八年级上册数学第十一章检测卷(含答案)

合集下载

八年级上册数学第十一章检测卷(含答案)

八年级上册数学第十一章检测卷(含答案)

八年级上册数学第十一章检测卷一、选择题(每小题3分,共36分)1.如果三角形的两边长分别为2和7,其周长为偶数,则第三边长为()A.3B.6C.7D.82.下列说法:①△ABC的顶点A就是∠A,②三角形一边的对角也是另外两边的夹角;③三角形的中线就是一顶点与它对边中点连接的线段; ④三角形的角平分线就是三角形内角的平分线,其中正确的说法是()A.①②③④B.②③④C.②③D.②④3.一个三角形的三边分别为3,5,x,则x的取值范围是()A.x>2B.x<5C.3<x<5D.2<x<84.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.都有可能5.如图所示,∠B+∠C=90°,则△ABC的形状是()A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形6.如图所示,AD是∠CAE的平分线,∠B=35°,∠DAC=65°,则∠ACD的度数为()A.25°B.85°C.60°D.95°第5题图第6题图第7题图第8题图7.如图所示,AB∥CD,AD和BC相交于点O,∠A=35°,∠AOB=75°,则∠C的度数为()A.35°B.40°C.70°D.80°8.如图所示,在△ABC中,∠B=50°,∠C=60°,点D是BC边上的任意一点,DE⊥AB 于E,DF⊥AC于F,则∠EDF的度数为()A.80°B.110°C.130°D.140°9.若一个多边形的内角和是1080°,则这个多边形的边数为()A.6B.7C.8D.1010.一幅美丽的图案,在菜个顶点处由四个边长相等的正多边形镶嵌而成,其中的三个分别为正三角形、正四边形、正六边形,那么另外一个为()A.正三角形B.正四边形C.正五边形D.正六边形11.已知一个三角形的三条边长均为正整数若其中仅有一条边长为5,且它又不是最短边,则满足条件的三角形个数为()A.4B.6C.8D.1012.如图,过正五边形BCDE的顶点B作直线1∥AC,则∠1的度数为()A.36°B.45°C.55°D.60°二、填空题(每空2分,共16分)1.如图,DE∥BC,CD是∠ACB的平分线,∠ACB=50°,则∠EDC 的度数为.2.如图,AD,AE分别是△ABC的中线和高,BD=3cm,AE=4cm,则△ABC的面积为.第1题图第2题图第3题图第4题图3.如图所示,已知AB∥CD,BE平分∠ABC,∠CDE=150°,则∠C=.4.如图所示,在四边形ABCD中,若∠A=∠C=90°,∠B=62°,则∠D的度数为.5.一个多边形的每个外角都相等,且比它的内角小140°,则这个多边形是边形.6.如图所示,BE,CD为两条角平分线,∠ABC=∠ACB,图中与∠1相等的角有个.7.如图所示,直角△ABC中,∠ABC=90°,AB=5cm,BC=12cm,AC=3cm,若BD 是AC边上的高,则BD的长为cm.第6题图第7题图8.如果一个正多边形的一个外角是36°那么该正多边形的边数为.三、作图题(共12分)画出图中的每个多边形的所有对角线.四、解答题(共56分)1.(6分)小颖要制作一个三角形木架,现有两根长度为8cm和5cm的木棒,如果要求第三根木棒的长度是整数,小颖有几种选法?第三根木棒的长度可以是多少?2.(6分)如图所示,AF,AD分别是△ABC的高和角平分线,且∠B=36°,∠C=76°,求∠DAF的度数.3.(6分)如图所示,AD是△ABC的边BC的中线,已知AB=5cm,AC=3cm,求△ABDCBE DCBAC DAFEBDA和△ACD的周长之差.4.(6分)如图所示,AD是△ABC的角平分线,E是BC延长线上一点,∠EAC=∠B.∠ADE与∠DAE相等吗?为什么?5.(6分)如图所示,已知在△ABC中,∠ABC和∠ACB的平分线BD和CE相交于点I, 且∠A=70°,求∠BIC的度数。

八年级数学上册试题 第十一章 三角形章节测试卷--人教版(含详解)

八年级数学上册试题 第十一章 三角形章节测试卷--人教版(含详解)

第十一章《三角形》章节测试卷一.选择题(共12小题,满分48分,每小题4分)1.已知△ABC中,∠A=20°,∠B=70°,那么△ABC是( )A.直角三角形B.锐角三角形C.钝角三角形D.正三角形2.下面四个图形中,线段BD是△ABC的高的是( )A.B.C.D.3.要使如图所示的五边形木架不变形,至少要再钉上几根木条( )A.1根B.2根C.3根D.4根4.能把一个任意三角形分成面积相等的两部分是( )A.以上都可以B.高C.中线D.角平分线5.长度分别为3,8,x的三条线段能组成一个三角形,x的值可以是( )A.4B.5C.6D.116.如图,在△ABC中,∠BAC=90°,AD是△ABC的高,若∠B=20°,则∠DAC=( )A.90°B.20°C.45°D.70°7.如图所示,∠1=∠2=150°,则∠3=( )A.30°B.150°C.120°D.60°8.如图,在△ABC中,AB=2021,AC=2018,AD为中线,则△ABD与△ACD的周长之差为( )A.1B.2C.3D.49.若一个多边形的每个内角都等于150°,则这个多边形的边数是( )A.10B.11C.12D.1310.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于( )A.90°B.135°C.270°D.315°11.△ABC的两边是方程组{x+2y=104x+3y=20的解,第三边长为奇数.符合条件的三角形有( )A.1个B.2个C.3个D.4个12.如图,在四边形ABCD中,∠ABC与∠BCD的平分线的交点E恰好在AD边上,则∠BEC=( )A.∠A+∠D﹣45°B.12(∠A+∠D)+45°C.180°-(∠A+∠D)D.12∠A+12∠D二.填空题(共4小题,满分16分,每小题4分)13.如图,点D,B,C在同一直线上,∠A=60°,∠C=50°,∠D=20°,则∠1= °.14.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A= .15.如图,△ABC中,∠B=40°,∠C=30°,点D为边BC上一点,将△ADC沿直线AD折叠后,点C落到点E处,若DE∥AB,则∠AFD的度数为 .16.如图,D,E,F分别是△ABC的边AB,BC,AC上的中点,连接AE,BF,CD交于点G,AG:GE=2:1,△ABC的面积为6,设△BDG的面积为S1,△CGF的面积为S2,则S1+S2= .三.解答题(共8小题,满分86分)17.已知一个多边形的内角和是外角和的三倍,则这个多边形是几边形?18.如图,∠ABC=∠FEC=∠ADC=90°.(1)在△ABC中,BC边上的高是 ;(2)在△AEC中,AE边上的高是 ;(3)若AB=2.4cm,CD=2cm,AE=3cm,求△AEC的面积及CE的长.19.如图,已知D是△ABC边BC延长线上一点,DF⊥AB于点F,交AC于点E,∠A=35°,∠D=42°,求(1)∠ACD的度数;(2)∠AEF的度数.20.已知一等腰三角形的两边长x,y满足方程组{3x−y=55x+2y=23求此等腰三角形的周长.21.一个零件的形状如图,按规定∠A=90°,∠B和∠C应分别是32°和21°,检验工人量得∠BDC=149°,就判断这个零件不合格,运用三角形的有关知识说出零件不合格的理由.22.如图1所示,将一副三角板的直角顶点重合在点O处.(1)∠AOD ∠BOC;(填“>”“<”“=”)(2)若将三角尺按图2的位置摆放,∠AOC和∠BOD在数量上有何关系?说明理由;(3)在图2中,已知∠BOC与∠AOC的度数比为m:n,当a6m b11与a n+1b2n﹣11是同类项时,求∠BOD的度数.23.问题1现有一张△ABC纸片,点D、E分别是△ABC边上两点,若沿直线DE折叠.研究(1):如果折成图①的形状,使A点落在CE上,则∠1与∠A的数量关系是 研究(2):如果折成图②的形状,猜想∠1+∠2和∠A的数量关系是 研究(3):如果折成图③的形状,猜想∠1、∠2和∠A的数量关系,并说明理由.问题2研究(4):将问题1推广,如图④,将四边形ABCD纸片沿EF折叠,使点A、B落在四边形EFCD的内部时,∠1+∠2与∠A、∠B之间的数量关系是 .24.△ABC中,AD是∠BAC的角平分线,AE是△ABC的高.(1)如图1,若∠B=40°,∠C=60°,求∠DAE的度数;(2)如图2(∠B<∠C),试说明∠DAE与∠B、∠C的数量关系;(3)拓展:如图3,四边形ABDC中,AE是∠BAC的角平分线,DA是∠BDC的角平分线,猜想:∠DAE与∠B、∠C的数量关系是否改变.说明理由.答案一.选择题1.【解答】解:∵△ABC中,∠A=20°,∠B=70°,∴∠C=180°﹣20°﹣70°=90°,∴△ABC是直角三角形.故选:A.2.【解答】解:由图可得,线段BD是△ABC的高的图是D选项.故选:D.3.【解答】解:过五边形的一个顶点作对角线,有5﹣3=2条对角线,所以至少要钉上2根木条.故选:B.4.【解答】解:三角形的中线把三角形分成等底同高的两个三角形,面积相等,所以,能把一个任意三角形分成面积相等的两部分是中线.故选:C.5.【解答】解:8﹣3<x<8+3,5<x<11,只有选项C符合题意.故选:C.6.【解答】解:∵∠BAC=90°,∴∠DAC+∠BAD=90°,∵AD是△ABC的高,∴∠ADB=∠BAD+∠B=90°,∴∠DAC=∠B=20°,故选:B.7.【解答】解:∵∠1=∠2=150°,∴∠ABC=∠BAC=180°﹣150°=30°,∴∠3=∠ABC+∠BAC=60°.故选:D.8.【解答】解:∵AD为中线,∴DB=DC,∴△ABD与△ACD的周长之差为:(AB+AD+BD)﹣(AD+DC+AC)=AB+AD+BD﹣AD﹣DC﹣AC=AB﹣AC=2021﹣2018=3,故选:C.9.【解答】解:由题意可得:180°•(n﹣2)=150°•n,解得n=12.故多边形是12边形.故选:C.10.【解答】解:∵四边形的内角和为360°,直角三角形中两个锐角和为90°∴∠1+∠2=360°﹣(∠A+∠B)=360°﹣90°=270°.故选:C.11.【解答】解:方程组{x+2y=104x+3y=20的解为:{x=2 y=4,∵△ABC的两边是方程组{x+2y=104x+3y=20的解,第三边长为奇数,∴2<第三边长<6,1∴第三边长可以为:3,5.∴这样的三角形有2个.故选:B.12.【解答】解:∵四边形的内角和=360°,∴∠ABC+∠BCD=360°﹣(∠A+∠D),∵∠ABC与∠BCD的平分线的交点E恰好在AD边上,∴2∠EBC=∠ABC,2∠ECB=∠BCD,∴∠EBC+∠ECB=12(∠ABC+∠BCD)=12×[360°−(∠A+∠D)],∴∠BEC=180°﹣(∠EBC+∠ECB)=180°−12×[360°−(∠A+∠D)]=12(∠A+∠D),故选:D.二.填空题13.【解答】解:∵∠A=60°,∠C=50°,∴∠ABC=180°﹣∠A﹣∠C=180°﹣60°﹣50°=70°,∴∠1=∠ABC﹣∠D=50°﹣20°=50°.故答案为:50.14.【解答】解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠ABC=2∠ABP,∠ACM=2∠ACP,又∵∠ABP=20°,∠ACP=50°,∴∠ABC=2×20°=40°,∠ACM=2×50°=100°,∴∠A=∠ACM﹣∠ABC=60°,故答案为60°.15.【解答】解:∵∠B=40°,∠C=30°,∴∠BAC=110°,由折叠的性质得,∠E=∠C=30°,∠EAD=∠CAD,∵DE∥AB,∴∠BAE=∠E=30°,∴∠CAD=40°,∴∠ADC=180°﹣∠CAD﹣∠C=110°,∴∠AFD=110°﹣40°=70°,故答案为:70°.16.【解答】解:∵D,E,F分别是△ABC的边AB,BC,AC上的中点,∴AD=DB,AF=CF,∴△BDG的面积=△ADG的面积,△CFG的面积=△AGF的面积,∴设△BDG的面积为S1,△CGF的面积为S2,则S1+S2=四边形ADGF的面积,∵△ABC的面积为6,AG:GE=2:1,∴四边形ADGF的面积=23×12×6=2,∴S1+S2=2,故答案为:2三.解答题17.解:设这个多边形为n边形,n边形的内角和为:(n﹣2)×180°,n边形的外角和为:360°,根据题意得:(n﹣2)×180°=3×360°,解得:n=8,答:这个多边形是八边形.18.解:(1)在△ABC中,BC边上的高是线段AB;故答案为线段AB;(2)在△AEC中,AE边上的高是线段CD;故答案为线段CD;(3)∵S△AEC=12×AE×CD=12×CE×AB,∴CE=AE⋅CDAB= 2.5(cm).19.解:(1)∵DF⊥AB,∴∠B=90°﹣∠D=48°,∵∠ACD是△ABC的一个外角,∴∠ACD=∠A+∠B=83°;(2)∵DF⊥AB,∴∠AFD=90°,∴∠AEF=90°﹣∠A=55°.20.解:解方程组组{3x−y=55x+2y=23得{x=3 y=4,所以,等腰三角形的两边长为3,4.若腰长为3,底边长为4,由3+3=6>4知,三角形的周长为10.若腰长为4,底边长为3,则三角形的周长为11.所以,这个等腰三角形的周长为10或11.21.解:延长CD交AB于点E,∵∠BEC是△ACE的一个外角,∴∠BEC=∠A+∠C=90°+21°=111°,同理,∠BDC=∠BEC+∠B=111°+32°=143°,而检验工人量得∠BDC=149°,所以零件不合格.22.解:(1)∵∠AOB=∠COD=90°,∴∠AOB+∠BOD=∠COD+∠BOD,即∠AOD=∠BOC.故答案为:=;(2)∵∠AOB=∠COD=90°,∴∠AOC+∠BOD=180°.故∠AOC和∠BOD在数量上的关系为:∠AOC+∠BOD=180°;(3)∵a6m b11与a n+1b2n﹣11是同类项,∴{6m=n+111=2n−11,解得{m=2n=11,∵∠BOC与∠AOC的度数比为m:n,11﹣2=9,∴∠BOC=90°×2=20°,11−2∴∠BOD=90°﹣20°=70°.故∠BOD的度数是70°.23.解:(1)如图1,∠1=2∠A,理由是:由折叠得:∠A=∠DA′A,∵∠1=∠A+∠DA′A,∴∠1=2∠A;故答案为:∠1=2∠A;(2)如图2,猜想:∠1+∠2=2∠A,理由是:由折叠得:∠ADE=∠A′DE,∠AED=∠A′ED,∵∠ADB+∠AEC=360°,∴∠1+∠2=360°﹣∠ADE﹣∠A′DE﹣∠AED﹣∠A′ED=360°﹣2∠ADE﹣2∠AED,∴∠1+∠2=2(180°﹣∠ADE﹣∠AED)=2∠A;故答案为:∠1+∠2=2∠A;(3)如图3,∠2﹣∠1=2∠A,理由是:∵∠2=∠AFE+∠A,∠AFE=∠A′+∠1,∴∠2=∠A′+∠A+∠1,∵∠A=∠A′,∴∠2=2∠A+∠1,∴∠2﹣∠1=2∠A;(4)如图4,由折叠得:∠BMN=∠B′MN,∠ANM=∠A′NM,∵∠DNA+∠BMC=360°,∴∠1+∠2=360°﹣2∠BMN﹣2∠ANM,∵∠BMN+∠ANM=360°﹣∠A﹣∠B,∴∠1+∠2=360°﹣2(360°﹣∠A﹣∠B)=2(∠A+∠B)﹣360°,故答案为:∠1+∠2=2(∠A+∠B)﹣360°.24.解:(1)∵∠B=40°,∠C=60°,∠BAC+∠B+∠C=180°,∴∠BAC=80°,∵AD是∠BAC的角平分线,∠BAC=40°,∴∠CAD=∠BAD=12∵AE是△ABC的高,∴∠AEC=90°,∵∠C=60°,∴∠CAE=90°﹣60°=30°,∴∠DAE=∠CAD﹣∠CAE=10°;(2)∵∠BAC+∠B+∠C=180°,∴∠BAC =180°﹣∠B ﹣∠C ,∵AD 是∠BAC 的角平分线,∴∠CAD =∠BAD =12∠BAC ,∵AE 是△ABC 的高,∴∠AEC =90°,∴∠CAE =90°﹣∠C ,∴∠DAE =∠CAD ﹣∠CAE =12∠BAC ﹣(90°﹣∠C )=12(180°﹣∠B ﹣∠C )﹣90°+∠C =12∠C −12∠B ,即∠DAE =12∠C −12∠B ; (3)不变,理由:连接BC 交AD 于F ,过点A 作AM ⊥BC 于M ,过点D 作DN ⊥BC 于N ,∵AE 是∠BAC 的角平分线,AM 是高,∴∠EAM =12(∠ACB ﹣∠ABC ),同理,∠ADN =12(∠BCD ﹣∠CBD ),∵∠AFM =∠DFN ,∠AMF =∠DNF =90°,∴∠MAD =∠ADN ,∴∠DAE =∠EAM+∠MAD =∠EAM+∠ADN =12(∠ACB ﹣∠ABC )+12(∠BCD ﹣∠CBD )=12(∠ACD ﹣∠ABD ).。

华东师大版八年级数学上册《第十一章数的开方》章节检测卷-带含答案

华东师大版八年级数学上册《第十一章数的开方》章节检测卷-带含答案

华东师大版八年级数学上册《第十一章数的开方》章节检测卷-带含答案学校:___________班级:___________姓名:___________考号:___________一、选择题(每小题3分,共30分) 1.化简 |1−√2|+1的结果是 ( )A.2−√2B.2+√2C.√2D.22.计算:-64 的立方根与16的平方根的和是 ( )A.0B. -8C.0或-8D.8或-83.下列实数中,最小的是 ( )A.3 B √2 C √3 D.04.已知 m =√4+√3,则以下对m 的估算正确的是 ( )A.2<m<3B.3<m<4C.4<m<5D.5<m<65.下列说法正确的是 ( ) A.18的立方根是 ±12 B. -49 的平方根是±7C.11的算术平方根是 √11D.(−1)²的立方根是-16.下列各组数中互为相反数的是 ( )A. -2 与 √(−2)2B. -2 与 √−83C. -2 与 −12 D.2 与|-2|7.一个正数的两个平方根分别是2a-1与-a+2,则a 的值为 ( )A.1B. -1C.2D. -28.下列各数:3.14 π3 √16 2.131 331 333 1…(相邻两个1之3的个数逐次多1) 2321,√−93.其中无理数的个数为 ( )A.2个B.3个C.4个D.5个9.实数a、b、c在数轴上的对应点的位置如图所示,则正确的结论是 ( )A.|a|>4B. c-b>0C. ac>0D. a+c>010.已知min(√x,x2,x)表示取三个数中最小的那个数,例如:当x=9时min(√x,x2,x)=min(√9,92,9)=3,则当min(√x,x2,x)=116时,x的值为 ( )A.116B.18C.14D.12二、填空题(每小题3分,共15分)11.计算:(−1)2+√9= .12.已知a、b满足(a−1)2+√b+2=0,则a+b= .13.已知a2=16,√b3=2且 ab<0,则√a+b= .14.我们知道√a≥0,所√aₐ有最小值.当x= 时2+√3x−2有最小值.15.请你观察思考下列计算过程:∴112=121 ∴√121=11;∵1112=12321,∴√12321=111⋯⋯由此猜想:√12345678987654321= .三、解答题(本大题共9个小题,满分75分)16.(6分)计算:(1)|−2|+√−83−√16;(2)6×√19−√273+(√2)2.17.已知(x−7)²=121,(y+1)³=−0.064求代数式√x−2−√x+10y+√245y3的值.18.(6分)求下列各式中的x的值:(1)(x+1)²−1=0;(2)23(x+1)3+94=0.19.(8分)阅读材料:如果xⁿ=a,那么x叫做a的n次方根.例如:因为2⁴=16,(−2)⁴=16,所以2和-2都是16的4次方根,即16的4次方根是2和-2,记作±√164=±2.根据上述材料回答问题:(1)求81 的4次方根和32 的5 次方根;(2)求10°的n次方根.20.(9分)求下列代数式的值.(1)如果a²=4,b的算术平方根为3,求a+b的值;(2)已知x是25的平方根,y是16的算术平方根,且.x<y,求x-y的值.x−y21.(9分)如图是一个无理数筛选器的工作流程图.(1)当x为16时,y= ;(2)是否存在输入有意义的x值后,却始终输不出y值? 如果存在,写出所有满足要求的x值,如果不存在,请说明理由;(3)如果输入x值后,筛选器的屏幕显示“该操作无法运行”,请你分析输入的x值可能是什么情况;(4)当输出的y值√3₃时,判断输入的x值是否唯一,如果不唯一,请出其中的两个.22.(10分)阅读下面的文字,解答问题.大家知道√2是无理数,而无理数是无限不循环小数,因此、√2的小数部分我们不可能全部地写出来,于是小明用√2−1来表示√2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为√2的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:√4<√7<√9,即2<√7<3∴√7的整数部分为2,小数部分为√7−2.请解答:(1)√57的整数部分是,小数部分是;(2)如果√11的小数部分为a,√7的整数部分为b,求|a−b|+√11的值;(3)已知:9+√5=x+y,其中x是整数,且0<y<1,求x-y的相反数.x−y23.(10分)小丽想用一块面积为400cm²的正方形纸片,沿着边的方向裁出一块面积为300cm²的长方形纸片.(1)请帮小丽设计一种可行的裁剪方案;(2)若使长方形的长宽之比为3:2,小丽能用这块纸片裁出符合要求的纸片吗? 若能,请帮小丽设计一种裁剪方案;若不能,请简要说明理由.24.(11分)如图1,长方形OABC 的边OA 在数轴上,点O 为原点,长方形OABC 的面积为12,OC 边的长为3.(1)数轴上点 A 表示的数为 ;(2)将长方形OABC 沿数轴水平移动,移动后的长方形记为( O ′A ′B ′C ′,移动后的长方形(O ′A ′B ′C ′与原长方形OABC 重叠部分(如图2 中阴影部分)的面积记为S.①当S 恰好等于原长方形OABC 面积的一半时,求数轴上点. A ′表示的数;②设点A 的移动距离 AA ′=x.i 当S=4时,求x 的值;ii 点 D 为线段 AA'的中点,点 E 在线段0O ′上,且 OE =12OO ′,当点D 、E 表示的数互为相反数时,求x 的值. 参考答案1. C2. C3. D4. B5. C6. A7. B8. B9. B 10. C11.4 12. -1 13.214 2315.111 1111116.解: (1)|−2|+√−83−√16=2−2−4=−4.(2)6×√19−√273+(√2)2=6×13−3+2=2−3+2=1.17.解: :(x −7)²=121,∴x −7=±11, 则x=18 或x= -4 又∵x -2≥0 ∴x≥2 ∴x=18.∵(y+1)³= -0.064 ∴y+1= -0.4 ∴y= -1.4 ∴√x −2 - √x +10y + 245y =√18−2−√18+10×(−1.4)−√245×(−1.4)3=√16−√4+√−3433 =4-2-7 = -5.(2)6×√19−√273+(√2)2=6×13−3+2=2−3+2=1.18.解: (1)∵(x +1)²−1=0,∴(x +1)²=1,∴x +1=±1,解得x=0或x=-2.(2)∵23(x +1)3+94=0,∴8(x +1)3+27=0,∴(x +1)3=−278,∴x +1=−32,解得 x =−52.19.解:(1)因为 3⁴=81,(−3)⁴=81,所以3 和-3 都是81的4次方根,即81的4次方根是±3;因为 2⁵=32,所以32的5次方根是2.(2)当n 为奇数时 10" 的n 次方根为10;当n 为偶数时 10" 的n 次方根为±10.20.解:(1)∵a²=4 ∴a=±2 ∵b 的算术平方根为3 ∴b=9 ∴a+b=-2+9=7或a+b=2+9=11.(2)∵x 是25的平方根 ∴x=±5.∵y 是16的算术平方根 ∴y=4.∵x<y ∴x= -521.解:(1 √2(2)存在.当x=0,1时,始终输不出y 值.理由:0,1的算术平方根是0,1,一定是有理数.(3)当x<0时,筛选器无法运行.(4)x 值不唯一 x=3或x=9.(答案不唯一)22.解: (1)7√57−7(2 )∵3<√11<4,∴a =√11−3,∴2<√7<3,∴b =2,∴|a −b|+√11=|√11 - 3−2|+√11=5−√11+√11=5.(3)∵2<√5<3,∴11<9+√5<12,∵9+√5=x +y,其中x 是整数 且0<y<1 ∴x =11,y =9+√5−11=√5−2,∴x −y =11−(√5−2)=13−√5∴x -y 的相反数为 √5−13.23.解:(1)设面积为400 cm² 的正方形纸片的边长为a cm∴a²=400.又∵a>0 ∴a=20.又∵要裁出的长方形面积为300 cm²∴若以原正方形纸片的边长为长方形的长,则长方形的宽为300÷20=15( cm)∴可以以正方形一边为长方形的长,在其邻边上截取长为15cm 的线段作为宽即可裁出符合要求的长方形.(2)∵长方形纸片的长宽之比为3:2∴设长方形纸片的长为3x cm 则宽为2x cm∴6x²=300,∴x²=50.又∵ x >0,∴x =√50∴长方形纸片的长为 3√50.又∵ √50>√49=7,∴3√50>21>20∴ 小丽不能用这块纸片裁出符合要求的纸片.24.解:(1)4(2)①∵S 等于原长方形OABC 面积的一半 ∴S=6 ∴12-3×AA'=6 解得. AA ′=2.当向左运动时,如图1,( OA ′=OA −AA ′=4−2=2,∴点A'表示的数为2;当向右运动时,如图2,∵ ∴OA ′=OA +AA ′=4+2=6,.∴ 点A'表示的数为6.所以点 A'表示的数.为2 或6.②i 左移时,由题意得O C ⋅OA ′=4,∵OC =3,∴OA ′=43,∴:x =OA −OA ′=4−43= 83;同法可得,右移时, x =83,故当S=4时x =83.ii 如图1,当原长方形OABC 向左移动时,点 D 表示的数为 4−12x,点 E 表示的数为 −12x,由题意可得方程 4−12x +(−12x)=0,解得x=4; 如图2,当原长方形OABC 向右移动时,点D 、E 表示的数都是正数,不符合题意.综上所述,x 的值为4.。

八年级上册数学第十一章检测卷(含答案)

八年级上册数学第十一章检测卷(含答案)

八年级上册数学第十一章检测卷一、选择题(每小题3分,共36分)1.如果三角形的两边长分别为2和7,其周长为偶数,则第三边长为()A.3B.6C.7D.82.下列说法:①△ABC的顶点A就是∠A,②三角形一边的对角也是另外两边的夹角;③三角形的中线就是一顶点与它对边中点连接的线段; ④三角形的角平分线就是三角形内角的平分线,其中正确的说法是()A.①②③④B.②③④C.②③D.②④3.一个三角形的三边分别为3,5,x,则x的取值范围是()A.x>2B.x<5C.3<x<5D.2<x<84.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.都有可能5.如图所示,∠B+∠C=90°,则△ABC的形状是()A.锐角三角形B.钝角三角形C.直角三角形D.等腰三角形6.如图所示,AD是∠CAE的平分线,∠B=35°,∠DAC=65°,则∠ACD的度数为()A.25°B.85°C.60°D.95°第5题图第6题图第7题图第8题图7.如图所示,AB∥CD,AD和BC相交于点O,∠A=35°,∠AOB=75°,则∠C的度数为()A.35°B.40°C.70°D.80°8.如图所示,在△ABC中,∠B=50°,∠C=60°,点D是BC边上的任意一点,DE⊥AB 于E,DF⊥AC于F,则∠EDF的度数为()A.80°B.110°C.130°D.140°9.若一个多边形的内角和是1080°,则这个多边形的边数为()A.6B.7C.8D.1010.一幅美丽的图案,在菜个顶点处由四个边长相等的正多边形镶嵌而成,其中的三个分别为正三角形、正四边形、正六边形,那么另外一个为()A.正三角形B.正四边形C.正五边形D.正六边形11.已知一个三角形的三条边长均为正整数若其中仅有一条边长为5,且它又不是最短边,则满足条件的三角形个数为()A.4B.6C.8D.1012.如图,过正五边形BCDE的顶点B作直线1∥AC,则∠1的度数为()A.36°B.45°C.55°D.60°二、填空题(每空2分,共16分)1.如图,DE∥BC,CD是∠ACB的平分线,∠ACB=50°,则∠EDC 的度数为.2.如图,AD,AE分别是△ABC的中线和高,BD=3cm,AE=4cm,则△ABC的面积为.第1题图第2题图第3题图第4题图3.如图所示,已知AB∥CD,BE平分∠ABC,∠CDE=150°,则∠C=.4.如图所示,在四边形ABCD中,若∠A=∠C=90°,∠B=62°,则∠D的度数为.5.一个多边形的每个外角都相等,且比它的内角小140°,则这个多边形是边形.6.如图所示,BE,CD为两条角平分线,∠ABC=∠ACB,图中与∠1相等的角有个.7.如图所示,直角△ABC中,∠ABC=90°,AB=5cm,BC=12cm,AC=3cm,若BD 是AC边上的高,则BD的长为cm.第6题图第7题图8.如果一个正多边形的一个外角是36°那么该正多边形的边数为.三、作图题(共12分)画出图中的每个多边形的所有对角线.四、解答题(共56分)1.(6分)小颖要制作一个三角形木架,现有两根长度为8cm和5cm的木棒,如果要求第三根木棒的长度是整数,小颖有几种选法?第三根木棒的长度可以是多少?2.(6分)如图所示,AF,AD分别是△ABC的高和角平分线,且∠B=36°,∠C=76°,求∠DAF的度数.3.(6分)如图所示,AD是△ABC的边BC的中线,已知AB=5cm,AC=3cm,求△ABDCBE DCBAC DAFEBDA和△ACD的周长之差.4.(6分)如图所示,AD是△ABC的角平分线,E是BC延长线上一点,∠EAC=∠B.∠ADE与∠DAE相等吗?为什么?5.(6分)如图所示,已知在△ABC中,∠ABC和∠ACB的平分线BD和CE相交于点I, 且∠A=70°,求∠BIC的度数。

人教版八年级上数学《第11章三角形》检测卷(含答案)

人教版八年级上数学《第11章三角形》检测卷(含答案)

第11章检测卷(45分钟100分)一、选择题(本大题共8小题,每小题4分,满分32分)题号12345678答案C B B A C C B A1.点P(-37,-25)位于A.第一象限B.第二象限C.第三象限D.第四象限2.已知A(0,-6),B(0,3),则A,B两点间的距离是A.-9B.9C.-3D.33.在平面直角坐标系中,把△ABC经过平移得到△A'B'C',若A(1,m),B(4,2),点A的对应点A'(3,m+2),则点B对应点B'的坐标为A.(6,5)B.(6,4)C.(5,m)D.(6,m)4.已知在平面直角坐标系中,点P(a,b)在第四象限,则ab的值不可能为A.5B.-1C.-1.5D.-105.如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(4,2),点B的坐标为(-2,-2),则点C的坐标为A.(2,1)B.(-2,1)C.(2,-1)D.(-2,-1)6.将点A(x,1-y)向下平移5个单位长度得到点B(1+y,x),则点(x,y)在平面直角坐标系的A.第一象限B.第二象限C.第三象限D.第四象限7.平面直角坐标系中,点A(-3,2),B(3,4),C(x,y),若AC∥x轴,则线段BC的最小值及此时点C的坐标分别为A.6,(-3,4)B.2,(3,2)C.2,(3,0)D.1,(4,2)8.动点P从点(3,0)出发,沿如图所示方向运动,每当碰到长方形OABC的边时反弹,反弹后的路径与长方形的边的夹角为45°,第1次碰到长方形边上的点的坐标为(0,3),…,第2018次碰到长方形边上的坐标为A.(1,4)B.(5,0)C.(8,3)D.(7,4)二、填空题(本大题共4小题,每小题4分,满分16分)9.已知P点坐标为(2a+1,a-3),若点P在x轴上,则a=3.10.如图,象棋盘上,若“将”位于点(0,0),“车”位于点(-4,0),则“马”位于(3,3).11.同学们玩过五子棋吗?它的比赛规则是只要同色连续的五子先成一条直线就算胜利,如图是两人玩的一盘棋,若白的位置是(1,-5),黑的位置是(2,-4),现轮到黑棋走,你认为黑棋放在(2,0)或(7,-5)位置就获得胜利了.12.在学校,每一位同学都对应着一个学籍号.在数学中也有一些对应.现定义一种对应关系f,使得数对(x,y)和数z是对应的,此时把这种关系记作:f(x,y)=z.对于任意的数m,n(m>n),对应关系f由如表给出:(x,y)(n,n)(m,n)(n,m)f(x,y)n m-n m+n如:f(1,2)=2+1=3,f(2,1)=2-1=1,f(-1,-1)=-1,则使等式f(1+2x,3x)=2成立的x的值是-1.三、解答题(本大题共5小题,满分52分)13.(8分)按下列要求写出点的坐标.(1)点F在第三象限,点F到x轴的距离为4,到y轴的距离为6;(2)直线AB,点A(-2,y),B(x,3).若AB∥x轴,且A,B之间的距离为6个单位,写出点A,B的坐标.解:(1)∵点F在第三象限,点F到x轴距离为4,到y轴距离为6,∴点F的横坐标为-6,纵坐标为-4,∴点F(-6,-4).(2)∵AB∥x轴,∴y=3,∴点A(-2,3),当点B在点A的左边时,x=-2-6=-8,点B的坐标为(-8,3);当点B在点A的右边时,x=-2+6=4,点B的坐标为(4,3).∴点A(-2,3),B(-8,3)或B(4,3).14.(10分)在平面直角坐标系中,把点向右平移2个单位,再向上平移1个单位记为一次“跳跃”.点A(-6,-2)经过第一次“跳跃”后的位置记为A1,点A1再经过一次“跳跃”后的位置记为A2,…,以此类推.(1)写出点A3的坐标;(2)写出点A n的坐标.(用含n的代数式表示)解:(1)根据题意知,A1的坐标为(-6+2,-2+1),即(-4,-1),A2的坐标为(-6+2×2,-2+1×2),即(-2,0),A3的坐标为(-6+2×3,-2+1×3),即(0,1).(2)由(1)知,点A n的坐标为(-6+2n,-2+n).15.(10分)如图,A(-1,0),C(1,4),点B在x轴上,且AB=4.(1)求点B的坐标.(2)求△ABC的面积.(3)在y轴上是否存在点P,使以A,B,P三点为顶点的三角形的面积为7?若存在,请直接写出点P的坐标;若不存在,请说明理由.解:(1)∵A (-1,0),点B 在x 轴上,且AB=4,∴-1-4=-5,-1+4=3,∴点B 的坐标为(-5,0)或(3,0).(2)∵C (1,4),AB=4,∴S △ABC =1AB ·|y C |=1×4×4=8.(3)假设存在,设点P 的坐标为(0,m ),∵S △ABP =12AB ·|y P |=12×4×|m|=7, ∴m=±72.∴在y 轴上存在点P (0,7)或(0,-7),使以A ,B ,P 三点为顶点的三角形的面积为7.16.(12分)对于平面直角坐标系xOy 中的点P (a ,b ),若点P'的坐标为(a+kb ,ka+b )(其中k 为常数,且k ≠0),则称点P'为点P 的“k 属派生点”. 例如:P (1,4)的“2属派生点”为P'(1+2×4,2×1+4),即P'(9,6).(1)点P (-1,6)的“2属派生点”P'的坐标为 (11,4) ;(2)若点P的“3属派生点”P'的坐标为(6,2),则点P的坐标(0,2);(3)若点P在x轴的正半轴上,点P的“k属派生点”为P'点,且线段PP'的长度为线段OP长度的2倍,求k的值.解:(3)∵点P在x轴的正半轴上,∴b=0,a>0,∴点P的坐标为(a,0),点P'的坐标为(a,ka),∴线段PP'的长为P'到x轴距离为|ka|.∵P在x轴正半轴,线段OP的长为a,∴|ka|=2a,即|k|=2,∴k=±2.17.(12分)在平面直角坐标系中(单位长度为1 cm),已知点M(m,0),N(n,0),且√m+m-3+|2m+n|=0.(1)求m,n的值.(2)若点E是第一象限内一点,且EN⊥x轴,点E到x轴的距离为4,过点E作x轴的平行线a,与y轴交于点A.点P从点E处出发,以每秒2 cm的速度沿直线a向左移动,点Q从原点O同时出发,以每秒1 cm的速度沿x轴向右移动.①经过几秒PQ 平行于y 轴?②若某一时刻以A ,O ,Q ,P 为顶点的四边形的面积是10 cm 2,求此时点P 的坐标.解:(1)依题意,得{m +n -3=0,2m +n =0,解得{m =-3,n =6.(2)①设经过x 秒PQ 平行于y 轴,依题意,得6-2x=x ,解得x=2.②当点P 在y 轴右侧时,依题意,得(6-2x )+x 2×4=10, 解得x=1,此时点P 的坐标为(4,4),当点P 在y 轴左侧时,依题意,得(2x -6)+x 2×4=10, 解得x=113,此时点P 的坐标为(-43,4).。

(名师整理)数学八年级上册 《第11章 三角形》单元检测试题(含答案解析)

(名师整理)数学八年级上册 《第11章 三角形》单元检测试题(含答案解析)

第十一章《三角形》单元测试题一、选择题(每小题只有一个正确答案)1.小明有两根3cm、7cm的木棒,他想以这两根木棒为边做一个三角形,还需再选用的木棒长为()A. 3cmB. 4cmC. 9cmD. 10cm2.如图,点D在线段BC的延长线上,则△ABC的外角是()A.∠AB.∠BC.∠ACBD.∠ACD3.如图,以BC为边的三角形有()个.A. 3个B. 4个C. 5个D. 6个4.如图,已知点D是△ABC中BC边上的一点,线段BD将△ABC分为面积相等的两部分,则线段BD是△ABC的一条()A.角平分线B.中线C.高线D.边的垂直平分线5.在△ABC中,∠C是锐角,那么△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.不能确定6.如图所示,△ABC中,∠B=∠C,过AC上一点作DE⊥AC,EF⊥BC,若∠BDE=140°,则∠DEF=()A.55°B.60°C.65°D.70°7.在△ABC中,若∠A-∠B=∠C,则此三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.无法确定8.如图,AD是△ABC的外角∠CAE的平分线,∠B=30°,∠DAE=55°,则∠ACD的度数是()A.80°B.85°C.100°D.110°9.下列角度中不是多边形内角和的只有()A.540°B.720°C.960°D.1080°10.锐角三角形中任意两个锐角的和必大于()A.120°B.110°C.100°D.90°11.从一个n边形中除去一个角后,其余(n-1)个内角和是2580°,则原多边形的边数是()A. 15B. 17C. 19D. 1312.在直角三角形ABC中,∠CAB=90°,∠ABC=72°,AD是∠CAB的角平分线,交边BC于点D,过点C作△ACD中AD边上的高线CE,则∠ECD的度数为()A.63°B.45°C.27°D.18°二、填空题13.下列图形中具有稳定性有(填序号)14.如图所示,则∠α= .15.若a、b、c为三角形的三边,且a、b满足+(b﹣2)2=0,则第三边c的取值范围是.16.在△ABC中,∠BAC=90°,AD是BC边上的高,∠B=35°,则∠CAD=________°.17.当三角形中一个内角α是另一个内角β的一半时,我们称此三角形为“半角三角形”,其中α称为“半角”.如果一个“半角三角形”的“半角”为20°,那么这个“半角三角形”的最大内角的度数为 .三、解答题18.在直角三角形中,一个锐角比另一个锐角的3倍还多10°,求这两个锐角的度数.19.如图所示,已知∠A=20°,∠B=30°,AC⊥DE,求∠BED和∠D的度数.20.如图,已知在△ABC中,CF、BE分别是AB、AC边上的中线,若AE=2,AF=3,且△ABC的周长为15,求BC的长.21.如图,已知∠CDF=∠OEF=90°,CE与OA相交于点F,若∠C=20°,求∠O的大小.22.如图,已知AB∥CD,EF与AB、CD分别相交于点E、F,∠BEF与∠EFD的平分线相交于点P,求证:△EPF为直角三角形.23.如图,AD为△ABC的中线,BE为△ABD的中线.(1)在△BED中作BD边上的高,垂足为F;(2)若△ABC的面积为40,BD=5,则△BDE中BD边上的高为多少?答案解析1.【答案】C【解析】7﹣3=4,7+3=10,因而4<第三根木棒<10,只有C中的9满足.故选C.2.【答案】D【解析】根据三角形的一边与另一边的延长线组成的角叫做三角形的外角,图中∠ACD符合三角形外角的定义,所以正确的选项是D.3.【答案】B【解析】以BC为边的三角形有△BCN,△BCO,△BMC,△ABC.4.【答案】B【解析】由题意知,当线段BD将△ABC分为面积相等的两部分,则线段BD是△ABC的一条中线.5.【答案】D【解析】三角形中最少有两个角是锐角,因此有一个角是锐角时,三角形的形状不能确定.在△ABC中,∠C是锐角,那么△ABC可能是直角三角形,也可能是锐角三角形或钝角三角形,故选D.6.【答案】C【解析】∵DE⊥AC,∠BDE=140°,∴∠A=50°,又∵∠B=∠C,∴∠C==65°,∵EF⊥BC,∴∠DEF=∠C=65°.故选C.7.【答案】B【解析】∵∠A-∠B=∠C,∴∠A=∠B+∠C,∵∠A+∠B+∠C=180°,∴2∠A=180°,∴∠A=90°,∴△ABC是直角三角形,故选B.8.【答案】C【解析】∵∠B=30°,∠DAE=55°,∴∠D=∠DAE-∠B=55°-30°=25°,∴∠ACD=180°-∠D-∠CAD=180°-25°-55°=100°.故选C.9.【答案】C【解析】A、540÷180=3,则是多边形的内角和;B、720÷180=4,则是多边形的内角和;C、960÷180=5,则不是多边形的内角和;D、1080÷180=6,则是多边形的内角和.故选C.10.【答案】D【解析】根据三角形的内角和是180度和锐角三角形的定义可知:锐角三角形中任意两个锐角的和必大于90°.11.【答案】B【解析】2580°÷180°=14…60°,∵除去了一个内角,∴边数是15+2=17.故选B.12.【答案】C【解析】∵∠CAB=90°,AD是∠CAB的角平分线,∴∠CAD=×90°=45°,∵CE⊥AD,∴∠ACE=90°-45°=45°,又∵∠CAB=90°,∠ABC=72°,∴∠ACB=90°-72°=18°,∴∠ECD=∠ACE-∠ACB=45°-18°=27°.故选C.13.【答案】(2),(4)【解析】根据三角形具有稳定性,只要图形分割成了三角形,则具有稳定性14.【答案】105°【解析】如图,∠1=70°,由三角形的外角性质得,∠α=35°+70°=105°.故答案为:105°.15.【答案】1<c<5【解析】由题意得,a2﹣9=0,b﹣2=0,解得a=3,b=2,∵3﹣2=1,3+2=5,∴1<c<5.故答案为:1<c<5.16.【答案】35【解析】∵AD是BC边上的高,∠B=35°,∴∠BAD=90°-∠B=90°-35°=55°,∵∠BAC=90°,∴∠CAD=90°-55°=35°.故答案为:35.17.【答案】120°【解析】∵α=20°,∴β=2α=40°,∴最大内角的度数=180°-20°-40°=120°.故答案为:120°.18.【答案】解:设另一个锐角为x°,则一个锐角为(3x+10)°,由题意得,x+(3x+10)=90,解得x=20,3x+10=3×20+10=70,所以,这两个锐角的度数分别为20°,70°.【解析】设另一个锐角为x°,表示出一个锐角,然后根据直角三角形两锐角互余列方程求解即可.19.【答案】解:∵AC⊥DE,∴∠APE=90°,∴∠BED=∠A+∠APE=20°+90°=110°;在△BDE 中,∠D=180°-∠B-∠BED=180°-20°-110°=50°.【解析】根据垂直的定义可得∠APE=90°,然后利用三角形的一个外角等于与它不相邻的两个内角的和可得∠BED=∠A+∠APE,然后利用三角形的内角和定理列式计算即可求出∠D. 20.【答案】解:∵CF、BE分别是AB、AC边上的中线,AE=2,AF=3,∴AB=2AF=2×3=6,AC=2A E=2×2=4,∵△ABC的周长为15,∴BC=15-6-4=5.【解析】根据三角形中线的定义求出AB、AC,再利用三角形的周长的定义列式计算可得. 21.【答案】解:∵∠CDF=∠OEF=90°,∴∠C+∠AFD=90°,∠O+∠OFE=90°,∵∠OFE=∠CFD (对顶角相等),∴∠O=∠C=20°.【解析】根据直角三角形两锐角互余列方程求出∠O=∠C,从而得解.22.【答案】证明:∵AB∥CD,∴∠BEF+∠EFD=180°,又EP、FP分别是∠BEF、∠EFD的平分线,∴∠PEF=∠BEF,∠EFP=∠EFD,∴∠PEF+∠EFP=(∠BEF+∠EFD)=90°,∴∠P=180°-(∠PEF+∠EFP)=180°-90°=90°,∴△EPF为直角三角形.【解析】要证△EPF为直角三角形,只要证∠PEF+∠EFP=90°,由角平分线的性质和平行线的性质可知,∠PEF+∠EFP=(∠BEF+∠EFD)=90°.23.【答案】解:(1)如图.(2)∵AD为△ABC的中线,BE为△ABD的中线,∴S△ABD=S△ABC,S△BDE=S△ABD,∴S△BD E=×S△ABC=S△ABC,∵△ABC的面积为40,∴S△BDE=×40=10,∵BD=5,∴×5•EF=10,解得EF=4.【解析】(1)根据三角形高线的定义,过点E作BD边上的垂线段即可;(2)根据等底等高的三角形的面积相等可知三角形的中线把三角形分成两个面积相等的三角形,求出△BDE的面积为10,再根据三角形的面积公式列式计算即可得解.。

人教版八年级上册数学第十一章测试卷(附答案)

人教版八年级上册数学第十一章测试卷(附答案)

人教版八年级上册数学第十一章测试卷(附答案)一、单选题(共12题;共36分)1.如图,O是△ABC的∠ABC,∠ACB的平分线的交点,OD∥AB交BC于D,OE∥AC交BC于E,若△ODE 的周长为10厘米,那么BC的长为()A. 8cmB. 9cmC. 11cmD. 10cm2.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是()A. 三角形的稳定性B. 两点之间线段最短C. 两点确定一条直线D. 垂线段最短3.如图,工人师傅砌门时,常用木条EF固定矩形门框ABCD,使其不变形,这种做法的根据是()A. 两点之间直线段最短B. 矩形的稳定性C. 矩形四个角都是直角D. 三角形的稳定性4.如图,国旗上的五角星的五个角的度数是相同的,每一个角的度数都是()A. 30°B. 35°C. 36°D. 42°5.下列说法中错误的是()A. 同一平面内的两直线不平行就相交B. 三角形的外角一定大于它的内角C. 对角线互相平分的四边形是平行四边形D. 圆既是轴对称图形又是中心对称图形6.在一个边形的个外角中,钝角最多有()A. 2个B. 3个C. 4个D. 5个7.设四边形的内角和等于a,五边形的外角和等于b,则a与b的关系是()A. a>bB. a=bC. a<bD. b=a+180°8.一个等腰三角形的两边长分别为2和5,则它的周长为()A. 7B. 9C. 9或12D. 129.如图:△ABC的周长为30cm,把△ABC的边AC对折,使顶点C和点A重合,折痕交BC边于点D,交AC边与点E,连接AD,若AE=4cm,则△ABD的周长是()A. 22cmB. 20 cmC. 18cmD. 15cm10.如图,∠1=100°,∠C=70°,则∠A的大小是()A. 10°B. 20°C. 30°D. 80°11.下列各项中,给出的三条线段不能组成三角形的是()A. a=2m、b=3m、c=5m-1(m>1)B. 三边之比为5:6:10C. 30cm、8cm、10cmD. a+1、a+3、a+2(a>0)12.若3,m,5为三角形三边,化简:得().A. -10B. -2m+6C. -2m-6D. 2m-10二、填空题(共6题;共12分)13.已知等腰三角形的两条边长分别为2和5,则它的周长为________.14.一个正多边形的每一个外角都是36°,则这个正多边形的边数是________.15.如图,a∥b,∠1=40°,∠2=80°,则∠3=________ 度.16.等腰三角形的两边长为4,9.则它的周长为________.17.一个正多边形,它的一个外角等于与它相邻内角的,则这个多边形是________ .18.∠A=65º,∠B=75º,将纸片一角折叠,使点C•落在△ABC外,若∠2=20º,则∠1的度数为________.三、解答题(共3题;共15分)19.如图,AD为△ABC的中线,(1)作△ABD的中线BE;(2)作△BED的BD边上的高EF;(3)若△ABC的面积为60,BD=10,则点E到BC边的距离为多少?20.如图所示模板,按规定AB,CD的延长线相交成80°的角,因交点不在板上不便测量,工人师傅测得∠BAE =122°,∠DCF=155°,此时AB,CD的延长线相交所成的角是否符合规定?为什么?21.一个多边形的内角和是它的外角和的5倍,求这个多边形的边数.四、作图题(共1题;共7分)22.如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′.(1)在图中画出△A′B′C′,并写出点A′、B′、C′的坐标;(2)在y轴上求点P,使得△BCP与△ABC面积相等.五、综合题(共3题;共30分)23.如图,∠MON=90°,点A、B分别在直线OM、ON上,BC是∠ABN的平分线.(1)如图1,若BC所在直线交∠OAB的平分线于点D时,尝试完成①、②两题:①当∠ABO=30°时,∠ADB=________°②当点A、B分别在射线OM、ON上运动时(不与点O重合),试问:随着点A、B的运动,∠ADB的大小会变吗?如果不会,请求出∠ADB的度数;如果会,请求出∠ADB的度数的变化范围;________(2)如图2, 若BC所在直线交∠BAM的平分线于点C时,将△ABC沿EF折叠,使点C落在四边形ABEF内点C′的位置.求∠BEC′+∠AFC′ 的度数.24.如图,在平面直角坐标系中,已知点A(10,0),B(4,8),C(0,8),连接AB,BC,点P在x轴上,从原点O出发,以每秒1个单位长度的速度向点A运动,同时点M从点A出发,以每秒2个单位长度的速度沿折线A﹣B﹣C向点C运动,其中一点到达终点时,另一点也随之停止运动,设P,M两点运动的时间为t秒.(1)求AB长;(2)设△PAM的面积为S,当0≤t≤5时,求S与t的函数关系式,并指出S取最大值时,点P的位置;(3)t为何值时,△APM为直角三角形?25.阅读下面材料:小明遇到这样一个问题:如图1,在△ABC中,∠B=2∠C,AD⊥BC于点D,求证:BC=AB+2BD.小明利用条件AD⊥BC,在CD上截取DH=BD,如图2,连接AH,既构造了等腰△ABH,又得到BH=2BD,从而命题得证。

人教版数学八年级上册第十一章《三角形》测试卷(含答案)

人教版数学八年级上册第十一章《三角形》测试卷(含答案)

人教版数学八年级上册第十一章《三角形》测试卷(含答案)班级姓名一、选择题(每小题3分,共30分)1.如图所示,∠BAC为钝角,AD⊥BC于D,BE⊥AC于E,CF⊥AB于F,△ABC中AC边上的高为()A.ADB.BEC.CFD.AF2.(2019贵州毕节中考)在下列长度的三条线段中,不能组成三角形的是()A.2 cm,3 cm,4 cmB.3 cm,6 cm,6 cmC.2 cm,2 cm,6 cmD.5 cm,6 cm,7 cm3.(2020辽宁沈阳中考)如图,直线AB∥CD,且AC⊥CB于点C,若∠BAC=35°,则∠BCD 的度数为()A.65°B.55°C.45°D.35°4.(2021湖北仙桃、潜江、天门、江汉油田中考)如图,在△ABC中,∠C=90°,点D在AC 上,DE∥AB,若∠CDE=160°,则∠B的度数为()A.40°B.50°C.60°D.70°5.如图,若∠A=70°,∠B=40°,∠C=32°,则∠BDC=()A.102°B.110°C.142°D.148°6.(2022独家原创)如图,在△ABC中,AD平分∠BAC,点E在射线BC上,EF⊥AD于F,∠B=40°,∠ACE=72°,则∠E的度数为()A.68°B.56°C.34°D.32°7.(2021台湾省中考改编)如图,四边形ABCD中,∠1、∠2、∠3分别为四边形ABCD 的外角.判断下列大小关系何者正确.()A.∠1+∠3=∠ABC+∠DB.∠1+∠3<∠ABC+∠DC.∠1+∠2+∠3=360°D.∠1+∠2+∠3>360°8.如图,在△ABC中,AE平分∠BAC交BC于点E,过点A作AD⊥BC,垂足为D,过点E 作EF⊥AC,垂足为F.若∠DAE=15°,∠AEF=50°,则∠B的度数为()A.55°B.65°C.75°D.80°9.(2020黑龙江牡丹江期中)如图,△ABC的面积是1,AD是△ABC的中线,AF=12FD,CE= 12EF,则△DEF的面积为()A.12B.34C.827D.2910.(2020山东青岛市北期末)如图,已知△ABC中,∠B=α,∠C=β(α>β),AD是BC边上的高,AE是∠BAC的平分线,则∠DAE的度数为()A.α-βB.2(α-β)C.α-2βD.12(α-β)二、填空题(每小题3分,共24分)11.(2022江西南昌十中期末)如图,邱叔叔家的凳子坏了,于是他给凳子加了两根木条,这样凳子就比较牢固了,他所应用的数学原理是.12.(2021湖南郴州中考)一个多边形的每一个外角都等于60°,则这个多边形的内角和为度.13.(2021江苏淮安中考)一个三角形的两边长分别是1和4,若第三边的长为偶数,则第三边的长是.14.(2021天津南开田家炳中学期中)将一副分别含有30°和45°角的两个直角三角板拼成如图所示的图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是.15.(2021河南郑州五校联考)如图,三角形纸片ABC中,∠A=75°,∠B=72°.将三角形纸片的一角折叠,使点C落在△ABC内,如果∠1=32°,那么∠2=.16.(2021福建厦门三中期末)如图,在△ABC中,∠ACB=90°,AD平分∠CAB,交边BC于点D,过点D作DE⊥AB,垂足为E.若∠CAD=20°,则∠EDB的度数是.17.(教材P12变式题)在△ABC中,∠ABC=∠C=2∠A,BD是∠ABC的平分线,则∠ADB 的度数为.18.(2022福建泉州七中期中)如图,在△ABC中,∠ACB=90°,CE是△ABC的角平分线,CD⊥AB,垂足为D,延长CE与外角∠ABG的平分线交于点F.若∠A=60°,则∠DCE+∠F=.三、解答题(共46分)19.(6分)如图所示,已知AD是△ABC的边BC上的中线.(1)作出△ABD的边BD上的高;(2)若△ABC的面积为10,求△ADC的面积;(3)若△ABD的面积为6,且BD边上的高为3,求BC的长.20.(6分)如图,已知△ABC的周长为33 cm,AD是BC边上的中线,AB=3AC.2(1)当AC=10 cm时,求BD的长;(2)若AC=12 cm,能否求出DC的长?为什么?21.(6分)如图,在△ABC中,BD是AC边上的高,∠A=70°.(1)求∠ABD的度数;(2)CE平分∠ACB交BD于点E,∠BEC=118°,求∠ABC的度数.22.(8分)如图,在△ABC中,∠B=2∠C,AD⊥BC于点D,AE平分∠BAC交BC于点E.(1)若∠C=40°,求∠DAE的度数;(2)若EF⊥AE交AC于点F,求证:∠C=2∠FEC.23.(2022吉林临江期末)(10分)我们探究过三角形内角和等于180°,四边形内角和等于360°,请解决下面的问题:(1)如图1,∠A+∠B+∠C+∠D=180°,则∠AOB+∠COD=(直接写出结果);(2)连接AD、BC,若AO、BO、CO、DO分别是四边形ABCD的四个内角的平分线.①如图2,如果∠AOB=110°,求∠COD的度数;②如图3,若∠AOD=∠BOC,AB与CD平行吗?请写出理由.24.(2022山东济南外国语学校期末)(10分)已知∠MON=90°,点A、B分别在OM、ON 上运动(不与点O重合).(1)如图1,AE、BE分别是∠BAO和∠ABO的平分线,随着点A、点B的运动,∠AEB=;(2)如图2,若BC是∠ABN的平分线,BC的反向延长线与∠OAB的平分线交于点D.①若∠BAO=70°,则∠D=°;②随着点A、B的运动,∠D的大小会变吗?如果不会,求∠D的度数;如果会,请说明理由;(3)在图2的基础上,如果∠MON=α,其余条件不变,随着点A、B的运动(如图3),求∠D 的度数.(用含α的式子表示)答案全解全析1.B 三角形的高是过一个顶点作垂直于它对边所在的直线的线段,所以△ABC 中,AC 边上的高是线段BE.故选B.2.C 选项A,2+3>4,能组成三角形;选项B,3+6>6,能组成三角形;选项C,2+2<6,不能组成三角形;选项D,5+6>7,能组成三角形.故选C.3.B ∵AC ⊥CB,∴∠ACB=90°, ∴∠ABC=90°-∠BAC=90°-35°=55°, ∵AB ∥CD,∴∠BCD=∠ABC=55°, 故选B.4.D ∵∠CDE=160°, ∴∠ADE=180°-160°=20°, ∵DE ∥AB,∴∠A=∠ADE=20°,∴∠B=180°-∠A-∠C=180°-20°-90°=70°.故选D.5.C 如图,连接AD 并延长,则∠BDE=∠BAD+∠B,∠CDE=∠CAD+∠C, ∴∠BDC=∠BDE+∠CDE=∠BAD+∠B+∠CAD+∠C=∠BAC+∠B+∠C=142°, 故选C.6.C 由题图知∠ACE=∠B+∠BAC,∠B=40°,∠ACE=72°, ∴∠BAC=∠ACE-∠B=72°-40°=32°. ∵AD 平分∠BAC,∴∠BAD=12∠BAC=12×32°=16°, ∴∠ADE=∠BAD+∠B=16°+40°=56°. ∵EF ⊥AD,∴∠E=90°-∠ADE=90°-56°=34°.7.A 如图,连接BD,∵∠1=∠ABD+∠ADB,∠3=∠DBC+∠BDC,∴∠1+∠3=∠ABD+∠ADB+∠DBC+∠BDC=∠ABC+∠ADC, ∵四边形的外角和是360°, ∴∠1+∠2+∠3<360°.故选A. 8.B ∵AD ⊥BC,∠DAE=15°, ∴∠AED=90°-15°=75°, ∵∠AEF=50°,∴∠FEC=180°-∠AEF-∠AED=55°, ∵EF ⊥AC,∴∠EAF=90°-∠AEF=40°,∠C=90°-∠FEC=35°, ∵AE 平分∠BAC,∴∠BAC=2∠EAC=80°, ∵∠B+∠C+∠BAC=180°,∴∠B=180°-∠BAC-∠C=180°-80°-35°=65°. 9.D ∵△ABC 的面积是1,AD 是△ABC 的中线, ∴S △ACD =12S △ABC =12, ∵AF=12FD,∴DF=23AD, ∴S △CDF =23S △ACD =23×12=13,∵CE=12EF,∴EF=23CF,∴S △DEF =23S △CDF =23×13=29,故选D.10.D 在△ABC 中,∠B=α,∠C=β,∴∠BAC=180°-∠B-∠C=180°-α-β,∵AE 是∠BAC 的平分线,∴∠EAC=12∠BAC=90°-12(α+β).在Rt △ADC 中,∠DAC=90°-∠C=90°-β,∴∠DAE=∠DAC-∠EAC=90°-β-90°+12(α+β)=12(α-β),故选D. 11.三角形的稳定性解析 给凳子加了两根木条之后形成了三角形,所以“这样凳子就比较牢固了”的数学原理是三角形的稳定性. 12.720解析 ∵多边形的每一个外角都等于60°, ∴它的边数为360°÷60°=6, ∴它的内角和为180°×(6-2)=720°, 故答案为720. 13.4解析 设第三边长为a,根据三角形的三边关系知, 4-1<a<4+1,即3<a<5,又∵第三边的长是偶数,∴a 为4. 故答案为4. 14.15°解析 ∵Rt △CDE 中,∠C=90°,∠E=30°, ∴∠BDF=∠C+∠E=90°+30°=120°, ∵△BDF 中,∠B=45°,∠BDF=120°, ∴∠BFD=180°-45°-120°=15°.故答案为15°. 15.34°解析 如图,延长AE 、BF 交于点C',连接CC'.在△ABC'中,∠AC'B=180°-72°-75°=33°,∵∠ECF=∠AC'B,∠1=∠ECC'+∠EC'C,∠2=∠FCC'+∠FC'C,∴∠1+∠2=∠ECC'+∠EC 'C+∠FCC'+∠FC'C=2∠AC'B=66°,∵∠1=32°,∴∠2=66°-32°=34°,故答案为34°.16.40°解析∵AD平分∠CAB,∠CAD=20°,∴∠CAB=2∠CAD=40°,∵∠ACB=90°,∴∠B=90°-40°=50°,∵DE⊥AB,∴∠DEB=90°,∴∠EDB=90°-50°=40°,故答案为40°.17.108°解析∵在△ABC中,∠ABC=∠C=2∠A,∴令∠A=x,则∠ABC=∠C=2x,∵∠A+∠ABC+∠C=180°,∴x+2x+2x=180°,解得x=36°,∴∠A=36°,∠ABC=72°.∵BD是∠ABC的平分线,∠ABC=36°,∴∠ABD=12∴∠ADB=180°-∠A-∠ABD=180°-36°-36°=108°.18.45°解析∵CD⊥AB,∠A=60°,∴∠ADC=90°,∠ACD=30°,∵CE平分∠ACB,∠ACB=90°,∠ACB=45°,∴∠ACE=∠ECB=12∴∠DCE=∠ACE-∠ACD=45°-30°=15°,∵∠ABG=∠A+∠ACB=150°,BF平分∠ABG,∴∠FBG=1∠ABG=75°,2∵∠FBG=∠F+∠FCB,∴∠F=75°-45°=30°.∴∠DCE+∠F=15°+30°=45°.19.解析(1)如图所示,虚线即为所求.×10=5.(2)∵AD是△ABC的边BC上的中线,△ABC的面积为10,∴△ADC的面积=12(3)∵AD是△ABC的边BC上的中线,∴BD=CD,∵△ABD的面积为6,∴△ABC的面积为12,∵BD边上的高为3,∴BC=12×2÷3=8.20.解析(1)∵AB=3AC,AC=10 cm,∴AB=15 cm.2又∵△ABC的周长是33 cm,∴BC=33-10-15=8(cm).∵AD是BC边上的中线,∴BD=1BC=4 cm.2(2)不能.理由如下:AC,AC=12 cm,∴AB=18 cm.∵AB=32又∵△ABC的周长是33 cm,∴BC=33-12-18=3(cm).∵AC+BC=15<18,∴不能构成三角形,则不能求出DC的长.21.解析(1)∵BD是AC边上的高,∴∠ADB=∠BDC=90°,∵∠A=70°,∴∠ABD=90°-70°=20°.(2)∵∠BEC=∠BDC+∠DCE,且∠BEC=118°,∠BDC=90°,∴∠DCE=118°-90°=28°,∵CE 平分∠ACB,∴∠DCB=2∠DCE=56°, ∴∠DBC=90°-56°=34°,∴∠ABC=∠ABD+∠DBC=20°+34°=54°. 22.解析 (1)∵∠C=40°,∠B=2∠C, ∴∠B=80°,∴∠BAC=180°-80°-40°=60°,∵AE 平分∠BAC,∴∠EAC=12∠BAC=30°,∵AD ⊥BC,∴∠ADC=90°, ∴∠DAC=90°-40°=50°,∴∠DAE=∠DAC-∠EAC=50°-30°=20°. (2)证明:如图,∵EF ⊥AE,∴∠AEF=90°, ∴∠AED+∠FEC=90°,∵∠DAE+∠AED=90°,∴∠DAE=∠FEC, ∵AE 平分∠BAC,∴∠EAC=12∠BAC=12(180°-∠B-∠C)=12(180°-3∠C)=90°-32∠C, ∵∠DAE=∠DAC-∠EAC,∴∠DAE=∠DAC-(90°-32∠C)=90°-∠C-90°+32∠C=12∠C, ∴∠FEC=12∠C,∴∠C=2∠FEC.23.解析(1)∵∠AOB+∠COD+∠A+∠B+∠C+∠D=180°×2=360°,∠A+∠B+∠C+∠D=180°, ∴∠AOB+∠COD=360°-180°=180°. 故答案为180°.(2)①∵AO 、BO 、CO 、DO 分别是四边形ABCD 的四个内角的平分线, ∴∠OAB=12∠DAB,∠OBA=12∠CBA,∠OCD=12∠BCD,∠ODC=12∠ADC,∴∠OAB+∠OBA+∠OCD+∠ODC=12×360°=180°, 在△OAB 中,∠OAB+∠OBA=180°-∠AOB, 在△OCD 中,∠OCD+∠ODC=180°-∠COD, ∴180°-∠AOB+180°-∠COD=180°, ∴∠AOB+∠COD=180°.∵∠AOB=110°,∴∠COD=180°-110°=70°. ②AB ∥CD.理由如下:∵AO 、BO 、CO 、DO 分别是四边形ABCD 的四个内角的平分线, ∴∠OAB=12∠DAB,∠OBA=12∠CBA,∠OCD=12∠BCD,∠ODC=12∠ADC,∴∠OAB+∠OBA+∠OCD+∠ODC=12×360°=180°,在△OAB 中,∠OAB+∠OBA=180°-∠AOB, 在△OCD 中,∠OCD+∠ODC=180°-∠COD, ∴180°-∠AOB+180°-∠COD=180°, ∴∠AOB+∠COD=180°.∴∠AOD+∠BOC=360°-(∠AOB+∠COD)=360°-180°=180°, ∵∠AOD=∠BOC,∴∠AOD=∠BOC=90°.在△AOD 中,∠DAO+∠ADO=180°-∠AOD=180°-90°=90°,∵∠DAO=12∠DAB,∠ADO=12∠ADC,∴12∠DAB+12∠ADC=90°,∴∠DAB+∠ADC=180°,∴AB ∥CD.24.解析 (1)∵∠MON=90°,∴∠OAB+∠OBA=90°, ∵AE 、BE 分别是∠BAO 和∠ABO 的平分线,∴∠BAE=12∠BAO,∠ABE=12∠ABO,∴∠BAE+∠ABE=12(∠BAO+∠ABO)=45°, ∴∠AEB=180°-45°=135°,故答案为135°.(2)①∵∠AOB=90°,∠BAO=70°, ∴∠ABO=20°,∠ABN=160°, ∵BC 是∠ABN 的平分线,∴∠OBD=∠CBN=12×160°=80°,∵AD 平分∠BAO,∴∠DAB=35°,∴∠D=180°-∠ABD-∠BAD=180°-∠OBD-∠ABO-∠BAD=180°-80°-20°-35°=45°, 故答案为45.②∠D 的度数不随A 、B 的移动而发生变化. 设∠BAD=x,∵AD 平分∠BAO,∴∠BAO=2x, ∵∠AOB=90°,∴∠ABN=180°-∠ABO=∠AOB+∠BAO=90°+2x, ∵BC 平分∠ABN,∴∠ABC=12∠ABN=45°+x, ∵∠ABC=180°-∠ABD=∠D+∠BAD, ∴∠D=∠ABC-∠BAD=45°+x-x=45°. (3)设∠BAD=x,∵AD 平分∠BAO,∴∠BAO=2x, ∵∠AOB=α,∴∠ABN=180°-∠ABO=∠AOB+∠BAO=α+2x, ∵BC 平分∠ABN,∴∠ABC=12α+x, ∵∠ABC=180°-∠ABD=∠D+∠BAD, ∴∠D=∠ABC-∠BAD=12α+x -x=12α.。

人教版八年级数学上册第11章《三角形》达标检测卷(含答案)

人教版八年级数学上册第11章《三角形》达标检测卷(含答案)

人教版八年级数学上册第十一章《三角形》达标检测卷(含答案)(总分120分,时间:90分钟)题号一二三总分得分一、选择题(每题3分,共30分)1.现有3 cm,4 cm,7 cm,9 cm长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是()A.1个B.2个C.3个D.4个2.下列判断:①有两个内角分别为50°和20°的三角形一定是钝角三角形;②直角三角形中两锐角之和为90°;③三角形的三个内角中不可以有三个锐角;④有一个外角是锐角的三角形一定是钝角三角形,其中正确的有()A.1个B.2个C.3个D.4个3.图中能表示△ABC的BC边上的高的是()A B C D4.如图,在△ABC中,∠A=40°,点D为AB延长线上一点,且∠CBD=120°,则∠C的度数为()A.40°B.60°C.80°D.100°(第4题)(第7题) (第9题) (第10题) 5.等腰三角形的周长为13 cm,其中一边长为3 cm,则该等腰三角形的底边长为()A.7 cm B.3 cm C.9 cm D.5 cm6.八边形的内角和为()A.180°B.360°C.1 080°D.1 440°7.如图,直线l1∥l2,若∠1=140°,∠2=70°,则∠3的度数是()A.60°B.65°C.70°D.80°8.若一个多边形的内角和小于其外角和,则这个多边形的边数是()A.3 B.4 C.5 D.69.如图,在△ABC中,∠CAB=52°,∠ABC=74°,AD⊥BC于D,BE⊥AC于E,AD与BE交于F,则∠AFB的度数是()A.126°B.120°C.116°D.110°10.如图,过正五边形ABCDE的顶点A作直线l∥BE,则∠1的度数为()A.30°B.36°C.38°D.45°二、填空题(每题3分,共30分)11.若一个三角形的三个内角度数之比为4∶3∶2,则这个三角形的最大内角为________度.12.如图,生活中都把自行车的几根梁做成三角形的支架,这是因为三角形具有________性.(第12题)13.已知△ABC的两条边长分别为3和5,且第三边的长c为整数,则c的取值可以为________.14.如图,在Rt△ABC中,∠ABC=90°,AB=12 cm,BC=5 cm,AC=13 cm,若BD是AC边上的高,则BD的长为________cm.(第14题) (第15题)15.如图,点D在△ABC的边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE的大小是______度.16.如果一个多边形的内角和为其外角和的4倍,那么从这个多边形的一个顶点出发共有________条对角线.(第17题)17.如图是一副三角尺拼成的图案,则∠CEB=________°.18.如图,∠1+∠2+∠3+∠4+∠5+∠6=________.(第18题)19.当三角形中一个内角α是另一个内角β的一半时,我们称此三角形为“半角三角形”,其中α称为“半角”.如果一个“半角三角形”的“半角”为20°,那么这个“半角三角形”的最大内角的度数为________.20.如图,D,E,F分别是△ABC的边AB,BC,AC上的中点,连接AE,BF,CD 交于点G,AG∶GE=2∶1,△ABC的面积为6,设△BDG的面积为S1,△CGF的面积为S2,则S1+S2=________.(第20题)三、解答题(21、22题每题6分,23、24题每题8分,25、26题每题10分,27题12分,共60分)21.如图,CD是△ABC的角平分线,DE∥BC,∠AED=70°,求∠EDC的度数.(第21题)22.如图.(1)在△ABC 中,BC 边上的高是________; (2)在△AEC 中,AE 边上的高是________;(3)若AB =CD =2 cm ,AE =3 cm ,求△AEC 的面积及CE 的长.(第22题)23.如图,将六边形纸片ABCDEF 沿虚线剪去一个角(∠BCD)后,得到∠1+∠2+∠3+∠4+∠5=440°,求∠BGD 的度数.(第23题)24.在等腰三角形ABC 中,AB =AC ,一边上的中线BD 将这个三角形的周长分为18和15两部分,求这个等腰三角形的底边长.25.如图,在△ABC 中,∠1=100°,∠C =80°,∠2=12∠3,BE 平分∠ABC.求∠4的度数.(第25题)26.已知等腰三角形的三边长分别为a ,2a -1,5a -3,求这个等腰三角形的周长. 27.已知∠MON =40°,OE 平分∠MON ,点A ,B ,C 分别是射线OM ,OE ,ON 上的动点(A ,B ,C 不与点O 重合),连接AC 交射线OE 于点D.设∠OAC =x°.(1)如图(1),若AB ∥ON ,则①∠ABO 的度数是________;②当∠BAD =∠ABD 时,x =________;当∠BAD =∠BDA 时,x =________. (2)如图(2),若AB ⊥OM ,则是否存在这样的x 的值,使得△ADB 中有两个相等的角?若存在,求出x 的值;若不存在,说明理由.(第27题)答案一、1.B 2.C 3.D4.C 点拨:∵∠CBD 是△ABC 的外角,∴∠CBD =∠C +∠A.又∵∠A =40°,∠CBD =120°,∴∠C =∠CBD -∠A =120°-40°=80°.5.B6.C 点拨:八边形的内角和为(8-2)×180°=1 080°. 7.C8.A 点拨:设这个多边形的边数为n ,依题意有(n -2)×180°<360°,即n <4.所以n =3.9.A 点拨:在△ABC 中,∠CAB =52°,∠ABC =74°,∴∠ACB =180°-∠CAB -∠ABC =180°-52°-74°=54°.在四边形EFDC 中,∵AD ⊥BC ,BE ⊥AC ,∴∠ADC =90°,∠BEC =90°,∴∠DFE =360°-∠DCE -∠FDC -∠FEC =360°-54°-90°-90°=126°.∴∠AFB =∠DFE =126°.10.B 点拨:∵五边形ABCDE 是正五边形,∴∠BAE =(5-2)×180°÷5=108°.∴∠AEB =(180°-108°)÷2=36°.∵l ∥BE ,∴∠1=∠AEB =36°.故选B .二、11.80 12.稳定 13.3,4,5,6,714.6013 点拨:由等面积法可知AB·BC =BD·AC ,所以BD =AB·BC AC =12×513=6013(cm ). 15.60 点拨:∵∠ACD 是△ABC 的外角,∴∠ACD =∠A +∠B =80°+40°=120°.又∵CE 平分∠ACD ,∴∠ACE =12∠ACD =12×120°=60°.16.7 17.10518.360° 点拨:如图,∵∠1+∠5=∠8,∠4+∠6=∠7,∠2+∠3+∠7+∠8=360°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.(第18题)19.120°20.2 点拨:∵E 为BC 的中点,∴S △ABE =S △ACE =12S △ABC =3.∵A G ∶GE =2∶1,△BGA 与△BEG 为等高三角形,∴S △BGA ∶S △BEG =2∶1,∴S △BGA =2.又∵D 为AB 的中点,∴S △BGD =12S △BGA =1.同理得S △CGF =1.∴S 1+S 2=2.三、21.解:∵DE ∥BC ,∴∠ACB =∠AED =70°.∵CD 平分∠ACB ,∴∠BCD =12∠ACB =35°.又∵DE ∥BC ,∴∠EDC =∠BCD =35°.22.解:(1)AB ;(2)C D ;(3)∵AE =3 cm ,CD =2 cm ,∴S △AEC =12AE·CD =12×3×2=3(cm 2).∵S △AEC =12CE·AB =3 cm 2,AB =2 cm ,∴CE =3 cm .23.解:∵六边形ABCDEF 的内角和为180°×(6-2)=720°,且∠1+∠2+∠3+∠4+∠5=440°,∴∠GBC +∠C +∠CDG =720°-440°=280°,∴∠BGD =360°-(∠GBC +∠C +∠CDG)=80°.24.解:设这个等腰三角形的腰长为a ,底边长为b. ∵D 为AC 的中点, ∴AD =DC =12AC =12a.根据题意得⎩⎨⎧32a =18,12a +b =15,或⎩⎨⎧32a =15,12a +b =18.解得⎩⎪⎨⎪⎧a =12,b =9,或⎩⎪⎨⎪⎧a =10,b =13.又∵三边长为12,12,9和10,10,13均可以构成三角形. ∴这个等腰三角形的底边长为9或13.25.解:∵∠1=∠3+∠C ,∠1=100°,∠C =80°,∴∠3=20°.∵∠2=12∠3,∴∠2=10°,∴∠B AC =∠2+∠3=10°+20°=30°,∴∠ABC =180°-∠C -∠BAC =180°-80°-30°=70°.∵BE 平分∠ABC ,∴∠ABE =35°.∵∠4=∠2+∠ABE ,∴∠4=45°.26.解:当底边长为a 时,2a -1=5a -3,即a =23,则三边长为23,13,13,不满足三角形三边关系,不能构成三角形;当底边长为2a -1时,a =5a -3,即a =34,则三边长为12,34,34,满足三角形三边关系.能构成三角形,此时三角形的周长为12+34+34=2;当底边长为5a-3时,2a-1=a,即a=1,则三边长为2,1,1,不满足三角形三边关系,不能构成三角形.所以这个等腰三角形的周长为2.27.解:(1)①20°②120;60(2)①当点D在线段OB上时,若∠BAD=∠ABD,则x=20.若∠BAD=∠BDA,则x =35.若∠ADB=∠ABD,则x=50.②当点D在射线BE上时,因为∠ABE=110°,且三角形的内角和为180°,所以只有∠BAD=∠BDA,此时x=125,综上可知,存在这样的x的值,使得△ADB中有两个相等的角,且x=20,35,50或125.。

八年级上册数学第十一章测试卷(含答案)

八年级上册数学第十一章测试卷(含答案)

八年级上册数学第十一章测试卷一.选择题(本题共10小题,每小题3分,计30分)1.如图,三角形的个数是()A.2个B.3个C.4个D.5个第1题第2题2.如图,下列关于△ABC的外角的说法正确的是()A∠HBA是△ABC的外角 B.∠HBG是△ABC的外角C.∠DCE是△ABC的外角D.∠GBA是△ABC的外角3.下列各组数可能是一个三角形的边长的是()A.1,2,4B.4,5,9C.4,6,8D.5,5,114.不一定在三角形内部的线段是()A.三角形的角平分线B.三角形的中线C.三角形的高D.不存在5.若一个多边形的每一个外角都等于40°,则这个多边形的边数是()A.7B.8C.9D.106.若过多边形的每个顶点都可以引m条对角线,则这个多边形的边数为()A. mB.m+3C.m+2D. 2m7.如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=1280,∠C=360,则∠DAE 的度数是()A.10°B.12°C.15°D.18°第7题第8题8.如图,若∠A=27°,∠B=45°,∠C=38°,则∠DFE等于()A.120°B.115°C.110°D.105°9.如图,已知BD是△ABC的中线,AB=5,BC=3,△ABD和△BCD的周长的差是()A.2B.3 C .6 D.不能确定第9题第10题10.如图所示,在△ABC中,∠1=∠2,G为AD的中点,延长BG交AC于E,且F为AB上一点,CF⊥AD于H,下列判断正确的有()①AD是△ABE的角平分线;②BE是△ABD的边AD上的中线③CH为△ACD的边AD上的高A.0个B.1个C.2个D.3个二、填空题(本題共5小题,每小题3分,计15分)1.如图,木工师傅在院子的木板上钉了一个加固板,从数学角度看这样做的道理是 。

人教版 八年级数学 上册第11--13章检测题含答案)

人教版 八年级数学 上册第11--13章检测题含答案)

人教版八年级数学上册第十一章检测题11.1 与三角形有关的线段一、选择题(本大题共12道小题)1. 三角形按边分类可分为()A.不等边三角形、等边三角形B.等腰三角形、等边三角形C.不等边三角形、等腰三角形、等边三角形D.不等边三角形、等腰三角形2. 人字梯中间一般会设计一“拉杆”,这样做的道理是()A.两点之间,线段最短B.垂线段最短C.两直线平行,内错角相等D.三角形具有稳定性3. 已知在△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值()A. 11B. 5C. 2D. 14. 课堂上,老师把教学用的两块三角尺叠放在一起,得到如图所示的图形,其中三角形的个数为()A.2B.3C.5D.65. 已知等腰三角形的腰和底的长分别是一元二次方程x2-6x+8=0的根,则该三角形的周长为()A. 8B. 10C. 8或10D. 126. 如图,已知AD是△ABC的中线,且△ABD的周长比△ACD的周长大3 cm,则AB与AC的差为()A.2 cm B.3 cm C.4 cm D.6 cm7. 如图,已知P为直线l外一点,点A,B,C,D在直线l上,且PA>PB>PC >PD,则下列说法正确的是()A.线段PD的长是点P到直线l的距离B.线段PC可能是△PAB的高C.线段PD可能是△PBC的高D.线段PB可能是△PAC的高8. 下列关于三角形的分类,有如图K-1-4所示的甲、乙两种分法,则()A.甲、乙两种分法均正确B.甲分法正确,乙分法错误C.甲分法错误,乙分法正确D.甲、乙两种分法均错误9. 如图,六根木条钉成一个六边形框架ABCDEF,要使框架稳固且不活动,至少还需要添加木条()A.1根B.2根C.3根D.4根10. 长为9,6,5,4的四根木条,选其中三根组成三角形,选法有()A.1种B.2种C.3种D.4种11. 将一个三角形纸片剪开分成两个三角形,这两个三角形不可能()A.都是直角三角形B.都是钝角三角形C.都是锐角三角形D.是一个直角三角形和一个钝角三角形12. 某木材市场上木棒规格与对应单价如下表:规格 1 m 2 m 3 m 4 m 5 m 6 m单价(元/根) 10 15 20 25 30 35小明的爷爷要做一个三角形的木架养鱼用,现有两根长度分别为3 m和5 m的木棒,还需要到该木材市场去购买一根木棒,则小明的爷爷至少带的钱数应为()A.10元B.15元C.20元D.25元二、填空题(本大题共6道小题)13. 如图,自行车的主框架采用了三角形结构,这样设计的依据是________________.14. 如图,AE是△ABC的中线,已知EC=8,DE=3,则BD=________.15. 已知一个等腰三角形两边的长分别为3和6,则该等腰三角形的周长是.16. 如图,在△ABC中,AD⊥BC于点D,点E在CD上,则图中以AD为高的三角形有______个.17. 已知三角形的三边长分别为3,8,x,若x为偶数,则x=____________.18. 如图,将△ABC沿直线DE折叠,使点C与点A重合,已知AB=7,BC=6,则△BCD的周长为________.三、解答题(本大题共3道小题)19. 如图,用钉子把木棒AB,BC和CD分别在端点B,C处连接起来,AB,CD 可以转动,用橡皮筋把AD连接起来,橡皮筋始终绷直,设橡皮筋AD的长是x cm.(1)若AB=5 cm,CD=3 cm,BC=11 cm,求x的最大值和最小值;(2)在(1)的条件下要围成一个四边形,你能求出x的取值范围吗?20. 数学活动课上,老师让同学们用长度分别是20 cm,90 cm,100 cm的三根木棒搭一个三角形的木架,小明不小心把100 cm的木棒折去了35 cm,他发现:用折断后剩下的木棒与另两根木棒怎么也搭不成三角形.(1)你知道为什么吗?(2)100 cm长的木棒至少折去多长后剩余的部分就不能与另两根木棒搭成三角形?21. 观察探究观察并探求下列各问题.(1)如图①,在△ABC中,P为边BC上一点,则BP+PC________AB+AC(填“>”“<”或“=”);(2)将(1)中的点P移到△ABC内,如图②,试观察比较△BPC的周长与△ABC的周长的大小,并说明理由;(3)将(2)中的点P变为两个点P1,P2,如图③,试观察比较四边形BP1P2C的周长与△ABC的周长的大小,并说明理由.人教版八年级数学11.1 与三角形有关的线段课时训练-答案一、选择题(本大题共12道小题)1. 【答案】D2. 【答案】D3. 【答案】B4. 【答案】C5. 【答案】B【解析】解一元二次方程x2-6x+8=0,得x1=2,x2=4.当三角形三边为2,2,4时,∵2+2=4,∴不符合三边关系,应舍去;当三角形三边为2,4,4时,∵2+4>4,符合三边关系,∴三角形的周长为10,故选B.6. 【答案】B[解析] ∵AD是△ABC的中线,∴BD=CD.∴△ABD与△ACD的周长之差=(AB+AD+BD)-(AC+AD+CD)=AB-AC. ∵△ABD的周长比△ACD的周长大3 cm,∴AB与AC的差为3 cm.7. 【答案】C[解析] 由于PA>PB>PC>PD,因此PD可能是钝角三角形PBC 中BC边上的高.8. 【答案】C9. 【答案】C[解析] 添加3根木条以后成为如右所示图形,其由若干三角形组成,具有稳定性.10. 【答案】C11. 【答案】C[解析] 如图①,沿虚线剪开即可得到两个直角三角形.如图②,钝角三角形沿虚线剪开即可得到两个钝角三角形.如图③,直角三角形沿虚线剪开即可得到一个直角三角形和一个钝角三角形.因为剪开的边上的两个角互补,故这两个三角形不可能都是锐角三角形.12. 【答案】C[解析] 由三角形三边大小关系可得第三根木棒的长度应该大于2 m 且小于8 m,所以满足要求的木棒有3 m,4 m,5 m,6 m,其中买3 m木棒用钱最少,为20元.二、填空题(本大题共6道小题)13. 【答案】三角形具有稳定性14. 【答案】5[解析] ∵AE是△ABC的中线,EC=8,∴BE=EC=8.∵DE=3,∴BD=BE-DE=8-3=5.15. 【答案】15[解析] 若腰长为3,3+3=6,∴3,3,6不能组成三角形;若腰长为6,3+6=9>6,∴3,6,6能组成三角形,该三角形的周长为3+6+6=15.16. 【答案】617. 【答案】6或8或10[解析] 由三角形三边关系可知5<x<11.因为x为偶数,所以x的值为6或8或10.18. 【答案】13【解析】由折叠的性质可得:CD=AD,∴△BCD的周长=BC +CD+BD=BC+AD+BD=BC+BA=6+7=13.三、解答题(本大题共3道小题)19. 【答案】解:(1)x的最大值是5+3+11=19,最小值是11-3-5=3.(2)由(1)得x的取值范围为3<x<19.20. 【答案】解:(1)把100 cm的木棒折去了35 cm后还剩余65 cm.∵20+65<90,∴20 cm,65 cm,90 cm长的三根木棒不能构成三角形.(2)设折去x cm后剩余的部分不能与另两根木棒搭成三角形.根据题意,得20+(100-x)≤90,解得x≤30,∴100 cm长的木棒至少折去30 cm后剩余的部分就不能与另两根木棒搭成三角形.21. 【答案】解:(1)<(2)△BPC的周长<△ABC的周长.理由:如图①,延长BP交AC于点M.在△ABM中,BP+PM<AB+AM.在△PMC中,PC<PM+MC.两式相加,得BP+PC<AB+AC,∴△BPC的周长<△ABC的周长.(3)四边形BP1P2C的周长<△ABC的周长.理由:如图②,分别延长BP1,CP2交于点M.由(2)知,BM+CM<AB+AC.又∵P1P2<P1M+P2M,∴BP1+P1P2+P2C<BM+CM<AB+AC.∴四边形BP1P2C的周长<△ABC的周长.11.2三角形-与三角形有关的角一、选择题1.若一个三角形三个内角度数的比为2:3:4,那么这个三角形是( )A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形2.如图所示,BD平分∠ABC,DE∥BC,且∠D=30°,则∠AED的度数为()。

【新人教版】八年级数学上册:第十一章《三角形》检测题(含答案)

【新人教版】八年级数学上册:第十一章《三角形》检测题(含答案)

第十一章检测题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.三角形的内角和是( B)A.90° B.180° C.300° D.360°2.下列长度的三条线段能组成三角形的是( D)A.1,2,3 B.1,2,3 C.3,4,8 D.4,5,63.如图,图中∠1的大小等于( D)A.40° B.50° C.60° D.70°(第5题图) (第6题图) 4.已知△ABC中,∠B是∠A的2倍,∠C比∠A大20°,则∠A等于( A)A.40° B.60° C.80° D.90°5.如图,某同学在课桌上无意中将一块三角板叠放在直尺上,则∠1+∠2等于( C) A.60° B.75° C.90° D.105°6.如图,△ABC的角平分线BE,CF相交于点O,且∠FOE=121°,则∠A的度数是( B) A.52° B.62° C.64° D.72°7.如图,在△ABC中,∠A=80°,高BE与CH的交点为O,则∠BOC等于( C)A.80° B.120° C.100° D.150°(第7题图)(第8题图)(第9题图) 8.如图,在△ABC中,∠C=90°,D,E是AC上两点,且AE=DE,BD平分∠EBC,那么下列说法中不正确的是( C)A.BE是△ABD的中线 B.BD是△BCE的角平分线C.∠1=∠2=∠3 D.BC是△ABE的高9.如图,把纸片△ABC沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变,请你试着找一找这个规律,你发现的规律是( B) A.∠A=∠1+∠2 B.2∠A=∠1+∠2C.3∠A=∠1+∠2 D.3∠A=2(∠1+∠2)10.如图,已知长方形ABCD,一条直线将该长方形ABCD分割成两个多边形,则所得任一多边形内角和度数不可能是( A)A.720° B.540° C.360° D.180°(第10题图)(第13题图)(第14题图)二、填空题(每小题3分,共18分)11.(2016·镇江)正五边形每个外角的度数是__72°__.12.人站在晃动的公共汽车上,若你分开两腿站立,还需伸出一只手抓住栏杆才能站稳,这是利用了__三角形的稳定性__.13.如图,在△ABC 中,AD 是BC 边上的中线,BE 是△ABD 中AD 边上的中线,若△ABC 的面积是24,则△ABE 的面积是__6__.14.如图,∠1+∠2+∠3+∠4+∠5+∠6=__360°__.15.当三角形中一个内角α是另一个内角β的一半时,我们称此三角形为“半角三角形”,其中α称为“半角”.如果一个“半角三角形”的“半角”为20°,那么这个“半角三角形”的最大内角的度数为__120°__.16.已知AD 是△ABC 的高,∠BAD =72°,∠CAD =21°,则∠BAC 的度数是__51°或93°__.三、解答题(共72分)17.(8分)如图:(1)在△ABC 中,BC 边上的高是__AB __;(2)在△AEC 中,AE 边上的高是__CD __;(3)若AB =CD =2 cm,AE =3 cm,求△AEC 的面积及CE 的长.解:S △AEC =12AE·CD =12CE·AB =3 cm 2,CE =3 cm18.(8分)等腰△ABC 的两边长x,y 满足|x -4|+(y -8)2=0,求这个等腰三角形的周长. 解:∵x ,y 满足|x -4|+(y -8)2=0,∴x =4,y =8,当4为腰时,4+4=8不成立,当4为底时,8为腰,4+8>8,满足三边关系,∴△ABC 的周长为8+8+4=2019.(8分)如图,AD 平分∠CAE ,∠B =35°,∠DAE =60°,试求∠D 与∠ACD 的度数.解:∠D =25°,∠ACD =95°20.(7分)若一个多边形的各边长均相等,周长为70 cm ,且内角和为900°,求它的边长. 解:边长是10 cm21.(7分)某工程队准备开挖一条隧道,为了缩短工期,必须在山的两侧同时开挖,为了确保两侧开挖的隧道在同一条直线上,测量人员在如图的同一高度定出了两个开挖点P 和Q,然后在左边定出开挖的方向线AP,为了准确定出右边开挖的方向线BQ,测量人员取一个可以同时看到点A,P,Q 的点O,测得∠A =28°,∠AOC =100°,那么∠QBO 应等于多少度才能确保BQ 与AP 在同一条直线上?解:在△AOB 中,∠QBO =180°-∠A -∠O =180°-28°-100°=52°.即∠QBO 应等于52°才能确保BQ 与AP 在同一条直线上22.(8分)如图,AB ∥CD,直线EF 与AB,CD 分别相交于点E,F,EP 平分∠AEF ,FP 平分∠EFC.(1)求证:△EPF 是直角三角形;(2)若∠PEF=30°,求∠PFC 的度数.解:(1)∵AB∥CD ,∴∠AEF +∠CFE =180°,∵EP 平分∠AEF ,FP 平分∠EFC ,∴∠AEP =∠FEP ,∠CFP =∠EFP ,∴∠PEF +∠PFE =12×180°=90°.∴∠EPF =180°-90°=90°,即△EPF 是直角三角形 (2)60°23.(8分)如图,在△ABC 中,∠B =26°,∠C =70°,AD 平分∠BAC ,AE ⊥BC 于点E,EF ⊥AD 于点F.(1)求∠DAC 的度数;(2)求∠DEF 的度数.解:(1)∵在△ABC 中,∠B =26°,∠C =70°,∴∠BAC =180°-∠B -∠C =180°-26°-70°=84°.∵AD 平分∠BAC ,∴∠DAC =12∠BAC =12×84°=42° (2)在△ACE 中,∠CAE =90°-∠C =90°-70°=20°,∴∠DAE =∠DAC -∠CAE =42°-20°=22°.∵∠DEF +∠AEF =∠AEF +∠DAE =90°,∴∠DEF =∠DAE =22°24.(8分)如图,在△ABC 中,∠ACB =90°,CD ⊥AB 于点D.(1)求证:∠ACD=∠B;(2)若AF 平分∠CAB 且分别交CD,BC 于点E,F,求证:∠CEF=∠CFE.解:(1)∵∠ACB =90°,∴∠ACD +∠DCB =90°,又∵CD⊥AB 于点D ,∴∠DCB +∠B =90°,∴∠ACD =∠B (2)在△ACE 中,∠CEF =∠CAF +∠ACD ,在△AFB 中,∠CFE =∠B +∠FAB ,∵AF 平分∠CAB ,∴∠CAE =∠FAB ,∴∠CEF =∠CFE25.(10分)取一副三角板按图①拼接,固定三角板ADC,将三角板ABC 绕点A 按顺时针方向旋转得到△ABC′,如图②所示.设∠CAC′=α(0°<α≤45°).(1)当α=15°时,求证:AB∥CD;(2)连接BD,当0°<α≤45°时,∠DBC ′+∠CAC′+∠BDC 的度数是否变化,若变化 ,求出变化范围;若不变,求出其度数.解:(1)证明:∵∠CAC′=15°,∴∠BAC=∠BAC′-∠CAC′=45°-15°=30°,又∴∠C =30°,∴∠BAC=∠C,∴AB∥CD(2)∠DBC′+∠CAC′+∠BDC的度数不变.如图,连接CC′,∵∠DBC′+∠BDC=∠DCC′+∠BC′C,又∠CAC′+∠ACC′+∠AC′C=180°,∴∠CAC′+∠AC′B+∠BC′C+∠ACD+∠DCC′=180°,∵∠AC′B=45°,∠ACD=30°,∴∠DBC′+∠CAC′+∠BDC=180°-45°-30°=105°。

八年级上册数学第十一单元检测卷(含答案)

八年级上册数学第十一单元检测卷(含答案)

八年级上册数学第十一单元检测卷一、选择题(每小题3分,共30分)1.能把一个任意三角形分成面积相等的两部分是 ( )A.角平分线B.中线C.高D.A、B、C中任意一项2.一个三角形三个内角的度数之比为2:3:7,这个三角形一定是 ( )A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形3.如图所示四个图形中,线段BE是△ABC的高的图是()4.一个多边形的内角和比它的外角的和的2倍还大180°,这个多边形的边数是( )A.5B.6C.7D.85.三角形的一个外角是锐角,则此三角形是 ( )A.锐角三角形B.钝角三角形C.直角三角形D.无法确定6.现有两根木棒,它们的长分别是40cm和50cm,若要钉成一个三角形木架,则在下列四根木棒中应选取长为 ( )A,100cm的木棒 B.90cm的木棒 C.40cm的木棒 D.10cm的木棒7-已知平面内有M、N、P三点,MN=4cm,NP=3cm,若点M、P之间的距离为xcm,则 ( )A.5<x<7B.1<x<7C.x=5D.1≤x≤78.如图,AB∥CD,∠A=48°,∠C=22°,则∠E的度数为()A.70°B.26°C.36°D.16°B C第8题图第9题图9.如图,在△ABC中,D、E分别在AB、BC上,AE、CD相交于点O,下列结论中,不能成立的是()A.∠AOC=∠BAE+∠BCD+∠BB.∠BAE-∠BCD=∠AEC-∠ADCC.∠BCD=∠ADC-∠BD.∠AEC=∠BAE+∠ADC10.下列命题:①满足a+b>c的a、b、c三条线段一定能组成三角形;②过三角形一顶点作对边的垂线叫做三角形的高;③三角形的外角大于它的任何一个内角;④直角三角形的两条高和边重合.其中假命题的个数是()A.1B.2C.3D.4二、填空题(每小题3分,共30分)11.若一个n边形有n条对角线,则n为。

人教版数学八年级上册第十一章基础检测题含答案

人教版数学八年级上册第十一章基础检测题含答案

1 / 20人教版数学八年级上册第十一章基础检测题含答案《11.1与三角形有关的线段》一、单选题(每小题只有一个正确答案)1.在一次数学实践活动中,杨阳同学为了估计一池塘边,A B 两点间的距离,如下图,先在池塘边取一个可以直接到达A 点和B 点的点,C 连结,CA CB 、测得15,12CA m CB m ==,则,A B 间的距离不可能是( )A .20mB .24mC .25mD .28m2.三角形一边上的中线把原三角形一定分成两个 ( )A .形状相同的三角形B .面积相等的三角形C .周长相等的三角形D .直角三角形3.下列三条线段能构成三角形的是( )A .1,2,3B .3,4,5C .7,10,18D .4,12,74.如图,在ABC 中,AC 边上的高是( )A .BEB .ADC .CFD .AF5.已知三角形的三边长分别为4,5,x ,则x 不可能是( )A .3B .5C .7D .96.若线段,AP AQ 分别是ABC 边上的高线和中线,则( )A .AP AQ >B .AP AQ ≥C .AP AQ <D .AP AQ ≤7.如图所示的图形中具有稳定性的是( )A .①②③④B .①③C .②④D .①②③8.如图,△ABC 的面积为8,AD 为BC 边上的中线,E 为AD 上任意一点,连接BE ,CE ,图中阴影部分的面积为( )A .2B .3C .4D .5二、填空题 9.已知一个三角形的两边长分别是2cm 和4cm ,当这个三角形的第三条边长为偶数时,其长度是________cm .10.如果a ,b ,c 为一个三角形的三边长,那么点()P a b c a b c +---,在第3 / 20____________象限.11.已知等腰三角形的两边长分别为3和5,则它的周长是____________12.如图,在△ABC 中,AD 平分∠BAC .AE ⊥BC ,∠B =44°,∠DAE =18°,则∠2=_____°.13.如图,在ABC 中,AD 是BC 边上的中线,10AB BC ==,7AD =,则ABD △ 的周长为________.三、解答题14.已知,已知ABC ∆的周长为33cm ,AD 是BC 边上的中线,32AB AC =.(1)如图,当10AC cm =时,求BD 的长.(2)若12AC cm =,能否求出DC 的长?为什么?15.如图,△ABC 中,AD 是BC 边上的高,AE 是∠BAC 的平分线,∠EAD =5°,∠B =50°,求∠C 的度数.-+-----+.16.已知a、b、c为三角形的三边长,化简a b c b c a a c b1 / 20参考答案1.D 2.B 3.B 4.A 5.D 6.D 7.B 8.C9.4 10.四 11.11或13 12.10°13. 解:AD 是BC 边上的中线,10AB BC ==,5,BD CD ∴==7,AD =105722.ABDC AB BD AD ∴=++=++= 14. 解:(1)∵32AB AC =,10AC cm =, ∴15AB cm =,又∵ABC ∆的周长是33cm ,∴8BC cm =,∵AD 是BC 边上的中线, ∴142BD BC cm ==; (2)不能,理由如下: ∵32AB AC =,12AC cm =, ∴18AB cm =,又∵ABC ∆的周长是33cm ,∴3BC cm =,∵1518AC BC AB +=<=,∴不能构成三角形ABC ,则不能求出DC 的长.15.解:∵AD 是BC 边上的高,∠EAD=5°,∴∠AED=85°,∵∠B=50°,∴∠BAE=∠AED-∠B=85°-50°=35°,∵AE 是∠BAC 的角平分线,∴∠BAC=2∠BAE=70°,∴∠C=180°-∠B-∠BAC=180°-50°-70°=60°.16. 解:∵a ,b ,c 是一个三角形的三条边长,∴0a c b +->,0c a b +->,0a b c +->,即0a b c -+>,0b c a --<,0a c b -+>, ∴a b c b c a a c b -+-----+()()a b c b c a a c b =-++----+a b c b c a a c b =-++---+-a b c =--+.11.2与三角形有关的角一、选择题1.如图,∠BDC =98°,∠C =38°,∠A =37°,则∠B 的度数是( )A.33°B.23°C.27°D.37°2.如图,F是AB上一点,E是AC上一点,BE、CF相交于点D,∠A=70°,∠ACF=30°,∠ABE=20°,则∠BFC+∠BEC的度数为()A.172°B.190°C.65°D.60°3.已知,从的顶点引射线,若,那么()A. 或B.C. D.4.如图,,,.那么等于().A. B. C. D.3/ 205.已知三角形两个内角的差等于第三个内角,则它是( )A .锐角三角形B .钝角三角形C .直角三角形D .等边三角形 6.如图,BC AE ⊥,垂足为C ,过C 作CD ∥AB .若43ECD ∠=︒,则B 的度数是( )A .43°B .45°C .47°D .57° 7.如图,在中,,点为AB 延长线上一点,且,则( )A. B. C. D.8.已知三角形的一个内角是另一个内角的23,是第三个内角的45,则这个三角形各内角的度数分别为( )A .60°,90°,75°B .48°,72°,60°C .48°,32°,38°D .40°,50°,90°9.如图,∠A+∠B+∠C+∠D+∠E+∠F 的和为( )5 / 20A .180°B .360°C .270°D .540° 10.在中,,则等于( )A. B. C. D. 11.下列说法不正确的有( )①一个三角形至少有2个锐角;①在△ABC 中,若∠A=2∠B=3∠C ,则△ABC 为直角三角形;①过n 边形的一个顶点可作(n ﹣3)条对角线;①n 边形每增加一条边,则其内角和增加360°. A .1个 B .2个 C .3个 D .4个12.在中,,,则( )A. B. C. D. 二、填空题13.如图,已知//DE BC ,//EF AB ,63DEF ∠=,70C ∠=,则A ∠=__________.14.如图所示,将△ABC 平移后得到△DEF ,已知∠B =35°,∠A =85°,则∠DEF =____,∠D =_____,∠F =____.15.在中,已知,则是______三角形. 16.如图,在△ABC 中,CE 、BF 是两条高,若∠A=65°,∠BCE=35°,则∠ABF 的度数是_____,∠FBC 的度数是_____.三、解答题17.如图,ABC △沿着BC 的方向,平移至DEF , 80A ∠=,60B ∠=︒,求F ∠的度数.18.如图,在四边形中,,直线与边,分别相交于点,,求的度数.19.如图所示,在△ABC 中,60A ∠=,BP ,BQ 三等分ABC ∠,CP ,CQ 三等分ACB ∠,7 / 20求BPC ∠的度数.20.如图, //30100CE AB B AOB ∠=∠=,,,求C ∠和ODE ∠的度数.答案1. B2. B3. A4. B5. C6. C7. C8.B9.B10. B11.B12. C13.4714.35°;85°;60°.15. 直角16.25° 30°17.40∠=F18. 解:由三角形的内角和定理,得.,. 由邻补角的性质,得,,9 / 20.19. ∵∠A=60°∴∠ABC+∠ACB=180°-60°=120°又∵∠PBC=13∠ABC 又∵线段CP ,CQ 三等分∠ACB∴∠PCB=13∠ACB ∴∠PBC+∠PCB=13(∠ABC+∠ACB)=13×120°=40° ∴∠BPC=180°-40°=140°.20. ∵CE ∥AB ,∴∠C =∠B =30°.∠COD =∠AOB =100°(对顶角相等),∠ODE =∠C +∠COD =30°+100°=130°(三角形外角和定理).11.3 多边形考点1 认识多边形1.下列说法正确的是( )A .一个多边形外角的个数与边数相同B .一个多边形外角的个数是边数的二倍C .每个角都相等的多边形是正多边形D .每条边都相等的多边形是正多边形 2.一个四边形截去一个角后内角个数是( ①A .3B .4C .5D .3①4①53.判断下列说法,正确的是()A.三角形的外角大于任意一个内角B.三角形的三条高相交于一点C.各条边都相等的多边形叫做正多边形D.四边形的一组对角互补,则另一组对角也互补考点2 多边形的对角线4.一个多边形的内角和为720°,那么这个多边形的对角线共有().A.6条B.7条C.8条D.9条5.若一个多边形从一个顶点所作的对角线为5条,则这个多边形是()A.五边形B.六边形C.七边形D.八边形6.若一个n边形的每个内角为144°,则这个正n边形的所有对角线的条数是( )A.7B.10C.35D.707.多边形的每个外角都等于30°,则从此多边形的一个顶点出发可分为()个三角形.A.8B.9C.10D.118.从一个n边形的某个顶点出发,分别连接这个点与其他顶点可以把这个n边形分割成三角形个数是()A.3个B.(n﹣1)个C.5个D.(n﹣2)个考点3 多边形的内角和9.正多边形的每个内角都等于135°,则该多边形是正()边形A.8B.9C.10D.1110.一个多边形的每个外角都是45°,则这个多边形的内角和为()11 / 20A .360°B .140°C .1080°D .720°11.如图,在平面上将变长相等的正三角形、正方形、正五边形、正六边形的一边重合并叠放在一起,则312∠+∠-∠=( )A .30B .24︒C .20︒D .28︒12.当多边形的边数增加1时,它的内角和会( )A .增加160B .增加180C .增加270D .增加360 13.一个多边形截去一个角后,形成另一个多边形的内角和为900︒,那么原多边形的边数为( )A .5B .5或6C .6或7或8D .7或8或9 14.如图,七边形ABCDEFG 中,AB 、ED 的延长线交于点O ,若1∠、2∠、3∠、4∠对应的邻补角和等于225︒,则BOD ∠的度数为( )A .35︒B .40︒C .45︒D .50︒15.如图,∠A +∠B +∠C +∠D +∠E +∠F 的度数为( )A.180°B.270°C.360°D.720°考点4 多边形的外角和16.一个多边形的每一个内角都等于140°,那么这个多边形的边数为()A.8B.9C.10D.1117.如图,小亮从A点出发前进10m,向右转15°,再前进10m,又向右转15°,这样一直走下去,他第一次回到出发点A时,一共走了米数是()A.120B.150C.240D.360∠的度数为()18.如图,六角螺母的横截面是正六边形,则1A.60°B.120°C.45°D.75°19.富有灿烂文化的永州,现今保留许多具有历史和文化价值的建筑,古朴的建筑物上雕刻的优美图案是我们数学研究的重要内容,图1中的“冰裂纹窗格”图案就是永州古建筑雕刻图案其中的代表,无规则多边形的形状,蕴含了丰富而和谐的数学美.图2是从图1冰裂纹∠+∠+∠+∠+∠窗格图案中提取的由五条线段组成的多边形,根据绘制的图案,则12345的度数为()13 / 20A .72︒B .108︒C .360︒D .540︒ 20.如图,M 是正五边形ABCDE 的边CD 延长线上一点.连接AD ,则ADM ∠的度数是( )A .108︒B .120︒C .144︒D .150︒21.如图,A B C D E F ∠+∠+∠+∠+∠+∠的和的大小为( )A .180°B .360°C .540°D .720°考点5 镶嵌问题 22.只用一种多边形不能镶嵌整个平面的是( )A .正三角形B .正四边形C .正五边形D .正六边形 23.某广场准备用边长相等的正方形和正三角形两种地砖铺满地面,在每个顶点的周围,正方形和正三角形地砖的块数分别是()A.1、2B.2、1C.2、2D.2、324.我们知道正五边形不能进行平面镶嵌,若将三个全等的正五边形按如图所示拼接在一起,那么图中的∠1的度数是()A.18°B.30°C.36°D.54°25.用边长相等的下列两种正多边形,不能进行平面镶嵌的是()A.等边三角形和正六边形B.正方形和正八边形C.正五边形和正十边形D.正六边形和正十二边形26.如图所示,已知等边三角形ABC的边长为1,按图中所示的规律,用2008个这样的三角形镶嵌而成的四边形的周长是()A.2008B.2009C.2010D.2011答案1.B2.D3.D4.D5.D6.C7.C8.D9.A10.C11.B12.B13.C14.C15/ 2015.C 16.B 17.C 18.A 19.C 20.A 21.B 22.C 23.D 24.C 25.D 26.C。

八年级数学上册第十一章检测卷及答案

八年级数学上册第十一章检测卷及答案

关系始终保持不变,请试着找一找这个规律,你发现的规律是( ).
A.∠A=∠1+∠2
B.2∠A=∠1+∠2
C.3∠A=2∠1+∠2
D.3∠A=2(∠1+∠2)
9.一个角的两边分别垂直于另一个角的两边,那么这两个角之间的关系是( ).
A.相等
B.互补
C.相等或互补
D.无法确定
二、填空题(每小题 3 分,共 27 分)
10.造房子时,屋顶常用三角形结构,从数学角度来看,是应用了__________,而活动挂架则用了四
边形的__________.
11.已知 a,b,c 是三角形的三边长,化简:|a-b+c|-|a-b-c|=__________.
12.等腰三角形的周长为 20 cm,一边长为 6 cm,则底边长为__________.
A.四边形的边长
B.四边形的周长
C.四边形的某些角的大小
D.四边形的内角和
5.如图,在△ABC 中,D,E 分别为 BC 上两点,且 BD=DE=EC,则图中面积相等的三角形有( )
对.
A.4B.5Fra bibliotekC.6
D.7
6.在下列条件中:①∠A+∠B=∠C,②∠A∶∠B∶∠C=1∶2∶3,③∠A=90°-∠B,④∠A=∠B
22.(12 分)如图所示,分别在三角形、四边形、五边形的广场各角修建半径为 R 的扇形草坪(图中阴 影部分).
(1)图①中草坪的面积为__________; (2)图②中草坪的面积为__________; (3)图③中草坪的面积为__________; (4)如果多边形的边数为 n,其余条件不变,那么,你认为草坪的面积为__________.
-∠C 中,能确定△ABC 是直角三角形的条件有( ).

沪科版八年级数学上册《第11章平面直角坐标系》章节检测卷-带答案

沪科版八年级数学上册《第11章平面直角坐标系》章节检测卷-带答案

沪科版八年级数学上册《第11章平面直角坐标系》章节检测卷-带答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列选项中,能确定物体位置的是()A.距离学校500米B.季华路C.东经120°,北纬30°D.北偏西60°2.已知点P的坐标为P(3,−4),则点P在第()象限.A.一B.二C.三D.四3.在平面直角坐标系中,已知点A(1,3),将点A向左平移3个单位后,再将它向上平移4个单位,则它的坐标变为()A.(﹣2,7)B.(4,﹣1)C.(4,7)D.(﹣2,﹣1)4.在平面直角坐标系中,对于坐标P(3,4),下列说法错误的是()A.P(3,4)表示这个点在平面内的位置B.点P的纵坐标是4C.点P到x轴的距离是4D.它与点(4,3)表示同一个坐标5.如果点P(a,1)在第一象限,那么点A(a+1,﹣1)在第()象限.A.一B.二C.三D.四6.在方格纸上画出的小旗图案如图所示,若用(﹣2,1)表示A点,(﹣2,5)表示B点,那么C点的位置可表示为()A.(3,5)B.(5,3)C.(1,3)D.(1,2)7.某学校的平面示意图如图所示,如果宠物店所在位置的坐标为(−2,−3),儿童公园所在位置的坐标为(−4,−2),则(0,4)所在的位置是()A.医院B.学校C.汽车站D.水果店8.经过两点A(﹣2,2)、B(﹣2,﹣3)作直线AB,则直线AB()A.平行于x轴B.平行于y轴C.经过原点D.无法确定9.数学活动中,小明和小亮向老师说明他们的位置(单位:m).小明:我这里的坐标是(−100,300);小亮:我这里的坐标是(200,300),则小明和小亮之间的距离是()A.600m B.500m C.400m D.300m10.如图,一个动点P在平面直角坐标系中按箭头所示方向做折线运动,即第一次从原点运动到(1,1),第二次从(1,1)运动到(2,0),第三次从(2,0)运动到(3,2),第四次从(3,2)运动到(4,0),第五次从(4,0)运动到(5,1),……,按这样的运动规律,经过第2023次运动后,动点P的坐标是()A.(2022,1)B.(2022,2)C.(2023,1)D.(2023,2)二、填空题11.长方形ABCD在平面直角坐标系中,其中A(−3,2),B(−3,−2),C(3,−2),则D点坐标是.12.若点P(a,b)到x轴的距离是2,到y轴的距离是4,且点P在第四象限,则点P的坐标.13.已知点M(3a−9,1−a),在y轴上,则M的坐标是.14.如图,A,B的坐标分别为(−2,1),(0,−1)若将线段AB平移至A1B1,A1,B1的坐标分别为(a,3),(3,b),则a+b的值为.15.在平面直角坐标系中,点A的坐标是(1,﹣2).作点A关于y轴的对称点,得到点A′,再将点A′先向上平移3个单位长度,而后向左平移2个单位长度,得到点A″,则点A″的坐标是.16.若点A(−2,0),B(4,0),C(3,5),则△ABC的面积为.17.如图,△OAB的顶点B的坐标为(4,0),把△OAB沿x轴向右平移得到△CDE,如果OC=3,那么OE的长为.三、解答题18.如图是游乐园的一角.(1)如果用(3,2)表示跳跳床的位置,那么跷跷板用数对___________表示,碰碰车用数对___________表示,摩天轮用数对___________表示.(2)请你在图中标出秋千的位置,秋千在大门以东400m,再往北300m处.19.已知平面直角坐标系中有一点M(m−1,2m+3).(1)若点M在第二象限,且到y轴的距离为1,请求出点M的坐标;(2)若点N(2,−5),且MN∥x轴,求线段MN的长度.20.如图,在平面直角坐标系中,三角形ABC的顶点A(−2,5),B(−5,−2),C(3,3),将三角形ABC先向右平移3个单位长度,再向下平移6个单位长度.(1)在图中画出平移后的三角形A1B1C1,并写出A1,B1,C1的坐标.(2)求△ABC的面积.21.在平面直角坐标系xOy中,三角形ABC的三个顶点分别是A(−3,−4),B(2,−1)(1)在所给的网格图中,画出这个平面直角坐标系;(2)点A经过平移后对应点为A1(−5,−1),将三角形ABC作同样的平移得到三角形A1B1C1.①画出平移后的三角形A1B1C1;①若BC边上一点P(x,y)经过上述平移后的对应点为P1,用含x,y的式子表示点P1的坐标;(直接写出结果即可)①求三角形A1B1C1的面积.22.在平面直角坐标系中,对于A(x1,y1)、B(x2,y2)两点,用以下方式定义两点间的“极大距离”d(A,B);若|x1−x2|≥|y1−y2|,则d(A,B)=|x1−x2|;若|x1−x2|<|y1−y2|,则d(A,B)=|y1−y2|.例如:如图,点P(2,3),则d(P,O)=3.(1)若点A(3,2)、B(−1,−1),则d(A,B)=;(2)点C(−1,2)到坐标原点O的“极大距离”是;(3)已知点M(12a,32a),d(M,O)=2,O为坐标原点,求a的值.参考答案1.C2.D3.A4.D5.D6.C7.B8.B9.D10.D11.(3,2)12.(4,−2)13.(0,−2)14.215.(﹣3,1).16.1517.718.(2,4);(5,1);(5,4)19.(1)(−1,3);(2)7.20.(1)A 1(1,−1),B 1(−2,−8),C 1(6,−3)(2)41221.①P 1(x −2,y +3);(3)S △A 1B 1C 1=192. 22.(1)4;(2)2;(3)43或−43.。

人教版八年级数学上册第十一章综合检测卷含答案

人教版八年级数学上册第十一章综合检测卷含答案

人教版八年级数学上册第十一章综合检测卷一、选择题(每题3分,共30分)1.【教材P8习题T1变式】如图,图中三角形的个数共有()A.3个B.4个C.5个D.6个(第1题)(第3题)(第5题)2.【教材P4练习T2变式】下列长度的三条线段,能组成三角形的是() A.2 cm,3 cm,4 cm B.2 cm,3 cm,5 cmC.2 cm,5 cm,10 cm D.8 cm,4 cm,4 cm3.【教材P8习题T3变式】已知,图中的虚线部分是小玉作的辅助线,则下列结论正确的是()A.CD是边AB上的高B.CD是边AC上的高C.BD是边CB上的高D.BD是边AC上的高4.在△ABC中,能说明△ABC是直角三角形的是()A.∠A∶∠B∶∠C=1∶2∶2 B.∠A∶∠B∶∠C=3∶4∶5C.∠A∶∠B∶∠C=1∶2∶3 D.∠A∶∠B∶∠C=2∶3∶4 5.【教材P16习题T5变式】如图,直线AB∥CD,∠B=50°,∠D=20°,则∠E =()A.20°B.30°C.50°D.70°6.【2021·毕节】将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为()A.70°B.75°C.80°D.85°(第6题)(第7题)(第9题)(第10题)7.如图,在△ABC中,∠C=90°,D,E是AC上两点,且AE=DE,BD平分∠EBC.下列说法不正确...的是()A.BE是△ABD的中线B.BD是△BCE的角平分线C.∠1=∠2=∠3 D.BC是△ABE的高8.【教材P24练习T3变式】一个多边形的内角和比其外角和大180°,则这个多边形的边数是()A.4 B.5 C.6 D.79.如图,在△ABC中,∠C=75°,若沿图中虚线截去∠C,则∠1+∠2=() A.260°B.280°C.255°D.245°10.【2021·扬州】如图,点A,B,C,D,E在同一平面内,连接AB,BC,CD,DE,EA,若∠BCD=100°,则∠A+∠B+∠D+∠E=()A.220°B.240°C.260°D.280°二、填空题(每题3分,共24分)11.人站在晃动的公交车上,若分开两腿站立,还需伸出一只手抓住栏杆才能站稳,这是利用了________________________.12.六边形的外角和的度数是________.13.已知三角形三边长分别为1,x,5,则整数x=________.14.若一个多边形截去一个角后,变成六边形,则原来多边形的边数可能是________.15.如图,△ABC中,∠1=∠2,∠BAC=65°,则∠APB=________.(第15题)(第17题) (第18题)16.【教材P28复习题T4变式】一个多边形从一个顶点出发可以画9条对角线,则这个多边形的内角和为________.17.如图,在△ABC中,AD是BC边上的中线,BE是△ABD中AD边上的中线,若△ABC的面积是24,则△ABE的面积是________.18.【教材P17习题T9拓展】已知△ABC,有下列说法:(1)如图①,若P 是∠ABC 和∠ACB 的平分线的交点,则∠P =90°+12∠A ; (2)如图②,若P 是∠ABC 和外角∠ACE 的平分线的交点,则∠P =90°-∠A ; (3)如图③,若P 是外角∠CBF 和∠BCE 的平分线的交点,则∠P =90°-12∠A . 其中正确的有______个.三、解答题(23题12分,24题14分,其余每题10分,共66分) 19.【2021·海淀区校级期中】求出下列图形中x 的值.20.【教材P 12例2变式】如图,一艘轮船在A 处看见巡逻艇C 在其北偏东62°的方向上,此时一艘客船在B 处看见巡逻艇C 在其北偏东13°的方向上.试求此时在巡逻艇上看这两艘船的视角∠ACB 的度数.21.如图,已知AD 是△ABC 的角平分线,CE 是△ABC 的高,AD ,CE 相交于点P ,∠BAC =66°,∠BCE =40°.求∠ADC 和∠APC 的度数.22.【教材P25习题T10变式】如图,六边形ABCDEF的内角都相等,CF∥AB.(1)求∠FCD的度数;(2)求证:AF∥CD.23.【2021·黄冈期中】已知,在△ABC中.(1)若∠B=∠A+15°,∠C=∠B+15°,求△ABC的各内角度数;(2)若三边长分别为a,b,c.试化简|a+b-c|-|b-c-a|.24.如图,在△ABC中,∠A=30°,一块直角三角尺XYZ放置在△ABC上,恰好三角尺XYZ的两条直角边XY,XZ分别经过点B,C.(1)∠ABC+∠ACB=________,∠XBC+∠XCB=________,∠ABX+∠ACX=________.(2)若改变直角三角尺XYZ的位置,但三角尺XYZ的两条直角边XY,XZ仍然分别经过点B,C,且直角顶点X始终在△ABC的内部,则∠ABX+∠ACX的大小是否变化?请说明理由.答案一、1.C 2.A 3.A 4.C 5.B 6.B7.C8.B9.C10.D 点方法:求复杂几何图形中相关角的度数和,可运用转化思想,将这几个角转化到一个多边形内,然后利用多边形内角和公式求解.二、11.三角形具有稳定性12.360°13.514.5,6,715.115°16.1 800°17.618.2三、19.解:(1)x=180-90-50=40;(2)x+x+40=180,解得x=70;(3)x+70=x+x+10,解得x=60.20.解:由题意可得AD∥BF,∴∠BEA=∠DAC=62°.∵∠BEA是△CBE的一个外角,∴∠BEA=∠ACB+∠CBE.∴∠ACB=∠BEA-∠CBE=62°-13°=49°.答:此时在巡逻艇上看这两艘船的视角∠ACB的度数为49°.21.解:∵CE是△ABC的高,∴∠AEC=90°.∴∠ACE=180°-∠BAC-∠AEC=24°.∵∠BCE=40°,∴∠ACB=40°+24°=64°.∵AD是△ABC的角平分线,∴∠DAC=12∠BAC=33°.∴∠ADC=180°-∠DAC-∠ACB=83°.∴∠APC=∠ADC+∠BCE=83°+40°=123°.22.(1)解:∵六边形ABCDEF的内角都相等,内角和为(6-2)×180°=720°,∴∠B=∠A=∠BCD=720°÷6=120°.∵CF∥AB,∴∠B+∠BCF=180°.∴∠BCF=60°.∴∠FCD=∠BCD-∠BCF=60°.(2)证明:∵CF ∥AB ,∴∠A +∠AFC =180°. ∴∠AFC =180°-120°=60°. ∴∠AFC =∠FCD .∴AF ∥CD .23. 点方法:化简涉及三角形三边的绝对值时,要先运用三角形的三边关系判断绝对值符号内的式子的正负,然后利用| a | =⎩⎨⎧a (a ≥0),-a (a <0)去掉绝对值符号,再合并化简.解:(1)设∠A =x ,则∠B =x +15°,∠C =x +30°. ∴x +x +15°+x +30°=180°, ∴x =45°.∴∠A =45°,∠B =60°,∠C =75°. (2)∵△ABC 的三边长分别为a ,b ,c , ∴a +b -c >0,b -c -a <0. ∴|a +b -c |-|b -c -a | =(a +b -c )-(-b +c +a ) =a +b -c +b -c -a =2b -2c .24.解:(1)150°;90°;60°(2)∠ABX +∠ACX 的大小不变.理由:在△ABC 中,∠A +∠ABC +∠ACB =180°,∠A =30°, ∴∠ABC +∠ACB =180°-30°=150°. ∵∠YXZ =90°,∴∠XBC +∠XCB =90°.∴∠ABX +∠ACX =(∠ABC -∠XBC )+(∠ACB -∠XCB )=(∠ABC +∠ACB )-(∠XBC +∠XCB )=150°-90°=60°. ∴∠ABX +∠ACX 的大小不变.。

【数学同步检测】新人教版八年级上册数学第11章 三角形 检测卷(含答案)

【数学同步检测】新人教版八年级上册数学第11章 三角形  检测卷(含答案)

第11章三角形检测卷(45分钟100分)一、选择题(本大题共8小题,每小题4分,满分32分)1.下列语言是命题的是A.画两条相等的线段B.等于同一个角的两个角相等吗?C.延长线段AO到点C,使OC=OAD.两直线平行,内错角相等2.在△ABC中,AB=5,AC=8,则BC长可能是A.3B.8C.13D.143.a,b,c为三角形三边的长,化简|a+b+c|-|a-b-c|-|a-b+c|-|a+b-c|的结果是A.0B.2a+2b+2cC.4aD.2b-2c4.如图,四个图形中,线段BE是△ABC的高的图是5.如图,铅笔放置在△ABC的边AB上,笔尖方向为点A到点B的方向,把铅笔依次绕点A、点C、点B按逆时针方向旋转∠A,∠C,∠B的度数后,笔尖方向变为点B 到点A的方向,这种变化说明A.三角形内角和等于180°B.三角形外角和等于360°C.三角形任意两边之和大于第三边D.三角形任意两边之差小于第三边6.下列命题的逆命题是真命题的是A.同位角相等B.对顶角相等C.钝角三角形有两个锐角D.两直线平行,内错角相等7.如图,已知∠1=60°,则∠A+∠B+∠C+∠D+∠E+∠F=A.180°B.360°C.240°D.200°8.光线a照射到平面镜CD上,然后在平面镜AB和CD之间来回反射,光线的反射角等于入射角.若已知∠1=52°,∠3=70°,则∠2等于A.52°B.61°C.65°D.70°二、填空题(本大题共4小题,每小题4分,满分16分)9.一个三角形的三边分别是3,x,9,则x的取值范围是6<x<12.10.当三角形中一个内角α是另一个内角β的一半时,我们称此三角形为“半角三角形”,其中α称为“半角”.如果一个“半角三角形”的“半角”为25°,那么这个“半角三角形”的最大内角的度数为105°.11.如图,D,E分别是△ABC边AB,BC上的点,AD=2BD,BE=CE,设△ADC的面积为S1,△ACE的面积为S2,若S△ABC=6,则S1-S2的值为1.12.如图,D为AB边上任意一点,则下列结论:①∠A>∠ACF;②∠B+∠ACB<180°;③∠F+∠ACF=∠A+∠ADF;④∠DEC>∠B.其中正确的是②③④.(填写序号)三、解答题(本大题共5小题,满分52分)13.(8分)写出下列命题的逆命题,并指出其真假.(1)如果a,b都是偶数,那么a+b是偶数;(2)两个锐角的和是钝角;(3)直角三角形的两个锐角互余;解:(1)如果a,b都是偶数,那么a+b是偶数.逆命题是:如果a+b是偶数,那么a,b都是偶数,是假命题.(2)两个锐角的和是钝角.逆命题是:如果两个角的和是钝角,那么这两个角是锐角,是假命题.(3)直角三角形的两个锐角互余.逆命题是:如果一个三角形的两个锐角互余,那么这个三角形是直角三角形,是真命题.14.(10分)两只猎豹在如图的A处发现有一只野牛离群独自在O处觅食,猎豹打算用迂回的方式,由一只先从A处前进到C处,然后再折回到B处截住野牛返回牛群的去路,另一只则直接从A处扑向野牛,已知∠BAC=40°,∠ABC=70°,猎豹从C 处要转多少度才能直达B处?解:∠BAC=40°,∠ABC=70°,可得∠ACB=180°-40°-70°=70°.答:猎豹从C处要转110度才能直达B处.15.(10分)已知a,b,c为△ABC的三边长,b,c满足(b-2)2+|c-3|=0,且a为方程|x-4|=2的解,求△ABC的周长,判断△ABC的形状.解:∵(b-2)2≥0,|c-3|≥0,且(b-2)2+|c-3|=0,∴b-2=0,c-3=0.即b=2,c=3.∵a为方程|x-4|=2的解,∴a=2或6.经检验,当a=6时,不满足三角形三边关系定理,故舍去.∴a=2,b=2,c=3.∴△ABC为等腰三角形,周长为7.16.(12分)如图1,在△OBC中,A是BO延长线上的一点.(1)∠B=32°,∠C=46°,则∠AOC=78°,Q是BC边上一点,连接AQ交OC于点P,如图2,若∠A=18°,则∠OPQ=96°,猜测:∠A+∠B+∠C与∠OPQ的大小关系是∠A+∠B+∠C=∠OPQ.(2)将图2中的CO延长到点D,AQ延长到点E,连接DE,得到图3,则∠AQB等于图中哪三个角的和?并说明理由.(3)求图3中∠A+∠D+∠B+∠E+∠C的度数.解:(2)∠AQB=∠C+∠D+∠E.理由:∵∠EPC=∠D+∠E,∠AQB=∠C+∠EPC,∴∠AQB=∠C+∠D+∠E.(3)∵∠AQC=∠A+∠B,∠QPC=∠D+∠E,又∵∠AQC+∠QPC+∠C=180°,∴∠A+∠B+∠D+∠E+∠C=180°,即∠A+∠D+∠B+∠E+∠C=180°.17.(12分)如图,点C在射线BE上,∠ABE与∠ACE的平分线交于点A1.(1)若∠A=60°,求∠A1的度数;(2)若∠A=α,求∠A1的度数;(3)在(2)的条件下,作∠A1BE,∠A1CE的平分线交于点A2;作∠A2BE,∠A2CE的平分线交于点A3,…,依此类推,则∠A2,∠A3,…,∠A n分别为多少度?解:(1)∠A1=30°.∵∠ACE=∠A+∠ABC,又∠ABE和∠ACE的平分线交于点A1,∴∠A1BC=∠ABC,∠A1CE=∠ACE,∴∠A1CE=∠ACE=(∠A+∠ABC)=∠ABC+∠A,又∠A1CE=∠A1+∠A1BC=∠A1+∠ABC,∴∠A1=∠A=30°.(2)∠A1=α.(3)∠A2=α,∠A3=α,∠A n=α.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级上册数学第十一章检测卷
一、选择题(每小题3分,共36分)
1.如果三角形的两边长分别为2和7,其周长为偶数,则第三边长为()
A.3
B.6
C.7
D.8
2.下列说法:①△ABC的顶点A就是∠A,②三角形一边的对角也是另外两边的夹角;
③三角形的中线就是一顶点与它对边中点连接的线段; ④三角形的角平分线就是三角形内角的平分线,其中正确的说法是()
A.①②③④
B.②③④
C.②③
D.②④
3.一个三角形的三边分别为3,5,x,则x的取值范围是()
A.x>2
B.x<5
C.3<x<5
D.2<x<8
4.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是()
A.锐角三角形
B.钝角三角形
C.直角三角形
D.都有可能
5.如图所示,∠B+∠C=90°,则△ABC的形状是()
A.锐角三角形
B.钝角三角形
C.直角三角形
D.等腰三角形
6.如图所示,AD是∠CAE的平分线,∠B=35°,∠DAC=65°,则∠ACD的度数为()
A.25°
B.85°
C.60°
D.95°第5题图第6题图第7题图第8题图
7.如图所示,AB∥CD,AD和BC相交于点O,∠A=35°,∠AOB=75°,则∠C的度数为()
A.35°
B.40°
C.70°
D.80°
8.如图所示,在△ABC中,∠B=50°,∠C=60°,点D是BC边上的任意一点,DE⊥AB 于E,DF⊥AC于F,则∠EDF的度数为()
A.80°
B.110°
C.130°
D.140°
9.若一个多边形的内角和是1080°,则这个多边形的边数为()
A.6
B.7
C.8
D.10
10.一幅美丽的图案,在菜个顶点处由四个边长相等的正多边形镶嵌而成,其中的三个分别为正三角形、正四边形、正六边形,那么另外一个为()
A.正三角形
B.正四边形
C.正五边形
D.正六边形
11.已知一个三角形的三条边长均为正整数若其中仅有一条边长为5,且它又不是最短边,则满足条件的三角形个数为()
A.4
B.6
C.8
D.10
12.如图,过正五边形BCDE的顶点B作直线1∥AC,则∠1的度数为()
A.36°
B.45°
C.55°
D.60°
二、填空题(每空2分,共16分)
1.如图,DE∥BC,CD是∠ACB的平分线,∠ACB=50°,则∠EDC 的度数为.
2.如图,AD,AE分别是△ABC的中线和高,BD=3cm,AE=4cm,则△ABC的面积为
.
第1题图第2题图第3题图第4题图
3.如图所示,已知AB∥CD,BE平分∠ABC,∠CDE=150°,则∠C=.
4.如图所示,在四边形ABCD中,若∠A=∠C=90°,∠B=62°,则∠D的度数为.
5.一个多边形的每个外角都相等,且比它的内角小140°,则这个多边形是边形.
6.如图所示,BE,CD为两条角平分线,∠ABC=∠ACB,图中与∠1相等的角有
个.
7.如图所示,直角△ABC中,∠ABC=90°,AB=5cm,BC=12cm,AC=3cm,若BD 是AC边上的高,则BD的长为cm.
第6题图第7题图8.如果一个正多边形的一个外角是36°那么该正多边形的边数为.
三、作图题(共12分)
画出图中的每个多边形的所有对角线.
四、解答题(共56分)
1.(6分)小颖要制作一个三角形木架,现有两根长度为8cm和5cm的木棒,如果要求第三根木棒的长度是整数,小颖有几种选法?第三根木棒的长度可以是多少?
2.(6分)如图所示,AF,AD分别是△ABC的高和角平分线,且∠B=36°,∠C=76°,求∠DAF的度数.
3.(6分)如图所示,AD是△ABC的边BC的中线,已知AB=5cm,AC=3cm,求△ABD
C
B
E D
C
B
A
C D
A
F
E
B
D
A
和△ACD的周长之差.
4.(6分)如图所示,AD是△ABC的角平分线,E是BC延长线上一点,∠EAC=∠B.
∠ADE与∠DAE相等吗?为什么?
5.(6分)如图所示,已知在△ABC中,∠ABC和∠ACB的平分线BD和CE相交于点I, 且∠A=70°,求∠BIC的度数。

6.(6分)如图所示O在五边形ABCDE的边AB上,连接OC,OD,OE,可以得到几个三角形?它与边数有何关系?
7.(6分)如果一个多边形的每个内角都相等,它的一个外角等于一个内角的,求这个多边形的边数。

8.(6分)如图,在四边形ABCD中,∠1=∠2,∠3=∠4,且∠D+∠C=220°,求∠AOB 的度数。

9.(8分)如图所示,AD是△ABC的中线,DE是△ADC的中线、EF是△DEC的中线,FG 是△EFC的中线。

(1)△ABD与△ADC的面积有何关系?请说明理由。

(2)若△GFC的面积S=1cm,求△ABC的面积.
参考答案一.1.C 2.C 3.D 4.C 5.C 6.B
7.C 8.B 9.C 10.B 11.D 12.A
二、1.25° 2.12cm2 3.120° 4.118° 5.正十八 6.3 7.
13
60
8.10
三、略
四、1.小颖有9种选法,第三根木棒的长度可以是4cm,5cm, 6cm, 7cm, 8cm, 9cm, 10cm, 11cm, 12cm
2.因为AF⊥BC,所以∠AFC=90°,则∠CAF=90°-∠C=90°-76°=14°,又因为AD为∠BAC的角平分线,所以∠DAC=
2
1∠BAC=
2
1×(180°-36°-76°)=34°.所以∠DAF=∠DAC -∠CAF=34°-14°=20°
3.因为AD为△ABC的中线,所以BD=CD,所以△ABD与△ACD的周长之差为:
(AB+BD+AD)-(AC+CD+AD)=AB-AC=5-3=2(cm)
4.相等.因为AD是△ABC的角平分线,所以∠BAD=∠CAD,∠ADE=180°-∠ADB=∠B+∠BAD.又因为∠EAC=∠B,所以∠DAE=∠CAE+∠CAD=∠B+∠BAD=∠ADE
5.由题意知∠BIC是△CDI的外角,所以∠BIC=∠IDC+∠ICD.又因为∠IDC是△ADB的外角,所以∠IDC=∠A+∠ABD,所以∠BIC=∠A+∠ICD+∠ABD
又因为∠ABC和∠ACB的平分线BD和CE相交于点I,所以∠BIC=∠A+∠ICD+∠ABD
=70°+
2
1(∠ABC+∠ACB)=70°+
2
1×(180°-70°)=125°.
6.可以得到4个三角形,三角形的个数等于边数减1.
7、由题意知:内角十外角=180度,即
3
5倍的内角等于180°,解得内角为108°,外角为72°.由多边形外角和为360°得边数为5.
8.∵∠D+∠C+∠DAB+∠ABC =360°,∠D+∠C=220° ∴∠DAB+∠ABC =360°-220°=140° ∵∠1=∠2,∠3=∠4,∴∠2+∠3=70° ∴∠AOB =180°-70°=110°
9.(1)相等△ABD 和△ADC 的底边分别为BD ,DC ,且相等,而且它们的高相同,两个三角形等底等高,因此面积相等.
(2)由(1)可知三角形的中线等分三角形的面积,S △GFC=16
1S △ABC =1,所以△ABC 的面积
为16cm 2.。

相关文档
最新文档