电磁感应计算题精选
【物理】高中物理电磁感应经典习题(含答案)
【物理】高中物理电磁感应经典习题(含答案)题一题目:一个导线截面积为$2.5\times10^{-4}m^2$,长度为$0.3m$,放在磁感应强度为$0.5T$的均匀磁场中,将导线两端连接到一个电阻为$2\Omega$的电阻器上,求电阻器中的电流。
解析:根据电磁感应定律,导线中的感应电动势与导线长度、磁感应强度以及导线的运动速度有关。
在此题中,导线不运动,所以感应电动势为零。
因此,电路中的电流完全由电源提供,根据欧姆定律,可以使用$U=IR$求解电流。
答案:电路中的电流为0A。
题二题目:一个充满磁感应强度为$1T$的磁场的金属环,直径为$0.2m$,环的厚度可以忽略不计。
当磁场方向垂直于环的平面并向上时,将环从磁场中抽出后,环中的磁场强度变为多少?解析:根据法拉第电磁感应定律,当闭合回路中的磁通量发生变化时,环中会产生感应电动势导致感应电流的产生。
在此题中,环被抽出磁场后,磁通量减小,从而产生感应电动势。
根据安培环路定理和比奥-萨伐尔定律,感应电动势的方向与磁场的变化方向相反,因此感应电流会生成一磁场。
根据安培定律和环形线圈的磁场公式,可以计算出环中的新的磁场强度。
答案:环中的新磁场强度需要通过计算得出。
具体计算过程请参考相关物理教材或参考书籍。
题三题目:一根长度为$0.5m$的直导线与一个磁场相垂直,导线两端的电动势为$2V$,导线的电阻为$4\Omega$,求导线在磁场中运动的速度。
解析:根据电磁感应定律,导线中的感应电动势与导线长度、磁场强度以及导线的运动速度有关。
在此题中,导线的电动势和电阻已知,可以使用欧姆定律$U=IR$解出电流,并使用感应电动势的公式$E=Bvl$解出运动速度。
答案:导线在磁场中的运动速度需要通过计算得出。
具体计算过程请参考相关物理教材或参考书籍。
电磁感应计算题
【例1】如图9-2-1所示,半径为r 的金属环,绕通过某直径的轴OO /以角速度ω转动,匀强磁场的磁感应强度为B .从金属环的平面与磁场方向重合开始计时,则在转过30O的过程中,环中产生的感应电动势的平均值是多大?【例2】在图9-2-2中,设匀强磁场的磁感应强度B=0.10T ,切割磁感线的导线的长度L=40cm ,线框向左匀速运动的速度V=5.0m/s ,整个线框的电阻R=0.5Ω,试求:感应电动势的大小;②感应电流的大小.【例3】如图9-2-3所示,固定在匀强磁场中的正方形导线框abcd ,各边长为L ,其中ab 边是一段电阻为R 的均匀电阻丝,其余三边均为电阻可忽略的铜导线,磁场的磁感应强度为B 方向垂直纸面向里.现有一与ab 段的材料、粗细、长度都相同的电阻丝PQ 架在导线框上,以恒定速度从ad 滑向bc .当PQ 滑过L/3的距离时,通过aP 段电阻丝的电流强度是多大?方向如何?【例4】如图9-2-4所示的电路,L 为自感线圈,R 是一个灯泡,E 是电源,当S 闭合瞬间,通过电灯的电流方向是 ,当S 切断瞬间,通过电灯的电流方向是 .图9-2-3图9-2-1图9-2-2 图9-2-4【例5】.金属杆ab 放在光滑的水平金属导轨上,与导轨组成闭合矩形电话,长L 1 = 0.8m ,宽L 2 = 0.5m ,回路的总电阻R = 0.2Ω,回路处在竖直方向的匀强磁场中,金属杆用水平绳通过定滑轮连接质量M = 0.04kg 的木块,木块放在水平面上,如图9-2-5所示,磁场的磁感应强度从B 0 = 1T 开始随时间均匀增强,5s 末木块将离开水平面,不计一切摩擦,g = 10m/s 2,求回路中的电流强度.【例6】如图9-2-6所示,光滑导体棒bc 固定在竖直放置的足够长的平行金属导轨上,构成框架abcd ,其中bc 棒电阻为R ,其余电阻不计.一不计电阻的导体棒ef 水平放置在框架上,且始终保持良好接触,能无摩擦地滑动,质量为m .整个装置处在磁感应强度为B 的匀强磁场中,磁场方向垂直框面.若用恒力F 向上拉ef ,则当ef 匀速上升时,速度多大?【例7】如图9-2-9所示,两根电阻不计,间距为l 的平行金属导轨,一端接有阻值为R 的电阻,导轨上垂直搁置一根质量为m 、电阻为r 的金属棒,整个装置处于竖直向上磁感强度为B 的匀强磁场中.现给金属棒施一冲量,使它以初速0V 向左滑行.设棒与导轨间的动摩擦因数为 ,金属棒从开始运动到停止的整个过程中,通过电阻R 的电量为q .求:(导轨足够长)(1)金属棒沿导轨滑行的距离;(2)在运动的整个过程中消耗的电能.图9-2-5图9-2-6图9-2-9【例8】CD 、EF 为两足够长的导轨,CE =L ,匀强磁场方向与导轨平面垂直,磁感强度为B ,导体CE 连接一电阻R ,导体ab 质量为m ,框架与导体电阻不计,如图9-2-11所示.框架平面与水平面成θ角,框架与导体ab 间的动摩擦因数为μ,求导体ab 下滑的最大速度?【例9】.如图9-2-12所示,两光滑平行导轨MN 、PQ 水平放置在匀强磁场中,磁场方向与导轨所在平面垂直,金属棒ab 可沿导轨自由移动,导轨左端M 、P 接一定值电阻,金属棒以及导轨的电阻不计.现将金属棒由静止向右拉,若保持拉力F 恒定,经过时间t 1后,金属棒的速度为v ,加速度为a 1,最终以2v 作匀速运动;若保持拉力F 的功率恒定,经过时间t 2后,金属棒的速度为v ,加速度为a 2,最终以2v 作匀速运动.求a 1与 a 2的比值.【例1】如图9-3-1甲所示,两根足够长的直金属导轨MN 、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L .M 、P 两点间接有阻值为R 的电阻.一根质量为m 的均匀直金属杆ab 放在两导轨上,并与导轨垂直,整套装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直斜面向下.导轨和金属杆的电阻可忽略.让ab 杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.(1)由b 向a 方向看到的装置如图9-3-1乙所示,请在此图中画出ab 杆下滑过程中某时刻的受力示意图; (2)在加速下滑过程中,当ab 杆的速度大小为v 时,求此时ab 杆中的电流及其加速度的大小; (3)求在下滑过程中,ab 杆可以达到的速度最大值.图9-2-11PM NQR a bF图9-2-12甲乙图9-3-1【例2】如图9-3-2,直角三角形导线框abc 固定在匀强磁场中,ab 是一段长为l 、电阻为R 的均匀导线,ac 和bc 的电阻可不计,ac 长度为1/2.磁场的磁感强度为B ,方向垂直于纸面向里.现有一段长度为l/2、电阻为R/2的均匀导体杆MN 架在导线框上,开始时紧靠ac ,然后沿ac 方向以恒定速度v 向b 端滑动,滑动中始终与ac 平行并与导线框保持良好接触.当MN 滑过的距离为l/3时,导线ac 中的电流是多大?方向如何?1. 如图所示,MN 和PQ 为竖直方向的两平行长直金属导轨,间距l 为0.40m ,电阻不计. 导轨所在平面与磁感应强度 5.0T B =的匀强磁场垂直.质量26.010kg m -=⨯、电阻0.5r =Ω的金属杆ab 始终垂直于导轨,并与其保持光滑接触.导轨两端分别接有阻值均为3.0Ω的电阻1R 和2R .重力加速度取210m/s ,且导轨足够长,若使金属杆ab 从静止开始下滑,求: (1)杆下滑的最大速率m v ;(2)稳定后整个电路耗电的总功率P ; (3)杆下滑速度稳定之后电阻2R 两端的电压U .2. 如图所示(俯视图),相距为2L 的光滑平行金属导轨水平放置,导轨的一部分处在以OO '为右边界的匀强磁场中,匀强磁场的磁感应强大小为B ,方向垂直导轨平面向下,导轨右侧接有定值电阻R ,导轨电阻忽略不计。
高一物理电磁感应现象练习题及答案
高一物理电磁感应现象练习题及答案练习题一:1. 一根导线以速度v穿过磁感应强度为B的均匀磁场,导线长度为L,角度θ为导线与磁场方向的夹角。
求导线在时间Δt内所受到的感应电动势。
答案:感应电动势E = B * v * L * sinθ2. 一根导线以速度v进入磁感应强度为B的均匀磁场,导线的长度为L。
当导线完全进入磁场后,突然停止不动。
求此过程中导线两端之间的电势差。
答案:电势差V = B * v * L3. 一个长度为L的导线以速度v匀速通过磁感应强度为B的均匀磁场,当导线通过时间Δt后,磁场方向突然发生改变。
求导线两端之间产生的感应电动势。
答案:感应电动势E = 2 * B * v * L4. 一根长度为L的导线以速度v与磁感应强度为B的均匀磁场垂直相交,导线所受到的感应电动势大小为E,如果将导线切成长度为L/2的两段导线,两段导线所受感应电动势的大小分别是多少?答案:每段导线所受感应电动势的大小都是E练习题二:1. 一台电动机的转子有60个磁极,额定转速为3000转/分钟。
求转子在额定转速下的转子导线所受的感应电动势大小。
答案:转子导线所受感应电动势的大小为ω * Magnetic Flux,其中ω为角速度,Magnetic Flux为磁通量。
转速为3000转/分钟,转速ω =2π * 3000 / 60。
由于转子有60个磁极,每转所经过的磁通量为60 * Magnetic Flux。
因此,转子导线所受感应电动势的大小为60 * 2π * 3000 / 60 * Magnetic Flux。
2. 一根长度为L的导线以角速度ω绕通过导线轴线的磁感应强度为B的磁场旋转。
求导线两端之间的电势差大小。
答案:电势差V = B * ω * L3. 一根输电线路的电阻为R,长度为L,电流为I。
如果在电力系统中,磁感应强度为B的磁场垂直于导线方向,求输电线路两端之间的感应电动势。
答案:感应电动势E = B * L * I4. 一块矩形线圈有N匝,每匝的边长为a和b,磁通量为Φ,求矩形线圈所受到的感应电动势。
(完整版)电磁感应经典例题
电磁感应考点清单1 电磁感应现象 感应电流方向(一)磁通量1.磁通量:穿过磁场中某个面的磁感线的条数叫做穿过这一面积的磁能量.磁通量简称磁通,符号为Φ,单位是韦伯(Wb ).2.磁通量的计算(1)公式Φ=BS此式的适用条件是:○1匀强磁场;○2磁感线与平面垂直.(2)如果磁感线与平面不垂直,上式中的S 为平面在垂直于磁感线方向上的投影面积.θsin S B •=Φ其中θ为磁场与面积之间的夹角,我们称之为“有效面积”或“正对面积”.(3)磁通量的方向性磁通量正向穿过某平面和反向穿过该平面时,磁通量的正负关系不同.求合磁通时应注意相反方向抵消以后所剩余的磁通量.(4)磁通量的变化12Φ-Φ=∆Φ∆Φ可能是B 发生变化而引起,也可能是S 发生变化而引起,还有可能是B 和S 同时发生变化而引起的,在确定磁通量的变化时应注意.(二)电磁感应现象的产生条件1.产生感应电流的条件:穿过闭合电路的磁通量发生变化.2.感应电动势的产生条件:无论电路是否闭合,只要穿过电路的磁通量发生变化, 这部分电路就会产生感应电动势.这部分电路或导体相当于电源.[例1] (2004上海,4)两圆环A 、B 置于同一水平面上,其中A 为均匀带电绝缘环,B 为导体环.当A 以如图13-36所示的方向绕中心转动的角速度发生变化时,B 中产生如图所示方向的感应电流.则( )图13-36A.A 可能带正电且转速减小B.A 可能带正电且转速增大C.A 可能带负电且转速减小D.A 可能带负电且转速增大[解析] 由题目所给的条件可以判断,感应电流的磁场方向垂直于纸面向外,根据楞次定律,原磁场的方向与感应电流的磁场相同时是减少的,环A 应该做减速运动,产生逆时针方向的电流,故应该带负电,故选项C 是正确的,同理可得B 是正确的.[答案] BC(三)感应电流的方向1.右手定则当闭合电路的部分导体切割磁感线时,产生的感应电流的方向可以用右手定则来进行判断.右手定则:伸开右手,使大拇指跟其余四指垂直,并且都跟手掌在一个平面内,让磁感线垂直穿入手心,大拇指指向导体运动方向,那么伸直四指指向即为感应电流的方向.[说明] 伸直四指指向还有另外的一些说法:○1感应电动势的方向;○2导体的高电势处.[例2](2004天津理综,20)图13-37中MN 、GH 为平行导轨,AB 、CD 为跨在导轨上的两根横杆,导轨和横杆均为导体.有匀强磁场垂直于导轨所在的平面,方向如图,用I 表示回路的电流.A.当AB 不动而CD 向右滑动时,0≠I 且沿顺时针方向B.当AB 向左、CD 向右滑动且速度大小相等时,I =0C.当AB 、CD 都向右滑动且速度大小相等时,I =0D.当AB 、CD 都向右滑动,且AB 速度大于CD 时,0≠I 且沿逆时针方向图13-37[解析] 当AB 不动而CD 向右滑动时,0≠I ,但电流方向为逆时针,A 错;当AB 向左,CD 向右滑动时,两杆产生的感应电动势同向,故0≠I ,B 错;当AB 和CD 都向右滑动且速度大小相等时,则两杆产生的感应电动势等值反向,故I =0,C 正确;当AB 和CD 都向右滑动,且AB 速度大于CD 时,0≠I ,但方向为顺时针,D 错误.[答案] C2.楞次定律(1)内容感应电流具有这样的方向:就是感应电流的磁场总是阻碍引起感应电流的磁通量的变化.注意:○1“阻碍”不是“相反”,原磁通量增大时,感应电流的磁场与原磁通量相反,“反抗”其增加;原磁通量减小时,感应电流的磁场与原磁通量相同,“补偿”其减小.即“增反减同”.○2“阻碍”也不是阻止,电路中的磁通量还是变化的,阻碍只是延缓其变化. ○3楞次定律的实质是“能量转化和守恒”,感应电流的磁场阻碍过程,使机械能减少,转化为电能.(2)应用楞次定律判断感应电流的步骤:○1确定原磁场的方向○2明确回路中磁通量变化情况.○3应用楞次定律的“增反减同”,确定感应电流磁场的方向.○4应用右手安培定则,确立感应电流方向.[例3] (2001上海综合,14)某实验小组用如图13-38所示的实验装置来验证楞次定律.当条形磁铁自上而下穿过固定的线圈时,通过电流计的感应电流方向是()A.a→G→bB.先a→G→b,后b→G→aC.b→G→aD.先b→G→a,后a→G→b图13-38[解析] ○1确定原磁场的方向:条形磁铁在穿入线圈的过程中,磁场方向向下.○2明确回路中磁通量变化情况:向下的磁通量增加.○3由楞次定律的“增反减同”可知:线圈中感应电流产生的磁场方向向上.○4应用右手安培定则可以判断感应电流的方向为逆时针(俯视)即:从b→G→a.同理可以判断:条形磁铁穿出线圈过程中,向下的磁通量减小,由楞次定律可得:线圈中将产生顺时针的感应电流(俯视),电流从a→G→b.[答案] D[评价] 该题目关键在于对楞次定律的理解和应用以及对“穿过”二字的正确理解,它包括穿入和穿出两个过程.(3)楞次定律的另一种表述楞次定律的另一种表达为:感应电流的效果,总是要反抗产生感应电流的原因.[说明] 这里产生感应电流的原因,既可以是磁通量的变化,也可以是引起磁通量变化的相对运动或回路的形变.○1当电路的磁通量发生变化时,感应电流的效果就阻碍变化−−变形为阻碍原磁通−→量的变化.○2当出现引起磁量变化的相对运动时,感应电流的效果就阻碍变化−−拓展为阻碍−→(导体间的)相对运动,即“来时拒,去时留”.○3当回路发生形变时,感应电流的效果就阻碍回路发生形变.○4当线圈自身的电流发生变化时,感应电流的效果就阻碍原来的电流发生变化. 总之,如果问题不涉及感应电流的方向,则从楞次定律的另类表述出发的分析方法较为简便.[例4] 如图13-19所示,光滑固定导轨M 、N 水平放置,两根导体棒P 、Q 平行放于导轨上,形成一个闭合回路,当一条形磁铁从高处下落接近回路时( )图13-39A.P 、Q 将互相靠拢B.P 、Q 将互相远离C.磁铁的加速度仍为gD.磁铁的加速度小于g[解析] 方法一:设磁铁下端为N 极,如图13-40所示,根据楞次定律可判断出P 、Q 中感应电流方向,根据左手定则可判断P 、Q 所受安培力的方向,可见P 、Q 将互相靠拢,由于回路所受安培力的合力向下,由牛顿第三定律,磁铁将受到向上的反作用力,从而加速度小于g .当S 极为下端时,可得到同样的结果.图13-40方法二:根据楞次定律的另一种表述——感应电流的效果总是要反抗产生感应电流的原因,本题的“原因”是回路中磁通量的增加.归根结底是磁铁靠近回路,“效果”便是阻碍磁通量的增加和磁铁的靠近,所以P 、Q 将互相靠近,且磁铁的加速度小于g .[答案] AD2 法拉第电磁感应定律 自感(一)法拉第电磁感应定律(1)内容:电磁感应中线圈里的感应电动势眼穿过线圈的磁通量变化率成正比.(2)表达式:t E ∆∆Φ=或tn E ∆∆Φ=. (3)说明:○1式中的n 为线圈的匝数,∆Φ是线圈磁通量的变化量,△t 是磁通量变化所用的时间.t ∆∆Φ又叫磁通量的变化率. ○2∆Φ是单位是韦伯,△t 的单位是秒,E 的单位是伏特. ○3t n E ∆∆Φ=中学阶段一般只用来计算平均感应电动势,如果t∆∆Φ是恒定的,那么E 是稳恒的.[例1] 有一面积为S =100cm 2金属环,电阻为R =0.1Ω,环中磁场变化规律如图13-41所示,且磁场方向垂直环面向里,在t 1到t 2时间内,环中感应电流的方向如何?通过金属环的电量为多少?图13-41[分析] 由楞次定律可判断感应电流的方向.感应电量的计算为 R t tR t R E t I Q ∆Φ=∆∆∆Φ=∆=∆=,仅由电路电阻和磁通量变化决定,与发生磁通量变化的时间无关,本题推导的感应电量的计算表达式可以直接使用.[解析] (1)由楞次定律,可以判断金属环中感应电流方向为逆时针方向.(2)由图可知:磁感应强度的变化率为1212t t B B t B --=∆∆ ○1 线圈中的磁通量的变化率: S t t B B S t B t •--=∆∆=∆∆Φ1212 ○2 环中形成感应电流tR R t R E I ∆∆Φ=∆∆Φ==/ ○3 通过金属环的电量:t I Q ∆= ○4由○1○2○3○4解得:1.010)1.02.0()(212-⨯-=-=R S B B Q C=0.1C. (二)导线切割磁感线的感应电动势1.公式:E=BLv2.导线切割磁感线的感应电动势公式的几点说明:(1)公式仅适用于导体上各点以相同的速度切割匀强的磁场的磁感线的情况.(2)公式中的B 、v 、L 要求互相两两垂直.当L ⊥B ,L ⊥v ,而v 与B 成θ夹角时,导线切割磁感线的感应电动势大小为θsin BLv E =.(3)适用于计算当导体切割磁感线产生的感应电动势,当v 为瞬时速度时,可计算瞬时感应电动势,当v 为平均速度时,可计算平均电动势.(4)若导体棒不是直的,θsin BLv E =中的L 为切割磁感线的导体棒的有效长度.如图13-42中,棒的有效长度有ab 的弦长.图13-42[例2] (2001上海物理,22)(13分)半径为a 的圆形区域内有均匀磁场,磁感应强度为B =0.2T ,磁场方向垂直纸面向里,半径为b 的金属圆环与磁场同心放置,磁场与环面垂直,其中a =0.4m ,b =0.6m ,金属环上分别接有灯L 1、L 2,两灯的电阻均匀为R 0=2Ω,一金属棒MN 与金属环接触良好,棒与环的电阻均忽略不计.(1)若棒以v 0=5m/s 的速率在环上向右匀速滑动,求棒滑过圆环直径00′的瞬间(如图13-43所示)MN 中的电动势和流过灯L 1的电流.图13-43(2)撤去中间的金属棒MN ,将右面的半圆环OL 2O ′以OO ′为轴向上翻转90°,若此时磁场随时间均匀变化,其变化率为s T t B /)/4(/π=∆∆,求L 1的功率.[解析] (1)棒通过圆环直径时切割磁感线的有效长度L =2a ,棒中产生的感应电动势为58.02.02⨯⨯===av B BLv E V=0.8V ○1 当不计棒和环的电阻时,直径OO ′两端的电压U =E =0.8V ,通过灯L 1电流的为 28.001==R U I A =0.4A. ○2 (2)右半圆环上翻90°后,穿过回路的磁场有效面积为原来的一半,221a S π=',磁场变化时在回路中产生的感应电动热为V V a t B S t E 23.04212=⨯=∆∆•'=∆∆Φ='ππ ○3 由L 1、L 2两灯相同,圆环电阻不计,所以每灯的电压均为E U '='21,L 1的功率为 2020211028.1)21(-⨯='='=R E R U P W. ○4 3.导体切割磁感线产生的感应电动势大小两个特例:(1)长为L 的导体棒在磁感应强度为B 的匀强磁场中以ω匀速转动,导体棒产生的感应电动势:⎪⎪⎪⎩⎪⎪⎪⎨⎧-===))((212121022212不同两段的代数和以任意点为轴时,)线速度(平均速度取中点位置以端点为轴时,(不同两段的代数和)以中点为轴时,L L B E L L B E E ωωω [例3] (2004两湖理综,19)一直升飞机停在南半球的地磁极上空.该处地磁场的方向竖直向上,磁感应强度为B ,直升飞机螺旋桨叶片的长度为l ,螺旋桨转动的频率为f ,顺着地磁场的方向看螺旋桨,螺旋桨顺时针方向转动.螺旋桨叶片的近轴端为a ,远轴端为b ,如图13-44所示.如果忽略a 到转轴中心线的距离,用ε表示每个叶片中的感应电动势,则( )A.B ft 2πε=,且a 点电势低于b 点电势B.B ft 22πε-=,且a 点电势低于b 点电势C.B ft 2πε=,且a 点电势高于b 点电势D.B ft 22πε=,且a 点电势高于b 点电势图13-44[解析] 对于螺旋桨叶片ab ,其切割磁感线的速度是其做圆周运动的线速度,螺旋桨不同点的线速度不同,但是满足R v ω=',可求其等效切割速度fl lv πω==2,运用法拉第电磁感应定律B ft Blv 2πε==,由右手定则判断电流的方向为由a 指向b ,在电源内部电流由低电势流向高电势,故选项A 是正确的.[答案] A(2)面积为S 的矩形线圈在匀强磁场B 中以角速度ω绕线圈平面内的任意轴匀速转动,产生的感应电动势:⎪⎩⎪⎨⎧===θωθωsin 0BS E E BS E 时,为线圈平面与磁感线夹角时,线圈平面与磁感线垂直时,线圈平面与磁感线平行 (三)自感1.自感现象:当导体中的电流发生变化,导体本身就产生感应电动势,这个电动势总是阻碍导体中原来的电流的变化,这种由于导体本身电流发生变化而产生的电磁感应现象,叫自感现象.2.自感现象的应用(1)通电自感:通电瞬间自感线圈处相当于断路.(2)断电自感:断电时自感线圈处相当于电源.○1当线圈中电阻≥灯丝电阻时,灯缓慢熄灭; ○2当线圈中电阻<灯丝电阻时,灯闪亮后缓慢熄灭. 3.增大线圈自感系数的方法(1)增大线圈长度(2)增多单位长度上匝数(3)增大线圈截面积(口径)(4)线圈中插入铁芯4.日光灯(1)日光灯电路的组成和电路图:○1灯管:日光灯管的两端各有一个灯丝,灯管内有微量的氩和汞蒸气,灯管内涂有荧光粉.两个灯丝之间的气体导电荷发出紫外线,激发管壁上的荧光粉发出可见光.但要使管内气体导电所需电压比200V 的电源电压高得多.○2镇流器:ⅰ)结构:线圈和铁芯.ⅱ)原理:自感.ⅲ)作用:灯管启动时提供一个瞬时高压,灯管工作时降压限流.○3启动器ⅰ) 结构:电容、氖气、静触片、U形动触片、管脚、外壳.ⅱ)原理:热胀冷缩. ⅲ)作用:先接通电路,再瞬间断开电路,使镇流器产生瞬间高压.(2)日光灯电路的工作过程:合上开关,电源电压220V加在启动器两极间→氖气放电发出辉光→辉光产生的热量,使U形动触片膨胀伸长,与静触片接触接通电路→镇流器和灯丝中通过电流→氖气停止放电→动静触片分离→切断电路→镇流器产生瞬间高压,与电源电压加在一起,加在灯管两端→灯管中气体放电→日光灯发光.(3)日光灯启动后正常工作时,启动器断开,电流从灯管中通过.镇流器产生自感电动势起降压限流作用.3 电磁感应规律的综合应用法拉第电磁感应定律是电磁学的重点内容之一,其综合了力、热、静电场、直流电路、磁场等许多内容,反映在以下几个方面:1.因导体在切割运动或电路中磁通量的变化,产生感应电流,使导体受到安培力的作用,从而直接影响到导体或线圈的运动.[例1] (2002粤豫大综合,30)如图13-45所示,在一均匀磁场中有一U形导线框abcd,线框处于水平面内,磁场与线框平面垂直,R为一电阻,ef为垂直于ab的一根导体杆,它可在ab、cd上无摩擦地滑动.杆ef及线框中导线的电阻都可不计.开始时,给ef一个向右的初速度,则()A.ef将减速向右运动,但不是匀减速B.ef将匀减速向右运动,最后停止C.ef将匀速向右运动D.ef将往返运动图13-45[解析] 给ef一个向右的初速度,则ef产生感应电动势,回路中产生感应电流.由楞次定律可以判断,ef受到一个向左的安培力的作用而减速,随着ef的速度减小,ef产生的感应电动势减小,回路的感应电流减小,安培力减小,因此可以判断ef 是做加速度逐渐减小的减速运动.因此可知选项A 是正确的.[答案] A[例2] (2004北京理综,23)如图13-46甲所示,两根足够长的直金属导轨MN 、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L .M 、P 两点间接有阻值R 的电阻.一根质量为m 的均匀直金属杆ab 放在两导轨上,并与导轨垂直,整套装置处于磁感应强度为B 的匀强磁场中,磁场方向的垂直斜面向下.导轨和金属杆的电阻可忽略.让ab 杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦.13-46 (1)由b 向a 方向看到的装置如图13-46乙所示,请在此图中画出ab 杆下滑过程中某时刻的受力示意图;(2)在加速下滑过程中,当ab 杆的速度大小为v 时,求此时ab 杆中的电流及其加速度的大小;(3)求在下滑过程中,ab 杆可以达到的速度最大值.[解析] (1)重力mg ,竖直向下;支撑力N ,垂直斜面向上;安培力F ,沿斜面向上.(2)当ab 杆速度为v 时,感应电动势E =B lv ,此时电路中电流RBlv R E I ==. ab 杆受到安培力Rv L B BIL F 22==, 根据牛顿运动定律,有Rv L B mg F mg ma 22sin sin -=-=θθ, mRv L B g a 22sin -=θ. (3)当θsin 22mg Rv L B =时,ab 杆达到最大速度v m .22sin L B mgR v m θ=. 2.以电磁感应现象为核心,综合力学各种不同的规律(如机械能、动量、牛顿运动定律)等内容形成的综合类问题.电学部分思路:将产生感应电动势的那部分电路等效为电源,如果在一个电路中切割磁感线的是几部分但又互相联系,可等效成电源的串并联,分析内外电路结构,应用闭合电路欧姆定律和部分电路欧姆定律理顺电学量之间的关系.力学部分思路:分析通电导体的受力情况及力的效果,应用牛顿定律、动量定理、动量守恒、动能定理、机械能守恒等规律理顺力学量之间的关系.[例3] (2001京春季,20)(12分)两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为l .导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图13-47所示.两根导体棒的质量皆为m ,电阻皆为R ,回路中其余部分的电阻可不计.在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为B .设两导体棒均可沿导轨无摩擦地滑行.开始时,棒cd 静止,棒ab 有指向棒cd 的初速度v 0.若两导体棒在运动中始终不接触,求:图13-47(1)在运动中产生的焦耳热最多是多少?(2)当ab 棒的速度变为初速度的43时,cd 棒的加速度是多少? [解析] ab 棒向cd 棒运动时,两棒和导轨构成的回路面积变小,磁通量发生变化,于是产生感应电流.ab 棒受到与运动方向相反的安培力作用做减速运动,cd 棒则在安培力作用下做加速运动.在ab 棒的速度大于cd 棒的速度时,回路总有感应电流,ab 棒继续减速,cd 棒继续加速.两棒速度达到相同后,回路面积保持不变,磁通量不变化,不产生感应电流,两棒以相同的速度v 做匀速运动.(1)从初始至两棒达到速度相同的过程中,两棒总动量守恒,有mv mv 20= ○1根据能量守恒,整个过程中产生的总热量2022041)2(2121mv v m mv Q =-=○2 (2)设ab 棒的速度变为初速度的43时,cd 棒的速度为v ′,则由动量守恒可知v m v m mv '+=0043 ○3 此时回路中的感应电动势和感应电流分别为Bl v v E )43(0'-= ○4 R I 2ε= ○5此时cd 棒所受的安培力IBl F = ○6 cd 棒的加速度mF a = ○7 由以上各式,可得mRv l B a 4022=. ○8 3.电磁感应中的能量转化问题电磁感应过程实质是不同形式的能量转化的过程,电磁感应过程中产生的感应电流在磁场中必定受到安培力作用.因此要维持安培力存在,必须有“外力”克服安培力做功.此过程中,其他形式的能转化为能.“外力”克服安培力做多少功,就有多少其他形式的能转化为电能.当感应电流通过用电器时,电能又转化为其他形式的能.同理,安培力做功的过程,是电能转化为其他形式的能的过程,安培力做多少功就有多少电能转化为其他形式的能.因此电能求解思路主要有三种:○1利用克服安培力求解:电磁感应中产生的电能等于克服安培力所做的功. ○2得用能量守恒求解:开始的机械能总和与最后的机械能总和之差等于产生的电能.○3利用电路特征来求解:通过电路中所产生的电能来计算. [例4] 把一个矩形线圈从有理想边界的匀强磁场中匀速拉出(如图13-48),第一次速度为v 1,第二次速度为v 2且v 2=2v 1,则两种情况下拉力的功之比W 1/W 2= ,拉力的功率之比P 1/P 2= ,线圈中产生焦耳热之比Q 1/Q 2= .[解析] 设线圈的ab 边长为L ,bc 边长为L ′,整个线圈的电阻为R ,把ab 边拉出磁场时,cd 边以速度v 匀速运动切割磁感线产生感应电动势Blv E =.其电流方向从c 指向d ,线圈中形成的感应电流R BLv R E I == cd 边所受的安培力Rv L B BIL F 22== 为了维持线圈匀速运动,所需外力大小为Rv L B BIL F F 22=='= 因此拉出线圈过程外力的功v RL L B L F W '='=22 外力的功率222v RL B Fv P == 线圈中产生的焦耳热W v R L L B v L R R v L B Rt I Q ='='•==2222222由上面得出的W 、P 、Q 的表达式可知,两情况拉力的功、功率、线圈中的焦耳热之比分别为1∶2、1∶4、1∶2.[评价] 从题中可以看出,安培力做的功,与电路的消耗的电能是相同的.[例5] (2004河南理综,24)图13-49中a 1b 1c 1d 1和a 2b 2c 2d 2为在同一竖直面内的金属导轨,处在磁感应强度为B 的匀强磁场中,磁场方向垂直导轨所在的平面(纸面)向里.导轨的a 1b 1段与a 2b 2段是竖直的,距离为l 1;c 1d 1段与c 2d 2段也是竖直的,距离为l 2.x 1y 1与x 2y 2为两根用不可伸长的绝缘轻线相连的金属细杆,质量分别为m 1和m 2,它们都垂直于导轨并与导轨保持光滑接触.两杆与导轨构成的回路的总电阻为R .F 为作用于金属杆x 1y 1上的竖直向上的恒力.已知两杆运动到图示位置时,已匀速向上运动,求此时作用于两杆的重力的功率的大小和回路电阻上的热功率.[解析] 设杆向上运动的速度为v ,因杆的运动,两杆与导轨构成的回路的面积减少,从而磁通量也减少,由法拉第电磁感应定律,回路中的感应电动势的大小v l l B E )(12-=回路中的电流RE I = 电流沿顺时针方向,两金属杆都要受到安培力作用,作用于杆x 1y 1的安培力为 11BIlF =(方向向上)作用于杆x 2y 2的安培力为22BIl F =(方向向下)当杆匀速运动时,根据牛顿第二定律有02121=-+--F F g m g m F解以上各式[]2122211221)()()()(l l B Rg m m F v l l B g m m F I -+-=-+-=作用于两杆的重力功率的大小gv m m P )(21+=电阻上的热功率.)()()()()(21221212122212R l l B g m m F Q g m m R l l B g m m F P RI Q ⎥⎦⎤⎢⎣⎡-+-=+-+-== 4.电磁感应中的图象问题电磁感应中常涉及磁感应强度B 、磁通量Φ、感应电动势E 和感应电流I 随时间t 变化的图象,即B -t 图象、Φ-t 图象、E -t 图象和I -t 图象.对于切割磁感线产生感应电动势和感应电流的情况,还常涉及感应电动势E 和感应电流I 随线圈位移x 变化的图象,即E -x 图象和I -x 图象.这些图象问题大体上可分为两类:○1由给定的电磁感应过程选出或画出正确的图象. ○2由给定的有关图象分析电磁感应过程,求解相应的物理量. 不管是何种类型,电磁感应中的图象问题常需利用右手定则、楞次定律和法拉第电磁感应定律等规律分析解决.[例6] (2004内蒙理综,19)一矩形线圈位于一随时间t 变化的匀强磁场内,磁场方向垂直线圈所在的平面(纸面)向里,如图13-50所示.以I 表示线圈中的感应电流,以图中的线圈上所示方向的电流为正,则图13-51的I -t 图正确的是( )图13-50图13-51[解析] 由图象可知,在0到1秒的时间内,磁感应强度均匀增大,那么感应电流的方向为逆时针方向,与图示电流方向相反,为负值,排除B 、C 选项.根据法拉第电磁感应定律,其大小t S B t ∆•∆=∆∆Φ=ε,Rt S B R E I •∆•∆==为一定值,在2到3秒和4到5秒内,磁感应强度不变,磁通量不变,无感应电流生成,D 错误,所以A 选项感应强度不变,磁通量不变,无感应电流生成,D 错误,所以A 选项正确.[答案] A。
初三电磁感应练习题及答案
初三电磁感应练习题及答案练习题1:1. 一个导线以2.0m/s的速度从一个均匀磁场中通过,磁感应强度为0.4T,导线长度为0.5m。
求导线所受的感应电动势大小。
2. 一个长度为3.0m的导线以10m/s的速度垂直通过一个磁感应强度为1.5T的磁场,求导线两端之间的感应电势差。
3. 一个矩形导线框架的长边长度为2.0m,短边长度为0.5m,框架的整体电阻为6.0Ω。
当磁感应强度为0.8T时,框架被拉动,导线切割磁力线的速度恒定为3.0m/s。
求在导线上出现的电动势大小。
答案:1. 感应电动势的大小与磁感应强度、导线长度和导线在磁场中的速度有关。
根据公式E = B*d*l*v,其中B为磁感应强度,d为导线长度,l为导线在磁场中的速度,v为导线长度。
将已知值代入计算,得到E = 0.4T * 0.5m * 2.0m/s = 0.4V。
故导线所受的感应电动势大小为0.4V。
2. 感应电势差的大小取决于磁感应强度、导线长度和导线在磁场中的速度之积。
根据公式∆V = B*l*v,其中B为磁感应强度,l为导线长度,v为导线在磁场中的速度。
将已知值代入计算,得到∆V = 1.5T * 3.0m * 10m/s = 45V。
导线两端之间的感应电势差为45V。
3. 在导线上出现的电动势大小取决于磁感应强度、导线长度、导线在磁场中的速度和导线的电阻之积。
根据公式E = B*d*l*v/R,其中B为磁感应强度,d为导线长度,l为导线在磁场中的速度,R为导线的电阻。
将已知值代入计算,得到E = 0.8T * 3.0m * 2.0m * 0.5m/s / 6.0Ω = 0.8V。
在导线上出现的电动势大小为0.8V。
练习题2:1. 一个磁感应强度为0.5T的磁场垂直于一个半径为0.2m的圆环,圆环的电阻为2.0Ω。
圆环以5rad/s的角速度绕垂直磁场线旋转,求圆环上出现的感应电动势大小。
2. 一个长度为4.0m的直导线绕过一个半径为2.0m的圆形电感线圈,电感线圈中有100个匝。
初中电磁感应专题练习(含详细答案)
初中电磁感应专题练习(含详细答案)
一、选择题
1. 一个导线在磁场中匀速向右移动,感应电动势的方向如何?
A. 由左向右
B. 由右向左
C. 没有感应电动势
D. 无法确定
答案:B
2. 带电粒子在磁场中匀速运动,运动轨迹如何?
A. 直线运动
B. 圆形运动
C. 抛物线运动
D. 双曲线运动
答案:B
二、计算题
1. 一个弯曲的导线长为10cm,导线中有一个电流I=2A,若在
导线处有一个磁感应强度为B=3T的磁场,求电动势的大小为多少?
解答:
$\mathcal{E}=Blv=\frac{1}{2}Blv=\frac{1}{2}Blsin\theta=\frac{1}{2} \times 3 \times 0.1 \times 2=\frac{3}{20}$V。
三、简答题
1. 什么是电磁感应?
电磁感应是指导体中的电子受到磁场的作用从而在导体两端产
生的电动势。
2. 什么是法拉第电磁感应定律?
法拉第电磁感应定律指出,当导体中的磁力线发生变化时,沿
着导体的任意闭合回路中就会产生感应电动势,其大小与磁通量的
变化率成正比,方向满足楞次定律。
3. 什么是楞次定律?
楞次定律指出,当导体内有感应电流时,该电流所发出的磁场的方向是这样的,即它所引起的磁通量的变化总是阻碍引起这种变化的原因。
4. 什么情况下会产生感应电流?
当导体在磁场中发生运动或被磁场线穿过而发生变化时,就会在导体中产生感应电流。
电磁感应习题
1、选择题1、一个电阻为R,自感系数为L的线圈,将它接在一个电动势为的交变电源上,设线圈的自感电动势为,则通过线圈的电流为(B)A、B、C、D、2、面积为S和2S的两个线圈A和B的中心垂直轴相同,通有相同的电流I,由线圈A中电流产生通过线圈B的磁通量为,由线圈B中电流产生通过线圈A的磁通量为,则的关系为(C)A、=2B、=/2 C、=D、>3、下列那种情况下,不会出现位移电流( A )A、电场不随时间变化B、电场随时间变化C、交流回路D、在接通直流电路的瞬时4、一长为l的螺线管,原来用细导线单层密绕而成,如换用直径比原来的大一倍的导线绕制,则螺线管的自感系数为(C)A、增加到原来的两倍B、减少为原来的二分之一C、减少为原来的四分之一D、增加到原来的四倍2、填空题1、边长为a的正方形线圈放在一根长直导线旁,线圈与直导线共面,其中心距长直导线为3a/2,线圈的一组边与直导线平行,此时,正方形线圈与长直导线的互感系数为,若将线圈垂直于长直导线方向的两条边向外侧延长一倍而成矩形,此时的互感系数为。
2、两根直径为d的平行长直导线的中心轴线相距为l(l>>d),此时这两根长直导线单位长度上的自感系数为。
3、有两个自感线圈,线圈Ⅰ的自感系数为L1,电阻为R1,线圈Ⅱ的自感系数为L2,电阻为R2,且L2=2L1,R2=2R1。
若把两线圈串联后接在电源上,两自感线圈中储存的磁能W1:W2= 1:2 ,若把两线圈并联后接在电源上,两自感线圈中储存的磁能W1:W2= 2:1 ,4、一长为l,总匝数为N的细长密绕螺线管内,通有变化的电流(a、I0都为常数),则螺线管内距螺线管的轴线为r处一点的磁感应强度的大小为,电场强度的大小为。
5、有两个线圈,自感系数分别为L1=3mH、L2=5mH,串联成一个线圈后测得自感系数L=11mH,则两线圈的互感系数M= 1.5mH 。
3、计算题1、如图所示,两条长直平行输电导线和一矩形线圈共面,长直导线在无限远处相接,求线圈和两条导线的互感系数。
电磁感应定律典型例题
典型例例1: 关于感应电动势,下列说法正确的是( ) A .穿过回路的磁通量越大,回路中的感应电动势就越大 B .穿过回路的磁通量变化量越大,回路中的感应电动势就越大 C .穿过回路的磁通量变化率越大,回路中的感应电动势就越大D .单位时间内穿过回路的磁通量变化量越大,回路中的感应电动势就越大 【解析】感应电动势E 的大小与磁通量变化率t∆∆φ成正比,与磁通量φ、磁通量变化量φ∆无直接联系。
A 选项中磁通量φ很大时,磁通量变化率t∆∆φ可能很小,这样感应电动势E 就会很小,故A 错。
B 选项中φ∆很大时,若经历时间很长,磁通量变化率t∆∆φ仍然会很小,感应电动势E 就很小,故B 错。
D 选项中单位时间内穿过回路的磁通量变化量即磁通量变化率t∆∆φ,它越大感应电动势E 就越大,故D 对。
答案:CD【总结】感应电动势的有无由磁通量变化量φ∆决定,φ∆≠0是回路中存在感应电动势的前提,感应电动势的大小由磁通量变化率t ∆∆φ决定,t∆∆φ越大,回路中的感应电动势越大,与φ、φ∆无关。
例2:一个面积S=4×10-2m 2,匝数N=100的线圈,放在匀强磁场中,磁场方向垂直线圈平面,磁场的磁感应强度B 随时间变化规律为△B /△t=2T/s ,则穿过线圈的磁通量变化率t∆∆φ为 Wb/s ,线圈中产生的感应电动势E= V 。
【解析】根据磁通量变化率的定义得t∆∆φ= S △B /△t=4×10-2×2 Wb/s=8×10-2Wb/s 由E=N △φ/△t 得E=100×8×10-2V=8V 答案:8×10-2;8【总结】计算磁通量φ=BScos θ、磁通量变化量△φ=φ2-φ1、磁通量变化率△φ/△t 时不用考虑匝数N ,但在求感应电动势时必须考虑匝数N ,即E=N △φ/△t 。
同样,求安培力时也要考虑匝数N ,即F=NBIL ,因为通电导线越多,它们在磁场中所受安培力就越大,所以安培力也与匝数N 有关。
电磁感应典型例题集锦
电磁感应典型例题集锦【例题1】图为地磁场磁感线的示意图,在北半球的地磁场的竖直分量向下,飞机在我国的上空匀速航行,机翼保持水平,飞行高度不变。
由于地磁场的作用,金属机翼上有电势差,设飞行员左方机翼末端处的电势为U1,右方机翼末端的电势为U2。
A.若飞机从西向东飞,U1比U2高B.若飞机从东向西飞,U2比U1高C.若飞机从南往北飞,U1比U2高D.若飞机从北往南飞,U2比U1高【例题2】如图所示,通电直导线右边有一个矩形线框,线框平面与直导线共面,若使线框逐渐远离(平动)通电导线,则穿过线框的磁通量将:A.逐渐增大B.逐渐减小C.保持不变D.不能确定【例题3】如边长为0.2m的正方形导线框abcd斜靠在墙上,线框平面与地面成30°角,该区域有一水平向右的匀强磁场,磁感应强度为0.5T,如图所示。
因受振动线框在0.1s内滑跌至地面,这过程中线框里产生的感应电动势的平均值为_____。
【例题4】关于自感现象,下列说法中正确的是:A.对于同一线圈,当电流变化越大时,线圈中产生的自感电动势也越大B.对于同一线圈,当电流变化越快时,其自感系数也越大C.线圈中产生的自感电动势越大,则其自感系数一定较大D.感应电流有可能和原电流的方向相同【例题5】用力拉导线框使导线框匀速离开磁场这一过程如图所示,下列说法正确的是:A.线框电阻越大,所用拉力越小B.拉力做的功减去磁场力所做的功等于线框产生的热量C.拉力做的功等于线框的动能D.对同一线框,快拉与慢拉所做的功相同,线框产生的热量也相同【例题6】如右图所示,线圈由A位置开始下落,在磁场中受到的磁场力如果总小于它的重力,则它在A、B、C、D四个位置(B、D位置恰好线圈有一半在磁场中)时,加速度关系为:A. a A>a B>a C>a DB. a A=a C>a B>a DC. a A=a C>a D>a BD. a A=a C>a B=a D【例题7】如图所示,槽中有两铜棒,左侧液面下有5.6×10-3g Fe,溶液为足量的CuSO4。
电磁感应习题精编
电磁感应习题训练一、单选题1. 如图所示,两平行的虚线间的区域内存在着有界匀强磁场,有一较小的三角形线框abc的ab边与磁场边界平行,现使此线框向右匀速穿过磁场区域,运动过程中始终保持速度方向与ab边垂直。
则下列各图中哪一个可以定性地表示线框在进入磁场的过程中感应电流随时间变化的规律()A. AB. BC. CD. D2. 如图甲所示,光滑导轨水平放置在竖直方向的匀强磁场中,匀强磁场的磁感应强度B随时间的变化规律如图乙所示(规定向下为正方向),导体棒ab垂直导轨放置,除电阻R的阻值外,其余电阻不计,导体棒ab在水平外力F的作用下始终处于静止状态.规定a→b的方向为电流的正方向,水平向右的方向为外力的正方向,则在0~2t0时间内,能正确反映流过导体棒ab的电流与时间及外力F与时间t的关系图线是()A. B.C. D.3. 空间有竖直边界为AB、CD且垂直纸面向里的有界匀强磁场区域。
一闭合金属圆环用绝缘细线挂于O点,将圆环拉至如图所示位置静止释放,圆环在摆动过程中环面始终与磁场垂直。
若不计空气阻力,则下列说法中正确的是()A. 圆环完全进入磁场后离最低点越近,感应电流越大B. 圆环在进入和穿出磁场时,圆环中均有感应电流C. 圆环向左穿过磁场后再返回,还能摆到原来的释放位置D. 圆环最终将静止在最低点4. 如图所示电路,两根光滑金属导轨,平行放置在倾角为的斜面上,导轨下端接有电阻R,导轨电阻不计,斜面处在竖直向上的匀强磁场中,电阻可略去不计的金属棒ab质量为m,受到沿斜面向上且与金属棒垂直的恒力F的作用,金属棒沿导轨匀速下滑,则它在下滑高度h的过程中,以下说法正确的是()A. 作用在金属棒上各力的合力做正功B. 重力做的功等于系统产生的电能C. 金属棒克服安培力做的功等于电阻R上产生的焦耳热D. 金属棒克服恒力F做的功等于电阻R上产生的焦耳热二、多选题5. 如图(a)所示,半径为r1的n匝的圆形金属线圈,阻值为2R,与阻值为R的电阻连结成闭合回路。
电磁感应定律典型计算题
.电磁感应定律典型计算题一、计算题(本大题共41小题,共410.0分)1.如图,不计电阻的U形导轨水平放置,导轨宽l=0.5m,左端连接阻值为0.4Ω的电阻R.在导轨上垂直于导轨放一电阻为0.1Ω的导体棒MN ,并用水平轻绳通过定滑轮吊着质量为m=2.4g的重物,图中L=0.8m.开始重物与水平地面接触并处于静止.整个装置处于竖直向上的匀强磁场中,磁感强度B0=0.5T,并且以的规律在增大.不计摩擦阻力.求至少经过多长时间才能将重物吊起?(g=10m/s2)2.在如图甲所示的电路中,螺线管匝数n=1500匝,横截面积S=20cm2.螺线管导线电阻r=1.0Ω,R1=4.0Ω,R2=5.0Ω,C=30μF.在一段时间内,穿过螺线管的磁场的磁感应强度B按如图乙所示的规律变化.求:(1)求螺线管中产生的感应电动势;(2)闭合S,电路中的电流稳定后,求电阻R1的电功率;(3)S断开后,求流经R2的电量.3.如图甲所示,回路中有一个C=60μF的电容器,已知回路的面积为1.0×10-2m 2,垂直穿过回路的磁场的磁感应强度B随时间t的变化图象如图乙所示,求:(1)t=5s时,回路中的感应电动势;(2)电容器上的电荷量.4.如图甲所示,一个圆形线圈的匝数n=1 000,线圈面积S=300cm2,线圈的电阻r=1Ω,线圈外接一个阻值R=4Ω的电阻,线圈处在有一方向垂直线圈平面向里的圆形磁场中,圆形磁场的面积S0=200cm2,磁感应强度随时间的变化规律如图乙所示.求:(1)第4秒时线圈的磁通量及前4s内磁通量的变化量(2)前4s内的感应电动势和前4s内通过R的电荷量;(3)线圈电阻r消耗的功率.5.如图所示,一个圆形线圈的匝数n=1000,线圈面积S=200cm2,线圈的电阻r=1Ω,线圈外接一个阻值R=4Ω的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间变化规律如图所示;求:(1)前4s内的感应电动势(2)前5s内的感应电动势.6.如图所示,电阻不计的足够长光滑平行金属导轨倾斜放置,两导轨间距为L,导轨平面与水平面之间的夹角为α,下端接有阻值为R的电阻.质量为m、电阻为r的导体棒ab与固定轻质弹簧连接后放在导轨上,整个装置处于磁感应强度大小为B、方向垂直于导轨平面向上的匀强磁场中,开始时导体棒ab处于锁定状态且弹簧处于原长.某时刻将导体棒解锁并给导体棒一个沿导轨平面向下的初速度v0使导体棒ab沿导轨平面运动,整个运动过程中导体棒始终与导轨垂直并保持良好接触,弹簧的劲度系数为k且弹簧的中心轴线与导轨平行,导体棒运动过程中弹簧始终处于弹性限度内,重力加速度为g.(1)若导体棒的速度达到最大时弹簧的劲度系数k与其形变量x、导体棒ab的质量之间的关系为k=,求导体棒ab的速度达到最大时通过电阻R的电流大小;(2)若导体棒ab第一次回到初始位置时的速度大小为v,求此时导体棒ab的加速度大小;(3)若导体最终静止时弹簧的弹性势能为E p,求导体棒从开始运动直到停止的过程中,.电阻R上产生的热量.7.如图所示,两根足够长固定平行金属导轨位于倾角θ=30°的斜面上,导轨上、下端各接有阻值R=20Ω的电阻,导轨电阻忽略不计,导轨宽度L=2m,在整个导轨平面内都有垂直于导轨平面向上的匀强磁场,磁感应强度B=1T.质量m=0.1kg、连入电路的电阻r=10Ω的金属棒ab在较高处由静止释放,当金属棒ab下滑高度h=3m时,速度恰好达到最大值v=2m/s.金属棒ab在下滑过程中始终与导轨垂直且与导轨良好接触g取10m/s2.求:(1)金属棒ab由静止至下滑高度为3m的运动过程中机械能的减少量.(2)金属棒ab由静止至下滑高度为3m的运动过程中导轨上端电阻R中产生的热量.8.如图所示,有一磁感应强度大小为B的水平匀强磁场,其上下水平边界的间距为H;磁场的正上方有一长方形导线框,其长和宽分别为L、d(d<H),质量为m,电阻为R.现将线框从其下边缘与磁场上边界间的距离为h处由静止释放,测得线框进入磁场的过程所用的时间为t.线框平面始终与磁场方向垂直,线框上下边始终保持水平,重力加速度为g.求:(1)线框下边缘刚进入磁场时线框中感应电流的大小和方向;(2)线框的上边缘刚进磁场时线框的速率v1;(3)线框下边缘刚进入磁场到下边缘刚离开磁场的全过程中产生的总焦耳热Q.9.如图所示,相距L=0.4m、电阻不计的两平行光滑金属导轨水平放置,一端与阻值R=0.15Ω的电阻相连,导轨处于磁感应强度B=0.5T的匀强磁场中,磁场方向垂直于导轨平面.质量m=0.1kg、电阻r=0.05Ω的金属棒置于导轨上,并与导轨垂直.t=0时起棒在水平外力F作用下以初速度v0=2m/s、加速度a=1m/s2沿导轨向右匀加速运动.求:(1)t=2s时回路中的电流;(2)t=2s时外力F大小;(3)第2s内通过棒的电荷量.10.如图所示,面积为0.2m2的100匝线圈处在匀强磁场中,磁场方向垂直于线圈平面,已知磁感应强度随时间变化的规律为B=0.2t T,定值电阻R1=6Ω,线圈电阻R2=4Ω.求:(1)回路的感应电动势;(2)a、b两点间的电压.11.如图甲所示,有一面积S=100cm2,匝数n=100匝的闭合线圈,电阻为R=10Ω,线圈中磁场变化规律如图乙所示,磁场方向垂直纸面向里为正方向,求:(1)t=1s时,穿过每匝线圈的磁通量为多少?(2)t=2s内,线圈产生的感应电动势为多少?12.如图所示,两根光滑的平行金属导轨MN、PQ处于同一水平面内,相距L=0.5m,导轨的左端用R=3Ω的电阻相连,导轨电阻不计,导轨上跨接一电阻r=1Ω的金属杆ab,质量m=0.2kg,整个装置放在竖直向上的匀强磁场中,磁感应强度B=2T,现对杆施加水平向右的拉力F=2N,使它由静止开始运动,求:(1)杆能达到的最大速度多大?(2)若已知杆从静止开始运动至最大速度的过程中,R上总共产生了10.2J的电热,则此过程中金属杆ab的位移多大?(3)接(2)问,此过程中流过电阻R的电量?经历的时间?13.如图甲所示,光滑的平行水平金属导轨MN、PQ相距L,在M点和P点间连接一个阻值为R的电阻,一质量为m、电阻为r、长度也刚好为L的导体棒ab垂直搁在导轨上,在导体棒的右侧导轨间加一有界匀强磁场,磁场方向垂直于导轨平面,宽度为d0,磁感应强度为B,设磁场左边界到导体棒的距离为d.现用一个水平向右的力F拉导体棒,使它由静止开始运动,棒离开磁场前已做匀速直线运动,与导轨始终保持良好接触,导轨电阻不计,水平力F与位移x的关系图象如图乙所示,F0已知.求:.(1)导体棒ab离开磁场右边界时的速度.(2)导体棒ab通过磁场区域的过程中整个回路所消耗的电能.(3)d0满足什么条件时,导体棒ab进入磁场后一直做匀速运动?14.如图所示,在宽为0.5m的平行导轨上垂直导轨放置一个有效电阻为r=0.6Ω的导体棒,在导轨的两端分别连接两个电阻R1=4Ω、R2=6Ω,其他电阻不计.整个装置处在垂直导轨向里的匀强磁场中,如图所示,磁感应强度 B=0.1T.当直导体棒在导轨上以v=6m/s的速度向右运动时,求:直导体棒两端的电压和流过电阻R1和R2的电流大小.15.如图所示,宽为L的光滑导轨与水平面成θ角,匀强磁场垂直导轨平面向上,磁感应强度为B,质量为m、电阻为r的金属杆ab沿导轨下滑,导轨下端的定值电阻为R,导轨的电阻不计,试求:(1)杆ab沿导轨下滑时的稳定速度的大小;(2)杆ab稳定下滑时两端的电势差.16.如图所示,竖直放置的足够长的光滑平行金属导轨,间距为l=0.50m,导轨上端接有电阻R=0.80Ω,导轨电阻忽略不计.空间有一水平方向的有上边界的匀强磁场,磁感应强度大小为B=0.40T,方向垂直于金属导轨平面向外.质量为m=0.02kg、电阻r=0.20Ω的金属杆MN,从静止开始沿着金属导轨下滑,下落一定高度后以v=2.5m/s的速度进入匀强磁场中,在磁场下落过程中金属杆始终与导轨垂直且接触良好.已知重力加速度为g=10m/s2,不计空气阻力,求在磁场中,(1)金属杆刚进入磁场区域时加速度;(2)若金属杆在磁场区域又下落h开始以v0匀速运动,求v 0大小.17.竖直放置的光滑U形导轨宽0.5m,电阻不计,置于很大的磁感应强度是1T的匀强磁场中,磁场垂直于导轨平面,如图所示,质量为10g,电阻为1Ω的金属杆PQ无初速度释放后,紧贴导轨下滑(始终能处于水平位置).问:(1)到通过PQ的电量达到0.2c时,PQ下落了多大高度?(2)若此时PQ正好到达最大速度,此速度多大?(3)以上过程产生了多少热量?18.如图甲所示,平行金属导轨与水平面的夹角为θ=37°,导轨间距为L=1m,底端接有电阻R=6Ω,虚线00'下方有垂直于导轨平面向下的匀强磁场.现将质量m=1kg、电阻r=3Ω的金属杆ab从00'上方某处静止释放,杆下滑4m过程中(没有滑到底端)始终保持与导轨垂直且良好接触,杆的加速度a与下滑距离s的关系如图乙所示.(sin37°=0.6,cos37°=0.8,g=10m/s2,其余电阻不计)求:(1)金属杆ab与导轨间的动摩擦因数μ(2)磁感应强度B的大小.19.如图,在竖直平面内有金属框ABCD,B=0.1T的匀强磁场垂直线框平面向外,线框电阻不计,框间距离为0.1m.线框上有一个长0.1m的可滑动的金属杆ab,已知金属杆质量为0.2g,金属杆电阻r=0.1Ω,电阻R=0.2Ω,不计其他阻力,求金属杆ab匀速下落时的速度.20.一个面积为0.2m2的100匝线圈处在匀强磁场中,磁场方问垂直于线圈平面,已知磁感应强度随时间变化的规律为B=(2+0.2t)T,定值电阻R=6Ω,线圈电阻r=4Ω,求:(1)线圈中磁通量的变化率和回路的感应电动势;(2)a、b两点间电压U ab..21.一线圈匝数为N、电阻为r,在线圈外接一阻值为2r的电阻R,如图甲所示.线圈内有垂直纸面向里的匀强磁场,磁通量Φ随时间t变化的规律如图乙所示.求0至t0时间内:(1)线圈中产生的感应电动势大小;(2)通过R的感应电流大小和方向;(3)电阻R中感应电流产生的焦耳热.22.金属框架平面与磁感线垂直,金属与框架的电阻忽略,电流计内阻R=20Ω,磁感强度B=1T,导轨宽L=50cm,棒以2m/s的速度作切割磁感线运动,那么(1)电路中产生的感应电动势为多少伏?(2)电流的总功率为多少瓦?(3)为了维持金属棒作匀速运动,外力F的大小为多少牛?23.如图所示,导轨是水平的,其间距l1=0.5m,ab杆与导轨左端的距离l2=0.8m,由导轨与ab杆所构成的回路电阻为0.2Ω,方向垂直导轨平面向下的匀强磁场的磁感应强度B=1T,滑轮下挂一重物质量0.04kg,ah杆与导轨间的摩擦不计,现使磁场以=0.2T/s的变化率均匀地增大,问:当t为多少时,M刚离开地面?(g取10m/s2)24.如图(甲)所示,光滑且足够长的平行金属导轨MN、PQ固定在同一水平面上,两导轨间的距离L=1m,定值电阻R 1=6Ω,R2=3Ω,导轨上放一质量为m=1kg的金属杆,杆的电阻r=2Ω,导轨的电阻不计,整个装置处于磁感应强度为B=0.8T的匀强磁场中,磁场的方向垂直导轨平面向下.现用一拉力F沿水平方向拉杆,使金属杆以一定的初速度开始运动.图(乙)所示为通过R1中电流的平方I12随时间t的变化关系图象,求:(1)5s末金属杆的速度;(2)金属杆在t时刻所受的安培力;(3)5s内拉力F所做的功.25.在光滑绝缘水平面上,电阻为0.1Ω、质量为0.05kg的长方形金属框abcd,以10m/s的初速度向磁感应强度B=0.5T、方向垂直水平面向下、范围足够大的匀强磁场滑去.当金属框进入磁场到达如图所示位置时,已产生1.6J的热量.(1)求出在图示位置时金属框的动能.(2)求图示位置时金属框中感应电流的功率.(已知ab边长L=0.1m)26.如图所示,两平行金属导轨之间的距离为L=0.6m,两导轨所在平面与水平面之间的夹角为θ=37°,电阻R的阻值为1Ω(其余电阻不计),一质量为m=0.1kg的导体棒横放在导轨上,整个装置处于匀强磁场中,磁感应强度为B=0.5T,方向垂直导轨平面斜向上,已知导体棒与金属导轨间的动摩擦因数为μ=0.3,今由静止释放导体棒,当通过导体棒的电荷量为1.8C时,导体棒开始做匀速直线运动.已知:sin37°=0.6,cos37°=0.8,重力加速度g=10m/s2,求:(1)导体棒匀速运动的速度;(2)求导体从静止开始到匀速过程中下滑的距离S.(3)导体棒下滑s的过程中产生的电能.27.如图甲所示,一个圆形线圈的匝数n=1000,线圈面积S=200cm2,线圈的电阻r=1Ω,线圈外接一个阻值R=4Ω的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间的变化规律如图乙所示.求:(1)请说明线圈中的电流方向;(2)前4s内的感应电动势;.(3)前4s内通过R的电荷量.28.如图所示,水平方向的匀强磁场呈带状分布,两区域磁感应强度不同,宽度都是L,间隔是2L.边长为L、质量为m、电阻为R的正方形金属线框,处于竖直平面且与磁场方向垂直,底边平行于磁场边界,离第一磁场的上边界的距离为L.线框从静止开始自由下落,当线框穿过两磁场区域时恰好都能匀速运动.若重力加速度为g,求:(1)第一个磁场区域的磁感应强度B1;(2)线框从开始下落到刚好穿过第二磁场区域的过程中产生的总热量Q.29.如图所示,框架的面积为S,匀强磁场的磁感应强度为B.试求:①框架平面与磁感应强度B垂直时,穿过框架平面的磁通量为多少?②若框架绕OO′转过60°,则穿过框架平面的磁通量为多少?③在此过程中,穿过框架平面的磁通量的变化量大小为多少?30.如图所示,一U形光滑金属框的可动边AC棒长L=1m,电阻为r=1Ω.匀强磁场的磁感强度为B=0.5T,AC以v=8m/s的速度水平向右移动,电阻R=7Ω,(其它电阻均不计).求:(1)电路中产生的感应电动势的大小.(2)通过R的感应电流大小.(3)AC两端的电压大小.31.如图,光滑平行的水平金属导轨MN、PQ相距l,在M点和P点间接一个阻值为R 的电阻,在两导轨间OO1O1′O′矩形区域内有垂直导轨平面竖直向下、宽为d的匀强磁场,磁感强度为B.一质量为m,电阻为r的导体棒ab,垂直搁在导轨上,与磁场左边界相距d0.现用一大小为F、水平向右的恒力拉ab棒,使它由静止开始运动,棒ab在离开磁场前已经做匀速直线运动(棒ab与导轨始终保持良好的接触,导轨电阻不计).求:(1)棒ab在离开磁场右边界时的速度;(2)棒ab通过磁场区的过程中整个回路所消耗的电能.32.如图所示,两足够长平行光滑的金属导轨MN、PQ相距为L,导轨平面与水平面夹角α=30°,导轨电阻不计.磁感应强度为B的匀强磁场垂直导轨平面向上,两根长为L的完全相同的金属棒ab、cd垂直于MN、PQ放置在导轨上,且与导轨接触良好,每根棒的质量均为m、电阻均为R.现对ab施加平行导轨向上的恒力F,当ab向上做匀速直线运动时,cd保持静止状态.(1)求力F的大小及ab运动速度v的大小.(2)若施加在ab上的力的大小突然变为2mg,方向不变,则当两棒运动的加速度刚好相同时回路中的电流强度I和电功率P分别为多大?33.如图甲所示,abcd是位于竖直平面内的正方形闭合金属线框,金属线框的质量为m,电阻为R,在金属线框的下方有一匀强磁场区域,MN和PQ是匀强磁场区域的水平边界.并与线框的bc边平行,磁场方向垂直于线框平面向里.现使金属线框从MN上方某一高度处由静止开始下落,如图乙是金属线框由开始下落到完全穿过匀强磁场区域瞬间的v-t图象,图中字母均为已知量.重力加速度为g,不计空气阻力.求:(1)金属线框的边长;(2)金属线框在进入磁场的过程中通过线框截面的电量;(3)金属线框在0~t4时间内安培力做的总功.34.如图所示,一对光滑的平行金属导轨固定在同一水平面内,导轨间距为L,左端接有阻值为R的电阻,一质量为m、电阻为r的金属棒MN垂直放置在导轨上,整个装置置于竖直向上的匀强磁场中.当.棒以速度v匀速运动时,加在棒上的水平拉力大小为F1;若改变水平拉力的大小,让棒以初速度v做匀加速直线运动,当棒匀加速运动的位移为x时,速度达到3v.己知导轨足够长且电阻不计,棒在运动过程中始终与导轨垂直且两端与导轨保待良好接触.(1)求磁场的磁感应强度大小;(2)在金属棒的速度由v变为3v的匀加速运动过程中,拉力对金属棒做的功为W F,求这一过程回路产生的电热为多少?(3)通过计算写出金属棒匀加速直线运动时所需外力F随时间t变化的函数关系式.35.相距为L的两光滑平行导轨与水平面成θ角放置.上端连接一阻值为R的电阻,其他电阻不计.整个装置处在方向竖直向上的匀强磁场中,磁感强度为B,质量为m,电阻为r的导体MN,垂直导轨放在导轨上,如图所示.由静止释放导体MN,求:(1)MN可达的最大速度v m;(2)MN速度v=时的加速度a;(3)回路产生的最大电功率P m.36.如图,MN、PQ两条平行的光滑金属轨道与水平面成θ角固定,轨距为d.空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B.P、M间接有阻值为3R的电阻.Q、N间接有阻值为6R的电阻,质量为m的金属杆ab水平放置在轨道上,其有效电阻为R.现从静止释放ab,当它沿轨道下滑距离s时,达到最大速度.若轨道足够长且电阻不计,重力加速度为g.求:(1)金属杆ab运动的最大速度;(2)金属杆ab运动的加速度为gsinθ时,金属杆ab消耗的电功率;(3)金属杆ab从静止到具有最大速度的过程中,通过6R的电量;(4)金属杆ab从静止到具有最大速度的过程中,克服安培力所做的功.37.如图所示,竖直放置的光滑平行金属导轨MN、PQ相距L=1m,在M点和P点间接有一个阻值为R=0.8Ω的电阻,在两导轨间的矩形区域OO1O1′O′内有垂直导轨平面向里、高度h=1.55m的匀强磁场,磁感应强度为B=T,一质量为m=0.5kg的导体棒ab垂直资料地搁在导轨上,与磁场的上边界相距h0=0.45m,现使ab棒由静止开始释放,下落过程中,棒ab与导轨始终保持良好接触且保持水平,在离开磁场前已经做匀速直线运动,已知导体棒在导轨间的有效电阻由0.2Ω,导轨的电阻不计,g取10m/s2.(1)ab棒离开磁场的下边届时的速度大小;(2)ab棒从静止释放到离开磁场下边届的运动过程中,其速度达到2m/s时的加速度大小和方向;(3)ab棒在通过磁场区的过程中产生的焦耳热.38.如图所示PQ、MN为足够长的两平行金属导轨,它们之间连接一个阻值R=8Ω的电阻;导轨间距为L=1m;一质量为m=0.1kg,电阻r=2Ω,长约1m的均匀金属杆水平放置在导轨上,它与导轨的滑动摩擦因数μ=,导轨平面的倾角为θ=30°在垂直导轨平面方向有匀强磁场,磁感应强度为B=0.5T,今让金属杆AB由静止开始下滑,下滑过程中杆AB与导轨一直保持良好接触,杆从静止开始到杆AB恰好匀速运动的过程中经过杆的电量q=l C,求:(1)当AB下滑速度为2m/s时加速度的大小(2)AB 下滑的最大速度(3)从静止开始到AB匀速运动过程R上产生的热量.39.如图所示,“U”形导线框固定在水平面上,右端放有质量为m的金属棒ab,ab与导轨间的动摩擦因数为μ,它们围成的矩形边长分别为L1、L2,回路的总电阻为R.从t=0时刻起,在竖直向上方向加一个随时间均匀增加的磁场B=kt,那么(1)在磁场均匀增加过程,金属棒ab电流方向?(2)时间t为多大时,金属棒开始移动?(最大静摩擦力fm近似为滑动摩擦力f滑)40.如图所示,在光滑绝缘的水平面上有一个用均匀导体围成的正方形线框abcd,其边长为L,总电阻为R.边界MN的右侧有垂直于纸面向里的匀强磁场,磁感应强度为B.线框在大小为F的恒力作用下向右运动,其中ab边保持与MN平行.当线框以速度v0进入磁场区域时,它恰好做匀速运动.在线框进入磁场的过程中,求:高中物理试卷第12页,共13页.(1)线框ab边产生的感应电动势E的大小;(2)线框a、b两点的电势差;(3)线框中产生的焦耳热.41.如图所示,宽度为L=0.2m的足够长的平行光滑金属导轨固定在绝缘水平面上,导轨的一端连接阻值为R=1Ω的电阻.导轨所在空间存在竖直向下的匀强磁场,磁感应强度大小为B=0.5T.一根质量为m=10g的导体棒MN放在导轨上与导轨接触良好,导轨和导体棒的电阻均可忽略不计.现用一平行于导轨的拉力拉动导体棒沿导轨向右匀速运动,运动速度v=10m/s,在运动过程中保持导体棒与导轨垂直.求:(1)在闭合回路中产生的感应电流的大小.(2)作用在导体棒上的拉力的大小.(3)当导体棒移动30cm时撤去拉力,求:从撤去拉力至棒停下来过程中电阻R上产生的热量.资料。
电磁感应典型题目(含答案)
电磁感应的典型计算1 如图所示,一与水平面夹角为θ=37°的倾斜平行金属导轨,两导轨足够长且相距L=0.2m,另外两根水平金属杆MN和PQ的质量均为m=0.01kg,可沿导轨无摩擦地滑动,MN杆和PQ杆的电阻均为R=0.2Ω(倾斜金属导轨电阻不计),MN杆被两个垂直于导轨的绝缘立柱挡住,整个装置处于匀强磁场内,磁场方向垂直于导轨平面向上,磁感应强度B=1.0T.PQ杆在恒定拉力F作用下由静止开始向上加速运动,拉力F垂直PQ杆沿导轨平面向上,当运动位移x=0.1 m时PQ杆达到最大速度,此时MN杆对绝缘立柱的压力恰好为零(g取10m/s2,sin 37°=0.6 ,cos 37°=0.8).求:(1) PQ杆的最大速度v m, (2)当PQ杆加速度时,MN杆对立柱的压力;(3)PQ杆由静止到最大速度过程中回路产生的焦耳热Q.解:(1)PQ达到最大速度时,关于电动势为:E m=BLv m,感应电流为:I m=REm2,根据MN杆受力分析可得:mg sinθ=BI m L,联立解得:v m=22sin2LBRmg=0.6m/s;(2)当PQ的加速度a=2 m/s2 时,对PQ根据牛顿第二定律可得:F-mg sinθ-BIL=ma,对MN根据共点力的平衡可得:BIL+F N-mg sinθ=0,PQ达到最大速度时,有:F-mg sinθ-BI m L=0,联立解得:F N=0.02N,根据牛顿第三定律可得对立柱的压力F N=0.02N;(3)PQ由静止到最大速度的过程中,根据功能关系可得:F x =221mmv+mgx sinθ+Q,解得:Q=4.2×10-3 J.答:(1)PQ杆的最大速度为0.6m/s;(2)当PQ杆加速度a=2m/s2时,MN杆对立柱的压力为0.02N (3)PQ杆由静止到最大速度回路产生的焦耳热为4.2×10-3 J.2 如图所示,平行金属导轨与水平面间夹角均为θ=37°,导轨间距为lm,电阻不计,导轨足够长.两根金属棒 ab 和a′b′的质量都是0.2kg,电阻都是1Ω,与导轨垂直放置且接触良好,金属棒a′b′和导轨之间的动摩擦因数为0.5,设金属棒a′b′受到的最大静摩擦力等于滑动摩擦力.金属棒ab和导轨无摩擦,导轨平面PMKO处存在着垂直轨道平面向上的匀强磁场,导轨平面PMNQ处存在着沿轨道平面向上的匀强磁场,磁感应强度B的大小相同.用外力让a′b′固定不动,将金属棒ab由静止释放,当ab下滑速度达到稳定时,整个回路消耗的电功率为18W.求:(1)ab 棒达到的最大速度;(2)ab棒下落了 30m 高度时,其下滑速度已经达到稳定,此过程中回路电流产生的焦耳热Q;(3)在ab棒下滑过程中某时刻将a′b′固定解除,为确保a′b′始终保持静止,则a′b′固定解除时ab棒的速度大小满足什么条件?( g=10m/s2,sin37°=0.6,cos37°=0.8 )解:(1)ab 棒达到最大速度时做匀速运动,其重力功率等于整个回路消耗的电功率,则有:mg sinθ•v m=P电,则得:ab棒的最大速度为:v m==m/s=15m/s;由P电==,得:B==T=0.4T(2)根据能量守恒得:mgh=Q+则得:Q=mgh-=0.2×10×30J-×0.2×152 =37.5 J(3)将a′b′固定解除,为确保a′b′始终保持静止,则对于a′b′垂直于斜面方向有:N=mg cos37°+BIL,平行于斜面方向有:mg sin37°≤f m=μN解得:I ≥2A对于ab棒:E=I•2R,E=BLv,则得:v=≥m/s=10m/s故ab的速度应满足的条件是:10m/s≤v≤15m/s答:(1)ab 棒达到的最大速度是15m/s;(2)ab棒下落了30m 高度时,其下滑速度已经达到稳定,此过程中回路电流产生的焦耳热Q是37.5J;(3)在ab棒下滑过程中某时刻将a′b′固定解除,为确保a′b′始终保持静止,则a′b′固定解除时ab棒的速度大小满足的条件是10m/s≤v≤15m/s3 如图所示,两电阻不计的足够长光滑平行金属导轨与水平面夹角为θ,导轨间距为L,所在平面的正方形区域abcd内存在有界匀强磁场,磁感应强度为B,方向垂直斜面向上.将甲乙两电阻阻值相同、质量均为m的相同金属杆如图放置在导轨上,甲金属杆处在磁场的上边界,甲乙相距L.静止释放两金属杆的同时,在甲金属杆上施加一个沿着导轨向下的外力F,使甲金属杆在运动过程中始终做沿导轨向下的匀加速直线运动,加速度大小g sinθ,乙金属杆刚进入磁场时,发现乙金属杆作匀速运动.(1)求乙刚进入磁场时的速度(2)甲乙的电阻R为多少;(3)乙刚释放时t=0,写出从开始释放到乙金属杆离开磁场,外力F随时间t的变化关系;(4 )若从开始释放到乙金属杆离开磁场,乙金属杆中共产生热量Q,试求此过程中外力F对甲做的功.解:⑴在乙尚未进入磁场中的过程中,甲、乙的加速度相同,设乙刚进入磁场时的速度v乙刚进入磁场时,对乙由根据平衡条件得(2)设乙从释放到刚进入磁场过程中做匀加速直线运动所需要的时间为设乙从进入磁场过程至刚离开磁场的过程中做匀速直线运动所需要的时间为设乙离开磁场时,甲的速度设甲从开始释放至乙离开磁场的过程中的位移为x根据能量转化和守恒定律得:4 如图所示,倾斜角θ=30°的光滑倾斜导体轨道(足够长)与光滑水平导体轨道连接。
(完整版)力-电电磁感应计算题精选——含答案,推荐文档
1、如图(a)两相距L=0.5m的平行金属导轨固定于水平面上,导轨左端与阻值R=2Ω的电阻连接,导轨间虚线右侧存在垂直导轨平面的匀强磁场,质量m=0.2kg的金属杆垂直于导轨上,与导轨接触良好,导轨与金属杆的电阻可忽略,杆在水平向右的恒定拉力作用下由静止开始运动,并始终与导轨垂直,其v-t图像如图(b)所示,在15s时撤去拉力,同时使磁场随时间变化,从而保持杆中电流为0,求:(1)金属杆所受拉力的大小为F;(2)0-15s匀强磁场的磁感应强度大小为;(3)15-20s内磁感应强度随时间的变化规律。
2、如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为L=0.2m,长为2d,d=0.5m,上半段d导轨光滑,下半段d导轨的动摩擦因素为μ=,导轨平面与水平面的夹角为θ=30°.匀强磁场的磁感应强度大小为B=5T,方向与导轨平面垂直.质量为m=0.2kg的导体棒从导轨的顶端由静止释放,在粗糙的下半段一直做匀速运动,导体棒始终与导轨垂直,接在两导轨间的电阻为R=3Ω,导体棒的电阻为r=1Ω,其他部分的电阻均不计,重力加速度取g=10m/s2,求:(1)导体棒到达轨道底端时的速度大小;(2)导体棒进入粗糙轨道前,通过电阻R上的电量q;(3)整个运动过程中,电阻R产生的焦耳热Q.3、如图甲所示,两根足够长、电阻不计的光滑平行金属导轨相距为L1=1m,导轨平面与水平面成θ=30角,上端连接阻值R=1.5Ω的电阻;质量为m=0.2kg、阻值r=0.5Ω的金属棒ab放在两导轨上,距离导轨最上端为L2=4m,棒与导轨垂直并保持良好接触。
整个装置处于一匀强磁场中,该匀强磁场方向与导轨平面垂直,磁感应强度大小随时间变化的情况如图乙所示。
为保持ab棒静止,在棒上施加了一平行于导轨平面的外力F, g=10m/s2求:(1)当t=2s时,外力F1的大小;(2)当t=3s前的瞬间,外力F2的大小和方向;(3)请在图丙中画出前4s外力F随时间变化的图像(规定F方向沿斜面向上为正);4、如图33-11甲所示,一足够长阻值不计的光滑平行金属导轨MN、PQ之间的距离L=1.0 m,NQ两端连接阻值R=1.0 Ω的电阻,磁感应强度为B的匀强磁场垂直于导轨所在平面向上,导轨平面与水平面间的夹角θ=30°.一质量m=0.20 kg、阻值r=0.50 Ω的金属棒垂直于导轨放置并用绝缘细线通过光滑的定滑轮与质量M=0.60 kg的重物P 相连.细线与金属导轨平行.金属棒沿导轨向上滑行的速度v与时间t之间的关系如图33-11乙所示,已知金属棒在0~0.3 s内通过的电量是0.3~0.6 s内通过电量的,g=10 m/s2,求:甲乙图33-11(1)0~0.3 s内棒通过的位移;(2)金属棒在0~0.6 s内产生的热量.5、如图甲所示,水平面上的两光滑金属导轨平行固定放置,间距d =0.5 m ,电阻不计,左端通过导线与阻值R =2 W 的电阻连接,右端通过导线与阻值R L =4 W 的小灯泡L 连接.在CDEF 矩形区域内有竖直向上的匀强磁场,CE 长l =2 m ,有一阻值r =2 W 的金属棒PQ 放置在靠近磁场边界CD 处.CDEF 区域内磁场的磁感应强度B 随时间变化如图22乙所示.在t =0至t =4s 内,金属棒PQ 保持静止,在t =4s 时使金属棒PQ 以某一速度进入磁场区域并保持匀速运动.已知从t =0开始到金属棒运动到磁场边界EF 处的整个过程中,小灯泡的亮度没有发生变化,求:(1)通过小灯泡的电流.(2)金属棒PQ 在磁场区域中运动的速度大小.参考答案一、计算题1、(1)0.24N ;(2)0.4T ;(3)(2)在10—15s时间段杆在磁场中做匀速运动,因此有以F=0.24N,μmg=0.16N代入解得B0=0.4T(3)由题意可知在15—20s时间段通过回路的磁通量不变,设杆在15—20s内运动距离为d,15s后运动的距离为x B(t)L(d+x)=B0Ld其中d=20mx=4(t-15)-0.4(t-15)2由此可得2、考点:导体切割磁感线时的感应电动势;电磁感应中的能量转化..专题:电磁感应——功能问题.分析:(1)研究导体棒在粗糙轨道上匀速运动过程,受力平衡,根据平衡条件即可求解速度大小.(2)进入粗糙导轨前,由法拉第电磁感应定律、欧姆定律和电量公式结合求解电量.(3)导体棒在滑动时摩擦生热为Q f=2μmgdcosθ,再根据能量守恒定律求解电阻产生的焦耳热Q.解答:解:(1)导体棒在粗糙轨道上受力平衡:由 mgsin θ=μmgcos θ+BIL得:I=0.5A由BLv=I(R+r)代入数据得:v=2m/s(2)进入粗糙导轨前,导体棒中的平均电动势为: ==导体棒中的平均电流为: ==所以,通过导体棒的电量为:q=△t==0.125C(3)由能量守恒定律得:2mgdsin θ=Q电+μmgdcos θ+mv2得回路中产生的焦耳热为:Q电=0.35J所以,电阻R上产生的焦耳热为:Q=Q电=0.2625J答:(1)导体棒到达轨道底端时的速度大小是2m/s;(2)导体棒进入粗糙轨道前,通过电阻R上的电量q是0.35C;(3)整个运动过程中,电阻R产生的焦耳热Q是0.2625J.点评:本题实质是力学的共点力平衡与电磁感应的综合,都要求正确分析受力情况,运用平衡条件列方程,关键要正确推导出安培力与速度的关系式,分析出能量是怎样转化的.3、【知识点】导体切割磁感线时的感应电动势;闭合电路的欧姆定律;法拉第电磁感应定律;电磁感应中的能量转化.J2 L2 L3【答案解析】(1)0;(2)0.5N,方向沿斜面向下;(3)如图所示.解析:(1)当t=2s时,回路中产生的感应电动势为:E=,B2=1T,应电流为:I=;根据楞次定律判断可知,ab所受的安培力沿轨道向上;ab棒保持静止,受力平衡,设外力沿轨道向上,则由平衡条件有:mgsin30°-B2IL1-F1=0可解得:F1=mgsin30°-B2IL1=0.2×10×sin30°-1×1×1=0(2)当t=3s前的瞬间,由图可知,B3=1.5T,设此时外力沿轨道向上,则根据平衡条件得:F2+B3IL1-mg sin30°=0则得:F2=mg sin30°-B3IL1=0.2×10×sin30°-1.5×1×1=-0.5N,负号说明外力沿斜面向下.(3)规定F方向沿斜面向上为正,在0-3s内,根据平衡条件有:mgsin30°-BIL1-F=0而B=0.5t(T)则得:F=mgsin30°-BIL1=0.2×10×sin30°-0.5T×1×1=1-0.5T(N)当t=0时刻,F=1N.在3-4s内,B不变,没有感应电流产生,ab不受安培力,则由平衡条件得:F=mgsin30°=0.2×10×sin30°N=1N画出前4s外力F随时间变化的图象如图所示.【思路点拨】(1)由图知,0-3s时间内,B均匀增大,回路中产生恒定的感应电动势和感应电流,根据法拉第电磁感应定律和欧姆定律求出感应电流,由平衡条件求解t=2s时,外力F1的大小.(2)与上题用同样的方法求出外力F2的大小和方向.(3)由B-t图象得到B与t的关系式,根据平衡条件得到外力F与t的关系式,再作出图象.解决本题的关键掌握法拉第电磁感应定律、平衡条件、安培力公式和能量守恒定律等等电磁学和力学规律,得到解析式,再画图象是常用的思路,要多做相关的训练.4、解析:(1)金属棒在0.3~0.6 s内通过的电量是q1=I1t1=金属棒在0~0.3 s内通过的电量q2==由题知q1=q2,代入解得x2=0.3 m.(2)金属棒在0~0.6 s内通过的总位移为x=x1+x2=vt1+x2,代入解得x=0.75 m根据能量守恒定律Mgx-mgx sinθ-Q=(M+m)v2代入解得Q=2.85 J由于金属棒与电阻R串联,电流相等,根据焦耳定律Q=I2Rt,得到它们产生的热量与电阻成正比,所以金属棒在0~0.6 s内产生的热量Q r=Q=1.9 J.答案:(1)0.3 m (2)1.9 J5、【解析】(1)在t=0至t=4s内,金属棒PQ保持静止,磁场变化导致电路中产生感应电动势.电路为r与R并联,再与R L 串联,电路的总电阻=5Ω①此时感应电动势=0.5×2×0.5V=0.5V ②通过小灯泡的电流为:=0.1A ③(2)当棒在磁场区域中运动时,由导体棒切割磁感线产生电动势,电路为R与R L并联,再与r串联,此时电路的总电阻=2+Ω=Ω④由于灯泡中电流不变,所以灯泡的电流I L=0.1A,则流过棒的电流为=0.3A ⑤电动势⑥解得棒PQ在磁场区域中v=1m/s。
电磁感应经典例题及解析
电磁感应经典例题及解析电磁感应是电磁学中的重要概念,也是我们日常生活中常常会遇到的现象。
在电磁感应的过程中,磁场的变化会导致电场的产生,进而引发电流的产生。
这一原理广泛应用于发电机、变压器等电磁设备中。
下面我们来看一些经典的电磁感应例题,并对其进行解析。
例题1:一个磁感强度为0.2 T的匀强磁场,以2 m/s的速度向垂直于磁场的方向移动,求导体中感应电动势的大小。
解析:根据电磁感应的原理,导体中感应电动势的大小等于磁感强度与导体的速度的乘积,即E = Bv。
将已知数据代入计算,E = 0.2 T × 2 m/s = 0.4 V。
例题2:一个圆形线圈的半径为10 cm,磁感强度为0.5 T的磁场垂直于线圈的平面,在0.2 s内磁场的强度从0.2 T增加到0.6 T,求线圈中感应电流的大小。
解析:根据电磁感应的原理,感应电流的大小等于感应电动势与电阻的比值,即I = ε/R。
感应电动势可以通过磁场的变化率来计算,即ε = -dφ/dt。
其中,φ表示磁通量。
磁通量的大小等于磁感强度与线圈面积的乘积,即φ = Bπr^2。
将已知数据代入计算,φ = 0.2 T ×π× (0.1 m)^2 = 0.02π Tm^2。
对磁通量关于时间的导数,即dφ/dt,可以计算为(0.6 T - 0.2 T)/0.2 s = 2 T/s。
因此,感应电动势的大小为ε = -2 T/s。
线圈的电阻需要另外给定,才能计算感应电流的大小。
通过以上例题的解析,我们可以看到,在电磁感应问题中,需要根据已知条件来计算磁通量的变化率,从而得到感应电动势的大小。
最后,根据电路中的电阻情况,可以计算出感应电流的大小。
电磁感应是电磁学中的重要概念,掌握电磁感应的原理和应用,对于理解和应用电磁学的知识具有重要意义。
通过解析经典的电磁感应例题,可以加深对电磁感应原理的理解,提高解决实际问题的能力。
电磁感应练习题及
电磁感应练习题及解答电磁感应练习题及解答电磁感应是物理学中的一个重要概念,涉及到电磁场的变化过程中电场和磁场相互作用产生的现象。
它在日常生活和科学研究中都有广泛的应用。
下面是一些电磁感应练习题及解答,供大家进行练习。
1. 一根长导线以速度v从北向南方向通过均匀磁场B,该导线的两端分别连接一个电阻为R的电灯泡。
求当导线通过磁场过程中,电灯泡亮起的时间。
解答:根据法拉第电磁感应定律,导线通过磁场时产生感应电动势,导致电流流过电灯泡。
所以,在导线通过磁场期间,电灯泡会一直亮起。
因此,电灯泡亮起的时间等于导线通过磁场的时间。
2. 一个长方形线圈的边长为a和b,放置在匀强磁场B中,使得长方形线圈的法线与磁场方向垂直。
求长方形线圈在匀强磁场中的磁通量。
解答:根据法拉第电磁感应定律,在匀强磁场中,线圈的磁通量可以通过以下公式计算:Φ = B * A * cosθ,其中B表示磁场强度,A表示线圈的面积,θ表示磁场方向与线圈法线方向之间的夹角。
由于线圈的法线与磁场方向垂直,θ为0,所以磁通量Φ = B * A。
3. 在一个闭合导线中有一个直径为d的圆环,该圆环的电阻为R。
当一个恒定的磁场B垂直于圆环平面时,求圆环上感应的电动势。
解答:根据法拉第电磁感应定律,当磁场的变化导致一个闭合回路中的磁通量发生改变时,会在回路中产生感应电动势。
在这个问题中,磁场是恒定的,所以不会产生感应电动势。
4. 一个导线带有电流I,在该导线旁边有另一条导线,它们平行。
第二条导线的长度为L,并且距离第一条导线的距离为d。
求第二条导线中感应的电动势。
解答:当电流从第一条导线中流过时,会在周围产生磁场。
第二条导线因为位于磁场中,所以会感受到这个磁场产生的磁通量的改变。
根据法拉第电磁感应定律,第二条导线中的感应电动势可以通过以下公式计算:ε = -dΦ/dt,其中Φ表示磁通量的变化率。
在这个问题中,需要计算第二条导线中的磁通量的变化率,并由此得出感应电动势。
根据磁感应定律计算题专题训练
根据磁感应定律计算题专题训练
根据磁感应定律(法拉第电磁感应定律),当导体中的磁通量
发生变化时,会在导体中产生感应电动势。
根据该定律,我们可以
通过一系列计算题来加深对该定律的理解和应用。
以下是一些根据磁感应定律的计算题目,供您进行专题训练:
1. 题目:一个半径为 10cm 的圆形线圈,其平面与一个磁感应
强度为 0.05 T 的均匀磁场垂直,线圈有 1000 个匝。
求当线圈绕过
磁场中心轴转动 20 圈时,线圈中的感应电动势的变化量。
2. 题目:一个磁感应强度为0.1 T 的均匀磁场与一条导线垂直,导线的长度为 2 m。
如果导线以 10 m/s 的速度从垂直于磁场的位置
移动到与磁场平行的位置,求导线两端的感应电动势。
3. 题目:一个磁感应强度为 0.2 T 的均匀磁场与一条导线夹角
为 30°,导线的长度为 5 m。
当导线上的电流为 2 A 时,求导线两
端的感应电动势。
以上题目需要根据磁感应定律进行计算,您可以使用法拉第电磁感应定律的公式来求解。
请确保在计算过程中注意单位的转换和计算的准确性。
通过解答这些题目,您可以进一步熟练地应用磁感应定律进行计算和分析。
祝您训练顺利,希望以上信息对您有所帮助!。
电磁感应计算题及答案
电磁感应计算题及答案1.如图29所示,金属框架与水平面成30°角,匀强磁场的磁感强度B=0.4T,方向垂直框架平面向上,金属棒长l=0.5m,重量为0.1N,可以在框架上无摩擦地滑动,棒与框架的总电阻为2Ω,运动时可认为不变,问:(1)要棒以2m/s的速度沿斜面向上滑行,应在棒上加多大沿框架平面方向的外力?(2)当棒运动到某位置时,外力突然消失,棒将如何运动?(3)棒匀速运动时的速度多大?(4)达最大速度时,电路的电功率多大?重力的功率多大?2.如图30所示,导轨是水平的,其间距l1=0.5m,ab杆与导轨左端的距离l2=0.8m,由导轨与ab杆所构成的回路电阻为0.2Ω,方向垂直导轨平面向下的匀强磁场的磁感应强度B=1T,滑轮下挂一重物质量0.04kg,ah杆与导轨间的摩擦不计,现使磁场以=0.2T/s的变化率均匀地增大,问:当t为多少时,M刚离开地面?3.如图31所示,平行金属导轨的电阻不计,ab、cd的电阻均为R,长为l,另外的电阻阻值为R,整个装置放在磁感强度为B的匀强磁场中,当ab、cd以速率v向右运动时,通过R的电流强度为多少?4.固定在匀强磁场中的正方形导线框abcd各边长为l,其中ab是一段电阻为R的均匀电阻丝,其余三边均为电阻可忽略的铜线,磁感应强度为B,方向垂直纸面向里,现有一段与ab完全相同的电阻丝PQ 架在导线框上,如图32所示,以恒定的速度v从ad滑向bc,当PQ滑过5.两根相距0.2m的平行金属长导轨固定在同一水平面内,并处于竖直方向的匀强磁场中,磁场的磁感强度B=0.2T,导轨上面横放着两条金属细杆,构成矩形回路,每条金属细杆的电阻为r=0.25Ω,回路中其余部分的电阻可不计,已知金属细杆在平行于导轨的拉力的作用下,沿导轨朝相反方向匀速平移,速率大小都是v=0.5m/s,如图33所示,不计导轨上的摩擦,求:(1)作用于每条金属细杆的拉力;(2)求两金属细杆在间距增加0.10m的滑动过程中共产生的热量6.电阻为R的矩形导线框abcd,边长ab=l,ad=h,质量为m,自某一高度自由落下,通过一匀强磁场,磁场方向垂直纸面向里,磁场区域的宽度为h,如图34所示,若线框恰好以恒定速度通过磁场,线框内产生的焦耳热是多少?7.如图35所示,导线框abcd固定在竖直平面内,bc段的电阻为R,其他电阻均可忽略,ef是一电阻可忽略的水平放置的导体杆,杆长为l,质量为m,杆的两端分别与ab和cd保持良好接触,又能沿它们无摩擦地滑动,整个装置放在磁感强度为B的匀强磁场中,磁场方向与框面垂直,现用一恒力F竖直向上拉ef,当ef匀速上升时,其速度的大小为多少?答案1.0.09N,减速,2.5m/s0.125J,0.125J2.5s 3.2BLv/3R4.9BLv/nR,向左5.3.2×10-2N 1.28×10-2J6.2mgh 7.R(F-mg)/B2l2。
电磁感应计算题专练
专题强化 电磁感应计算题专练1、 (2016·全国卷Ⅱ·24)如图,水平面(纸面)内间距为l 的平行金属导轨间接一电阻,质量为m 、长度为l 的金属杆置于导轨上.t =0时,金属杆在水平向右、大小为F 的恒定拉力作用下由静止开始运动.t 0时刻,金属杆进入磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动.杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ.重力加速度大小为g .求: (1)金属杆在磁场中运动时产生的电动势的大小; (2)电阻的阻值.答案 (1)Blt 0(Fm -μg ) (2)B 2l 2t 0m解析 (1)设金属杆进入磁场前的加速度大小为a ,由牛顿第二定律得F -μmg =ma ① 设金属杆到达磁场左边界时的速度为v ,由运动学公式有v =at 0②当金属杆以速度v 在磁场中运动时,由法拉第电磁感应定律知产生的电动势为E =Bl v ③ 联立①②③式可得E =Blt 0(Fm-μg ) ④(2)设金属杆在磁场区域中匀速运动时,金属杆中的电流为I ,根据欧姆定律I =ER ⑤式中R 为电阻的阻值.金属杆所受的安培力为F 安=BlI ⑥ 因金属杆做匀速运动,有F -μmg -F 安=0 ⑦ 联立④⑤⑥⑦式得R =B 2l 2t 0m.2、 (2017·上海单科·20改编)如图,光滑平行金属导轨间距为L ,与水平面夹角为θ,两导轨上端用阻值为R 的电阻相连,该装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直于导轨平面.质量为m 的金属杆ab 以沿导轨平面向上的初速度v 0从导轨底端开始运动,然后又返回到出发位置.在运动过程中,ab 与导轨垂直且接触良好,不计ab 和导轨的电阻及空气阻力.(1)求ab 开始运动时的加速度a 的大小;(2)分析并说明ab 在整个运动过程中速度、加速度的变化情况.解析 (1)利用楞次定律,对初始状态的ab 受力分析得:mg sin θ+BIL =ma ①对回路分析I =E R =BL v 0R ②联立①②得a =g sin θ+B 2L 2v 0mR(2)上滑过程:由第(1)问中的分析可知,上滑过程加速度大小表达式为:a 上=g sin θ+B 2L 2vmR③上滑过程,a 、v 反向,做减速运动.利用③式,v 减小则a 减小,可知,杆上滑时做加速度逐渐减小的减速运动.下滑过程:由牛顿第二定律,对ab 受力分析得:mg sin θ-B 2L 2vR =ma 下④a 下=g sin θ-B 2L 2vmR⑤因a 下与v 同向,ab 做加速运动.由⑤得v 增加,a 下减小,杆下滑时做加速度逐渐减小的加速运动.3、如图所示,间距为L 的平行且足够长的光滑导轨由两部分组成.倾斜部分与水平部分平滑相连,倾角为θ,在倾斜导轨顶端连接一阻值为r 的定值电阻.质量为m 、电阻也为r 的金属杆MN 垂直导轨跨放在导轨上,在倾斜导轨区域加一垂直导轨平面向下、磁感应强度为B 的匀强磁场;在水平导轨区域加另一垂直轨道平面向下、磁感应强度也为B 的匀强磁场.闭合开关S ,让金属杆MN 从图示位置由静止释放,已知金属杆MN 运动到水平轨道前,已达到最大速度,不计导轨电阻且金属杆MN 两端始终与导轨接触良好,重力加速度为g .求: (1)金属杆MN 在倾斜导轨上滑行的最大速率v m ;(2)金属杆MN 在倾斜导轨上运动,速度未达到最大速度v m 前,当流经定值电阻的电流从零增大到I 0的过程中,通过定值电阻的电荷量为q ,求这段时间内在定值电阻上产生的焦耳热Q ; (3)金属杆MN 在水平导轨上滑行的最大距离x m .解析 (1)金属杆MN 在倾斜导轨上滑行的速度最大时,其受到的合力为零, 对其受力分析,可得mg sin θ-BI m L =0根据法拉第电磁感应定律、闭合电路欧姆定律可得:I m =BL v m2r解得:v m =2mgr sin θB 2L 2(2)设在这段时间内,金属杆MN 运动的位移为x 由电流的定义可得:q =I Δt 根据法拉第电磁感应定律、闭合电路欧姆定律得:平均电流I =B ΔS 2r Δt =BLx2r Δt解得:x =2qrBL设电流为I 0时金属杆MN 的速度为v 0,根据法拉第电磁感应定律、闭合电路欧姆定律, 可得I 0=BL v 02r ,解得v 0=2rI 0BL设此过程中,电路产生的焦耳热为Q 热,由功能关系可得:mgx sin θ=Q 热+12m v 02定值电阻r 产生的焦耳热Q =12Q 热解得:Q =mgqr sin θBL -mI 20r2B 2L2(3)设金属杆MN 在水平导轨上滑行时的加速度大小为a ,速度为v 时回路电流为I ,由牛顿第二定律得:BIL =ma由法拉第电磁感应定律、闭合电路欧姆定律可得:I =BL v2r联立可得:B 2L 22r v =m Δv Δt B 2L 22r v Δt =m Δv ,即B 2L 22r x m =m v m得:x m =4m 2gr 2sin θB 4L 44、如图所示,两条相距d 的平行金属导轨位于同一水平面内,其右端接一阻值为R 的电阻.质量为m 的金属杆静置在导轨上,其左侧的矩形匀强磁场区域MNPQ 的磁感应强度大小为B 、方向竖直向下.当该磁场区域以速度v 0匀速地向右扫过金属杆后,金属杆的速度变为v .导轨和金属杆的电阻不计,导轨光滑且足够长,杆在运动过程中始终与导轨垂直且两端与导轨保持良好接触.求:(1)MN 刚扫过金属杆时,杆中感应电流的大小I ; (2)MN 刚扫过金属杆时,杆的加速度大小a ; (3)PQ 刚要离开金属杆时,感应电流的功率P . 答案 (1)Bd v 0R (2)B 2d 2v 0mR (3)B 2d 2(v 0-v )2R解析 (1)MN 刚扫过金属杆时,感应电动势E =Bd v 0 感应电流I =ER解得I =Bd v 0R(2)安培力F =BId 由牛顿第二定律得F =ma 解得a =B 2d 2v 0mR(3)金属杆切割磁感线的相对速度v ′=v 0-v ,则感应电动势E ′=Bd (v 0-v ) 电功率P =E ′2R 解得P =B 2d 2(v 0-v )2R5.(2016·全国卷Ⅰ·24)如图,两固定的绝缘斜面倾角均为θ,上沿相连.两细金属棒ab (仅标出a 端)和cd (仅标出c 端)长度均为L ,质量分别为2m 和m ;用两根不可伸长的柔软轻导线将它们连成闭合回路abdca ,并通过固定在斜面上沿的两光滑绝缘小定滑轮跨放在斜面上,使两金属棒水平.右斜面上存在匀强磁场,磁感应强度大小为B ,方向垂直于斜面向上,已知两根导线刚好不在磁场中,回路电阻为R ,两金属棒与斜面间的动摩擦因数均为μ,重力加速度大小为g ,已知金属棒ab 匀速下滑.求:(1)作用在金属棒ab 上的安培力的大小; (2)金属棒运动速度的大小. 答案 (1)mg (sin θ-3μcos θ)(2)mgRB 2L2(sin θ-3μcos θ) 解析 (1)由于ab 、cd 棒被平行于斜面的导线相连,故ab 、cd 速度总是相等,cd 也做匀速直线运动.设导线的张力的大小为F T ,右斜面对ab 棒的支持力的大小为F N1,作用在ab 棒上的安培力的大小为F ,左斜面对cd 棒的支持力大小为F N2,对于ab 棒,受力分析如图甲所示,由力的平衡条件得2mg sin θ=μF N1+F T +F ① F N1=2mg cos θ ② 对于cd 棒,受力分析如图乙所示,由力的平衡条件得 mg sin θ+μF N2=F T ′=F T ③ F N2=mg cos θ ④ 联立①②③④式得:F =mg (sin θ-3μcos θ) ⑤(2)设金属棒运动速度大小为v ,ab 棒上的感应电动势为E =BL v⑥回路中电流I =ER ⑦ 安培力F =BIL ⑧联立⑤⑥⑦⑧得: v =mgRB 2L2(sin θ-3μcos θ)6.如图所示,两平行光滑金属导轨倾斜放置且固定,两导轨间距为L ,与水平面间的夹角为θ,导轨下端有垂直于轨道的挡板(图中未画出),上端连接一个阻值R =2r 的电阻,整个装置处在磁感应强度为B 、方向垂直导轨向上的匀强磁场中,两根相同的金属棒ab 、cd 放在导轨下端,其中棒ab 靠在挡板上,棒cd 在沿导轨平面向上的拉力作用下,由静止开始沿导轨向上做加速度为a 的匀加速运动.已知每根金属棒质量为m 、长度为L 、电阻为r ,导轨电阻不计,棒与导轨始终接触良好.求:(1)经多长时间棒ab 对挡板的压力变为零; (2)棒ab 对挡板压力为零时,电阻R 的电功率; (3)棒ab 运动前,拉力F 随时间t 的变化关系.答案 (1)5mgr sin θ2B 2L 2a (2)m 2g 2r sin 2θ2B 2L 2 (3)F =m (g sin θ+a )+3B 2L 2a5r t解析 (1)棒ab 对挡板的压力为零时,受力分析可得 BI ab L =mg sin θ 设经时间t 0棒ab 对挡板的压力为零,棒cd 产生的电动势为E ,则 E =BLat 0 回路中电流I =E r +R 外 R 外=Rr R +r =23r I ab =RR +r I解得t 0=5mgr sin θ2B 2L 2a(2)棒ab 对挡板压力为零时,cd 两端电压为 U cd =E -Ir 解得U cd =mgr sin θBL此时电阻R 的电功率为 P =U 2cdR解得P =m 2g 2r sin 2θ2B 2L 2(3)对cd 棒,由牛顿第二定律得F -BI ′L -mg sin θ=ma I ′=E ′r +R 外 E ′=BLat解得F =m (g sin θ+a )+3B 2L 2a5rt .7.(2016·全国卷Ⅲ·25)如图,两条相距l 的光滑平行金属导轨位于同一水平面(纸面)内,其左端接一阻值为R 的电阻;一与导轨垂直的金属棒置于两导轨上;在电阻、导轨和金属棒中间有一面积为S 的区域,区域中存在垂直于纸面向里的均匀磁场,磁感应强度大小B 1随时间t 的变化关系为B 1=kt ,式中k 为常量;在金属棒右侧还有一匀强磁场区域,区域左边界MN (虚线)与导轨垂直,磁场的磁感应强度大小为B 0,方向也垂直于纸面向里.某时刻,金属棒在一外加水平恒力的作用下从静止开始向右运动,在t 0时刻恰好以速度v 0越过MN ,此后向右做匀速运动.金属棒与导轨始终相互垂直并接触良好,它们的电阻均忽略不计.求:(1)在t =0到t =t 0时间间隔内,流过电阻的电荷量的绝对值;(2)在时刻t (t >t 0)穿过回路的总磁通量和金属棒所受外加水平恒力的大小. 答案 (1)kt 0S R (2)B 0l v 0(t -t 0)+kSt (B 0l v 0+kS )B 0lR解析 (1)在金属棒未越过MN 之前,穿过回路的磁通量的变化量为ΔΦ=ΔBS =k ΔtS ① 由法拉第电磁感应定律有 E =ΔΦΔt②由欧姆定律得I =E R ③ 由电流的定义得 I =ΔqΔt ④联立①②③④式得 |Δq |=kSRΔt ⑤由⑤式得,在t =0到t =t 0的时间间隔内即Δt =t 0,流过电阻R 的电荷量q 的绝对值为 |q |=kt 0SR⑥ (2)当t >t 0时,金属棒已越过MN .由于金属棒在MN 右侧做匀速运动,有 F =F 安 ⑦ 式中,F 是外加水平恒力,F 安是金属棒受到的安培力.设此时回路中的电流为I , F 安=B 0lI ⑧此时金属棒与MN 之间的距离为s =v 0(t -t 0) ⑨ 匀强磁场穿过回路的磁通量为 Φ′=B 0ls ⑩ 回路的总磁通量为 Φt =Φ+Φ′ ⑪ 其中Φ=B 1S =ktS ⑫由⑨⑩⑪⑫式得,在时刻t (t >t 0),穿过回路的总磁通量为Φt =B 0l v 0(t -t 0)+kSt ⑬ 在t 到t +Δt 的时间间隔内,总磁通量的改变量ΔΦt 为 ΔΦt =(B 0l v 0+kS )Δt ⑭ 由法拉第电磁感应定律得,回路感应电动势的大小为 E t =ΔΦtΔt ⑮由欧姆定律得I =E tR⑯联立⑦⑧⑭⑮⑯式得 F =(B 0l v 0+kS )B 0lR.8、如图所示,两根电阻不计的光滑金属导轨竖直放置,相距为L ,导轨上端接电阻R ,宽度相同的水平条形区域Ⅰ和Ⅱ内有磁感应强度为B 、方向垂直导轨平面向里的匀强磁场,其宽度均为d ,Ⅰ和Ⅱ之间相距为h 且无磁场.一长度为L 、质量为m 、电阻为r 的导体棒,两端套在导轨上,并与两导轨始终保持良好的接触,导体棒从距区域Ⅰ上边界H 处由静止释放,在穿过两段磁场区域的过程中,流过电阻R 上的电流及其变化情况相同,重力加速度为g .求:(1)导体棒进入区域Ⅰ的瞬间,通过电阻R 的电流大小与方向. (2)导体棒通过区域Ⅰ的过程,电阻R 上产生的热量Q . (3)求导体棒穿过区域Ⅰ所用的时间.答案 (1)BL R +r 2gH ,方向向左 (2)R R +r mg (h +d ) (3)B 2L 2d mg (R +r )+2(H -h )g - 2H g解析 (1)设导体棒进入区域Ⅰ瞬间的速度大小为v 1, 根据动能定理:mgH =12m v 12 ①由法拉第电磁感应定律:E =BL v 1 ②由闭合电路的欧姆定律:I =ER +r③由①②③得:I =BLR +r2gH由右手定则知导体棒中电流方向向右,则通过电阻R 的电流方向向左. (2)由题意知,导体棒进入区域Ⅱ的速度大小也为v 1, 由能量守恒,得:Q 总=mg (h +d ) 电阻R 上产生的热量Q =RR +rmg (h +d )(3)设导体棒穿出区域Ⅰ瞬间的速度大小为v 2,从穿出区域Ⅰ到进入区域Ⅱ,v 12-v 22=2gh ,得:v 2=2g (H -h )设导体棒进入区域Ⅰ所用的时间为t ,根据动量定理: 设向下为正方向:mgt -B I Lt =m v 2-m v 1 此过程通过整个回路的电荷量为:q =I t =BLdR +r得:t =B 2L 2dmg (r +R )+2(H -h )g -2H g9、 (2018·甘肃天水模拟)如图所示,竖直放置的两光滑平行金属导轨,置于垂直于导轨平面向里的匀强磁场中,两根质量相同的导体棒a 和b ,与导轨紧密接触且可自由滑动.先固定a ,释放b ,当b 的速度达到10 m /s 时,再释放a ,经过1 s 后,a 的速度达到12 m/s ,g 取10 m/s 2,则: (1)此时b 的速度大小是多少?(2)若导轨足够长,a 、b 棒最后的运动状态怎样? 答案 (1)18 m/s (2)匀加速运动解析 (1)当b 棒先向下运动时,在a 和b 以及导轨所组成的闭合回路中产生感应电流,于是a 棒受到向下的安培力,b 棒受到向上的安培力,且二者大小相等.释放a 棒后,经过时间t ,分别以a 和b 为研究对象,根据动量定理,则有(mg +F )t =m v a (mg -F )t =m v b -m v 0 代入数据可解得v b =18 m/s(2)在a 、b 棒向下运动的过程中,a 棒的加速度a 1=g +F m ,b 产生的加速度a 2=g -Fm .当a 棒的速度与b 棒接近时,闭合回路中的ΔΦ逐渐减小,感应电流也逐渐减小,则安培力也逐渐减小,最后,两棒以共同的速度向下做加速度为g 的匀加速运动.10、(2017·湖南长沙四县三月模拟)足够长的平行金属轨道M 、N ,相距L =0.5 m ,且水平放置;M 、N 左端与半径R =0.4 m 的光滑竖直半圆轨道相连,与轨道始终垂直且接触良好的金属棒b 和c 可在轨道上无摩擦地滑动,两金属棒的质量m b =m c =0.1 kg ,接入电路的有效电阻R b =R c =1 Ω,轨道的电阻不计.平行水平金属轨道M 、N 处于磁感应强度B =1 T 的匀强磁场中,磁场方向与轨道平面垂直向上,光滑竖直半圆轨道在磁场外,如图3所示,若使b 棒以初速度v 0=10 m /s 开始向左运动,运动过程中b 、c 不相撞,g 取10 m/s 2,求: (1)c 棒的最大速度;(2)c 棒达最大速度时,此棒产生的焦耳热;(3)若c 棒达最大速度后沿半圆轨道上滑,金属棒c 到达轨道最高点时对轨道的压力的大小. 答案 (1)5 m/s (2)1.25 J (3)1.25 N解析 (1)在磁场力作用下,b 棒做减速运动,c 棒做加速运动,当两棒速度相等时,c 棒达最大速度.选两棒为研究对象,根据动量守恒定律有 m b v 0=(m b +m c )v解得c 棒的最大速度为:v =m b m b +m cv 0=12v 0=5 m/s(2)从b 棒开始运动到两棒速度相等的过程中,系统减少的动能转化为电能,两棒中产生的总热量为:Q =12m b v 02-12(m b +m c )v 2=2.5 J因为R b =R c ,所以c 棒达最大速度时此棒产生的焦耳热为Q c =Q2=1.25 J(3)设c 棒沿半圆轨道滑到最高点时的速度为v ′,从最低点上升到最高点的过程由机械能守恒可得: 12m c v 2-12m c v ′2=m c g ·2R 解得v ′=3 m/s在最高点,设轨道对c 棒的弹力为F ,由牛顿第二定律得 m c g +F =m c v ′2R解得F =1.25 N由牛顿第三定律得,在最高点c 棒对轨道的压力为1.25 N ,方向竖直向上.11、如图所示,平行倾斜光滑导轨与足够长的平行水平光滑导轨平滑连接,导轨电阻不计.质量分别为m 和12m 的金属棒b 和c 静止放在水平导轨上,b 、c 两棒均与导轨垂直.图中de 虚线往右有范围足够大、方向竖直向上的匀强磁场.质量为m 的绝缘棒a 垂直于倾斜导轨静止释放,释放位置与水平导轨的高度差为h .已知绝缘棒a 滑到水平导轨上与金属棒b 发生弹性正碰,金属棒b 进入磁场后始终未与金属棒c 发生碰撞.重力加速度为g .求:(1)绝缘棒a 与金属棒b 发生弹性正碰后分离时两棒的速度大小; (2)金属棒b 进入磁场后,其加速度为其最大加速度的一半时的速度大小; (3)两金属棒b 、c 上最终产生的总焦耳热. 答案 (1)02gh (2)562gh (3)13mgh解析 (1)设a 棒滑到水平导轨时,速度为v 0,下滑过程中a 棒机械能守恒12m v 02=mgha 棒与b 棒发生弹性碰撞 由动量守恒定律:m v 0=m v 1+m v 2 由机械能守恒定律:12m v 02=12m v 12+12m v 22解出v 1=0,v 2=v 0=2gh (2)b 棒刚进磁场时的加速度最大.b 、c 两棒组成的系统合外力为零,系统动量守恒. 由动量守恒定律:m v 2=m v 2′+m2v 3′设b 棒进入磁场后任一时刻,b 棒的速度为v b ,c 棒的速度为v c ,则b 、c 组成的回路中的感应电动势E =BL (v b -v c ),由闭合电路欧姆定律得I =ER 总,由安培力公式得F =BIL =ma ,联立得a =B 2L 2(v b -v c )mR 总.故当b 棒加速度为最大值的一半时有v 2=2(v 2′-v 3′) 联立得v 2′=56v 2=562gh(3)最终b 、c 以相同的速度匀速运动.由动量守恒定律:m v 2=(m +m 2)v 由能量守恒定律:12m v 22=12(m +m2)v 2+Q解出Q =13mgh12、如图所示,两根彼此平行放置的光滑金属导轨,其水平部分足够长且处于竖直向下的匀强磁场中,磁感应强度为B .现将质量为m 1的导体棒ab 放置于导轨的水平段,将质量为m 2的导体棒cd 从导轨的圆弧部分距水平段高为h 的位置由静止释放.已知导体棒ab 和cd 接入电路的有效电阻分别为R 1和R 2,其他部分电阻不计,整个过程中两导体棒与导轨接触良好且未发生碰撞,重力加速度为g .求: (1)导体棒ab 、cd 最终速度的大小; (2)导体棒ab 所产生的热量.答案 (1)都为m 2m 1+m 22gh (2)R 1R 1+R 2·m 1m 2m 1+m 2·gh解析 (1)设导体棒cd 沿光滑圆弧轨道下滑至水平面时的速度为v 0,由机械能守恒定律m 2gh =12m 2v 02,解得v 0=2gh ,随后,导体棒cd 切割磁感线产生感应电动势,在回路中产生感应电流,导体棒cd 、ab 受到安培力的作用,其中导体棒cd 所受的安培力为阻力,而导体棒ab 所受的安培力为动力,但系统所受的安培力为零;当导体棒cd 与导体棒ab 速度相等时,回路的感应电动势为零,回路中无感应电流,此后导体棒cd 与导体棒ab 以相同的速度匀速运动,以v 0的方向为正方向,由动量守恒定律可得:m 2v 0=(m 1+m 2)v ,解得两棒最终速度为v =m 2m 1+m 22gh(2)由能量守恒定律可得系统产生的热量为Q =ΔE =12m 2v 02-12(m 1+m 2)v 2=m 1m 2m 1+m 2gh由焦耳定律可得,导体棒ab 、cd 所产生的热量之比是:Q 1Q 2=R 1R 2解得Q 1=R 1R 1+R 2·m 1m 2m 1+m 2·gh13 .(2017·山东青岛一模)如图所示,两平行光滑金属导轨由两部分组成,左面部分水平,右面部分为半径r =0.5 m 的竖直半圆,两导轨间距离d =0.3 m ,导轨水平部分处于竖直向上、磁感应强度大小B =1 T 的匀强磁场中,两导轨电阻不计.有两根长度均为d 的金属棒ab 、cd ,均垂直导轨置于水平导轨上,金属棒ab 、cd 的质量分别为m 1=0.2 kg 、m 2=0.1 kg ,电阻分别为R 1=0.1 Ω、R 2=0.2 Ω.现让ab 棒以v 0=10 m /s 的初速度开始水平向右运动,cd 棒进入圆轨道后,恰好能通过轨道最高点PP ′,cd 棒进入圆轨道前两棒未相碰,重力加速度g =10 m/s 2,求: (1)ab 棒开始向右运动时cd 棒的加速度a 0; (2)cd 棒刚进入半圆轨道时ab 棒的速度大小v 1; (3)cd 棒进入半圆轨道前ab 棒克服安培力做的功W . 答案 (1)30 m /s 2(2)7.5 m/s (3)4.375 J解析 (1)ab 棒开始向右运动时,设回路中电流为I ,有 E =Bd v 0 I =E R 1+R 2 BId =m 2a 0解得:a 0=30 m/s 2(2)设cd 棒刚进入半圆轨道时的速度为v 2,系统动量定恒,有 m 1v 0=m 1v 1+m 2v 2 12m 2v 22=m 2g ·2r +12m 2v P 2 m 2g =m 2v 2P r解得:v 1=7.5 m/s(3)由动能定理得12m 1v 12-12m 1v 02=-W 解得:W =4.375 J.。
(完整版)电磁感应综合-导轨模型计算题(精选26题含答案详解),推荐文档
电磁感应综合-导轨模型计算题1.(9 分)如图所示,两根间距 L=1m、电阻不计的平行光滑金属导轨 ab、cd 水平放置,一端与阻值 R=2Ω的电阻相连。
质量 m=1kg 的导体棒 ef 在外力作用下沿导轨以 v=5m/s 的速度向右匀速运动。
整个装置处于磁感应强度 B=0.2T 的竖直向下的匀强磁场中。
求:a ebRc f d(1)感应电动势大小;(2)回路中感应电流大小;(3)导体棒所受安培力大小。
【答案】(1)E = 1V (2)I = 0.5A (3)F安= 0.1N【解析】试题分析:(1)导体棒向右运动,切割磁感线产生感应电动势E =BLv代入数据解得:E = 1V(2)感应电流I =ER代入数据解得:I = 0.5A(3)导体棒所受安培力F安=BIL代入数据解得:F安= 0.1N考点:本题考查了电磁感应定律、欧姆定律、安培力。
2.如图所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距 1 m,导轨平面与水平面成θ=37°角,下端连接阻值为 R 的电阻.匀强磁场方向与导轨平面垂直,质量为0.2 kg、电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为 0.25.(1)求金属棒沿导轨由静止开始下滑时的加速度大小.(2)当金属棒下滑速度达到稳定时,电阻 R 消耗的功率为 8 W,求该速度的大小.(3)在上问中,若 R=2 Ω,金属棒中的电流方向由 a 到b,求磁感应强度的大小与方向. (g 取10 m/s2,sin 37°=0.6,cos 37°=0.8)【答案】(1)4m/s2(2)10m/s (3)0.4T【解析】试题分析:(1)金属棒开始下滑的初速为零,V由牛顿第二定律得:mgsinθ-μmgcosθ=ma①由①式解得:a=10×(0.6-0.25×0.8)m/s2=4m/s2②;(2)设金属棒运动达到稳定时,速度为 v,所受安培力为 F,棒在沿导轨方向受力平衡:mgsinθ一μmgcos0一F=0 ③此时金属棒克服安培力做功的功率等于电路中电阻R 消耗的电功率:Fv=P ④由③、④两式解得:v =F =80.2 ⨯10 ⨯ (0.6 - 0.25 ⨯ 0.8)m / s = 10m / s ⑤(3)设电路中电流为 I,两导轨间金属棒的长为 l,磁场的磁感应强度为 B,Blv感应电流:I =⑥R电功率:P=I2R ⑦由⑥、⑦两式解得:B =PRvl 磁场方向垂直导轨平面向上;=8 ⨯ 2T = 0.4T ⑧10 ⨯1考点:牛顿第二定律;电功率;法拉第电磁感应定律.3.(13 分)如图,在竖直向下的磁感应强度为 B 的匀强磁场中,两根足够长的平行光滑金属轨道 MN、PQ 固定在水平面内,相距为 L。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3. 如图所示,两根光滑的金属导计。
斜面处在一匀强磁场中,磁场方向垂直于斜面向上。
质量为m,电阻可不计的金属棒直的恒力作用下沿导轨匀速上滑,并上升h高度,如图所示。
在这过程中A. 作用于金属捧上的各个力的合力所作的功等于零B. 作用于金属捧上的各个力的合力所作的功等于mgh与电阻R上发出的焦耳热之和C. 恒力F与安培力的合力所作的功等于零ab,在沿着斜面与棒垂4. 两根光滑金属导轨平行放置在倾角为0=30。
的斜面上,导轨左端接有电阻R=10 /Q,导轨自身电阻忽略不计。
匀强磁场垂直于斜面向上,磁感强度B=0.5T。
质量Y为m=0.1kg ,电阻可不计的金属棒ab静止释放,沿导轨下滑。
如图所示,设导轨足够长,导轨宽度L=2m,金属棒ab下滑过程中始终与导轨接触良好,当金属棒下滑h=3m时,速度恰好达到最大速度,求此(1)最大速度(2)从开始到速度达到Th 』第12讲法拉第电磁感应定律4----能量问题1能的转化与守恒,是贯穿物理学的基本规律之一。
从能量的观点来分析、解决问题,既是学习物理的基本功,也是一种能力。
自然界存在着各种不同形式的能,如;■-动能机械能:重力势能I弹性势能(弹簧)•热能1. 如图16-7-6所示,在竖直向上B=0.2T的匀强磁场内固定一水平无电阻的光滑U形金属导轨,轨距50cm。
金属导线ab的质量m=0.1kg,电阻r=0.02 Q且ab垂直横跨导轨。
导轨中接入电阻F=0.1N拉着ab向右匀速平移,贝U(1) ab的运动速度为多大?(2 )电路中消耗的电功率是多大?(3)撤去外力后R上还能产生多少热量?图16-7-62. 相距为d的足够长的两平行金属导轨(电阻不计)固定在绝缘水平面上,导轨间有垂直轨道平面的匀强磁场,磁感强度为B,导轨左端接有电容为C的电容器,在导轨上放置一金属棒并与导轨接触良好,如图所示。
现用水平拉力使金属棒开始向右运动,拉力的功率恒为P,在棒达到最大速度之前,下列叙述正确的是R=0.08 Q,今用水平恒力A.金属棒做匀加速运动B.电容器所带电量不断增加C.作用于金属棒的摩擦力的功率恒为PD.电容器a极板带负电5.如图所示,在与水平面成 B 角的矩形框范围内有垂直于框架的匀强磁场,磁感应强度为 B ,框架的ad 边和be6.如图甲所示,平行光滑金属导轨 MN 、PQ 之间距离L=0.5m ,所在平面与水平面成二=370角,M 、P 两端接有阻值为R=0.8门的定值电阻。
质量为 m=0.5kg 、阻值为r=0.2门的金属棒ab 垂直导轨放置,其它部分电 阻不计。
整个装置处在磁感应强度为B 的匀强磁场中,磁场方向垂直导轨平面向上。
从t=0时刻开始ab 棒受到一个平行于导轨向上的外力 F 作用,由静止开始沿导轨向上运动,运动中棒始终与导轨垂直,且接触良 好,ab 棒受到的安培力 F 安的大小随时间变化的图象如图乙所示(t 仁2s 时,安培力F1=2N )。
从t=0到R 横截面上的电量q=2C , R 上的发热量Q 仁2J 。
求: (1) 磁感应强度B 的大小;(2) t=0至U t=2s 过程中拉力F 做的功W; (3) t=2s 时拉力的瞬时功率 P.7.如图2所示,abcd 为静置于水平面上的宽度为 L 而长度足够长的U型金属滑轨,bc 边接有电阻R,其它部分电阻不计.ef 为一可在滑轨平面上滑动、质量为 m 的均匀金属棒. 一均匀磁场B 垂直滑轨面。
金属棒以一水平细绳跨过定滑轮,连接一质量为M 的重物•今重物 M 自静止开始下落,假定滑轮无质量,且金属棒在运动中均保持与bc 边平行•忽略所有摩擦力, (1)求金属棒作匀速运动时的速 率v (忽略bc 边对金属棒的作用力)。
(2)若重物从静止开始至匀速运动之 后的某一时刻下落的总高度为 h ,求这一过程中电阻 R 上产生的热量 Q .边电阻不计,而ab 边和ed 边电阻均为R ,长度均为L ,有一质量为m 、电阻为2R 的金棒MN ,无摩擦地冲 上框架,上升最大高度为 h ,在此过程中ab 边产生的热量为 Q ,求(1)画出线框从开始到上升到最大高度过程的 v-t 草图与I-t 草图。
(2 )求上升过程中整个电路的最大热功率P max 。
t=2s 过程中通过电阻8.如图所示,质量为 m 、边长为I 的正方形线框,从有界的匀强磁场上方由静止自由下落,线框电阻为R 。
匀强磁场的宽度为 H °( l v H ,磁感强度为B ,线框下落过程中刚进入磁场和刚穿出磁场时线框都作减速运动,加速度大小都是 (1) ab 边刚进入磁场时与 ab 边刚出磁场时的速度大小; (2) cd 边刚进入磁场时,线框的速度大小; (3 )线框进入磁场的过程中,产生的热量。
XXXXXXXX IF线框的质量 m = 1kg ,电阻R = 0.1 Q,线框通过细线与重物相连,重物质量 M = 2kg ,斜面上ef 线(ef //gh )的右端方有垂直斜面向上的匀强磁场,E=0.5T ,如果线框从静止开始运动,进入磁场最初一段时间是匀速2的,ef 线和gh 线的距离s = 11.4m ,(取g = 10m/s ),试求: 画出ab 从静止开始到到达 gh 的整个过程中的 v-t 图像ab 边与磁场边界平行且沿水平方向。
已知ab 边1g 。
求39.如图,光滑斜面的倾角 a= 30。
,在斜面上放置一矩形线框abed , ab 边的边长 l i = 1m , be 边的边 12= 0.6m ,XXXXXXXXBXXXXXXXX H⑴线框进入磁场时的速度v是多少?⑵ab边由静止开始运动到gh线所用的时间t是多少?10. 如图所示,电阻不计的光滑平行金属导轨MN和OP水平放置,MO 间接有阻值为R的电阻,导轨相距为L,其间有竖直向下的匀强磁场,质量为m,电阻为R0的导体棒CD垂直于导轨放置,并接触良好。
用平行于MN向右的水平力拉动CD从静止开始运动,拉力的功率恒定为P,经过时间t导体棒CD达到最大速度V0。
①求出磁场磁感强度B的大小②求出该过程中R电阻上所产生的电热③若换用一恒力F拉动CD从静止开始运动,则导体棒CD速度V0时棒的加速度。
CD达到最大速度为2v0,求出恒力F的大小及当导体棒gedc11. 如图所示,在倾角为B 的光滑斜面上存在着两个磁感强度相等的匀强磁场方向一个垂直斜面向上,另一个垂直斜面向下,宽度均为L.一个质量为m 、 边长也为L 的正方形线框(设电阻为R )以速度v 进入磁场时,恰好作匀速直线运动。
若当 ab 边到达gg i 与ff i 中间位置时,线框又恰好作匀速直 线运动,则:(1 )当ab 边刚越过ffi 时,线框加速度的值为多少?(2)求线框从开始进入磁场到 ab 边到达gg i 和ff i 中点的过程中产生的热量 是多少?1.解析: (2 ) P=I(1)匀速运动时 2(R+r)=O .1WF=ILB , l=0.1/(0.5 X 0.2)=1A.E=LvB=l(R+r), v=1m/s.(3 ) 撤去外力后金属导线 ab 的动能全部转化为电能,电路中能产生的总热量为2Q=mv /2=0.05J, R 上产生的热量为Q 的五分之四,Q R =0.04J 。
2. B3. AD4.解:当金属棒速度恰好达到最大速度时,受力分析,解得 W=1J ,•••此过程中电阻中产生的热量Q=W=1.75J5.解:棒MN 沿框架向上运动产生感应电动势,相当于电源; ab 和cd 相当于两个外电阻并联。
根据题意可O - I^Rt知,ab 和cd 中的电流相同,MN 中的电流是ab 中电流的2倍。
由焦耳定律-知,当ab 边产生的热量为Q 时,cd 边产生的热量也为 Q , MN 产生的热量则为8Q 。
金属棒MN 沿框架向上运动过程中, 能量转化情况是:MN 的动能转化为 MN 的势能和电流通过 MN 、ab 、cd 时产生的热量。
-mvj = mgh 4- 10Q 站;+空仑设MN 的初速度为 ,由能量守恒得:: ,即 匸 而MN 在以速度v 上滑时,产生的瞬时感应电动势 丄•儿•n E 2P = ------- = ---------------5R所以,整个电路的瞬时热功率为 'mgsin 0=BIL 得最大速度5m/s下滑过程据动能定理得: mgh — fhsin 0mv可见,当MN 的运动速度v 为最大速度 时,整个电路的瞬时热功率 P 为最大值」-y ,即2田(2型+晋)_ 4B a L a (mfih + 10Q)5R=6.解析: (1)由题得:"到t =2s 过程中电路中电流的平均值为:^v 1A由安培力公式有:IF 安- BIL 由图知:F 安-kt -t , k - 1N /s 则得:BIL - t , BL 一疋,则 1 = t— 0+1—F 安设t =2s 时电路中电流为X 则有:'〒十21徉则得:0;2B a L a vg ~5R~(2)设t=2s 末ab 棒的速度为v ;则有:F 安二 BILB 2L 2V,得:F 安 丫2「=2m/s B 2L 2又由F 安二BIL 2, 2B L V-kt ,知V - t ,所以ab 棒做匀加速运动,t=2s 内通过的位移为:t = 2m回路中产生的总热量为: Q 二邑二Q 1=2.5J 根据功能关系得:W -mgxsin37 -Q 二丄mv 2R2则得: W 二mgxsin37Q jmv 2 =9.5J(3 )棒的加速度为:V2^7=1m/s ;根据牛顿第二定律得:F -F 安- mgsin37 = ma贝U 得:F=F 安 mgs in37 ma t=2s 时拉力的瞬时功率为:P = F V ( F 安 mgs in 37 ma ) V =11W 。
7. (1) 0.4J ; 0.9J(2) l ・88m/£(3) 3.93m解析:(1)金属棒cd 从静止开始运动直至细绳刚好被拉断的过程中有:2 2Q ab =U t/R ab ① Q R =U t/R ② 联立①②可得Q ab =0.4J ③用Q=I 2Rt 的比值问题方法对 cd 和R 进行相比,得 Q cd =0.9J ⑥(1分)⑵ 细绳被拉断瞬时,对ab 棒有:F m =mg+BI ab L ⑦ 又有l R =R ab l ab /R⑧l cd =l ab +l cd ⑨又由闭合欧姆定可得 BL V =I cd [R cd +R ab R/(R ab +R)]⑩ 联立⑦⑧⑨⑩可得1㈡朋血52⑶由功能关系得 Mgh= Q 总+mv /2 即可得h=3.93m28. 由能的转化和守恒定律,有: Mgh=(m+M)v 2/2 +Q只需求得系统匀速运动速度即可•据平衡条件; Mg = F 安,得V = MgR /B 2L 2。