单片机课程设计数据采集系统

合集下载

基于STM32F103单片机的数据采集系统设计

基于STM32F103单片机的数据采集系统设计

基于STM32F103单片机的数据采集系统设计本文。

在现代科技快速发展的时代背景下,数据采集系统作为信息获取的重要手段之一,已经成为各行业必备的工具之一。

STM32F103单片机作为一款性能稳定、功能强大的微控制器,被广泛应用于各种数据采集系统中。

本文将以STM32F103单片机为基础,探讨其在数据采集系统中的设计原理、实现方法以及应用案例,旨在为同行业研究者提供参考和借鉴。

一、STM32F103单片机概述STM32F103单片机是意法半导体公司推出的一款32位MCU,采用ARM Cortex-M3内核,工作频率高达72MHz,具有高性能、低功耗、丰富的外设接口等特点。

在各种嵌入式系统中,STM32F103单片机的应用十分广泛,特别适用于需要较高计算性能和功耗要求低的场景。

二、数据采集系统概述数据采集系统是一种用于采集、处理和传输数据的系统,通常由传感器、数据采集设备、数据处理单元和通信模块等组成。

在工业控制、环境监测、医疗诊断等领域,数据采集系统扮演着重要角色,能够实时监测各种参数并进行数据分析,为决策提供数据支持。

三、STM32F103单片机在数据采集系统中的应用1. 数据采集系统设计原理数据采集系统的设计原理包括数据采集、数据处理和数据传输等环节。

在STM32F103单片机中,可以通过外设接口如ADC、UART等模块实现数据的采集和传输,通过中断和定时器等功能实现数据的处理和分析,从而构建完整的数据采集系统。

2. 数据采集系统实现方法基于STM32F103单片机的数据采集系统的实现方法主要包括硬件设计和软件编程两个方面。

在硬件设计方面,需要根据具体需求选择合适的传感器和外设接口,设计电路连接和布局;在软件编程方面,需要利用STM32CubeMX等工具进行初始化配置,编写相应的驱动程序和应用程序,实现数据的采集、处理和传输。

3. 数据采集系统应用案例以环境监测系统为例,我们可以利用STM32F103单片机搭建一个实时监测空气质量的数据采集系统。

51单片机数据采集系统

51单片机数据采集系统

课程设计报告书设计任务书一、设计任务1一秒钟采集一次。

2把INO口采集的电压值放入30H单元中。

3做出原理图。

4画出流程图并写出所要运行的程序。

二、设计方案及工作原理方案: 1. 采用8051和ADC0809构成一个8通道数据采集系统。

2. 能够顺序采集各个通道的信号。

3. 采集信号的动态范围:0~5V。

4. 每个通道的采样速率:100 SPS。

5.在面包板上完成电路,将采样数据送入单片机20h~27h存储单元。

6.编写相应的单片机采集程序,到达规定的性能。

工作原理:通过一个A/D转换器循环采样模拟电压,每隔一定时间去采样一次,一次按顺序采样信号。

A/D转换器芯片AD0809将采样到的模拟信号转换为数字信号,转换完成后,CPU读取数据转换结果,并将结果送入外设即CRT/LED显示,显示电压路数和数据值。

目录第一章系统设计要求和解决方案第二章硬件系统第三章软件系统第四章实现的功能第五章缺点及可能的解决方法第六章心得体会附录一参考文献附录二硬件原理图附录三程序流程图第一章系统设计要求和解决方案根据系统基本要求,将本系统划分为如下几个部分:●信号调理电路●8路模拟信号的产生与A/D转换器●发送端的数据采集与传输控制器●人机通道的接口电路●数据传输接口电路数据采集与传输系统一般由信号调理电路,多路开关,采样保持电路,A/D,单片机,电平转换接口,接收端(单片机、PC或其它设备)组成。

系统框图如图1-1所示1.1 信号采集分析被测电压为0~5V 直流电压,可通过电位器调节产生。

1.1.1 信号采集多路数据采集系统多采用共享数据采集通道的结构形式。

数据采集方式选择程序控制数据采集。

程序控制数据采集,由硬件和软件两部分组成。

,据不同的采集需要,在程序存储器中,存放若干种信号采集程序,选择相应的采集程序进行采集工作,还可通过编新的程序,以满足不同采样任务的要求。

如图1-3所示。

程序控制数据采集的采样通道地址可随意选择,控制多路传输门开启的通道地址码由存储器中读出的指令确定。

基于单片机技术的数据采集系统的设计

基于单片机技术的数据采集系统的设计
24 ;单 片机 ;数据 采 集 ;串行 通信
De i n o a a a q iii n s se a e n sg f d t c u sto y t m b s d o sn l h p c m p t r t c m o o y i g e cup o -l i- u e e h l g t n
Ab ta t T e p p r i t d c s t e h r w r e in a d te s f ae d s fa d t c u s in s se sr c : h a e nr u e h a d a e d sg n ot r e i o aa a q i t y tm o h w n g io b s d o ige c i - o u e c n lg .AT 9 5 U n L 2 4 D c i r s n t i s s m . a e n s l —h p c mp trt h oo y n e 8 C MC a d T C 5 3 M hp ae u e i s y t 1 d h e T e w oe s se C e dvd d it aa a q i t n t n mi ig mo ue a d d t i ly mo ue n d t h h l y tm a b iie no d t c s i r s t n d l n a d s a d l .I a n u io a t a p a
2 0 年第 2 08 1期
中 图 分 类 号 : ̄ 7 1 '4 2 文献标识码 : A 文章编号 : 0 1 9—25 (0 81 —00 —0 0 5220 )2 05 3
基 于 单 片机 技 术 的数 据 采 集 系统 的 设计
尹海宏 ,陈 雷

单片机 数据采集系统 实验报告

单片机 数据采集系统 实验报告

单片机数据采集系统实验报告1、被测量温度范围:0-120℃,温度分辨率为0.5℃。

2、被测温度点:2个,每5秒测量一次。

3、显示器要求:通道号2位,温度4位(精度到小数点后一位)。

显示方式为定点显示和轮流显示。

4、键盘要求:(1)定点显示设定;(2)轮流显示设定;(3)其他功能键。

设计内容:1、单片机及电源模块设计:单片机可选用AT89S51及其兼容系列,电源模块可以选用7805等稳压组件,本机输入电压范围9-12v。

2、存储器设计:扩展串行I2C存储器AT24C02。

要求:AT24C02的SCK接P3.2AT24C02的SDA接P3.42、传感器及信号转换电路:温度传感器可以选用PTC热敏电阻,信号转换电路将PTC输出阻值转换为0-5V。

3、A/D转换器设计:A/D选用ADC0832。

要求:ADC0832的CS端接P3.5ADC0832的DI端接P3.6ADC0832的DO端接P3.7ADC0832的CLK端接P2.14、显示器设计:6位共阳极LED显示器,段选(a-h)由P0口控制,位选由P2.2-P2.7控制。

数码管由2N5401驱动。

5、键盘电路设计:6个按键,P2.2-P2.7接6个按键,P3.4接公共端,采用动态扫描方式检测键盘。

6、系统软件设计:系统初始化模块,键盘扫描模块,数据采集模块,标度变换模块、显示模块等。

设计报告要求:设计报告应按以下格式书写:(1)封面;(2)设计任务书;(3)目录;(4)正文;(5)参考文献。

其中正文应包含以下内容:(1)系统总体功能及技术指标描述;(2)各模块电路原理描述;(3)系统各部分电路图及总体电路图(用PROTEL绘制);(4)软件流程图及软件清单;(5)设计总结及体会。

计算机控制课程设计数据采集系统设计正文

计算机控制课程设计数据采集系统设计正文

1 引言数据采集是指从传感器和其它待测设备等模拟和数字被测单元中自动采集信息的过程。

数据采集是工业控制等系统中的重要环节,通常采用一些功能相对独立的单片机系统来实现,作为测控系统不可缺少的部分,数据采集的性能特点直接影响到整个系统。

数据采集系统是结合基于计算机的测量软硬件产品来实现灵活的、用户自定义的测量系统。

随着计算机技术的飞速发展和普及,数据采集系统在多个领域有着广泛的应用。

数据采集是工、农业控制系统中至关重要的一环,在医药、化工、食品、等领域的生产过程中,往往需要随时检测各生产环节的温度、湿度、流量及压力等参数。

在科学研究中,运用数据采集系统可获得大量的动态信息,也是获取科学数据和生成知识的重要手段之一。

随着计算机在工业控制领域的不断推广应用,将模拟信号转换成数字信号已经成为计算机控制系统中不可缺少的重要环节,因此数据采集系统有着更加重要的意义。

本次的课程设计中,我通过查阅有关资料,确定了系统设计方案,并设计了硬件电路图,分析主要模块的功能及他们之间的数据传输和控制关系。

最后利用Protel绘制了电路原理图,Keil编写源代码。

本课程设计采用89C51系列单片机,设计的系统由硬件和软件两部分构成,硬件部分主要完成数据采集,软件部分完成数据处理和显示。

数据采集采用AD0809模数转换芯片,具有很高的稳定性,采样的周期由可编程定时/计数器8253控制。

完成采样的数据后输入单片机内部进行处理,并送到LED显示。

软件部分用Keil 软件编程,操作简单,具有良好的人机交互界面。

程序部分负责对整个系统控制和管理,采用了汇编语言进行了判别通道、数据采集处理、数据显示、数据通信等程序设计,具有较好的可读性。

使系统实现了通过一个A/D转换器采样一个模拟电压,每隔一定时间去采样一次,每次相隔的时间由定时器/计数器芯片8253控制,采样的结果送入A/D转换器芯片0809,转换完成后,把转换好的数字信号送入并行接口芯片8255,然后由中断控制器向CPU发出中断请求,在CPU控制下把8225中的数字送入外设即CRT/LED 显示。

基于STM32单片机的多路数据采集系统设计毕业设计

基于STM32单片机的多路数据采集系统设计毕业设计

基于STM32单片机的多路数据采集系统设计毕业设计摘要:本篇设计主要以STM32单片机为核心,设计了一个多路数据采集系统。

该系统能够实现多路模拟量和数字量信号的采集和显示,并通过串口与上位机进行通信,实现数据上传和控制。

设计中使用了STM32单片机的AD转换功能实现模拟量信号的采集,使用GPIO口实现数字量信号的采集,通过串口与上位机进行通信。

经过实验验证,该系统能够稳定地采集多路数据,并实现远程数据传输和控制功能,具有较高的可靠性和实用性。

关键词:STM32单片机,数据采集,模拟量信号,数字量信号,上位机通信一、引言随着科技的发展,数据采集系统在工业控制、环境监测、生物医学等领域得到了广泛的应用。

数据采集系统可以将现实世界中的模拟量信号和数字量信号转换为数字信号,并进行处理和存储。

针对这一需求,本文设计了一个基于STM32单片机的多路数据采集系统。

二、设计思路本系统的设计思路是通过STM32单片机实现多路模拟量和数字量信号的采集和显示,并通过串口与上位机进行通信,实现数据上传和控制。

该系统采用了模块化设计方法,将系统分为采集模块、显示模块和通信模块。

1.采集模块采集模块通过STM32单片机的AD转换功能实现模拟量信号的采集,通过GPIO口实现数字量信号的采集。

通过在程序中设置采样频率和采样精度,可以对不同类型的信号进行稳定和准确的采集。

2.显示模块显示模块通过LCD显示屏显示采集到的数据。

通过程序设计,可以实现数据的实时显示和曲线绘制,使得用户可以直观地观察到采集数据的变化。

3.通信模块通信模块通过串口与上位机进行通信。

上位机通过串口发送控制命令给STM32单片机,实现对系统的远程控制。

同时,STM32单片机可以将采集到的数据通过串口发送给上位机,实现数据的远程传输。

三、实验结果与分析通过实验验证,本系统能够稳定地采集多路模拟量和数字量信号,并通过串口与上位机进行通信。

系统能够将采集到的数据实时显示在LCD屏幕上,并通过串口传输给上位机。

基于单片机的多线程数据采集系统设计

基于单片机的多线程数据采集系统设计

6科技资讯科技资讯S I N &T NOLOGY I NFO RM TI ON 2008N O .15SCI ENC E &TECH NOLOG Y I N FOR M A TI ON 信息技术随着单片机技术的发展,其高稳定性和高信价比的到了个广范的认可,越来越多的应用在数据采集系统和监测系统。

我国工业自动化程度的迅速发展,对数据采集系统要求也越来越高,由原来的单一数据采集逐渐扩展到多数据的采集,如对工业生产设备的电流、电压、温度、压力、流量等数据的采集。

数据采集的准确、快速关系到生产安全及产品的质量。

数据采集系统有很多种实施方案,本文介绍采用SST89C58单片机作为中心控制单元,应用串行A/D 转换芯片完成多路数据采集,利用RS232串口驱动芯片完成单片机与PC 的数据交换,这样用户可以在上位机上利用本系统提供的数据处理平台对数据进行查询、分析、绘图和远程监控等,本系统可以是工作人对生产设备的运行监测和故障排查。

1硬件实现本系统有上位机(PC)和下位机(单片机)组成。

多线程数据采集系统的工作是:传感器将被测信号的物理量转换成电信号,经过信号调节(滤波),抑制干扰噪声信号的高频分量,经过采样器,将信号的采样值转化为数字信号,再通过接口电路将数据送到单片机中进行处理。

对于P C 机器的要求根据需要而定一般应选择处理速度快、存储量大、性能稳定。

应尽量选择品牌机器,在实际应用中品牌机器的稳定性还是的到认可的。

如果PC 一旦出现问题那对数据采集系统的影响很大,对生产安全和产品的质量都有很大的影响。

操作软件选择组态王,工业控制组态软件是一种可以各种数据采集卡等设备中实时采集数据,发出控制命令并监控系统运行是否正常的软件包,组态软件能充分利用W i ndow s 强大的图形编辑功能,以动画方式显示监控设备的运行状态,方便地构成监控画面和实现控制功能,并可以生成报表,立时数据库等。

系统采用组态王6.5作为监控软件开发平台,组态王是运行在W i ndo ws 2000/XP/NT,由工程浏览器T ouchm a k 和画面行系统T ouc hvi e w 两部分组成。

基于单片机的多路数据采集系统设计(3章)

基于单片机的多路数据采集系统设计(3章)

基于单片机的多路数据采集系统设计摘要数据采集是指从带有模拟、数字被测单元的传感器或者其他设备中对非电量或电量信号进行自动采集,再送到上位机中进行分析和处理。

近年来,众人时刻关注着数据采集及其应用的发展和市场形势。

广大人们的关注使得数据采集系统的发展有了质的飞跃,它被广泛用于各种数字市场。

本文介绍了数据采集的相关概念和基本原理,设计了基于STM32F407的多路数据采集系统的硬件和软件的实现方法及实现过程,并经过调试完成其主要功能和主要技术指标。

硬件部分包括:主控电路、信号采集处理电路、TFT液晶显示电路、SD 卡存储电路、串口通讯电路。

实现过程是以STM32F407为控制核心,通过模数转换器,实时对输入信号进行采样,得到一串数据流,通过控制器的处理实现数据的采集和显示。

软件部分包括:信号采集分析算法、嵌入式操作系统移植、UC-GUI人机交互界面设计、文件管理系统移植。

主要实现了对采集数据的存储和分析,频率和幅值的计算,液晶屏的控制和界面显示。

程序是在keil uVision的集成开发环境中用C语言写成的,编程具有模块化的特点,因此可读性比较高,维护成本较低。

最后,用Altium designer(DXP)设计了数据采集系统的原理图,并制作了PCB电路板。

在实验室里制作了数据采集系统并进行了系统调试,经过调试,达到了所应该实现的功能和技术指标。

关键词:多路数据采集,STM32F407,液晶显示MULTI-CHANNEL DATA ACQUISITION SYSTEMBASED ON SINGLE CHIP DESIGNABSTRACTData acquisition is the automatic acquisition of non electric or electric quantity signals from sensors and other devices, such as analog and digital.In recent years, data acquisition and its application has gradually become the focus of attention. Therefore, the data acquisition system has been rapid development, it is widely used in various fields.The software part includes: signal acquisition and the embedded operating system transplant, UC-GUI man-machine interface design. Mainly realizes the storage and analysis of the collected data, calculate the frequency and am plitude of the LCD screen display and control interface. The program is written by C language in the integrated development environment KEIL uVision and modular programming makes the program readable and easy maintenance features Finally, using designer Altium to design and manufacture the digital oscilloscope circuit board PCB. In the laboratory, the digital oscilloscope has been made and the system has been debugged. After debugging, it has achieved the function and technical index that should be realized.KEY WORDS: Multi-channel data acquisition,STM32F407,liquid-crystal display目录摘要 (I)ABSTRACT (II)1绪论 (1)1.1研究背景及其目的意义 (1)1.2国内外研究现状 (2)1.3研究的主要内容 (2)2系统总体方案设计 (4)2.1系统总体设计方案 (4)2.2系统总体框图 (4)2.3硬件系统方案设计 (4)2.3.1单片机的选择 (5)2.3.2信号衰减和放大电路 (5)2.3.3A/D模数转换器的选择 (6)2.3.4显示部分 (6)2.4软件系统方案设计 (6)2.5本章小结 (7)3硬件电路设计 (8)3.1电源部分 (8)3.2信号调理部分 (10)3.3信号采样 (12)3.4系统控制部分 (12)3.5本章小结 (14)1绪论1.1研究背景及其目的意义最近几年,众人时刻关注着数据采集及其应用的发展和市场形势。

基于单片机的多路数据采集系统设计-毕业设计

基于单片机的多路数据采集系统设计-毕业设计

基于单片机的多路数据采集系统设计学生:XXX 指导教师:XXX内容摘要:本设计介绍了基于单片机的数据采集的硬件设计和软件设计,数据采集系统是模拟域与数字域之间必不可少的纽带,它的存在具有着非常重要的作用。

本文介绍的重点是数据采集系统,而该系统硬件部分的重心在于单片机。

数据采集与通信控制采用了模块化的设计,数据采集与通信控制采用了单片机AT89S52来实现,硬件部分是以单片机为核心,还包括A/D模数转换模块,显示模块,和串行接口部分。

该系统从机负责数据采集并应答主机的命令。

8路被测电压通过模数转换器ADC0809进行模数转换,实现对采集到的数据进行模拟量到数字量的转换,并将转换后的数据通过串行口MAX232传输到上位机,由上位机负责数据的接受、处理和显示,并用LED数码显示器来显示所采集的结果。

软件部分应用VC++编写控制软件,对数据采集系统、模数转换系统、数据显示、数据通信等程序进行了设计。

关键词:数据采集 89C52单片机 ADC0809 MAX232Data acquisitionAbstract: This article describes the hardware design and software design of the data on which based on signal-chip microcomputer .The data collection system is the link between the digital domain and analog domain. It has an very important function. The introductive point of this text is a data to collect the system. The hardware of the system focuses on signal-chip microcomputer .Data collection and communication control use modular design. The data collected to control with correspondence to adopt a machine 8051 to carry out. The part of hardware’s core is AT89S52, is also includes A/D conversion module, display module, and the serial interface. Slave machine is responsible for data acquisition and answering the host machine.8 roads were measured the electric voltage to pass the in general use mold-few conversion of ADC0809,the realization carries on the conversion that imitates to measure the numeral to measure towards the data that collect .Then send the data to the host machine through MAX232.the host machine is responsible for data and display, LED digital display is responsible display the data. The software is partly programmed with VC++. The software can realize the function of monitoring and controlling the whole system. It designs much program like data-acquisition treatment, data-display and data-communication ect.Keywords:data acquisition AT89C52 ADC0809 MAX232目录前言 (1)1 数据采集 (1)1.1 数据采集系统 (1)1.2 方案论证 (2)1.2.1 A/D模数转换的选择 (2)1.2.2 单片机的选择 (3)1.2.3 串行口的选择 (3)1.2.4 显示部分 (3)1.2.5 按键 (3)2 硬件部分 (5)2.1 主机部分 (5)2.1.2 单片机 (6)2.1.3 LED数码显示器的应用原理 (8)2.2 从机部分 (9)2.2.1 从机的电路原理图设计 (9)2.2.3 模数转换器ADC0809 (12)3 软件部分 (15)3.1 主机程序设计 (15)3.1.1 主程序 (15)3.1.2 向串口发送数据子程序 (16)3.1.3 键盘扫描子程序 (17)3.1.4 LED显示程序 (18)3.1.5 主机串口接受中断子程序 (19)3.2 从机部分程序设计 (20)3.2.1 主程序 (20)3.2.2 从机串口接受中断函数 (20)3.2.3 模数转换子程序ADCON (21)4 调试结果 (22)5 结束语 (22)参考文献: (23)基于单片机的多路数据采集系统设计前言在各种测控系统中,往往需要对一些参数进行测量并送回计算机进行监控及处理,因此多路数据采集系统被广泛应用于各种测控场合。

《2024年基于单片机和LabVIEW的多路数据采集系统设计》范文

《2024年基于单片机和LabVIEW的多路数据采集系统设计》范文

《基于单片机和LabVIEW的多路数据采集系统设计》篇一一、引言随着科技的发展,多路数据采集系统在工业、医疗、环境监测等领域的应用越来越广泛。

为了满足多路数据的高效、准确采集需求,本文提出了一种基于单片机和LabVIEW的多路数据采集系统设计。

该系统设计旨在实现多路信号的同时采集、处理及实时监控,以适应复杂多变的应用环境。

二、系统概述本系统采用单片机作为核心控制器,结合LabVIEW软件进行数据采集和处理。

系统由多个传感器模块、单片机控制器、数据传输模块以及上位机软件组成。

传感器模块负责实时监测各种物理量,如温度、湿度、压力等,并将采集到的数据传输给单片机控制器。

单片机控制器对数据进行处理和存储,并通过数据传输模块将数据发送至上位机软件进行进一步的处理和显示。

三、硬件设计1. 传感器模块:传感器模块采用高精度、高稳定性的传感器,如温度传感器、湿度传感器等,实现对物理量的实时监测。

传感器模块的输出为数字信号或模拟信号,方便与单片机进行通信。

2. 单片机控制器:采用具有高速处理能力的单片机作为核心控制器,实现对数据的快速处理和存储。

单片机与传感器模块和数据传输模块进行通信,实现数据的实时采集和传输。

3. 数据传输模块:数据传输模块采用无线或有线的方式,将单片机控制器的数据传输至上位机软件。

无线传输方式具有灵活性高、安装方便等优点,但需要考虑信号干扰和传输距离的问题;有线传输方式则具有传输速度快、稳定性好等优点。

四、软件设计1. 单片机程序设计:单片机程序采用C语言编写,实现对传感器数据的实时采集、处理和存储。

同时,程序还需要与上位机软件进行通信,实现数据的实时传输。

2. LabVIEW程序设计:LabVIEW程序采用图形化编程语言编写,实现对单片机传输的数据进行实时处理和显示。

同时,LabVIEW程序还可以实现对数据的存储、分析和报警等功能。

五、系统实现1. 数据采集:传感器模块实时监测各种物理量,并将采集到的数据传输给单片机控制器。

基于STM32单片机的多路数据采集系统设计

基于STM32单片机的多路数据采集系统设计

基于STM32单片机的多路数据采集系统设计概述:多路数据采集系统是一种用于采集和处理多种传感器信号的系统。

基于STM32单片机的多路数据采集系统具有低功耗、高精度、稳定可靠的特点,广泛应用于工业控制、环境监测和医疗设备等领域。

本文将介绍基于STM32单片机的多路数据采集系统的设计方案及实现方法。

设计方案:1.系统硬件设计:系统硬件由STM32单片机、多路模拟输入通道、数模转换器(ADC)和相关模拟电路组成。

其中,多路模拟输入通道可以通过模拟开关电路实现多通道选通;ADC负责将模拟信号转换为数字信号;STM32单片机负责控制和处理这些数字信号。

2.系统软件设计:系统软件可以采用裸机编程或者使用基于STM32的开发平台来进行开发。

其中,主要包括数据采集控制、数据转换、数据处理和数据存储等功能。

具体实现方法如下:-数据采集控制:配置STM32单片机的ADC模块,设置采集通道和相关参数,启动数据采集。

-数据转换:ADC将模拟信号转换为相应的数字量,并通过DMA等方式将数据传输到内存中。

-数据处理:根据实际需求对采集到的数据进行预处理,包括滤波、放大、校准等操作。

-数据存储:将处理后的数据存储到外部存储器(如SD卡)或者通过通信接口(如UART、USB)发送到上位机进行进一步处理和分析。

实现方法:1.硬件实现:按照设计方案,选择适应的STM32单片机、模拟开关电路和ADC芯片,完成硬件电路的设计和布局。

在设计时要注意信号的良好地线与电源隔离。

2.软件实现:(1)搭建开发环境:选择适合的开发板和开发软件(如Keil MDK),配置开发环境。

(2)编写初始化程序:初始化STM32单片机的GPIO口、ADC和DMA等模块,配置系统时钟和相关中断。

(3)编写数据采集程序:设置采集参数,例如采样频率、触发方式等。

通过ADC的DMA功能,实现数据的连续采集。

(4)编写数据处理程序:根据实际需求,对采集到的数据进行预处理,例如滤波、放大、校准等操作。

基于STM32单片机的多路数据采集系统设计毕业设计

基于STM32单片机的多路数据采集系统设计毕业设计

基于STM32单片机的多路数据采集系统设计毕业设计本文将设计一种基于STM32单片机的多路数据采集系统。

该系统可以实现多个输入信号的采集和处理,在电子仪器、自动化控制、工业检测等领域具有广泛的应用前景。

首先,我们需要选择合适的STM32单片机作为系统的核心处理器。

STM32系列单片机具有低功耗、高性能和丰富的外设资源等优点,非常适合用于嵌入式数据采集系统的设计。

在选取单片机时,要考虑到系统对于处理速度、存储容量和外设接口的需求,以及预算等因素。

其次,我们需要设计合适的外部电路来连接待采集的信号源。

常用的信号源包括温度传感器、光敏电阻、加速度传感器等。

我们可以使用适当的模拟电路将这些信号转换为STM32单片机能够接收的电平。

此外,还可以考虑使用模数转换芯片来实现对多路模拟信号的高速采集。

接下来,我们需要设计软件算法来对采集到的数据进行处理。

在数据采集系统中,常见的算法包括滤波、数据压缩、数据存储等。

通过滤波算法可以去除噪声,提高信号的质量;数据压缩可以减少数据存储和传输的空间;数据存储可以将采集到的数据保存在存储介质中以供后续分析。

最后,我们需要设计用户界面以便用户能够方便地操作系统。

可以使用LCD屏幕和按键等外设来实现用户界面的设计。

用户界面应该直观简洁,提供友好的操作和显示效果,方便用户进行数据采集和系统设置。

综上所述,基于STM32单片机的多路数据采集系统设计需要考虑到硬件电路和软件算法的设计,以及用户界面的设计。

通过合理的设计和实现,可以实现多路信号的高速采集、滤波处理和存储,为电子仪器、自动化控制和工业检测等领域提供可靠的数据支持。

单片机数据采集控制系统

单片机数据采集控制系统

单片机数据采集控制系统
单片机数据采集控制系统是一种利用单片机进行数据采集和控制的系统。

它通
常由单片机、传感器、执行器和外围电路组成。

在系统中,传感器用于采集环境或者物体的各种参数,例如温度、湿度、光强等。

传感器将采集到的摹拟信号转换为数字信号,并通过接口与单片机进行通信。

单片机作为系统的核心部件,负责接收传感器的信号,并进行数据处理和控制。

它可以根据采集到的数据进行各种算法运算,实现对环境或者物体的监测和控制。

同时,单片机还可以通过与执行器的通信,控制执行器的动作,实现对系统的控制。

外围电路主要包括供电电路、通信接口电路、显示电路等。

供电电路为系统提
供稳定的电源,通信接口电路实现单片机与外部设备的通信,显示电路用于显示系统的数据或者状态。

单片机数据采集控制系统在工业自动化、环境监测、智能家居等领域具有广泛
的应用。

它可以实时采集和处理数据,提高系统的自动化程度和智能化水平,提高工作效率和质量。

基于MSC1210单片机的数据采集系统[1]

基于MSC1210单片机的数据采集系统[1]

基于MS C1210单片机的数据采集系统的设计袁志强,曹伟莹(宜春学院物理科学与工程技术学院,江西 宜春 336000) 摘 要:很多工业控制领域和家用自动化都必须进行现场数据采集,然后根据现场采集的数据进行分析计算,判断现场状况,然后对现场进行处理,实现工业和家用设备的自动控制。

本文提出了一种以MSC1210单片机为核心,采用温度/湿度传感器P L907021/10和三星公司的S3C44B0X 芯片共同构成数据采集系统的一个方法。

关键词:M S C1210;传感器;数据采集系统中图分类号:TP29 文献标识码:A 文章编号:1671-380X (2008)04-0057-030 引言目前数据采集系统往往采用的主芯片是51系列单片机,而51系列单片机存在时钟频率低、执行指令速度慢、Flash 存储器和内部RAM 容量小等缺点。

本文采用的MSC1210[1]单片机兼容8051内核,一定程度上克服了上述51单片机的缺点,同时还集成了高精度的AD 转换器,能够满足在工业控制领域和家用自动化的高精度要求。

当采集8路P L907021/10传感器数据时,由于数据量比较大,MSC1210还是不能完成对数据的存储和处理,所以增加了处理能力很强的AR M 微处理器S3C44B0X 。

本数据采集系统具有高精度、高可靠性、容量大、实用性强等特点。

1 系统总体结构我们所设计的系统是一个多通道高精度数据采集系统[2],系统集高精度数据采集、快速数据存储和处理于一体。

整个系统的硬件部分主要由两大块构成,即前端数据采集部分、后端数据存储和处理部分组成,这两部分通过RS -232串行接口芯片MAX3223进行通信。

系统的总体方案构图如图1所示。

图1 系统总体结构系统前端数据采集部分以型号为P L907021/10的温度/湿度传感器和高精度多通道增强型51单片机TI MSC1210组成,主要完成高精度的数据采集;由于采集的是8个传感器数据,数据量比较大,MSC1210难以完成对这些数据的采集和处理,因此,在系统的后端部分由AR M 微处理器S3C44B0X 来完成采集数据存储和处理。

基于单片机的高分辨率多通道数据采集系统

基于单片机的高分辨率多通道数据采集系统

基于单片机的高分辨率多通道数据采集系统高分辨率多通道数据采集系统是一种基于单片机的数据采集系统,用于采集多个通道的高分辨率数据。

该系统可以应用于许多领域,如科学研究、医学监测、工业控制等。

系统由单片机、模拟信号输入模块、数据处理模块和数据存储模块等组成。

模拟信号输入模块负责将外部信号转换为数字信号,通常使用模数转换器(ADC)来完成这个过程。

数据处理模块负责对采集的数据进行处理和分析,可以进行滤波、平均、峰值检测等操作。

数据存储模块负责将处理后的数据保存到存储器中,可以选择使用闪存、SD卡等存储媒介。

在设计过程中,需要注意的几个关键问题。

首先是信号采集的精度和分辨率,这取决于ADC的位数和参考电压。

通常情况下,位数越高,分辨率越高,精度越高。

其次是采样率,它表示每秒采样的次数。

较高的采样率可以捕捉到更多细节信息,但会增加数据量。

然后是输入电路的设计,要保证输入信号的稳定性和抗干扰能力。

最后是数据处理和存储的算法设计,要根据具体应用需求选择合适的算法。

高分辨率多通道数据采集系统的应用非常广泛。

在科学研究领域,可以用于气象观测、地震监测等;在医学领域,可以用于心电图、血压监测等;在工业控制领域,可以用于传感器信号采集、生产过程监测等。

这些应用都需要高分辨率和多通道的数据采集系统来实现对复杂信号的准确采集和分析。

基于单片机的高分辨率多通道数据采集系统是一种实现对多个通道高分辨率数据采集的重要工具。

它可以应用于许多领域,帮助人们获取准确的数据,并进行进一步的分析和应用。

随着科技的不断进步,数据采集系统的性能和功能也会不断提高,为各行各业的发展提供有力的支持。

基于单片机的实时数据采集系统设计

基于单片机的实时数据采集系统设计

基于单片机的实时数据采集系统设计刘松文(株洲职业技术学院,湖南株洲412001)应用科技哺要】单片机I的运算能力强有力,遥算速度快,I/O接口功能完善,抗干扰能力强。

可靠性高,对于现场数据采集处理时。

它仍然是现场数据采集器的核心元件之一。

陕麓词】数据采集;串口;单片机;M SC om m单片机的运算能力强有力,运算速度快,I/O接口功能完善,抗干扰能力强,可靠性高,对于现场数据采集处理时,它仍然是现场数据采集器的核心元件之一。

当现场测试点较为分散时,通常以串行通信方式将数据采集连接成网络,主机采用主从访问方式,实现多点的数据采集。

这种方案在数据传输量较小且频率较高、采样周期较长时,可以较好地完成多点数据采集处理任务。

但是,当现场信号频率较高时,根据香农定理可知,采样频率也应提高,这样在单位时间内的数据传输量也相应增大,若采用这种主从式网络进行多点采集,实时性难以满足,甚至会造成系统崩溃。

本文提出了一种基于单片机的并行通讯方式进行处理,然后将处理结果以串行方式通过RS485口送入监控主机。

1分布式数据采集系统的结构图1为本文设计的主从式数据采集处理系统。

I冬|l上从式数据采集处理系统该方案较好地解决了采集系统的实时性问题。

工作在现场的数据采集单元仍然是以C PU为核心的智能单元,实现对现场模拟量(比如水分、温度等)或现场状态的检测和采集,经过相应的预处理如滤波、编码,以串行通信方式发给数据处理单元。

数据处理单元与每个采集单元之间以点对点的方式收发数据,每一路数据有一个独立的收发单片机(89C51),以并行传送方式与数据处理单元主处理器(89C52)进行信息交换。

由于各路数据收发独立,并且并行传达时间很短(一般为几十个微秒),由前端数据采集单元的数据到数据处理单元的传送时间主要取决于串行通信所用的时间,以9600B ps传送7个字节数据的时间为7X10X1/9600=7.292m s,各路传送并工作,主处理器几乎可以同时获取数据,当数据采集器采样间隔不低于20m s时,该方案的数据处理具有较好的实时性。

基于单片机实现数据采集的设计

基于单片机实现数据采集的设计

基于单片机实现数据采集的设计摘要:本论文的目的就是设计实现一个具有一定实用性的实时数据采集系统。

本文介绍了基于单片机的数据采集的硬件设计和软件设计。

数据采集系统是模拟域与数字域之间必不可少的纽带,它的存在具有非常重要的作用。

数据采集与通信控制采用了模块化的设计,数据采集与通信控制采用了单片机AT89C51 来实现,硬件部分是以单片机为核心,还包括A/D 模数转换模块,显示模块,和串行接口电路。

本系统能够对8 路模拟量,8 路开关量和1 路脉冲量进行数据采集。

被测数据通过TLC0838 进行模数转换,实现对采集到的数据进行模拟量到数字量的转换,并将转换后的数据通过串行口MAX232 传输到上位机,由上位机负责数据的接受、处理和显示,并用LCD 显示器来显示所采集的结果。

对脉冲量进行采集时,通过施密特触发器进行整形后再送入单片机。

本文对数据采集系统、模数转换系统、数据显示、数据通信等程序进行了设计。

关键词:数据采集AT89C51 单片机TLC0838 MAX232TP274 :A :1003-9082 (2017) 02-0298-01前言数据采集,又称数据获取,是利用一种装置,从系统外部采集数据并输入到系统内部的一个接口。

数据采集技术广泛应用在各个领域。

近年来,数据采集及其应用受到了人们越来越广泛的关注,数据采集系统也有了迅速的发展,它可以广泛的应用于各种领域。

本文设计的数据采集系统,它的主要功能是完成数据采集、处理、显示、控制以及与PC 机之间的通信等。

在该系统中需要将模拟量转换为数据量,而A/D 是将模拟量转换为数字量的器件,他需要考虑的指标有:分辨率、转换时间、转换误差等等。

而单片机是该系统的基本的微处理系统,它完成数据读取、处理及逻辑控制,数据传输等一系列的任务。

本系统对数据采集系统体系结构及功能进行分析,设计并实现采用单片机为核心,扩展电源电路、复位电路、LCD 接口电路等,并配有标准RS-232 串行通信接口。

单片机课程设计8路数据采集

单片机课程设计8路数据采集

嘉应学院电子信息工程学院<单片机原理课程设计报告>8通道精密模拟量数据采集器指导老师专业自动化班级0 8 2 班姓名同组人同组人座号 1 7 号学号摘要数据采集,又称数据获取,是利用一种装置,从系统外部采集数据并输入到系统内部的一个接口。

数据采集技术广泛引用在各个领域。

它是指从传感器和其它待测设备等模拟和数字被测单元中自动采集信息的过程。

本数据采集设计是一种基于单片机的数据采集系统,采用MAX308多路选择开关,可以采集八通道的模拟量,A/D转换器ICL7109的数据输出形式为12为二进制码,且与微处理器有良好的兼容特性,所以可以与89C51单片机直接相连。

ICL7109所需的基准电压由ICL7660供给,采集的数据经过单片机的简单处理,通过与计算机的连接在串口调试助手中直接显示。

本设计称为8通道精密模拟量数据采集器,可以采集8路模拟量,并且采用杜邦线接线模式,方便加在其他设备中使用,8路模拟信号输入也留有接线端子,可以任意选择一路或多路进行采集、监控。

本设计制作简单,体积小,携带方便,并可以直接附加在其他设备上,用途广泛。

目录摘要 (2)1 设计目的 (4)2 设计任务 (4)3.设计方案 (4)4.数据采集器的电路设计 (5)4.1 电源电路的设计 (5)4.2数据输入电路设计 (5)4.3 ICL7109与89C51单片机的硬件接口设计 (6)4.3.1 ICL7109的内部结构与芯片引脚功能 (7)4.4单片机转串口与计算机通信设计 (10)4.6整体电路 (11)4.6.1 整体电路原理图 (12)4.6整体电路PCB图 (13)5. 软件调试 (16)5.1 程序流程图 (16)5.2 程序清单 (16)6. 电路的装配与调试过程 (17)6.1电路焊接 (17)6.2调试过程 (17)7收获、体会和建议 (18)致谢 (18)参考文献 (18)附录元件清单 (19)1设计目的1.使学生在学完了《单片机原理与接口技术》课程的基本理论,基本知识后,能够综合运用所学理论知识、拓宽知识面,系统地进行电子电路的工程实践训练,锻炼动手能力,培养工程师的基本技能,提高分析问题和解决问题的能力。

单片机多路数据采集控制系统课程设计报告

单片机多路数据采集控制系统课程设计报告

单片机多路数据采集控制系统课程设计报告叶醒Xb09610118 余希Xb09610120一、设计目的运用单片机原理及其应用等课程知识,根据题目要求进行软硬件系统的设计和调试,从而加深对本课程知识的理解,把学过的比较零碎的知识系统化,比较系统的学习开发单片机应用系统的基本步骤和基本方法,使学生应用知识能力、设计能力、调试能力以及报告撰写能力等有一定的提高。

二、设计要求用8051单片机设计数据采集控制系统,基本要求如下:基本部分:1.可实现8路数据的采集,假设8路信号均为0~5V的电压信号。

2.采集数据可通过LCD显示,显示格式为[通道号] 电压值,如[01] 4.5。

3.可通过键盘设置采集方式:单点采集、多路巡测、采集时间间隔。

4.具有异常数据声音爆晶功能:对第一路数据可设置正常数据的上限值和下限值,当采集的数据出现异常,发出报警信号。

选作功能:1.异常数据音乐报警。

2.可输出8路顺序控制信号,设每路顺序控制信号为一位,顺序控制的流程为:三、总体设计我们选择单片机与A/D转换芯片结合的方法实现本设计。

使用的基本元器件是:A T89C52单片机,ADC0809模数转换芯片,LCD显示器,按键,电容,电阻,晶振等。

数字电压测量电路由A/D转换、数据处理及显示控制等组成。

A/D转换由集成电路ADC0809完成。

ADC0809具有8路拟输入端口,地址线(23~- 25脚)可决定对哪一路模拟输入作A/D换。

22脚为地址锁存控制,当输入为高电平时,对地址信号进行锁存。

6脚为测试控制,当输入一个2uS宽高电平脉冲时,就开始A/D转换。

7脚为A/D转换结束标志,当A/D转换结束时,7脚输出高电平。

9脚为A/D转换数据输出允许控制,当OE脚为高电平时,A/D转换数据从该端口输出。

10脚为0809的时钟输入端。

单片机的P1.5~P1.7、P3端口作1602液晶显示控制。

P2端口作A/D转换数据读入用,P0端口用作0809的A/D 转换控制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、摘要
此系统主要以ADC0808和80C51为核心,进行实时数据采集,数据处理和显示,终端接收及存储。

具体包括控制、显示、A/D转化器等。

设计中用AD0808进行8路数据的采样,利用51单片机的串行口进行发送和接收数据。

利用8个LCD 数码管进行显示数据处理。

采用PROTEUS和Keil uvision3为开发工具,软件设计采用模块化编程
关键字:数据采集、ADC0808、双机通讯、IIC
二、前言
随着计算机技术的飞速发展,数据采集系统应用在多个领域中。

数据采集时供、农业控制系统中十分重要的环节,在医药、化工、食品等领域中,往往需要随时检测各生产环节的温度、流量、压力等参数。

同时,还要对某一检测点任意参数能够进行随机查寻,将其在某一段时间内检测得到的数据经过转换提取出来,以便进行比较,做出决策,调整控制方案,以提高产品的合格率,产生良好的经济效益。

不仅如此,数据采集系统在我国高科技领域中也扮演着十分重要的地位。

雷达的实时数据采集,航天飞机成功升空,通讯卫星的实时通报数据,这些高科技给国家人民的生活带来了便利。

因此数据采集是一项十分重要的技术。

从严格意义上来讲,数据采集系统是用计算机控制的多路自动检测或巡回检测,并且能够对采集到的数据进行存储、计算、分析,以及从数据中提取可用的信息,供显示,记录、打印或描绘的系统。

数据采集系统通常由数据输入通道、数据处理、数据存储、数据显示、数据输出五个部分组成。

输入通道实现对数据的检测并读取;数据转化是将采集到的数据进行适当的转化;以便输出人们易懂的数据;数据存储是对采集过来的数据进行存储;以防下次用到可以方便提取;数据显示便是将处理后的数据进行显示,让操作者可以方便读取采集到的信息,以便进行控制;数据输出就是将数据输送到打印机打印。

由于RS-485在微机远程通信接口中广泛采用,技术已经相当成熟,故采用标准RS-485标准,实现PC与单片机之间的数据传送(由于本次设计在PROTEUS系统中仿真,因此,略去接口RS-485)。

本设计中对多路采集系统做了基本的研究。

此次试验主要解决的是怎样进行多路数据采集并如何通过串行口发送数据实现双机通讯的。

三、正文
3.1、设计要求
3.11.使用PROTEUS作为开发工具,利用ADC0808八路数据采集,信号源为5V直流电压用电阻网络分压。

采样间隔在(1-255秒)之间有外部拨码开关可调,分析数据采集精度。

3.12.将采集到的数据,使用串口传输传到远程单片机,设计传输距离为5KM。

3.13.远程单片机接收数据,按通道和输注(十进制)显示,并将信息存入24C01。

掌握
I2C存储器的程序设计方法,动态显示的设计方法。

3.2、系统的组成及工作原理
此系统主要以ADC0808与80C51为中心,通过ADC对电阻网络采集数据,并将采集到的数据通过单片机串口传到另外一篇单片机中,在24C01芯片中存储,同时读取24C01里的数据,并将其显示在数码管中。

由于电阻网络是由滑动变阻器构成,因此,当改变滑动变阻器阻值后,ADC采集到的数据也会变化。

而采集速度也是由人通过拨码开关来控制的。

在采集速度方面,由于采集速度是可控的,因此,需要利用定时器来控制数据的发送。

3.3、方案比较
3.31.采样器方案比较:
由于采样的最重要指标是:转化时间、转换精度。

已知ADC转换芯片有8位,10位,12位,14位,最高的达到16位。

位数不一样,导致处理速度,精度都不一样。

通常,8位逐次逼近ADC的转换时间为100US左右,为本系统的控制时间允许。

ADC的转换精度为1/28=0.39%,输入0~5V时分辨率为5/(28-1)=0.0196V。

因此选择ADC0808芯片是最佳的选择方案。

用此芯片可以直接将8个单端模拟信号输入,分时进行数据采集,转换。

3.32.单片机控制ADC方案比较:
用单片机控制ADC通常有两种方式。

一种是查询法,另外一种是中断控制法。

查询法是单片机不断地对EOC状态进行读取。

当发现EOC变化时,则单片机便对转化好的数据进行读取。

中断控制法则是当ADC变换结束后向单片机发送中断请求,然后进入中断服务进行想干操作。

查询法是用在对转换时间不高的工程中,而中断方法则应用在转换时间高的工程当中,在此次设计中,选择中断方式控制ADC。

3.33.显示方案比较:
(1)端口接线及数码管数选择:
由于本次实验显示的数据是从24C01中读取的,因此是在另外一片单片机上进行显示的。

由于该单片机的闲置端口足够提供控制显示器端口,因此不需要外加其它高级芯片。

如果端口数量不够,可以采样扩展端口,此类芯片有比较熟悉的8155芯片或者8255等等。

由于精度要求达到0.1%,因此,这里用8只数码管,3只用来显示通道数,4只用来显示数值。

(2)显示方法:
显示方法有动态显示与静态显示两种方法。

动态显示需要对CPU时刻对显示器进行数据刷新,显示数据会有闪烁感,占用的CPU时间多。

静态显示数据稳定,但是接线复杂。

这两种方法各有利弊,故当显示装置中有多个多段LED式,通常采用动态扫描驱动电路在该单片机系统中,使用7段LED显示器构成8位显示器,段选线控制显示的字符,位选线控制显示位的亮或暗。

3.3
4.双机通信接口方案比较:
由于此次设计是在PROTEUS上仿真的,因此不需要外加双机端口之间的诸如电平转换器、串行通信RS-232、RS-485.直接利用单片机串行接口相互连接发送便可。

3.35.外部拨码开关的方案比较:
由于通常都用switch开关来控制单片机,以便达到我们人所需要的条件。

但在此次设计中,由于在PROTEUS软件中8个switch不仅占用空间,而且还不好控制,故选择dipsw拨
号开关,这个开关switch功能一样,但体积小,而且可以同时全部开,全部关,故选择dipsw 开关。

3.4、电路设计(图示)
3.5、模块分析
此系统中共用到的模块如下:ADC数据采集模块、发送机发送模块、接收机接收模块、24C01存储模块、LED数码管显示模块、采集速率处理模块。

(1)ADC数据采集模块:在此模块中,主要是ADC采集数据是的时序处理,主要处理的拐角为0E(输出允许),START(开始转换),而EOC拐角则用来充当中断信号源
(2)发送机发送模块:在此模块中,主要是一个中断控制处理,即当ADC转换完后,产生了一个下降沿触发信号时,发送模块进入中断,对数据进行发送,否则不发送数据,在此模块中当TI=1,进入中断以后,要用软件清零。

(3)接收机接收模块:与发射机对应,波特率要设置成与发射机波特率相同,而且也是在收到信号后进入中断处理。

将收到的数据存到24C01芯片中。

否则,一直调用显示功能。

在此模块中,当RI=1,进入中断以后,要用软件清零
(4)24C01模块:在此模块中,主要是处理SCK与SDA的时序问题,由于它是串行读取数据的,因此,时序出错,便不能得出数据来。

在24C01的读写过程中,地址很重要,在写过程中,要先写地址,再写数据。

在读过程也是先写入地址,在读数据。

(5)LED数码管显示模块:在此模块中,主要是考虑将采集到的数据正确地显示处理,给操作者一个非常直观的界面。

在这个模块中要处理的一个难题是:如何不让数码管跳动显示。

软件实现过程主要控制好段选与位选,以及延时时间上的处理。

(6)采集速率处理模块:在此模块中,主要处理时间问题,即如何通过定时器到达用户的要求,实现人机信息交换。

在软件实现过程中,需要注意定时寄存器的重新赋值。

3.42.小结:经简单理论分析,本系统数据采集核心采用ADC0808,单片机系统选用80C51构成的最小系统,用LED动态显示采集到的数据,数据通过80C51串行端口传输,实现单片机与单片机之间的通信。

3.6、实验流程图
3.7、程序主体
//****************************************************************************** (1)ADC采集、发送机数据处理、数据发送的程序如下:
#include<reg51.h>
#define uchar unsigned char
#define uint unsigned int
sbit ST=P3^5;
sbit OE=P3^7;
uchar getdata,picknum,t=0,Total=0;
void delay(uint t) //单位延时1ms,总延时1ms*t.(120为实验测试值) {
uint i,j;
for(i=0;i<t;i++)
for(j=0;j<121;j++);
}
void delay1()
{;;}
void Send(uchar dat)。

相关文档
最新文档