有差拍项,假设输出的信号为: ,噪声为: ,不难
(2)、虚警概率 与检测概率 (结果由误差函数表示)。 解:两种假设下的似然函数为
=0.5,
对数似然比为:
判决表达式为

,将上式整理后,得
(5 分)
检验统计量 为样本均值,为了确定判决的性能,首先需要确定检验统计
量的分布,在 H0 为真时,
,那么,
在 H1 为真时, 所以,虚警概率为
(3 分)
检测概率为
立,否则判 成立。那么,虚警概率可表示为( a、b )
(A)
(B)
(C)
(D)
三、判断题(共 10 小题,每小题 1 分,共 10 分)
为一个随机过程,对于任意一个固定的时刻 , 是一个确定值( F ) 2、随机信号的均值计算是线性运算,而方差则不是线性运算。( T ) 3、如果随机过程其时间平均和集合平均是依概率 1 相等的,则该随机过 程具有遍历性。( F ) 4、平稳随机信号在 时刻起加入物理可实现线性系统,其输出为平稳 随机信号;平稳随机信号在 时起加入物理不可实现线性系统,其输 出为非平稳随机信号。 ( F ) 5、非线性变换不会增加新的频率分量而线性变换会增加新的频率分量。 (F ) 6、对于零均值的正态随机过程来说,两个时刻相互正交和相互独立是等 价的。( T ) 7、随机信号的解析信号只存在正的功率谱。( T ) 8、窄带正态噪声的包络与相位在同一时刻相互正交。( T )
9、如果对随机参量的估计是有效估计,那么这个估计必定是最大似然估 计。( F ) 10、最小错误概率准则等价于最大后验概率准则。( F )
四、计算题(共 1 小题,每小题 10 分,共 10 分)
已知平稳随机过程 的功率谱密度为

(1)、求出该随机过程的均值与方差;
(2)、相关时间 (提示:
)。
五、计算题(共 1 小题,每小题 8 分,共 8 分)
3、设平稳随机序列 通过一个冲击响应为 表示,那么,下列正确的有:( a、d )
的线性系统,其输出用
(A)
(B)
(C)
(D)
4、 为 的希尔伯特变换,下列表达正确的有:(a、c、d )
(A) 与 的功率谱相等 (B)Fra bibliotek(C)
(D) 与 在同一时刻相互正交
5、对于一个二元假设检验问题,判决表达式为:如果 T(z)>g,则判 成
3、窄带正态噪声加正弦信号在信噪比远小于 1 的情况下的包络趋向瑞利 分布,而相位则趋向均匀分布。
4、平稳随机信号通非线性系统的分析常用的方法是直接法和变换法与级 数展开法。
5、对随机过程 X(t),如果
,则我们称 X(t1)和 X(t2)是不相关。
如果
,则我们称 X(t1)和 X(t2)是正交。如果
《随机信号分析与处理》期末自我测评 试题(一)
一、填空题(共 10 小题,每小题 1 分,共 10 分)
1、假设连续型随机变量的概率分布函数为 F(x),则 F(-∞)= 0,F(+∞)= 1。
2、如果一零均值随机过程的功率谱在整个频率轴上为一常数,则称该随 机过程为白噪声,该过程的任意两个不同时刻的状态是不相关。
,则称随机过程在 和 时刻的状态是独立。
6、平稳正态随机过程的任意维概率密度只由均值、协方差阵来确定。
7、典型的独立增量过程有泊松过程与维纳过程_。
8、对于随机参量,如果有效估计存在,则其有效估计就是最大后验概率 估计。
9、对于无偏估计而言,均方误差总是大于等于某个量,这个量称为克拉美 -罗(Cramer-Rao)下限,达到这个量的估计称为有效估计。
得出,输出信号的最大值在 t=T 时刻,此时
使得信噪比最大的 值应该满足:
这时
,正是匹配滤波器的情况。
九、计算题(共 1 小题,每小题 10 分,共 10 分)
设有如下两种假设,观测次数为 N 次,
(6 分)
其中 服从均值为 0 方差为 的正态分布,假设 求
=0.5,
(1)、最小错误概率准则下的判决表达式;
考虑随机过程 是随机变量,其概率密度 证明:
,其中 为常数, 在 上均匀分布,
为偶函数,证明 的功率谱密度为

(4 分)
六、计算题(共 1 小题,每小题 10 分,共 10 分)
已知平稳随机过程 的自相关函数如右图所 示。 计算: (1)、功率谱密度 ; (2)、噪声等效通能带 。
解:1)不难得出, 而
10、纽曼-皮尔逊准则是:约束虚警概率恒定的情况下使漏警概率最小。
二、选择题(共 5 小题,每小题 2 分,共 10 分)
1、 是均值为 方差为 的平稳随机过程,下列表达式正确的有:(b、 d)
(A)
(B)
(C)
(D)
2、白噪声通过理想低通线性系统,下列性质正确的是:( a、c )
输出随机信号的相关时间与系统的带宽成反比 输出随机信号的相关时间与系统的带宽成正比 系统带宽越窄,输出随机过程随时间变化越缓慢 系统带宽越窄,输出随机过程随时间变化越剧烈
相关文档
最新文档