导数公式及证明
常用导数公式及运算
常用导数公式及运算导数公式及运算是微积分的基础,对于研究函数的性质和求解实际问题具有重要作用。
下面将介绍一些常用的导数公式以及其运算。
1.常数函数的导数对于常数函数y = c,其中c为常数,其导数为0,即dy/dx = 0。
2.幂函数的导数若y = x^n,其中n为实数,其导数可以通过幂函数的定义和求导法则求解。
根据求导法则,对于y = x^n,其导数为dy/dx = nx^(n-1)。
特殊情况下,我们可以得到以下幂函数的导数公式:- y = x,导数为1,即dy/dx = 1;- y = x^0,导数为0,即dy/dx = 0;- y = x^1/n,则其导数为dy/dx = (1/n)x^(1/n-1)。
3.指数函数和对数函数的导数指数函数和对数函数是相互逆的函数。
若y = a^x,其中a为正常数且a ≠ 1,其导数为dy/dx = a^x * ln(a)。
对数函数的导数为dy/dx = 1/(x * ln(a))。
4.三角函数的导数- y = sin(x)的导数为dy/dx = cos(x)。
- y = cos(x)的导数为dy/dx = -sin(x)。
- y = tan(x)的导数为dy/dx = sec^2(x)。
- y = cot(x)的导数为dy/dx = -csc^2(x)。
- y = sec(x)的导数为dy/dx = sec(x) * tan(x)。
- y = csc(x)的导数为dy/dx = -csc(x) * cot(x)。
5.反三角函数的导数- y = arcsin(x)的导数为dy/dx = 1/√(1-x^2)。
- y = arccos(x)的导数为dy/dx = -1/√(1-x^2)。
- y = arctan(x)的导数为dy/dx = 1/(1+x^2)。
- y = arccot(x)的导数为dy/dx = -1/(1+x^2)。
- y = arcsec(x)的导数为dy/dx = 1/(x * √(x^2-1))。
16个基本导数公式推导过程
16个基本导数公式推导过程推导过程如下:1.常数函数:f(x)=c求导结果:f'(x)=0。
证明过程:由导数定义可得,当函数为常数时,无论x取任何值,函数的增量都为0,即f(x + Δx) - f(x) = 0。
所以,f'(x) =lim(Δx→0) [f(x + Δx) - f(x)] / Δx = 0。
2.幂函数:f(x)=x^n,其中n为正整数。
求导结果:f'(x) = nx^(n-1)。
证明过程:利用定义求导。
计算f(x + Δx) = (x + Δx)^n与f(x) = x^n的差值,然后除以Δx,当Δx趋于0时求极限。
利用二项式展开,可以得出f'(x) = nx^(n-1)。
3.指数函数:f(x)=e^x。
求导结果:f'(x)=e^x。
证明过程:由指数函数的性质可知,e^0 = 1,且(d(e^x)/dx) = e^x。
因此,可以据此推导出f'(x) = e^x。
4. 对数函数:f(x) = ln(x)。
求导结果:f'(x)=1/x。
证明过程:由导数定义可得f'(x) = lim(Δx→0) [ln(x + Δx) - ln(x)] / Δx。
利用对数的性质,将差值化简为ln((x + Δx)/x),再除以Δx并取极限,最终得出f'(x) = 1/x。
5. 正弦函数:f(x) = sin(x)。
求导结果:f'(x) = cos(x)。
证明过程:利用极限定义求导。
计算f(x + Δx) - f(x) = sin(x + Δx) - sin(x),然后除以Δx并取极限。
应用三角函数的合角公式并利用三角恒等式可得f'(x) = cos(x)。
6. 余弦函数:f(x) = cos(x)。
求导结果:f'(x) = -sin(x)。
证明过程:同样应用极限定义。
计算f(x + Δx) - f(x) = cos(x + Δx) - cos(x),然后除以Δx并取极限。
导数公式证明大全
导数公式证明大全导数的定义是函数变化率的极限。
下面将给出导数的一些重要公式的证明。
1.常数函数的导数:设常数函数$f(x)=c$,其中$c$为常数。
由导数的定义可知:\[\begin{aligned} f'(x) &= \lim_{h\to 0}\frac{f(x+h)-f(x)}{h} \\ &= \lim_{h\to 0}\frac{c-c}{h} \\ &= \lim_{h\to 0}0 \\ &= 0\end{aligned}\]因此,常数函数的导数为0。
2.幂函数的导数:设幂函数$f(x)=x^n$,其中$n$为正整数。
由导数的定义可知:\[\begin{aligned} f'(x) &= \lim_{h\to 0}\frac{f(x+h)-f(x)}{h} \\ &= \lim_{h\to 0}\frac{(x+h)^n-x^n}{h} \end{aligned}\]将$(x+h)^n$展开为二项式,有:\[(x+h)^n = x^n + \binom{n}{1}x^{n-1}h + \binom{n}{2}x^{n-2}h^2 + \ldots + \binom{n}{n-1}xh^{n-1} + h^n\]代入上式,消去$x^n$,并除以$h$,得:\[\begin{aligned} f'(x) &= \lim_{h\to0}\left(\binom{n}{1}x^{n-1} + \binom{n}{2}x^{n-2}h + \ldots +\binom{n}{n-1}xh^{n-2} + h^{n-1}\right) \\ &= \binom{n}{1}x^{n-1} + \binom{n}{2}x^{n-2}\cdot 0 + \ldots + \binom{n}{n-1}x\cdot 0 + 0^{n-1} \\ &= n\cdot x^{n-1} \end{aligned}\]因此,幂函数的导数为$n$倍的$x$的$n-1$次方。
常用高阶导数公式证明
常用高阶导数公式证明一阶导数假设函数y=y(y)在y处可导,则函数y=y(y)在y处的导数为:$$ f'(x) = \\lim_{{\\Delta x}\\to0} \\frac{{f(x + \\Delta x) - f(x)}}{\\Delta x} $$二阶导数如果函数y=y(y)在y处可导,那么它的二阶导数为:$$ f''(x) = \\lim_{{\\Delta x}\\to0} \\frac{{f'(x + \\Delta x) - f'(x)}}{\\Delta x} $$高阶导数函数y=y(y)的y阶导数定义如下:$$ f^{(n)}(x) = \\lim_{{\\Delta x}\\to0} \\frac{{f^{(n-1)}(x + \\Delta x) - f^{(n-1)}(x)}}{\\Delta x} $$常用高阶导数公式证明二阶导数的公式一阶导数为:$$ f'(x) = \\lim_{{\\Delta x}\\to0} \\frac{{f(x + \\Delta x) - f(x)}}{\\Delta x} $$二阶导数为:$$ f''(x) = \\lim_{{\\Delta x}\\to0} \\frac{{f'(x + \\Delta x) - f'(x)}}{\\Delta x} $$将一阶导数y′(y)的定义代入二阶导数公式中,得到:$$ f''(x) = \\lim_{{\\Delta x}\\to0}\\frac{{\\left(\\lim_{{\\Delta x}\\to0} \\frac{{f(x + \\Delta x) - f(x)}}{\\Delta x}\\right)\\big|_{x+\\Delta x} - f'(x)}}{\\Delta x} $$根据导数的定义,上式可简化为:$$ f''(x) = \\lim_{{\\Delta x}\\to0} \\frac{{\\lim_{{\\Delta x}\\to0} \\frac{{f(x + \\Delta x) - f(x)}}{\\Delta x} -f'(x)}}{\\Delta x} $$由此可得到二阶导数的通用公式。
导数的基本公式14个推导
导数的基本公式14个推导导数是微积分中的一个重要概念,它描述了函数在某一点的变化率。
导数的基本公式有14个,它们可以通过推导得出。
在本文中,我们将简要介绍这些基本公式。
1. 常数函数的导数:对于任何常数c,常数函数f(x) = c的导数为0。
这是因为常数函数的斜率为零,即在任何点上它的变化率都为零。
2. 幂函数的导数:对于幂函数f(x) = x^n(其中n是常数),它的导数为f'(x) = nx^(n-1)。
这可以通过使用极限和基本的代数运算法则来推导。
3. 指数函数的导数:指数函数f(x) = e^x的导数为f'(x) = e^x。
这个公式的推导中需要使用指数函数的定义和一些性质。
4. 对数函数的导数:对数函数f(x) = ln(x)的导数为f'(x) =1/x。
这个公式可以通过使用指数函数的导数和链式法则来推导。
5. 三角函数的导数:三角函数(包括正弦、余弦和正切函数)的导数可按照以下规律推导得出:- 正弦函数f(x) = sin(x)的导数为f'(x) = cos(x)。
- 余弦函数f(x) = cos(x)的导数为f'(x) = -sin(x)。
- 正切函数f(x) = tan(x)的导数为f'(x) = sec^2(x)。
其中sec(x)表示secant函数,它是余弦函数的倒数。
6. 反三角函数的导数:反三角函数是三角函数的反函数,其导数可以按照以下规律推导得出:- 反正弦函数f(x) = arcsin(x)的导数为f'(x) = 1/√(1-x^2)。
- 反余弦函数f(x) = arccos(x)的导数为f'(x) = -1/√(1-x^2)。
- 反正切函数f(x) = arctan(x)的导数为f'(x) = 1/(1+x^2)。
7. 基本初等函数的求导规则:基本初等函数是由常数函数、幂函数、指数函数、对数函数、三角函数和反三角函数通过有限次的四则运算和复合运算(即求导运算)得到的函数。
高中数学导数公式、定义证明、运算法则,实用干货,收藏好!
高中数学导数公式、定义证明、运算法则,实用干货,收藏好!导数,也叫导函数值。
那么,高中数学导数公式及运算法则有哪些呢?高中数学导数公式有哪些1.y=c(c为常数) y'=02.y=x^n y'=nx^(n-1)3.y=a^x y'=a^xlnay=e^x y'=e^x4.y=logax y'=logae/xy=lnx y'=1/x5.y=sinx y'=cosx6.y=cosx y'=-sinx7.y=tanx y'=1/cos^2x8.y=cotx y'=-1/sin^2x加(减)法则:[f(x)+g(x)]'=f(x)'+g(x)'乘法法则:[f(x)*g(x)]'=f(x)'*g(x)+g(x)'*f(x)除法法则:[f(x)/g(x)]'=[f(x)'*g(x)-g(x)'*f(x)]/g(x)^2根据导数定义证明数学导数运算法则由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。
基本的求导法则如下:1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。
2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。
3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。
4、如果有复合函数,则用链式法则求导。
导数的计算方法函数y=f(x)在x0点的导数f'(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。
计算已知函数的导函数可以按照导数的定义运用变化比值的极限来计算。
在实际计算中,大部分常见的解析函数都可以看作是一些简单的函数的和、差、积、商或相互复合的结果。
只要知道了这些简单函数的导函数,那么根据导数的求导法则,就可以推算出较为复杂的函数的导函数。
高中导数公式表
高中导数公式表导数是一种非常重要的数学概念,在大学物理,化学,生物等学科中都有着广泛的应用。
它是研究表面积变化,角速度变化,声能传播等,以及其他曲线变化的重要工具。
它可以说是定量描述变化的利器。
下面我们来看看高中导数公式表。
1、基本导数公式:(1)恒定函数的导数是零:f(x)=0(2)任何一种多项式的导数等于它本身:f(x)=ax^n,其中a为常数,n为自然数,则 f(x)=anx^{n-1} (3)e为自然对数的底数,e^x导数等于本身:f(x)=e^x, f(x)=e^x(4)sin x cos x导数分别为:f(x)=sin x, f(x)=cos xf(x)=cos x, f(x)=-sin x(5)ln x导数等于 1/x:f(x)=ln x, f(x)=1/x2、基本微分链式法则:(1)链式法则初等形式:若 dz/dx=dy/dx,则 dz/dy=dz/dx×dx/dy(2)链式法则延伸形式:若 dz/dy=dz/du×du/dv×dv/dx,则dz/dx=dz/du×du/dv×dv/dx3、定义域:(1)函数在取得有效值时,它的定义域被称为有效域;(2)函数在取得无效值时,它的定义域被称为无效域;(3)定义域内的值称为定义域内值;(4)定义域外的值称为定义域外值。
4、极限:(1)极限定义:极限是指当x的取值越来越接近某一个特定的值的时候,函数的值也越来越接近某一个特定的值,这个特定的值就叫做函数的极限。
(2)极限的计算:极限的计算有两个主要的方法,一种是用数字的方法,即通过给出很多的实数值点,来估算函数的极限;另一种是用公式的方法,即通过函数曲线特性来解决极限问题。
5、微分:(1)确定微分式:微分式是求出y变化率的公式,即可以确定函数变化的速率,其根据函数本质(即模型的特性)来决定。
(2)微分的计算:可以利用解析法进行计算,也可以利用数值法近似计算,甚至可以利用机器学习算法来计算,如神经网络等。
导数公式的证明(基础)
导数的定义:f'(x)=lim Δy/Δx用定义求导数公式(1)f(x)=x n求:f'(x)(3)f(x)=cosx 求:f'(x)(5)f(x)=log a x(6)f(x)=tanxf'(x)=lim (tan(x+Δx)-tanx)/Δx=lim (sin(x+Δx)/cos(x+Δx)-sinx/cosx)/Δx=lim (sin(x+Δx)cosx-sinxcos(x+Δx)/(Δxcosxcos(x+Δx))=lim (sinxcosΔxcosx+sinΔxcosxcosx-sinxcosxcosΔx+sinxsinxsinΔx)/(Δxcosxcos(x+Δx))=lim sinΔx/(Δxcosxcos(x+Δx))=1/(cosx)^2=secx/cosx=(secx)^2=1+(tanx)^2(7)f(x)=cotxf'(x)=lim (cot(x+Δx)-cotx)/Δx=lim (cos(x+Δx)/sin(x+Δx)-cosx/sinx)/Δx=lim (cos(x+Δx)sinx-cosxsin(x+Δx))/(Δxsinxsin(x+Δx))=lim (cosxcosΔxsinx-sinxsinxsinΔx-cosxsinxcosΔx-cosxsinΔxcosx)/(Δxsinxsin(x+Δx))=lim -sinΔx/(Δxsinxsin(x+Δx))=-1/(sinx)^2=-cscx/sinx=-(secx)^2=-1-(cotx)^2(8)f(x)=secxf'(x)=lim(sec(x+Δx)-secx)/Δx=lim (1/cos(x+Δx)-1/cosx)/Δx=lim (cosx-cos(x+Δx)/(ΔxcosxcosΔx)=lim (cosx-cosxcosΔx+sinxsinΔx)/(Δxcosxcos(x+Δx)) =lim sinxsinΔx/(Δxcosxcos(x+Δx))=sinx/(cosx)^2=tanx*secx(9)f(x)=cscxf'(x)=lim(csc(x+Δx)-cscx)/Δx=lim (1/sin(x+Δx)-1/sinx)/Δx=lim (sinx-sin(x+Δx))/(Δxsinxsin(x+Δx))=lim (sinx-sinxcosΔx-sinΔxcosx)/(Δxsinxsin(x+Δx)) =lim -sinΔxcosx/(Δxsinxsin(x+Δx))=-cosx/(sinx)^2=-cotx*cscx(10)f(x)=x^xlnf(x)=xlnx(lnf(x))'=(xlnx)'f'(x)/f(x)=lnx+1f'(x)=(lnx+1)*f(x)f'(x)=(lnx+1)*x^x(12)h(x)=f(x)g(x)h'(x)=lim (f(x+Δx)g(x+Δx)-f(x)g(x))/Δx=lim [(f(x+Δx)-f(x)+f(x))*g(x+Δx)+(g(x+Δx)-g(x)-g(x+Δx))*f(x)]/Δx=lim [(f(x+Δx)-f(x))*g(x+Δx)+(g(x+Δx)-g(x))*f(x)+f(x)*g(x+Δx)-f(x)*g(x+Δx)]/Δx=lim (f(x+Δx)-f(x))*g(x+Δx)/Δx+(g(x+Δx)-g(x))*f(x)/Δx=f'(x)g(x)+f(x)g'(x)(13)h(x)=f(x)/g(x)h'(x)=lim (f(x+Δx)/g(x+Δx)-f(x)g(x))/Δx=lim (f(x+Δx)g(x)-f(x)g(x+Δx))/(Δxg(x)g(x+Δx))=lim [(f(x+Δx)-f(x)+f(x))*g(x)-(g(x+Δx)-g(x)+g(x))*f(x)]/(Δxg(x)g(x+Δx))=lim [(f(x+Δx)-f(x))*g(x)-(g(x+Δx)-g(x))*f(x)+f(x)g(x)-f(x)g(x)]/(Δxg(x)g(x+Δx))=lim (f(x+Δx)-f(x))*g(x)/(Δxg(x)g(x+Δx))-(g(x+Δx)-g(x))*f(x)/(Δxg(x)g(x+Δx))=f'(x)g(x)/(g(x)*g(x))-f(x)g'(x)/(g(x)*g(x))=[f'(x)g(x)-f(x)g'(x)]/(g(x)*g(x))x(14)h(x)=f(g(x))h'(x)=lim [f(g(x+Δx))-f(g(x))]/Δx=lim [f(g(x+Δx)-g(x)+g(x))-f(g(x))]/Δx(另g(x)=u,g(x+Δx)-g(x)=Δu)=lim (f(u+Δu)-f(u))/Δx=lim (f(u+Δu)-f(u))*Δu/(Δx*Δu)=lim f'(u)*Δu/Δx=lim f'(u)*(g(x+Δx)-g(x))/Δx=f'(u)*g'(x)=f'(g(x))g'(x)(反三角函数的导数与三角函数的导数的乘积为1,因为函数与反函数关于y=x对称,所以导数也关于y=x对称,所以导数的乘积为1) (15)y=f(x)=arcsinx则siny=x(siny)'=cosy所以(arcsinx)'=1/(siny)'=1/cosy=1/√1-(siny)^2(siny=x)=1/√1-x^2即f'(x)=1/√1-x^2(16)y=f(x)=arctanx则tany=x(tany)'=1+(tany)^2=1+x^2 所以(arctanx)'=1/1+x^2即f'(x)= 1/1+x^2总结一下(x^n)'=nx^(n-1) (sinx)'=cosx (cosx)'=-sinx(a^x)'=a^xlna(e^x)'=e^x(loga^x)'=1/(xlna)(lnx)'=1/x(tanx)'=(secx)^2=1+(tanx)^2(cotx)'=-(cscx)^2=-1-(cotx)^2(secx)'=tanx*secx(cscx)'=-cotx*cscx(x^x)'=(lnx+1)*x^x(arcsinx)'=1/√1-x^2(arctanx)'=1/1+x^2[f(x)g(x)]'=f'(x)g(x)+f(x)g'(x)[f(x)/g(x)]'=[f'(x)g(x)-f(x)g'(x)]/(g(x)*g(x)) [f(g(x))]'=f'(g(x))g'(x)。
导数公式证明大全
导数的定义::(x)=lim △ y/A x△ x—0 (下面就不再标明A x—0 了)用定义求导数公式1)f(x)=x A n证法一:n为自然数)f'(x)=lim [(x+A x)An-xAn]/A x=lim (x+ A x-x)[(x+ A x)A(n-1 )+x*(x+ A x)A(n -2)+...+xA(n-2)*(x+ A x)+xA(n -1 )]/ A x=lim [(x+A x)A(n-1)+x*(x+A x)A(n-2)+...+xA(n-2)*(x+A x)+xA(n-1)]=xA(n-1 )+x*xA(n -2)+xA2*xA(n -3)+ ...xA(n-2)*x+xA(n -1 )=nxA(n-1)证法二:n为任意实数)f(x)=xAnlnf(x)=nlnx(lnf(x))'=(nlnx)'f'(x)/f(x)=n/xf'(x)=n/x*f(x)f'(x)=n/x*xAn f'(x)=nxA(n -1)(2)f(x)=sinxf'(x)=lim (sin(x+A x)-sinx)/A x=lim (sinxcos A x+cosxsin A x-sinx)/ A x =lim (sinx+cosxsin A x-sinx)/A x=lim cosxsin A x/A x=cosx(3)f(x)=cosxf'(x)=lim (cos(x+A x)-cosx)/A x=lim (cosxcos A x-sinxsin A x-cosx)/A x =lim (cosx-sinxsin A x-cos)/A x=lim -sinxsin A x/A x=-sinx4)f(x)=a A xf'(x) =lim (aA(x+A x)-aAx)/A x=lim a A x*(a A△ x-1)/A x设"Ax-仁m,贝U A x=logaA(m+1))=lim aAx*m/logaA(m+1)=lim aAx*m/[ln(m+1)/lna]=lim aAx*lna*m/ln(m+1)=lim aAx*lna/[(1/m)*ln(m+1)]=lim aAx*lna/ln[(m+1)A(1/m)]=lim aAx*lna/lne=aAx*lna若a=e,原函数f(x)=eAx 贝f'(x)=eAx*lne=eAx(5)f(x)=logaAxf'(x)=lim (logaA(x+A x)-logaAx)/A x=lim logaA[(x+A x)/x]/A x=lim logaA(1+A x/x)/A x=lim ln(1+A x/x)/(lna* A x) =lim x*ln(1+ A x/x)/(x*lna* A x) =lim (x/A x)*ln(1+ △ x/x)/(x*Ina)=lim ln[(1+ A x/x)A(x/ A x)]/(x*Ina)=lim lne/(x*lna)=1/(x*lna)若a=e,原函数f(x)=logeAx=Inx则f'(x)=1/(x*lne)=1/x(6)f(x)=tanxf'(x)=lim (tan(x+A x)-tanx)/A x=lim (sin(x+A x)/cos(x+ A x)-sinx/cosx)/A x=lim (sin(x+A x)cosx-sinxcos(x+A x)/(A xcosxcos(x+A x))=lim (sinxcos A xcosx+sin A xcosxcosx-sinxcosxcos A x+sinxsinxsin A x)/(A xcosxcos(x+A x))=lim sin A x/(A xcosxcos(x+A x))=1/(cosx)A2=secx/cosx=(secx)A2=1+(tanx)A2(7)f(x)=cotx f'(x)=lim (cot(x+ △ x)- cotx)/ △ x=lim (cos(x+A x)/sin(x+ △ x) -cosx/sinx)/A x=lim (cos(x+A x)sinx-cosxsin(x+A x))/( A xsinxsin(x+ A x)) =lim (cosxcos A xsinx-sinxsinxsin A x-cosxsinxcos A x- cosxsin A xcosx)/(A xsinxsin(x+A x))=lim -sin A x/(A xsinxsin(x+A x))=-1/(s in x)A2= -cscx/si nx=-(secxF2二1-(cotxF28)f(x)=secx f'(x)=lim (sec(x+A x)-secx)/A x=lim (1/cos(x+A x)-1/cosx)/A x=lim (cosx-cos(x+A x)/(A xcosxcos A x)=lim (cosx-cosxcos A x+sinxsin A x)/(A xcosxcos(x+A x))=lim sinxsin A x/(A xcosxcos(x+A x))=sinx/(cosx)A2=tanx*secx9)f(x)=cscxf'(x) =lim (csc(x+A x)-cscx)/A x=lim (1/sin(x+ A x)-1/sinx)/A x=lim (sinx-sin(x+A x))/(A xsinxsin(x+A x))=lim (sinx-sinxcos A x-sin A xcosx)/(A xsinxsin(x+A x)) =lim -sin A xcosx/(A xsinxsin(x+A x))=-cosx/(s in x)A2=-cotx*cscx10)f(x)=x A x lnf(x)=xlnx (lnf(x))'=(xlnx)' f'(x)/f(x)=lnx+1 f'(x)=(lnx+1)*f(x) f'(x)=(lnx+1)*xAx(12)h(x)=f(x)g(x)h'(x)=lim (f(x+ A x)g(x+ A x)-f(x)g(x))/ A x =lim [(f(x+ A x)-f(x)+f(x))*g(x+A x)+(g(x+A x)-g(x)-g(x+A x))*f(x)]/ A x=lim [(f(x+ △x)-f(x))*g(x+ △x)+(g(x+ △ x)-g(x))*f(x)+f(x)*g(x+ △ x)-f(x)*g(x+ △ x)]/ A x=lim (f(x+ A x)-f(x))*g(x+ A x)/ A x+(g(x+ A x)-g(x))*f(x)/ A x=f'(x)g(x)+f(x)g'(x)(13)h(x)=f(x)/g(x)h'(x)=lim (f(x+ A x)/g(x+A x)-f(x)g(x))/A x=lim (f(x+A x)g(x)-f(x)g(x+A x))/(A xg(x)g(x+A x))=lim [(f(x+ A x)-f(x)+f(x))*g(x) -(g(x+ A x) -g(x)+g(x))*f(x)]/( A xg(x)g(x+A x))=lim [(f(x+ A x)-f(x))*g(x) -(g(x+ A x)-g(x))*f(x)+f(x)g(x) -f(x)g(x)]/(A xg(x)g(x+A x))=lim (f(x+ A x)-f(x))*g(x)/( A xg(x)g(x+A x))-(g(x+A x)-g(x))*f(x)/( A xg(x)g(x+A x))=f'(x)g(x)/(g(x)*g(x)) -f(x)g'(x)/(g(x)*g(x))=[f'(x)g(x) -f(x)g'(x)]/(g(x)*g(x))x(14)h(x)=f(g(x))h'(x)=lim [f(g(x+ A x))-f(g(x))]/ A x=lim [f(g(x+A x)-g(x)+g(x))-f(g(x))]/A x (另g(x)=u, g(x+A x)-g(x)= △ u)=lim (f(u+ A u)-f(u))/ A x=lim (f(u+ A u)-f(u))* A u/(A x*A u)=lim f'(u)* A u/A x=lim f'(u)*(g(x+ A x)-g(x))/A x=f'(u)*g'(x)=f'(g(x))g'(x)总结一下(A n )'=nx^( n-1)(sinx) '=cosx(cosx) '=-sinx(aAx) '=aAxlna(eAx) '=eAx(logaAx) '=1/(xlna)(lnx)'=1/x(tanx)'=(secx)A2=1+(tanx)A2(cotx)'=-(cscx)A2=-1-(cotx)A2(secx)'=tanx*secx(cscx)'=-cotx*cscx(xAx)'=(lnx+1)*xAx [f(x)g(x)]'=f'(x)g(x)+f(x)g'(x) [f(x)/g(x)]'=[f'(x)g(x) -f(x)g'(x)]/(g(x)*g(x))[f(g(x))]'=f'(g(x))g'(x)。
求导数公式及运算法则
求导数公式及运算法则求导数公式及运算法则导数是微积分中非常重要的概念,它用来描述函数在某一点的变化率。
在实际应用中,求导数可以帮助我们确定函数的最大值、最小值、驻点等,因此对求导数的理解和掌握是非常重要的。
本文将介绍一些常见的求导数公式及运算法则。
一、求导数的定义假设函数f(x)在区间[a,b]内可导,则函数在某一点x的导数表示为:f'(x) = lim(h->0)[f(x+h)-f(x)]/h其中,lim表示极限,h表示x自变量的增量。
二、求导数常用的公式1. 常数函数的导数:若c是常数,则f(x)=c的导数为0。
2. 幂函数的导数:对于任意实数n,f(x)=x^n的导数为:f'(x) = nx^(n-1)特别地,当n=1时,f(x)=x的导数为1。
3. 指数函数的导数:f(x)=e^x的导数为:f'(x) = e^x4. 对数函数的导数:f(x)=log_a(x)的导数为:f'(x) = 1/(x*log_a)其中a为常数,且a>0且a≠1。
5. 三角函数的导数:sin(x)' = cos(x)cos(x)' = -sin(x)tan(x)' = sec^2(x)这里的sec(x)表示secant(正割)函数。
三、四则运算法则求导数不仅可以针对单个函数进行,还可以对多个函数之间进行四则运算。
下面介绍求导数的四则运算法则。
1. 和差法则:若f(x)和g(x)都可导,则有:[f(x)+g(x)]' = f'(x) + g'(x)[f(x)-g(x)]' = f'(x) - g'(x)即求和或求差的导数等于各自的导数之和或差。
2. 乘法法则:若f(x)和g(x)都可导,则有:[f(x)g(x)]' = f'(x)g(x) + g'(x)f(x)即求两个函数相乘的导数等于第一个函数的导数乘以第二个函数再加上第二个函数的导数乘以第一个函数。
基本初等函数的导数公式及导数的运算法则
基本初等函数的导数公式及导数的运算法则导数是微积分中一个重要的概念,表示函数在其中一点上的变化率。
在求解导数时,我们可以利用一些基本初等函数的导函数公式以及导数的运算法则来简化计算。
以下是一些常用的基本初等函数的导数公式及导数的运算法则。
一、基本初等函数的导数公式1.常数函数:若f(x)=C,其中C为常数,则f'(x)=0。
2. 幂函数:若f(x) = x^n,其中n为正整数,则f'(x) = nx^(n-1)。
例如,f(x) = x^2,则f'(x) = 2x。
3. 指数函数:若f(x) = a^x,其中a为正常数且a≠1,则f'(x) = a^x ln(a)。
其中ln(x)表示以e为底的对数函数。
例如,f(x) = 2^x,则f'(x) = 2^x ln(2)。
4. 对数函数:若f(x) = logₐx,其中a为正常数且a≠1,则f'(x)= 1 / (x ln(a))。
例如,f(x) = log₂x,则f'(x) = 1 / (x ln(2))。
5. 三角函数:(1)sin(x) 的导函数为 cos(x);(2)cos(x) 的导函数为 -sin(x);(3)tan(x) 的导函数为 sec^2(x),其中 sec(x) 为secant 函数,其值等于 1 / cos(x);(4)cot(x) 的导函数为 -csc^2(x),其中 csc(x) 为 cosecant 函数,其值等于 1 / sin(x);(5)sec(x) 的导函数为 sec(x)tan(x);(6)csc(x) 的导函数为 -csc(x)cot(x)。
1.和差法则:若f(x)和g(x)都是可导函数,则(f±g)'(x)=f'(x)±g'(x)。
即和差函数的导数等于各个函数的导数之和或差。
例如,若f(x)=x^2,g(x)=x,则(f+g)'(x)=(x^2)'+x'=2x+12. 数乘法则:若f(x) 是可导函数,c 为常数,则(cf)'(x) =cf'(x)。
高中导数放缩常用公式及证明
高中导数放缩常用公式及证明在高中数学学习中,导数是一个重要的概念。
导数的定义和性质都是高中数学的基础知识。
导数的放缩是导数的一个重要应用,它可以让我们更加方便地进行计算和推导。
本文将介绍一些高中导数放缩常用公式及其证明。
一、导数放缩公式1.和差法则设函数f(x)和g(x)在点x0处可导,则有:f(x) ± g(x)在x0处可导,且(f(x) ± g(x))'|x0 = f'(x0) ± g'(x0)证明:对于f(x) + g(x),设h(x) = f(x) + g(x),则有:h'(x0) = lim(x → x0) [h(x) - h(x0)] / (x - x0)= lim(x → x0) [f(x) + g(x) - f(x0) - g(x0)] / (x - x0) = lim(x → x0) [f(x) - f(x0)] / (x - x0) + lim(x → x0) [g(x) - g(x0)] / (x - x0)= f'(x0) + g'(x0)同理可证f(x) - g(x)在x0处可导,且(f(x) - g(x))'|x0 = f'(x0) - g'(x0)。
2.积法则设函数f(x)和g(x)在点x0处可导,则有:f(x)g(x)在x0处可导,且(f(x)g(x))'|x0 = f'(x0)g(x0) + f(x0)g'(x0)证明:对于f(x)g(x),设h(x) = f(x)g(x),则有:h'(x0) = lim(x → x0) [h(x) - h(x0)] / (x - x0)= lim(x → x0) [f(x)g(x) - f(x0)g(x0)] / (x - x0)= lim(x → x0) [(f(x) - f(x0))g(x0) + f(x0)(g(x) - g(x0))] / (x - x0)= lim(x → x0) [f(x) - f(x0)] / (x - x0) · g(x0) +f(x0) · lim(x → x0) [g(x) - g(x0)] / (x - x0)= f'(x0)g(x0) + f(x0)g'(x0)3.商法则设函数f(x)和g(x)在点x0处可导,且g(x0) ≠ 0,则有:f(x) / g(x)在x0处可导,且(f(x) / g(x))'|x0 = [f'(x0)g(x0) - f(x0)g'(x0)] / (g(x0))^2 证明:对于f(x) / g(x),设h(x) = f(x) / g(x),则有:h'(x0) = lim(x → x0) [h(x) - h(x0)] / (x - x0)= lim(x → x0) [f(x) / g(x) - f(x0) / g(x0)] / (x - x0) = lim(x → x0) [(f(x)g(x0) - f(x0)g(x)) / (g(x)g(x0))] / (x - x0)= lim(x → x0) [(f(x) - f(x0)) / (x - x0) · g(x0) - f(x0) / (x - x0) · (g(x) - g(x0))] / (g(x0))^2= [f'(x0)g(x0) - f(x0)g'(x0)] / (g(x0))^2二、导数放缩应用1.最值问题对于一元函数f(x),如果在区间[a, b]上可导,且在[a, b]的端点处导数存在,则在[a, b]上f(x)取得最大值或最小值时,导数为0。
基本初等函数的导数公式的推导过程
基本初等函数的导数公式的推导过程1.常数函数的导数:常数函数的导数为0。
这可以通过导数的定义来证明。
假设常数函数为f(x) = C,其中C是一个常数。
导数的定义为f'(x) = lim(h->0)[f(x+h)-f(x)]/h,将f(x) = C代入该式,可得f'(x) = lim(h->0) [C - C]/h = 0。
2.幂函数的导数:幂函数的导数可以使用幂函数的定义和导数的定义来推导。
假设幂函数为f(x) = x^n,其中n是一个正整数。
根据导数的定义,可以计算出f'(x) = lim(h->0) [f(x+h)-f(x)]/h。
将f(x) = x^n代入该式,有f'(x) = lim(h->0) [(x+h)^n -x^n]/h。
可以采用二项式定理展开分子表达式:(x+h)^n = C(n, 0)x^n + C(n, 1)x^(n-1)h + C(n, 2)x^(n-2)h^2 + ... + C(n, n-1) xh^(n-1) + h^n其中C(n,k)表示从n中选取k个元素的组合数。
因此,分子展开为[(x+h)^n-x^n]/h=C(n,1)x^(n-1)+C(n,2)x^(n-2)h+...+C(n,n-1)h^(n-1)+h^n可以观察到,在这个表达式中,只有第一项不含h,其他项都有h的幂次方。
因此,当h趋近于0时,这些含有h的幂次方都会趋近于0,只剩下第一项C(n, 1)x^(n-1),即f'(x) = C(n, 1)x^(n-1) = nx^(n-1)。
3.指数函数和对数函数的导数:指数函数和对数函数的导数可以通过化简导数的定义来推导。
假设指数函数为f(x) = a^x,其中a是一个正实数且不等于1、对于任意实数x和x+h,有f'(x) = lim(h->0) [f(x+h)-f(x)]/h。
将f(x) = a^x代入该式,有f'(x) = lim(h->0) [a^(x+h)-a^x]/h。
导数的公式及证明
1.常函数(即常数)y=c(c为常数) y'=0 2.幂函数y=x^n,y'=nx^(n-1)(n∈Q*) 熟记1/X的导数 3.指数函数(1)y=a^x,y'=a^xlna ;(2)熟记y=e^x y'=e^x唯一一个导函数为本身的函数 4.对数函数(1)y=logaX,y'=1/xlna (a>0且a不等于1,x>0) ;熟记y=lnx,y'=1/x 5.正弦函数y=(sinx )y'=cosx 6.余弦函数y=(cosx) y'=-sinx 7.正切函数y=(tanx) y'=1/(cosx)^2 8.余切函数y=(cotx) y'=-1/(sinx)^2 9.反正弦函数y=(arcsinx) y'=1/√1-x^2 10.反余弦函数y=(arccosx) y'=-1/√1-x^2 11.反正切函数y=(arctanx) y'=1/(1+x^2) 12.反余切函数y=(arccotx) y'=-1/(1+x^2) 为了便于记忆,有人整理出了以下口诀: 常为零,幂降次,对导数(e为底时直接导数,a为底时乘以lna),指不变(特别的,自然对数的指数函数完全不变,一般的指数函数须乘以lna);正变余,余变正,切割方(切函数是相应割函数(切函数的倒数)的平方),割乘切,反分式 在推导的过程中有这几个常见的公式需要用到: 1.y=f[g(x)],y'=f'[g(x)]·g'(x)‘f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量’ 2.y=u/v,y'=(u'v-uv')/v^2 3. 原函数与反函数导数关系(由三角函数导数推反三角函数的):y=f(x)的反函数是x=g(y),则有y'=1/x' 证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。用导数的定义做也是一样的:y=c,Δy=c-c=0,limΔx→0Δy/Δx=0。 2.这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况,只能证其为整数Q。主要应用导数定义与N次方差公式。在得到 y=e^x y'=e^x和y=lnx y'=1/x这两个结果后能用复合函数的求导给予证明。 3.y=a^x, Δy=a^(x+Δx)-a^x=a^x(a^Δx-1) Δy/Δx=a^x(a^Δx-1)/Δx 如果直接令Δx→0,是不能导出导函数的,必须设一个辅助的函数β=a^Δx-1通过换元进行计算。由设的辅助函数可以知道:Δx=loga(1+β)。 所以(a^Δx-1)/Δx=β/loga(1+β)=1/loga(1+β)^1/β 显然,当Δx→0时,β也是趋向于0的。而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna。 把这个结果代入limΔx→0Δy/Δx=limΔx→0a^x(a^Δx-1)/Δx后得到limΔx→0Δy/Δx=a^xlna。 可以知道,当a=e时有y=e^x y'=e^x。 4.y=logax Δy=loga(x+Δx)-logax=loga(x+Δx)/x=loga[(1+Δx/x)^x]/x Δy/Δx=loga[(1+Δx/x)^(x/Δx)]/x 因为当Δx→0时,Δx/x趋向于0而x/Δx趋向于∞,所以limΔx→0loga(1+Δx/x)^(x/Δx)=logae,所以有 limΔx→0Δy/Δx=logae/x。 也可以进一步用换底公式 limΔx→0Δy/Δx=logae/x=lne/(x*lna)=1/(x*lna)=(x*lna)^(-1) 可以知道,当a=e时有y=lnx y'=1/x。 这时可以进行y=x^n y'=nx^(n-1)的推导了。因为y=x^n,所以y=e^ln(x^n)=e^nlnx, 所以y'=e^nlnx·(nlnx)'=x^n·n/x=nx^(n-1)。 5.y=sinx Δy=sin(x+Δx)-sinx=2cos(x+Δx/2)sin(Δx/2) Δy/Δx=2cos(x+Δx/2)sin(Δx/2)/Δx=cos(x+Δx/2)sin(Δx/2)/(Δx/2) 所以limΔx→0Δy/Δx=limΔx→0cos(x+Δx/2)·limΔx→0sin(Δx/2)/(Δx/2)=cosx 6.类似地,可以导出y=cosx y'=-sinx。 7.y=tanx=sinx/cosx y'=[(sinx)'cosx-sinx(cosx)']/cos^2x=(cos^2x+sin^2x)/cos^2x=1/cos^2x 8.y=cotx=cosx/sinx y'=[(cosx)'sinx-cosx(sinx)']/sin^2x=-1/sin^2x 9.y=arcsinx x=siny x'=cosy y'=1/x'=1/cosy=1/√1-sin^2y=1/√1-x^2 10.y=arccosx x=cosy x'=-siny y'=1/x'=-1/siny=-1/√1-cos^2y=-1/√1-x^2 11.y=arctanx x=tany x'=1/cos^2y y'=1/x'=cos^2y=1/sec^2y=1/1+tan^2x=1/1+x^2 12.y=arccotx x=coty x'=-1/sin^2y y'=1/x'=-sin^2y=-1/csc^2y=-1/1+cot^2y=-1/1+x^2 另外在对双曲函数shx,chx,thx等以及反双曲函数arshx,archx,arthx等和其他较复杂的复合函数求导时通过查阅导数表和运用开头的公式与 4.y=u土v,y'=u'土v' 5.y=uv,y=u'v+uv' 均能较快捷地求得结果。 对于y=x^n y'=nx^(n-1) ,y=a^x y'=a^xlna 有更直接的求导方法。 y=x^n 由指数函数定义可知,y>0 等式两边取自然对数 ln y=n*ln x 等式两边对x求导,注意y是y对x的复合函数 y' * (1/y)=n*(1/x) y'=n*y/x=n* x^n / x=n * x ^ (n-1) 幂函数同理可证 导数说白了它其实就是曲线一点斜率,函数值的变化率 上面说的分母趋于零,这是当然的了,但不要忘了分子也是可能趋于零的,所以两者的比就有可能是某一个数,如果分子趋于某一个数,而不是零的话,那么比值会很大,可以认为是无穷大,也就是我们所说的导数不存在。 x/x,若这里让X趋于零的话,分母是趋于零了,但它们的比值是1,所以极限为1. 建议先去搞懂什么是极限。极限是一个可望不可及的概念,可以很接近它,但永远到不了那个岸. 并且要认识到导数是一个比值。
高中导数放缩常用公式及证明
高中导数放缩常用公式及证明
导数放缩常用公式是:ln(1+x)0,sinx0。
导数是函数的局部性质。
一个函数在某一点的导数描述了这个函数在这一点附近的变化率。
如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。
导数也叫导函数值。
又名微商,是微积分中的重要基础概念。
当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。
基本初等函数导数推导
基本初等函数导数推导定义1:设函数 f(x) 在 x_{0} 附近有定义,对应自变量的改变量 \Delta x ,有函数的改变量 \Deltay=f(x_{0}+\Delta x)-f(x_{0}) ,若极限 \underset{\Delta x \rightarrow 0}\lim\frac{\Delta y}{\Delta x} 存在,则称该极限为f(x) 在 x_{0}的导数,记作 f'(x_{0}) 。
引理1(导数公式1):常数函数的导数处处为零。
证明:设 f(x)=C 。
f'(x)=\underset{\Delta x \rightarrow0}\lim\frac{f(x+\Delta x)-f(x)}{\Deltax}=\underset{\Delta x \rightarrow 0}\lim\frac{C-C}{\Delta x}= \underset{\Delta x \rightarrow0}\lim\frac{0}{\Delta x}=0引理2:部分三角函数和差化积公式\sin\alpha-\sin\beta=\sin(\frac{\alpha+\beta}{2}+\frac{\alpha-\beta}{2})-\sin (\frac{\alpha+\beta}{2}-\frac{\alpha-\beta}{2})=(\sin(\frac{\alpha+\beta}{2})\cos(\frac{\alpha-\beta}{2})+\cos(\frac{\alpha+\beta}{2})\sin(\frac{\alp ha-\beta}{2}))-(\sin(\frac{\alpha+\beta}{2})\cos(\frac{\alpha-\beta}{2})-\cos(\frac{\alpha+\beta}{2})\sin(\frac{\alpha-\beta}{2}))=2\cos(\frac{\alpha+\beta}{2})\sin(\frac{\alpha-\beta}{2})\cos\alpha-\cos\beta=\cos(\frac{\alpha+\beta}{2}+\frac{\alpha-\beta}{2})-\cos(\frac{\alpha+\beta}{2}-\frac{\alpha-\beta}{2})=(\cos(\frac{\alpha+\beta}{2})\cos(\frac{\alpha-\beta}{2})-\sin(\frac{\alpha+\beta}{2})\sin(\frac{\alpha-\beta}{2}))-(\cos(\frac{\alpha+\beta}{2})\cos(\frac{\alpha-\beta}{2})+\sin(\frac{\alpha+\beta}{2})\sin(\frac{\alp ha-\beta}{2}))=-2\sin(\frac{\alpha+\beta}{2})\sin(\frac{\alpha-\beta}{2})引理3:部分等价无穷小(1) \sin x\sim x(x\rightarrow 0)(2) e^{x}-1\sim x(x\rightarrow0)(3) \ln(1+x)\sim x(x\rightarrow0)(1)的证明略去,(2)(3)的证明见以下文章:引理4:导数的四则运算,设 u(x) 和 v(x) 可导。
导数公式证明大全(最全版)
数学导数公式大全
若 a=e,原函数 f(x)=loge^x=lnx 则 f'(x)=1/(x*lne)=1/x
(6)f(x)=tanx f'(x) =lim (tan(x+Δx)-tanx)/Δx =lim (sin(x+Δx)/cos(x+Δx)-sinx/cosx)/Δx =lim (sin(x+Δx)cosx-sinxcos(x+Δx)/(Δxcosxcos(x+Δx)) =lim (sinxcosΔxcosx+sinΔxcosxcosx-sinxcosxcosΔ x+sinxsinxsinΔx)/(Δxcosxcos(x+Δx)) =lim sinΔx/(Δxcosxcos(x+Δx)) =1/(cosx)^2=secx/cosx=(secx)^2=1+(tanx)^2
数学导数公式大全
(3)f(x)=cosx f'(x) =lim (cos(x+Δx)-cosx)/Δx =lim (cosxcosΔx-sinxsinΔx-cosx)/Δx =lim (cosx-sinxsinΔx-cos)/Δx =lim -sinxsinΔx/Δx =-sinx
(4)f(x)=a^x 证法一: f'(x) =lim (a^(x+Δx)-a^x)/Δx =lim a^x*(a^Δx-1)/Δx (设 a^Δx-1=m,则Δx=loga^(m+1)) =lim a^x*m/loga^(m+1)
证法二:(n 为任意实数) f(x)=x^n
lnf(x)=nlnx
数学导数公式大全
(lnf(x))'=(nlnx)'
所有导数公式及运算法则
所有导数公式及运算法则基本初等函数的导数公式1 .C'=0(C为常数);2 .(Xn)'=nX(n-1) (n∈Q);3 .(sinX)'=cosX;4 .(cosX)'=-sinX;5 .(aX)'=aXIna (ln为自然对数)特别地,(ex)'=ex6 .(logaX)'=(1/X)logae=1/(Xlna) (a>0,且a≠1)特别地,(ln x)'=1/x7 .(tanX)'=1/(cosX)2=(secX)28 .(cotX)'=-1/(sinX)2=-(cscX)29 .(secX)'=tanX secX10.(cscX)'=-cotX cscX导数的四则运算法则:①(u±v)'=u'±v'②(uv)'=u'v+uv'③(u/v)'=(u'v-uv')/ v2④复合函数的导数[u(v)]'=[u'(v)]*v' (u(v)为复合函数f[g(x)])复合函数对自变量的导数,等于已知函数对中间变量的导数,乘以中间变量对自变量的导数--称为链式法则。
导数是微积分的基础,同时也是微积分计算的一个重要的支柱。
2导数的求导法则由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。
基本的求导法则如下:1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。
2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。
3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。
4、如果有复合函数,则用链式法则求导。
高阶导数的求法1.直接法:由高阶导数的定义逐步求高阶导数。
一般用来寻找解题方法。
2.高阶导数的运算法则:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
编辑本段导数公式及证明
这里将列举五类基本初等函数的导数以及它们的推导过程(初等函数可由之运算来):
基本导数公式
1.y=c(c为常数) y'=0
2幂函数。
y=x^n, y'=nx^(n-1)(n∈Q*) 熟记1/X的导数
3.(1)y=a^x ,y'=a^xlna ;(2)熟记y=e^x y'=e^x唯一一个导函数为本身的函数
4.(1)y=logaX, y'=1/xlna (a>0且a不等于1,x>0) ;熟记
y=lnx ,y'=1/x
5.y=(sinx )y'=cosx
6.y=(cosx) y'=-sinx
7.y=(tanx) y'=1/(cosx)^2
8.y=(cotx) y'=-1/(sinx)^2
9.y=(arcsinx)y'=1/√1-x^2
10.y=(arccosx) y'=-1/√1-x^2
11.y=(arctanx) y'=1/(1+x^2)
12.y=(arccotx) y'=-1/(1+x^2)
在推导的过程中有这几个常见的公式需要用到:
1.y=f[g(x)],y'=f'[g(x)]·g'(x)『f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量』
2.y=u/v,y'=(u'v-uv')/v^2
3. 原函数与反函数导数关系(由三角函数导数推反三角函数的):
y=f(x)的反函数是x=g(y),则有y'=1/x'
证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。
用导数的定义做也是一样的:
y=c,Δy=c-c=0,limΔx→0Δy/Δx=0。
2.这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况,只能证其为整数Q。
主要应用导数定义与
N次方差公式。
在得到 y=e^x y'=e^x和y=lnx y'=1/x这两个结果后能用复合函数的求导给予证明。
3.y=a^x,
Δy=a^(x+Δx)-a^x=a^x(a^Δx-1)
Δy/Δx=a^x(a^Δx-1)/Δx
如果直接令Δx→0,是不能导出导函数的,必须设一个辅助的函数
β=a^Δx-1通过换元进行计算。
由设的辅助函数可以知道:
Δx=loga(1+β)。
所以(a^Δx-1)/Δx=β/loga(1+β)=1/loga(1+β)^1/β
显然,当Δx→0时,β也是趋向于0的。
而limβ→0(1+β)^1/β=e,所以limβ→01/loga(1+β)^1/β=1/logae=lna。
把这个结果代入limΔx→0Δy/Δx=limΔx→0a^x(a^Δx-1)/Δx后得到limΔx→0Δy/Δx=a^xlna。
可以知道,当a=e时有y=e^x y'=e^x。
4.y=logax
Δy=loga(x+Δx)-logax=loga(x+Δx)/x=loga[(1+Δx/x)^x]/x
Δy/Δx=loga[(1+Δx/x)^(x/Δx)]/x
因为当Δx→0时,Δx/x趋向于0而x/Δx趋向于∞,所以
limΔx→0loga(1+Δx/x)^(x/Δx)=logae,所以有
limΔx→0Δy/Δx=logae/x。
也可以进一步用换底公式
limΔx→0Δy/Δx=logae/x=lne/(x*lna)=1/(x*lna)=(x*lna)^(-1) 可以知道,当a=e时有y=lnx y'=1/x。
这时可以进行y=x^n y'=nx^(n-1)的推导了。
因为y=x^n,所以
y=e^ln(x^n)=e^nlnx,
所以y'=e^nlnx·(nlnx)'=x^n·n/x=nx^(n-1)。
5.y=sinx
Δy=sin(x+Δx)-sinx=2cos(x+Δx/2)sin(Δx/2)
Δy/Δx=2cos(x+Δx/2)sin(Δx/2)/Δx=cos(x+Δx/2)sin(Δx/2)/(Δx/ 2)
所以
limΔx→0Δy/Δx=limΔx→0cos(x+Δx/2)·limΔx→0sin(Δx/2)/(Δx /2)=cosx
6.类似地,可以导出y=cosx y'=-sinx。
7.y=tanx=sinx/cosx
y'=[(sinx)'cosx-sinx(cosx)']/cos^2x=(cos^2x+sin^2x)/cos^2x=1/cos ^2x
8.y=cotx=cosx/sinx
y'=[(cosx)'sinx-cosx(sinx)']/sin^2x=-1/sin^2x
9.y=arcsinx
x=siny
x'=cosy
y'=1/x'=1/cosy=1/√1-sin^2y=1/√1-x^2
10.y=arccosx
x=cosy
x'=-siny
y'=1/x'=-1/siny=-1/√1-cos^2y=-1/√1-x^2
11.y=arctanx
x=tany
x'=1/cos^2y
y'=1/x'=cos^2y=1/sec^2y=1/1+tan^2x=1/1+x^2
12.y=arccotx
x=coty
x'=-1/sin^2y
y'=1/x'=-sin^2y=-1/csc^2y=-1/1+cot^2y=-1/1+x^2
另外在对双曲函数shx,chx,thx等以及反双曲函数arshx,archx,arthx 等和其他较复杂的复合函数求导时通过查阅导数表和运用开头的公式与
4.y=u土v,y'=u'土v'
5.y=uv,y=u'v+uv'
均能较快捷地求得结果。
对于y=x^n y'=nx^(n-1) ,y=a^x y'=a^xlna 有更直接的求导方法。
y=x^n
由指数函数定义可知,y>0
等式两边取自然对数
ln y=n*ln x
等式两边对x求导,注意y是y对x的复合函数
y' * (1/y)=n*(1/x)
y'=n*y/x=n* x^n / x=n * x ^ (n-1)
幂函数同理可证
导数说白了它其实就是曲线一点斜率,函数值的变化率
上面说的分母趋于零,这是当然的了,但不要忘了分子也是可能趋于零的,所以两者的比就有可能是某一个数,如果分子趋于某一个数,而不是零的话,那么比值会很大,可以认为是无穷大,也就是我们所说的导数不存在。
x/x,若这里让X趋于零的话,分母是趋于零了,但它们的比值是1,所以极限为1.
建议先去搞懂什么是极限。
极限是一个可望不可及的概念,可以很接近它,但永远到不了那个岸.
并且要认识到导数是一个比值。