spss实验报告---方差分析

合集下载

SPSS——单因素方差分析详解

SPSS——单因素方差分析详解

SPSS——单因素方差分析详解单因素方差分析(One-Way ANOVA)常用于比较两个或更多组之间的平均差异是否显著。

本文将详细介绍单因素方差分析的原理、步骤和结果解读。

一、原理:单因素方差分析通过比较组间方差(Treatment Variance)与组内方差(Error Variance)的大小来判断不同组间的平均差异是否显著。

组间方差反映了不同组之间的平均差异,而组内方差反映了同一组内个体之间的随机波动。

如果组间方差显著大于组内方差,则可以判断不同组间的平均差异是显著的。

二、步骤:1.收集数据:首先确定研究问题和目的,然后根据实际情况设计并收集数据。

例如,我们想比较三个不同品牌的手机的待机时间是否有显著差异,需要收集每个品牌手机的待机时间数据。

2.建立假设:根据研究问题和数据的特点,建立相应的零假设(H0)和备择假设(Ha)。

在单因素方差分析中,零假设通常是所有组的平均值相等,备择假设则是至少有一组平均值与其他组不等。

4.分析结果解读:SPSS输出了一系列统计结果,包括方差分析表、平均值表、多重比较和效应大小等信息。

关键的统计结果包括F值、P值和ETA方。

-方差分析表:用于比较组间方差和组内方差的大小。

方差分析表中的F值表示组间方差除以组内方差的比值,F值越大说明组间差异越显著。

-P值:用于判断F值的显著性。

如果P值小于设定的显著性水平(通常为0.05),则拒绝零假设,即认为不同组间的平均差异是显著的。

-ETA方:代表效应大小程度。

ETA方越大说明组间的差异对总变异的解释程度越大,即差异的效应越显著。

5. 多重比较:如果方差分析结果显著,需要进行多重比较来确定具体哪些组之间存在显著差异。

SPSS提供了多种多重比较方法,包括Tukey HSD、Scheffe和Bonferroni等。

三、结果解读:对方差分析的结果进行解读时,需要综合考虑F值、P值、ETA方和多重比较结果。

1.F值和P值:-如果F值显著(P值小于设定显著性水平),则可以得出不同组间的平均差异是显著的结论。

spss 方差分析(多因素方差分析)实验报告

spss 方差分析(多因素方差分析)实验报告

大学经济管理学院学生实验报告实验课程名称:统计软件及应用专业工商管理班级学号姓名成绩实验地点实验性质:演示性 验证性综合性设计性实验项目名称方差分析(多因素方差分析)指导教师一、实验目的掌握利用SPSS 进行单因素方差分析、多因素方差分析的基本方法,并能够解释软件运行结果。

二、实验内容及步骤(包括实验案例及基本操作步骤)实验案例:为研究某商品在不同地区和不同日期的销售差异性,调查收集了以下日平均销售量数据。

销售量日期周一至周三周四至周五周末地区一5000 6000 4000 6000 8000 3000 4000 7000 5000地区二700080008000500050006000500060004000地区三300020004000600060005000800090006000(1)选择恰当的数据组织方式建立关于上述数据的SPSS数据文件。

在SPSS输入数据。

(2)利用多因素方差分析法,分析不同地区和不同日期对该商品的销售是否产生了显著影响。

1. 选择菜单Analyze,General Linear Model,Univariate;2. 指定观测变量销售额到Dependant Variable框中;3. 指定固定效应的控制变量到Fixed Factors框中,4. OK,得到分析结果。

(3)地区和日期是否对该商品的销售产生了交互影响?若没有显著的交互影响,则试建立非饱和模型进行分析,并与饱和模型进行对比。

三、实验结论(包括SPSS输出结果及分析解释)SPSS输出的多因素方差分析的饱和模型分析:表的第一列是对观测变量总变差分解的说明;第二列是观测变量变差分解的结果;第三列是自由度;第四列是方差;第五列是F检验统计量的观测值;第六列是检验统计量的概率P-值。

F日期,,F地区,F日期*地区概率P-值分别为0.254,0.313,0.000。

如果显著性水平α为0.05,由于F日期、,F地区大于显著性水平α,所以不应拒绝原假设,不同地区和不同日期对该商品没有显著性影响。

SPSS——单因素方差分析报告详解

SPSS——单因素方差分析报告详解

SPSS——单因素方差分析来源:李大伟的日志单因素方差分析单因素方差分析也称作一维方差分析。

它检验由单一因素影响的一个(或几个相互独立的)因变量由因素各水平分组的均值之间的差异是否具有统计意义。

还可以对该因素的若干水平分组中哪一组与其他各组均值间具有显著性差异进行分析,即进行均值的多重比较。

One-Way ANOVA过程要求因变量属于正态分布总体。

如果因变量的分布明显的是非正态,不能使用该过程,而应该使用非参数分析过程。

如果几个因变量之间彼此不独立,应该用Repeated Measure 过程。

[例子]调查不同水稻品种百丛中稻纵卷叶螟幼虫的数量,数据如表1-1所示。

表1-1 不同水稻品种百丛中稻纵卷叶螟幼虫数数据保存在“data1.sav”文件中,变量格式如图1-1。

图1-1分析水稻品种对稻纵卷叶螟幼虫抗虫性是否存在显著性差异。

1)准备分析数据在数据编辑窗口中输入数据。

建立因变量“幼虫”和因素水平变量“品种”,然后输入对应的数值,如图1-1所示。

或者打开已存在的数据文件“data1.sav”。

2)启动分析过程点击主菜单“Analyze”项,在下拉菜单中点击“Compare Means”项,在右拉式菜单中点击“0ne-Way ANOVA”项,系统打开单因素方差分析设置窗口如图1-2。

图1-2 单因素方差分析窗口3)设置分析变量因变量:选择一个或多个因子变量进入“Dependent List”框中。

本例选择“幼虫”。

因素变量:选择一个因素变量进入“Factor”框中。

本例选择“品种”。

4)设置多项式比较单击“Contrasts”按钮,将打开如图1-3所示的对话框。

该对话框用于设置均值的多项式比较。

图1-3 “Contrasts”对话框定义多项式的步骤为:均值的多项式比较是包括两个或更多个均值的比较。

例如图1-3中显示的是要求计算“1.1×mean1-1×mean2”的值,检验的假设H0:第一组均值的1.1倍与第二组的均值相等。

SPSS试验方差分析

SPSS试验方差分析

SPSS试验方差分析方差分析是一种用于检验多组数据之间差异是否显著的方法。

在SPSS软件中,方差分析的主要功能实现在“分析-方差”菜单项下,包括单因素方差分析、方差分析比较两个或多个均值以及重复测量方差分析等。

单因素方差分析单因素方差分析适用于只有一个自变量的情况。

单因素方差分析的目的是确定这个变量不同水平之间的差异是否显著,如果显著则可以得出结论,这个自变量对因变量有显著影响。

为了进行单因素方差分析,需要输入数据并选择相应的分析选项。

例如,假设有两个班级,每个班级有10个学生。

这些学生分别接受了两个不同的课程,然后根据每个班级的平均成绩,我们想测试课程是否有显著差异。

在SPSS中进行单因素方差分析,需要先添加数据并确定自变量和因变量。

步骤:1. 打开SPSS,导入数据文件。

2. 选择“分析”菜单,并在“方差”子菜单下选择“单因素方差分析”。

3. 将自变量和因变量放入相应的输入框中。

4. 点击“设置”按钮,设置所需的分析选项。

在输出窗口中,可以看到方差分析表,其中包括相关参数的显著性水平(P值),以及F值和相应的自由度。

根据F值和P值,可以得出结论,即该自变量对因变量是否有显著影响。

方差分析比较两个或多个均值方差分析比较两个或多个均值的目的是确定两个或多个独立样本(平均值)之间的差异是否显著。

通常,此类数据需要存储在两个或多个变量中。

为了进行方差分析比较两个或多个均值,需要选择适当的分析选项。

重复测量方差分析重复测量方差分析用于比较两个或多个组的平均值,其中每个组都接受了多次测量。

这种方法通常适用于测试同一组受试者在不同时间或不同条件下的表现,并检测差异是否显著。

为了进行重复测量方差分析,需要选择适当的分析选项。

spss实验报告---方差分析

spss实验报告---方差分析

实验报告——(方差分析)一、实验目的熟练使用SPSS软件进行方差分析。

学会通过方差分析分析不同水平的控制变量是否对结果产生显著影响。

二、实验内容1、某职业病防治院对31名石棉矿工中的石棉肺患者、可疑患者及非患者进行了用力肺活量(L)测定,问三组石棉矿工的用力肺活量有无差别?(自建数据集)石棉肺患者可疑患者非患者1.82.3 2.91.42.13.21.52.1 2.72.1 2.1 2.81.92.6 2.71.72.53.01.82.33.41.92.43.01.82.43.41.8 3.32.03.5SPSS计算结果:在建立数据集时定义group1为石棉肺患者,group2为可疑患者,group3为非患者。

零假设:各水平下总体方差没有显著差异。

相伴概率为0.075,大于0.05,可以认为各个组的方差是相等的,可以进行方差检验。

从上表可以看出3个组之间的相伴概率都小于显著性水平0.05,拒绝零假设,说明3个组之间都存在显著差别。

2、某汽车经销商在不同城市进行调查汽车的销售量数据分析工作,每个城市分别处于不同的区域:东部、西部和中部,而且汽车经销商在不同城市投放不同类型的广告,调查数据放置于附件中数据文件“汽车销量调查.sav”。

(1)试分析不同区域与不同广告类型是否对汽车的销量产生显著性的影响?(2)如果考虑到不同城市人均收入具有差异度时,再思考不同区域和不同广告类型对汽车销量产生的影响差异是否改变,这说明什么问题?SPSS计算结果:(1)此为多因素方差分析相伴概率为0.054大于0.05,可以认为各个组总体方差相等可以进行方差检验。

不同地区贡献的离差平方和为7149.781,均方为3574.891;不同广告贡献的离差平方和为7625.708,均方为3812.854。

说明不同广告和不同地区对汽车销量都有显著性影响。

广告对于销量的影响略大于地区对销量的影响。

从地区这个变量比较:第一组和第三组的相伴概率为0.000,低于显著性水平,一、三组均值差异显著;第二组和第三组的相伴概率为0.028,低于显著性水平,二、三组均值差异显著。

SPSS的方差分析实验报告

SPSS的方差分析实验报告

实验报告
2 选择菜单:【Analyze】→【Compare Means】→【One-Way ANOVA】,将“月销售额”作为观测变量选入【Dependent List】,将“促销方式”作为控制变量选入【Factor】,选择按钮“Option”,打开对话框,选择方差齐性检验,观测变量的基本统计量,选择输出个水平下观测变量均值的折线图
3 选择“Post Hoc”按钮,选择方差相同和方差不同情况下的多重比较的检验方法,如图所示
第三题:
1 根据题目建立某商品在不同地区和不同日期的销售数据的文件,如图
2 选择菜单:【Analyze】→【General Linear Model】→【Univariate】,将“销售量”选入【Dependent Variable】,将“地区和日期”选入【Fixed Factor(s)】,选择“Options”,在【Display】中选择“Homogeneity tests”。

如图所示
四、实验结果及分析(最好有截图):
第一题:
(1) <拒绝原假设.说明不同的促销方式是对该类商品销售量的增长有显著影响
(2) 特价销售的促销方式好
(3)
第三题:
(1) 建立数据文件如图
(2)地区>,接受原假设。

地区对销售量没有显著性影响
日期>,接受原假设。

日期对销售量没有显著性影响
地区和日期<,拒绝原假设。

地区和日期的交互作用对销售量有显著性影响。

《SPSS数据分析教程》方差分析

《SPSS数据分析教程》方差分析

《SPSS数据分析教程》方差分析方差分析是一种常用的统计方法,用于比较三个或三个以上组之间的均值差异是否显著。

它用于探究不同组别的因素对所研究的因变量的影响是否具有统计显著性。

在SPSS数据分析教程中,方差分析是一个非常重要的分析方法。

本文将介绍方差分析的原理、SPSS中的操作步骤以及结果的解读。

方差分析的原理是基于三个或三个以上不同组别之间的方差之间的比较来判断均值之间的差异是否显著。

方差分析的核心思想是通过比较组内方差与组间方差的大小来判断均值的差异是否显著。

方差分析的原假设是所有组别的均值相等,而备择假设是至少存在一个组别的均值与其他组别的均值不相等。

在SPSS中进行方差分析的操作步骤如下:步骤1:打开SPSS软件,点击“变量视图”页面。

在第一栏输入不同组别的名称,例如“组别1”、“组别2”、“组别3”。

步骤2:在第二栏输入待分析的因变量名称,并设置其测量类型为“比例”。

步骤3:点击“数据视图”页面,输入各组别的数据。

确保每个组别的数据都在同一列中,并且分组的数据之间用“空格”或“逗号”隔开。

步骤4:点击菜单栏上的“分析,—比较手段,—单因素方差分析”。

步骤5:在方差分析的对话框中,将因变量移入因变量方框,将分组变量移入因子方框。

步骤6:点击“选项”按钮,出现选项对话框。

可以选择计算哪些统计量,如均值、标准差、总和平方和等。

步骤7:点击“确定”按钮,SPSS将得出方差分析的结果。

方差分析的结果包括了多个统计量,如SS(组间平方和)、SS(组内平方和)、MS(组内均方和)、MS(组间均方和)、F值和P值。

-SS(组间平方和)反映了组间差异的大小,SS(组内平方和)反映了组内差异的大小。

-MS(组间均方和)是SS(组间平方和)除以自由度(组间)得到的,反映了组间差异的平均大小。

-MS(组内均方和)是SS(组内平方和)除以自由度(组内)得到的,反映了组内差异的平均大小。

-F值是MS(组间均方和)除以MS(组内均方和)得到的,是判断组间差异是否显著的依据。

SPSS的方差分析实验报告

SPSS的方差分析实验报告
3 选择“Post Hoc”按钮,选择方差相同和方差不同情况下的多重比较的检验方法,如图所示
第三题:
1根据题目建立某商品在不同地区和不同日期的销售数据的文件,如图
2 选择菜单:【Analyze】→【General Linear Model】→【Univariate】,将“销售量”选入【Dependent Variable】,将“地区和日期”选入【Fixed Factor(s)】,选择“Options”,在【Display】中选择“Homogeneity tests”。如图所示
地区和日期0.000<0.05,拒绝原假设。地区和日期的交互作用对销售量有显著性影响
(3)是否任意两种促销方式的效果之间都存在显著差异?
3. 为研究某商品在不同地区和不同日期的销售差异性,调查收集了以下平均销售量数据
销售量
日期
周一到周三
周四到周五
周末
地区一
5000
6000
4000
6000
8000
3000
4000
7000
5000
地区二
7000
5000
5000
8000
5000
6000
8000
2 选择菜单:【Analyze】→【Compare Means】→【One-Way ANOVA】,将“月销售额”作为观测变量选入【Dependent List】,将“促销方式”作为控制变量选入【Factor】,选择按钮“Option”,打开对话框,选择方差齐性检验,观测变量的基本统计量,选择输出个水平下观测变量均值的折:
(1) 0.000<0.005拒绝原假设.说明不同的促销方式是对该类商品销售量的增长有显著影响
(2) 特价销售的促销方式好

《SPSS数据分析教程》——方差分析

《SPSS数据分析教程》——方差分析

《SPSS数据分析教程》——方差分析方差分析(Analysis of Variance,缩写为ANOVA)是统计学中用来测量和分析两个或多个样本之间变量差异的统计方法。

方差分析检验的是不同实验条件下样品的均值是否存在显著性差异,以此来判断实验条件对样品响应是否有影响。

简而言之,方差分析能够判断不同处理条件下样本变量的总体均值是否有显著差异,以便检验实验条件是否有效。

方差分析实际上是将实验条件分成实验组和非实验组,然后对试验组与非实验组的结果进行比较,看看实验处理是否有显著的结果。

另一种情况是将不同的实验条件分成若干组,然后将不同组之间的结果进行比较,看看不同的实验条件是否有显著的差别。

SPSS采取一步法方差分析,在用户指定自变量和因变量后,可以自动给出方差分析的结果,包括方差分析表,均值表,均方差表,以及F检验的统计量和显著性水平等。

另外,它还可以提供多元变量分析(MVA)结果,包括每个变量的贡献率,方差膨胀因子,皮尔逊相关系数,单变量分析等。

为了使用SPSS进行方差分析,首先要指定变量和实验条件。

然后,点击菜单栏“分析”,选择“双因素方差分析”。

SPSS实验报告

SPSS实验报告

第六章方差分析一实验目的1.理解方差分析的概念、原理及作用;2.掌握用 SPSS 进行单因素、双因素及协方差分析的方法;3.结合参考资料了解方差分析的其它方法及作用。

二方差分析的原理方差分析的基本原理是认为不同处理组的均值间的差别基本来源有两个:(1)随机误差,如测量误差造成的差异或个体间的差异,称为组内差异,用变量在各组的均值与该组内变量值之偏差平方和的总和表示,记作w SS ,组内自由度w df ;(2)实验条件,即不同的处理造成的差异,称为组间差异。

用变量在各组的均值与总均值之偏差的总平方和表示,记作b SS ,组间自由度b df 。

三实验过程1. 某农场为了比较4种不同品种的小麦产量的差异,选择土壤条件基本相同的土地,分成16块,将每一个品种在4块试验田上试种,测得小表亩产量(kg)的数据如表6.17所示(数据文件为data6-4.sav),试问不同品种的小麦的平均产量在显著性水平0.05和0.01下有无显著性差异。

(数据来源:《SPSS实用统计分析》郝黎仁,中国水利水电出版社)表6.17实验步骤:第1步分析:由于有一个因素(小麦),而且是4种饲料。

故不能用独立样本T 检验(仅适用两组数据),这里可用单因素方差分析;第2步数据的组织:分成两列,一列是试验田的产量(output),另一列是小麦品种(breed)(A、B、C、D);第3步方差相等的齐性检验:由于方差分析的前提是各个水平下(这里是不同品种的小麦产量)的总体服从方差相等的正态分布。

其中正态分布的要求并不是很严格,但对于方差相等的要求是比较严格的。

因此必须对方差相等的前提进行检验。

从SPSS的数据管理窗口中选择analyze—compare means—One-Way ANOVA,将小麦产量(output)选入dependent list框中,将品种(breed)选入factor框中,点开Options,选中Homogeneity of variance test(方差齐性检验),点开post hoc multiple comparisons,将significance level的值在两次实验时分别设置为0.01和0.05。

SPSS篇—方差分析

SPSS篇—方差分析

SPSS篇—方差分析昨天跟大家分享了如何用SPSS进行回归分析,知道了回归分析的用途以及使用的场景。

今天跟大家分享的就是之前文章里面出现很多次的一个分析—方差分析。

方差分析又被称作“F检验”或者“变异数分析”,主要是用于两个及两个以上样本均值差异的显著性检验。

方差分析和回归分析一样,也有很多个分支。

对于方差分析,一般我们是用来研究不同来源的变异对总变异的贡献大小,从而确定可控因素对因变量的影响大小。

我们今天通过一个例子来了解一下什么是方差分析,又应该如何去理解它的分析结果。

上面两个图就是本次用来分析的数据,本题的数据是讨论四种不同的药物对植物生长高度的影响,在数据中我们列出了四种药物使用以后对应植物生长高度的测量值。

我们先对数据视图和变量视图进行相应的操作,然后我们就可以开始对数据进行方差分析了:在SPSS中,我们需要从分析选项栏中选择比较均值再选择单因素,就会出现下面的操作框:我们把两个变量输入到不同的变量框以后,开始对右边的几个选项进行操作,我们需要在两两比较中选择LSD法(最小显著性差异法):然后我们在选项中选择描述性和方差同质性检验,需要的话也可以把均值图选上:上面操作步骤全部完成以后点击确定,我们就可以得到我们本次方差分析的结果了,这个时候输出界面就会把整个分析结果全部列出来:我们先来看上面这个图,这里面有三个结果,第一个描述图里面是对我们本次进行分析的所有数据进行了整理,并且将其用这个图表示出来,每一列数据的上方就是本列数据代表的意义。

看完描述图以后,我们需要看一下方差齐性检验这个图,从这个图里我们可以看到,显著性0.992>0.05,说明本次分析方差是齐的,可以使用单因素方差分析法。

如果这个显著性是小于0.05,说明方差不齐,我们就算后面得出了结果也是没有意义的,因为方差分析可以使用的前提就是方差是齐的。

最后我们看单因素方差分析这个表,通过F检验我们可以看到,显著性0.000<0.05,这就说明这四种药品分组之间至少有两个组之间是存在着显著性差异的。

熟练使用SPSS进行单因素方差分析

熟练使用SPSS进行单因素方差分析

熟练使用SPSS进行单因素方差分析
一、单因素方差分析介绍
单因素方差分析又称因子方差分析,是分析两组或多组数据中变量之
间差异大小的统计方法。

它利用方差分析检验对比数据之间的统计学差异,检验其中一成分是否有一定的影响,而其他成分是否能够有一定的共同作用。

单因素方差分析的设计以及分析结果解释与双因素方差分析大体类型,但是单因素方差分析只有一个变量,因果关系没有双因素方差分析的那么
清楚,只能用于衡量数据之间的统计学差异。

二、SPSS进行单因素方差分析步骤
1.打开spss统计软件,进入数据文件,“新建”,双击“统计分析”,“ANOVA”,“一因子方差分析”菜单,可以调出一因子方差分析
的菜单
2.选择数据输入框,点击“定义变量”,在工具栏出现的表格中,双
击“变量名”栏位,输入分析变量的名称(建议以英文字母表示)
3.点击定义按钮,定义变量类型,选择“基本类型”,输入变量名,
点击确定按钮
4.在定义按钮下,右击工具栏中的“数据”栏位,然后点击“设定数据”,在设定数据窗口中,选择“任何变量”,输入变量的值,点击确定
按钮,完成变量定义
5.点击完成按钮,输入变量名,点击确定按钮,至此。

SPSS_第6章 方差分析

SPSS_第6章 方差分析

-12.3756
15.7090
-31.0423
-2.9577
-15.7090
12.3756
-32.7090
-4.6244
2.9577
31.0423
4.6244
32.7090
40
结果2
英语
Subset for alpha = .05
Student-Newman-Keul sa
g rou p 2 1 3 Si g.
Std. Deviation 13.70280 12.42176 6.96898 13.79175
Std. Error 5.59414 5.07116 2.84507 3.25075
95% Confidence Interval for M ea n
Lower Bound Upper Bound
58.7865
75 70
74
80 72
72
77 66
68
68 72
71
75 70
71
75 70
Xt =72
4
从上表可知,三种不同实验教材的教学效果不完全 一致,表现在三个不同实验处理组的平均数之间存 在差异;同时,同一实验组内部的5名样本的反应变 量也存在差异。
5
我们可以将三个实验组的所有15名样本分数的差异 分为两部分:实验组间的差异(称为组间差异)和 实验组内的差异(称为组内差异)。
18.66667* 6.58815
*. The mean difference is significant at the .05 level.
Si g. .804 .021 .804 .013 .021 .013
95% Confidence Interval

SPSS统计分析—差异分析

SPSS统计分析—差异分析

SPSS统计分析—差异分析差异分析(Difference Analysis)是一种常用的统计分析方法,用于比较不同组别或条件间的差异是否显著。

在实际应用中,差异分析可以用于检验两个或多个组别在一些变量上的差异,帮助研究人员了解不同组别或条件之间的差异性,从而作出相应的结论或决策。

差异分析常用的统计方法包括方差分析(ANOVA)和独立样本t检验,适用于不同的实验设计和数据情况。

本文将对方差分析和独立样本t检验的原理、应用和分析过程进行详细说明。

一、方差分析(ANOVA)方差分析是一种用于比较三个及以上组别或条件差异的统计方法。

方差分析将总体的方差分解为组内和组间的方差,通过比较组间和组内的方差大小,进而判断差异是否显著。

方差分析的基本原理是方差的加法原理,即总体方差等于组间方差与组内方差之和。

根据组内方差与组间方差的比较,可以得出组别或条件之间差异的显著性。

方差分析通常有以下几种类型:1.单因素方差分析:适用于只有一个自变量(因素)的实验设计,比较不同水平下因变量的差异。

2.重复测量方差分析:适用于一个或多个自变量重复测量的实验设计,比较不同处理组别的差异。

3.二因素方差分析:适用于两个自变量的实验设计,可以比较两个自变量以及它们之间的交互作用对因变量的影响。

方差分析的步骤如下:1.根据实验设计和数据情况确定合适的方差分析方法。

2.建立假设:根据实验设计和问题要求,建立相应的原假设和备择假设。

3.进行方差分析计算:使用SPSS等统计软件进行方差分析计算,根据计算结果得到F值和p值。

4.判断差异的显著性:根据p值判断差异是否显著,一般以α水平(通常设为0.05)作为显著性水平,若p值小于α,则拒绝原假设,认为差异显著。

5.结论与进一步分析:根据方差分析的结果,对差异进行相应的解释和进一步的分析。

二、独立样本t检验独立样本t检验用于比较两个独立的样本组别在一些变量上的差异是否显著。

独立样本t检验假设两个样本的均值相等,根据独立样本的t统计量和p值,判断两组样本的差异性。

SPSS操作—方差分析

SPSS操作—方差分析

SPSS操作—方差分析
一、概念
方差分析(ANOVA)法是统计学中一种用于检验三个或以上水平的均数差异的统计方法。

方差分析从表面上看是利用方差的大小,在一定的概率和显著水平下,比较多组数据的均值差异,确定数据的显著性。

一般来说,它用来检验有多自变量时的均数差异,其中包括一个或多个因素,每个因素又有两个或者多个水平。

二、SPSS操作步骤
1、打开SPSS软件,点击“文件”,选择“新建”,在弹出的界面中选择“数据集”,点击“确定”,新建一个数据集。

2、将所要分析的数据输入到数据集中,在“变量视图”中定义响应变量和自变量,并设置其变量类型,完成数据的输入。

3、点击“分析”,选择“统计”,在弹出的界面中选择“参数检验”,点击“F检验”,然后在窗口中选择因变量和自变量,完成基本的参数设置,点击“确定”,弹出方差分析窗口,点击“确定”,即可开始运行方差分析。

4、方差分析运行完毕后,在输出窗口中可以看到结果,包括方差分析汇总表和方差分析的结果等信息。

5、方差分析的结果主要包括拟合度指数、F值、绝对值、样本量、概率值、单组比较、多组比较等内容,在这里。

SPSS统计分析第五章方差分析

SPSS统计分析第五章方差分析
One-way ANOVA过程要求因变量属于正态分布总体; 如果因变量的分布明显的是非正态,不能使用该过程,而应该使用非参数分析过程; 如果几个因变量之间彼此不独立,应该用GLM过程。
例题
用4种饲料喂猪,共19头猪分为四组,每组用一种饲料。一段时间后称重。猪体重增 加数据如下。比较四种饲料对猪体重增加的作用有无不同。
4.因素的主效应和因素间的交互效应
有A、B两种药物治疗缺铁性贫血,患者12例,分为4组。实验方案是:第一组用一 般疗法;第二组在一般疗法基础上加用A药;第三组在一般疗法基础上加用B药,第 四组在一般疗法基础上A、B两药同时使用。一个月后观察红细胞增加数。要求分析 两种药物的疗效(数据下表)。
实验数据
2.水平
因素的不同等级称作水平。 例如,性别因素在一般情况下只研究两个水平:男、女。化学实验或生物实验中的“剂 量”必须离散化为几个有限的水平数。如:1ml、2ml、4ml三个水平。 应该特别注意的是在SPSS数据文件中,作为因素出现的变量不能是字符型变量,必须 是数值型变量。例如性别变量SEX,定义为数值型,取值为0、1。换句话说,因素变量 的值实际上是该变量实际值的代码,代码必须是数值型的。可以定义值标签F、M(或 Fema1e、ma1e)来表明0、1两个值的实际含义,以便在打印方差分析结果时使用。使 结果更加具有可读性。
1、单因素方差分析
单因素方差分析也称作一维(元)方差分析。它检验由单一因素影响的一个(或几 个相互独立的)因变量按因素各水平分组的均值之间的差异是否具有统计意义。还 可以对该因素的若干水平分组中哪一组与其他各组均值间具有显著性差异进行分析 即进行均值的多重比较。
One-way ANOVA过程适用情况
三、方差分析过程
SPSS提供的方差分析过程有: One-way过程

方差分析SPSS实习内容

方差分析SPSS实习内容

方差分析SPSS实习内容SPSS实习内容(三)——方差分析一、某职业病防治所对30名矿工分别测定血清铜蓝蛋白含量(μmol/L),资料如下。

试分析各期血清铜蓝蛋白含量的测定结果有无差别。

不同分期血清铜蓝蛋白含量(μmol/L)0期8.0 9.0 5.8 6.3 5.4 8.5 5.6 5.4 5.5 7.2 3.6 0~Ⅰ期8.5 4.3 11.0 9.0 6.7 9.0 10.5 7.7 7.7Ⅰ期11.3 7.0 9.5 8.5 9.6 10.8 9.0 12.6 13.9 6.5二、为研究注射不同剂量雌激素对大白鼠子宫重量的影响,取4窝不同种系的大白鼠,每窝3只,随机地分配到3个组内接受不同剂量雌激素的注射,然后测定其子宫重量,结果见下表。

试对该资料进行分析。

大白鼠注射不同剂量雌激素后的子宫重量(g)大白鼠种系雌激素剂量(μg/100g)0.25 0.5 0.75A 108 112 142B 46 64 116C 70 96 134D 43 65 98三、研究者欲研究煤焦油以及作用时间对细胞毒性的作用,煤焦油含量分别为3μg/lm和75μg/lm两个水平,作用时间分别为6小时和8小时。

研究者将统一制备的16盒已培养好的细胞随机分为4组,分别接受:煤焦油3μg/lm作用6小时、煤焦油3μg/lm作用8小时、煤焦油75μg/lm作用6小时和煤焦油75μg/lm作用8小时四种不同的处理,测得处理液吸光度(%)值,结果如下。

试对该资料进行分析。

四种不同处理情况下吸光度的值(%)处理组吸光度值(%)煤焦油3μg/lm作用6小时0.163 0.199 0.184 0.198 煤焦油3μg/lm作用8小时0.127 0.168 0.152 0.150 煤焦油75μg/lm作用6小时0.124 0.151 0.127 0.101 煤焦油75μg/lm作用8小时0.1010.192 0.079 0.086四、根据下表资料分析新旧剂型与测量时间对血药浓度的影响。

SPSS的方差分析实验报告

SPSS的方差分析实验报告

实验报告
2 选择菜单:【Analyze】→【Compare Means】→【One-Way ANOVA】,将“月销售额”作为观测变量选入【Dependent List】,将“促销方式”作为控制变量选入【Factor】,选择按钮“Option”,打开对话框,选择方差齐性检验,观测变量的基本统计量,选择输出个水平下观测变量均值的折线图
3 选择“Post Hoc”按钮,选择方差相同和方差不同情况下的多重比较的检验方法,如图所示第三题:
1 根据题目建立某商品在不同地区和不同日期的销售数据的文件,如图
2 选择菜单:【Analyze】→【General Linear Model】→【Univariate】,将“销售量”选入【Dependent Variable】,将“地区和日期”选入【Fixed Factor(s)】,选择“Options”,在【Display】中选择“Homogeneity tests”。

如图所示
四、实验结果及分析(最好有截图):
第一题:
(1) 0.000<0.005拒绝原假设.说明不同的促销方式是对该类商品销售量的增长有显著影响
(2) 特价销售的促销方式好
(3)
第三题:
(1) 建立数据文件如图
(2)地区0.313>0.05,接受原假设。

地区对销售量没有显著性影响
日期0.254>0.05,接受原假设。

日期对销售量没有显著性影响
地区和日期0.000<0.05,拒绝原假设。

地区和日期的交互作用对销售量有显著性影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告
——(方差分析)
一、实验目的
熟练使用SPSS软件进行方差分析。

学会通过方差分析分析不同水平的控制变量是否对结果产生显著影响。

二、实验内容
1、某职业病防治院对31名石棉矿工中的石棉肺患者、可疑患者及非患者进行了用力肺活量(L)测定,问三组石棉矿工的用力肺活量有无差别?(自建数据集)
石棉肺患者可疑患者非患者
1.8
2.3 2.9
1.4
2.1
3.2
1.5
2.1 2.7
2.1 2.1 2.8
1.9
2.6 2.7
1.7
2.5
3.0
1.8
2.3
3.4
1.9
2.4
3.0
1.8
2.4
3.4
1.8 3.3
2.0
3.5
SPSS计算结果:
在建立数据集时定义group1为石棉肺患者,group2为可疑患者,group3为非患者。

零假设:各水平下总体方差没有显著差异。

相伴概率为0.075,大于0.05,可以认为各个组的方差是相等的,可以进行方差检验。

从上表可以看出3个组之间的相伴概率都小于显著性水平0.05,拒绝零假设,说明3个组之间都存在显著差别。

2、某汽车经销商在不同城市进行调查汽车的销售量数据分析工作,每个城市分别处于不同的区域:东部、西部和中部,而且汽车经销商在不同城市投放不同类型的广告,调查数据放置于附件中数据文件“汽车销量调查.sav”。

(1)试分析不同区域与不同广告类型是否对汽车的销量产生显著性的影响?(2)如果考虑到不同城市人均收入具有差异度时,再思考不同区域和不同广告类型对汽车销量产生的影响差异是否改变,这说明什么问题?
SPSS计算结果:
(1)此为多因素方差分析
相伴概率为0.054大于0.05,可以认为各个组总体方差相等可以进行方差检验。

不同地区贡献的离差平方和为7149.781,均方为3574.891;不同广告贡献的离差平方和为7625.708,均方为3812.854。

说明不同广告和不同地区对汽车销量都有显著性影响。

广告对于销量的影响略大于地区对销量的影响。

从地区这个变量比较:
第一组和第三组的相伴概率为0.000,低于显著性水平,一、三组均值差异显著;第二组和第三组的相伴概率为0.028,低于显著性水平,二、三组均值差异显著。

从广告这个变量比较:
第一组和第三组的相伴概率为0.000,低于显著性水平,一、三组均值差异显著;第二组和第三组的相伴概率为0.025,低于显著性水平,二、三组均值差异显著。

从上表中可以看出,地区变量的各个水平之间的相伴概率都小于显著性水平,说明3个地区之间都存在显著差异。

综上所述,不同地区和不同广告对于汽车销量都有显著影响。

(2)此为协方差分析
控制变量为地区和广告类型
协变量为人均收入
控制变量部分:不同地区贡献的离差平方和为350.908,均方为175.454;不同广告贡献的离差平方和为1252.887,均方为626.443;且相伴概率均大于显著性水平0.05,认为没有对销量造成显著差异,均与第一小题中的结果有较大出入。

协变量部分:再看人均收入,贡献的离差平方和为1673.083,均方为1673.083,相伴概率0.016小于显著性水平,表明协变量人均收入对观察结果造成了显著影响。

相关文档
最新文档