2019-2020第二学期海淀高三期中数学试卷
2019年海淀区高三数学(文)期中试卷及答案

2019年海淀区高三年级第一学期期中练习数学(文科)本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.已知集合P{|-≤0},M{0,1,3,4},则集合P M中元素的个数为A.1 B.2 C.3 D.42.下列函数中为偶函数的是A.B.|| C.D.3.在中,∠A60°,||2,||1,则的值为-1 A.B.-C.1 D.4.数列{}的前项和,若-2-1(≥2),且3,则1的值为A.0 B.1 C.3 D.55.已知函数,下列结论中错误..的是A.B.的最小正周期为C.的图象关于直线对称D.的值域为[,]6.“”是“”的A.充分不必要条件B.必要不充分条件C .充分必要条件D .既不充分也不必要条件7.如图,点O 为坐标原点,点A (1,1).若函数(>0,且≠1)及(,且≠1)的图象与线段OA 分别交于点M ,N ,且M ,N 恰好是线段OA 的两个三等分点,则,满 足 A .<<1 B .<<1 C .>>1 D .>>18.已知函数()1,1,,11,1,1,x f x x x x -≤-⎧⎪=-<<-⎨⎪≥⎩,函数21()4g x ax =+.若函数()()y f x g x =-恰好有2个不同的零点,则实数a 的取值范围是 A.(0,)+∞ B.(,0)(2,)-∞+∞C.1(,)(1,)2-∞-+∞ D.(,0)(0,1)-∞s二、填空题共6小题,每小题5分,共30分。
9.函数()22x f x =-的定义域为_____. 10.若角α的终边过点(1,-2),则cos()2πα+=_____.11. 若等差数列{}n a 满足14a =-,39108a a a a +=-,则n a = ______.12.已知向量(1,0)a =,点()4,4A ,点B 为直线2y x =上一个动点.若AB //,则点B 的坐标为____.13.已知函数()sin()(0)f x x ωϕω=+>.若()f x 的图像向左平移3π个单位所得的图像与()f x 的图像重合,则ω的最小值为____.14.对于数列{}n a ,若m ∀,()n N m n *∈≠,均有()为常数m na a t t m n-≥-,则称数列{}n a 具有性质()P t .(i )若数列{}n a 的通项公式为2n a n =,且具有性质()P t ,则t 的最大值为____;(ii )若数列{}n a 的通项公式为2n aa n n=-,且具有性质(7)P ,则实数a 的取值范围是____.三、解答题共6小题,共80分。
2019-2020学年北京市海淀区高一(下)期中数学试卷(含解析)

2019-2020学年北京市海淀区高一(下)期中数学试卷一、单选题(本大题共8小题,共32.0分)1.在△ABC中,角A,B,C的对边分别是a,b,c.若a=5bsinC,且cosA=5cosBcosC,则tan A的值为()A. 5B. 6C. −4D. −62.在△ABC中,角A,B,C所对的边分别为a,b,c,已知a=2√2,b=4,B=45°,则A=()A. 30°B. 60°C. 30°或150°D. 60°或120°3.方程√3sin2x+cos2x=2k−1,x∈[0,π]有两个不等根,则实数k的取值范围为()A. (−12,32) B. (−12,1)∪(1,32) C. [−12,32] D. [−12,1)∪(1,32]4.如图,网格纸上小正方形的边长为1,粗实线和虚线画出的是某空间几何体的三视图,则该几何体的体积为()A. 2B. 23C. 4D. 435.如图,为了解某海域海底构造,在海平面内一条直线上的A,B,C三点进行测量,已知AB=50m,BC=120m,于A处测得水深AD=80m,于B处测得水深BE=200m,于C处测得水深CF=110m,则∠DEF的余弦值为()A. 1665B. 1965C. 1657D. 17576.已知α,β是不同的平面,m,n是不同的直线,给出下列命题:①m⊥n,m//α,α//β⇒n⊥β;②m⊥n,m⊥α,α//β⇒n⊥β;③m ⊥α,n//β,α//β⇒m ⊥n ;④m ⊥α,m//n ,α//β⇒n ⊥β.其中正确的是( )A. ①②B. ②③C. ①④D. ③④ 7. 若0<x ,y <π2,且sinx =xcosy ,则( ) A. y <x 4B. x 4<y <x 2C. x 2<y <xD. x <y8. 已知△ABC 的面积为,则角C 的度数为( ) A. B. C. D.二、单空题(本大题共5小题,共20.0分)9. 已知3sin 2θ=5cosθ+1,则cos(π+2θ)=______.10. α是第二象限角,,则tanα=________.11. 在平行四边形ABCD 中,AB⃗⃗⃗⃗⃗ ⋅BD ⃗⃗⃗⃗⃗⃗ =0,沿BD 将四边形折起成直二面角A −BD −C ,且|√2AB ⃗⃗⃗⃗⃗ +BD⃗⃗⃗⃗⃗⃗ |=2,则三棱锥A −BCD 的外接球的表面积为______. 12. 已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,c =√3,A +B =2C ,则sinB =______.13. 已知函数f(x)=asinx +cosx 的一条对称轴为x =π3,则a =______.三、多空题(本大题共1小题,共4.0分)14. 如图,在△ABC 中,AB =BC =2,∠ABC =120°,若平面ABC 外的点P 和线段AC 上的点D ,线段BC 上的点Q ,满足PD =DA ,PB =BA ,则四面体P −BCD 的体积的最大值是 (1) ;当P −BCD 体积取最大值时,|PQ|min = (2) .四、解答题(本大题共4小题,共44.0分)15. 已知函数f(x)=Asin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示.(1)求函数f(x)的解析式;(2)求函数f(x)在区间[−π2,0]上的最大值和最小值.16.已知a、b、c分别为△ABC的三个内角A、B、C的对边,2sinAcos2C2+2sinC⋅cos2A2=3sinB(1)证明a、b、c成等差数列;(2)若∠B为锐角,且a=btanA,求a:b:c的值.17.如图所示,直三棱柱ABC−A′B′C中,∠ABC=90°,AB=BC=BB′=2,D为底棱AC的中点.(1)求证:A′B⊥平面AB′C′;(2)过B′C′以及点D的平面与AB交于点E,求证:E为AB中点;(3)求三棱锥D−AB′C′的体积.18.已知函数.(1)求函f(x)的最小正周期和单调递增区间;(2)将函数f(x)的图象向右平移π个单位后得到函数y=g(x)的图象,求函数y=g(x)在区间4[0,π]上的值域.2【答案与解析】1.答案:B解析:本题主要考查解三角形中的正弦定理及应用,同时考查两角和差的余弦公式,诱导公式,以及同角三角函数的关系式,这些都是三角中的基本公式,务必要掌握,注意公式的逆用.运用正弦定理,把边化成角得到sinA=5sinBsinC,再与条件cosA=5cosBcosC相减,运用两角和的余弦公式,再用诱导公式转化为cos A,由同角公式,即可求出tan A.解:∵a=5bsinC,由正弦定理得:sinA=5sinBsinC①,又cosA=5cosBcosC②,②−①得,cosA−sinA=5(cosBcosC−sinBsinC),=5cos(B+C)=−5cosA,∴sinA=6cosA,∴tanA=sinAcosA=6.故选B.2.答案:A解析:解:∵a=2√2,b=4,B=45°,∴由正弦定理asinA =bsinB,可得:2√2sinA=4sin45∘,∴解得sinA=12,∵a<b,∴A<B,∴A=30°.故选:A.由已知及正弦定理解得sinA=12,结合大边对大角可求A为锐角,进而由特殊角的三角函数值可求A 的值.本题主要考查了正弦定理,大边对大角,特殊角的三角函数值等知识在解三角形中的应用,考查了转化思想,属于基础题.3.答案:B解析:解:cos2x+√3sin2x=2k−1,得2(12cos2x+√32sin2x)=2k−1,即2sin(2x+π6)=2k−1,可得:sin(2x+π6)=2k−12=k−12,由0≤x≤π,得π6≤2x+π6≤13π6,∵y=sin(2x+π6)在x∈[0,π]上的图象形状如图,∴当12<k−12<1和−1<k−12<12时,方程有两个不同的根,解得:1<k<32,−12<k<1.故选:B.利用辅助角公式化简,由x的范围求出这个角的范围,画出此时正弦函数的图象,根据函数值y对应的x有两个不同的值,由图象得出满足题意的正弦函数的值域,列出关于k的不等式,求出不等式的解集即可得到k的取值范围.本题考查了辅助角公式,正弦函数的图象与性质,以及正弦函数的定义域与值域,利用了数形结合的思想,属于中档题.4.答案:D解析:本题考查由三视图还原几何体,锥体体积的有关计算,还原几何体是解决问题的关键,属于基础题.由已知三视图还原几何体,代入四棱锥的体积公式计算可得.解:构造棱长为2的正方体如图所示,由三视图知该几何体是图中的四棱锥P−ABCD,其中B,D分别为棱的中点,则其体积V=13×[2×2−2×(12×2×1)]×2=43.故选D.5.答案:A解析:解:如图所示,作DM//AC交BE于N,交CF于M.DF=√MF2+DM2=√302+1702=10√298(m),DE=√DN2+EN2=√502+1202=130(m),EF=√(BE−FC)2+BC2=√902+1202=150(m).在△DEF中,由余弦定理,得cos∠DEF=DE2+EF2−DF22DF×EF =1302+1502−102×2982×130×150=1665.故选A分别在Rt△DMF中和Rt△DNE中利用勾股定理,求得DF,DE再算出EF=150m,在△DEF中利用余弦定理,可算出cos∠DEF的值.本题给出实际应用问题,求∠DEF的余弦值.主要考查了运用解三角形知识解决实际应用问题,考查了三角形问题中勾股定理、余弦定理的灵活运用,属于中档题.6.答案:D解析:解:①应该是n⊥β或n//β或n⊂β,即①错误;②应该是n//β或n⊂β,即②错误;③由线面垂直、线面平行和面面平行的性质定理可知③正确;④∵m⊥α,m//n,∴n⊥α,∵α//β,∴n⊥β,即④正确;故选:D.根据空间中线面的位置关系、平行与垂直的判定定理和性质定理,即可得解.本题考查了空间中线线、线面和面面的位置关系,需要熟记其判定定理和性质定理,考查了学生的空间立体感,属于基础题.7.答案:C解析:解:∵0<x,y<π2,∴0<sinx<x<tanx,又∵sinx=xcosy,∴cosy=sinxx >sinxtanx=cosx,故y<x,又∵sinx=xcosy,即12sinx=12xcosy,∴sin x2⋅cos x2=12xcosy,即cosy=sin x2⋅cos x212x<cos x2,故y>x2,综上所述,x2<y<x,故选:C.根据已知中0<x,y<π2,可得0<sinx<x<tanx,进而可将已知sinx=xcosy变形为cosy=sinxx>sinx tanx =cosx和12sinx=12xcosy,即cosy=sinx2⋅cos x212x<cos x2,进而结合余弦函数的单调性,得到答案.本题考查的知识点是三角函数线,余弦函数的单调性,本题的变形思路比较难,特别是对已知两个式子的变形.8.答案:D解析:试题分析:解:∵ab sin C,∴absinC=即.又根据余弦定理得,∴−2absinC=−2abcosC,即sinC=cosC.∴C=.故选D.考点:解三角形点评:关键是对于已知中的面积关系式的表示,再结合余弦定理来求解得到角的值,属于基础题。
2019-2020第二学期北京海淀高三期中数学数学答案

(18)解:(Ⅰ)设事件 A 为“从 2010 年至 2019 年中随机选取一年,研发投入占当年总
营收的百分比超过 10%”,从 2010 年至 2019 年一共 10 年,其中研发投入
占当年总营收的百分比超过 10%有 9 年,
所以 P( A) 9 . 10
(Ⅱ)由图表信息,从 2010 年至 2019 年 10 年中有 5 年研发投入超过 500 亿元,
1) ,直线 2
A1B
方程为
第 4 页(共 8 页)
y 1 x 1 2
由
y y
k(x 1x 2
2), 1.
解得点
P( 4k 2k
2 1
,
4k 2k
) 1
.
y k(x 2),
由
x
2
4
y2
1.
得 (4k 1)x2
16k 2 x 16k 2
40,
则
2
xM
=
16k 2 4k 2
所以 g(x) 有唯一的一个零点. 即函数 y f (x) 与 y 1 ln x 有且只有一个交点.
(20)解:(Ⅰ)由题
aacb
3, 2 2,
a2 b2 c2.
解得
a b
2, 1.
所以椭圆方程为 x2 y2 1 . 4
(II)解法 1
证明:设直线
A2 M
方程为
y k(x 2)(k
0且k
(Ⅲ)本题为开放问题,答案不唯一. 要求用数据说话,数据可以支持自己的结 论即可,阅卷时按照上述标准酌情给分.
(19)解:(Ⅰ)①当 a 1 时, f (x) ex x ,则 f (x) ex 1 . 所以 f '(0) 0. 又 f (0) 1, 所以曲线 y f (x) 在点 (0, f (0)) 处的切线方程为 y 1
2019年海淀高三年级第二学期数学期中练习试题-附答案(理)(已纠错)

海淀区高三年级第二学期期中练习数 学 (理科) 2019.4选择题 (共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1、已知集合{}30<<∈=x x A R ,{}42≥∈=x x B R ,则=B AA. {}32<<x xB. {}32<≤x xC. {}322<≤-≤x x x 或D. R2.已知数列{}n a 为等差数列,n S 是它的前n 项和.若21=a ,123=S ,则=4S A .10 B .16 C .20 D .243. 在极坐标系下,已知圆C 的方程为2cos ρθ=,则下列各点在圆C 上的是 A .1,3π⎛⎫- ⎪⎝⎭B . 1,6π⎛⎫⎪⎝⎭C.34π⎫⎪⎭D .54π⎫⎪⎭4.执行如图所示的程序框图,若输出x 的值为23,则输入的x 值为A .0 B.1 C .2 D .11 5.已知平面l =αβ,m 是α内不同于l 的直线,那么下列命题中错误..的是 A .若β//m ,则l m // B .若l m //,则β//m C .若β⊥m ,则l m ⊥ D .若l m ⊥,则β⊥m6. 已知非零向量,,a b c 满足++=a b c 0,向量,a b 的夹角为120,且||2||=b a ,则向量a 与c 的夹角为 A .︒60 B .︒90 C .︒120D . ︒1507.如果存在正整数ω和实数ϕ使得函数)(cos )(2ϕω+=x x f (ω,ϕ为常数)的图象如图所示(图象经过点(1,0)),那么ω的值为A .1B .2C . 3 D. 48.已知抛物线M :24y x =,圆N :222)1(r y x =+-(其中r 为常数,0>r ).过点(1,0)的直线l交圆N 于C 、D 两点,交抛物线M 于A 、B 两点,且满足BD AC =的直线l 只有三条的必要条件是 A .(0,1]r ∈ B .(1,2]r ∈ C .3(,4)2r ∈ D .3[,)2r ∈+∞非选择题(共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9.复数3i1i-+= . 10.为了解本市居民的生活成本,甲、乙、丙三名同学利用假期分别对三个社区进行了“家庭每月日常消费额”的调查.他们将调查所得到的数据分别绘制成频率分布直方图(如图所示),记甲、乙、丙所调查数据的标准差分别为1s ,2s ,3s ,则它们的大小关系为 . (用“>”连接)11.如图,A ,B ,C 是⊙O 上的三点,BE 切⊙O 于点B , D 是CE 与⊙O 的交点.若︒=∠70BAC ,则=∠CBE ______;若2=BE ,4=CE , 则=CD .12.已知平面区域}11,11|),{(≤≤-≤≤-=y x y x D ,在区域D 内任取一点,则取到的点位于直线y kx =(k R ∈)下方的概率为____________ .13.若直线l 被圆22:2C x y +=所截的弦长不小于2,则在下列曲线中:乙丙甲①22-=x y ② 22(1)1x y -+= ③ 2212x y += ④ 221x y -=与直线l 一定有公共点的曲线的序号是 . (写出你认为正确的所有序号) 14.如图,线段AB =8,点C 在线段AB 上,且AC =2,P 为线段CB 上一动点,点A 绕点C 旋转后与点B 绕点P 旋转后重合于点D .设CP =x , △CPD 的面积为()f x .则()f x 的定义域为 ; '()f x 的零点是 .三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15. (本小题共13分)在ABC ∆中,内角A 、B 、C 所对的边分别为,,a b c ,已知1tan 2B =,1tan 3C =,且1c =. (Ⅰ)求tan A ;(Ⅱ)求ABC ∆的面积.16. (本小题共14分)在如图的多面体中,EF ⊥平面AEB ,AE EB ⊥,//AD EF ,//EF BC ,24BC AD ==,3EF =,2AE BE ==, G 是BC 的中点.(Ⅰ) 求证://AB 平面DEG ; (Ⅱ) 求证:BD EG ⊥;(Ⅲ) 求二面角C DF E --的余弦值.17. (本小题共13分)某厂生产的产品在出厂前都要做质量检测,每一件一等品都能通过检测,每一件二等品通过检测的CBD A DFEB G C概率为23.现有10件产品,其中6件是一等品,4件是二等品. (Ⅰ) 随机选取1件产品,求能够通过检测的概率;(Ⅱ)随机选取3件产品,其中一等品的件数记为X ,求X 的分布列; (Ⅲ) 随机选取3件产品,求这三件产品都不能通过检测的概率.18. (本小题共13分)已知函数()ln f x x a x =-,1(), (R).ag x a x+=-∈ (Ⅰ)若1a =,求函数()f x 的极值;(Ⅱ)设函数()()()h x f x g x =-,求函数()h x 的单调区间;(Ⅲ)若在[]1,e (e 2.718...=)上存在一点0x ,使得0()f x <0()g x 成立,求a 的取值范围.19. (本小题共14分)已知椭圆2222:1x y C a b += (0)a b >>经过点3(1,),2M 其离心率为12.(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线1:(||)2l y kx m k =+≤与椭圆C 相交于A 、B 两点,以线段,OA OB 为邻边作平行四边形OAPB ,其中顶点P 在椭圆C 上,O 为坐标原点.求OP 的取值范围.20. (本小题共13分)已知每项均是正整数的数列A :123,,,,n a a a a ,其中等于i 的项有i k 个(1,2,3)i =⋅⋅⋅,设j j k k k b +++= 21 (1,2,3)j =,12()m g m b b b nm =+++-(1,2,3)m =⋅⋅⋅.(Ⅰ)设数列:1,2,1,4A ,求(1),(2),(3),(4),(5)g g g g g ; (Ⅱ)若数列A 满足12100n a a a n +++-=,求函数)(m g 的最小值.海淀区高三年级第二学期期中练习数 学(理)答案及评分参考 2019.4选择题 (共40分)一、选择题(本大题共8小题,每小题5分,共40分)二、填空题(本大题共6小题,每小题5分. 共30分.有两空的题目,第一空3分,第二空2分)9.12i - 10. s 1>s 2>s 3 11. 70; 3 12.1213. ① ③ 14. (2,4); 3 三、解答题(本大题共6小题,共80分) 15.(共13分) 解:(I )因为1tan 2B =,1tan 3C =,tan tan tan()1tan tan B CB C B C ++=-, …………………1分代入得到,1123tan()111123B C ++==-⨯ . …………………3分 因为180A B C =-- , …………………4分所以tan tan(180())tan()1A B C B C =-+=-+=-. …………………5分 (II )因为0180A <<,由(I )结论可得:135A = . …………………7分 因为11tan tan 023B C =>=>,所以090C B <<< . …………8分所以sin B=sin C =. …………9分由sin sin a cA C=得a =, …………………11分 所以ABC ∆的面积为:11sin 22ac B =. ………………13分16. (共14分)解:(Ⅰ)证明:∵//,//AD EF EF BC ,∴//AD BC .又∵2BC AD =,G 是BC 的中点, ∴//AD BG ,∴四边形ADGB 是平行四边形,∴ //AB DG . ……………2分 ∵AB ⊄平面DEG ,DG ⊂平面DEG ,∴//AB 平面DEG . …………………4分 (Ⅱ) 解法1证明:∵EF ⊥平面AEB ,AE ⊂平面AEB , ∴EF AE ⊥, 又,AE EB EBEF E ⊥=,,EB EF ⊂平面BCFE ,∴AE ⊥平面BCFE . ………………………5分过D 作//DH AE 交EF 于H ,则DH ⊥平面BCFE .∵EG ⊂平面BCFE , ∴DH EG ⊥. ………………………6分 ∵//,//AD EF DH AE ,∴四边形AEHD 平行四边形, ∴2EH AD ==,∴2EH BG ==,又//,EH BG EH BE ⊥, ∴四边形BGHE 为正方形,∴BH EG ⊥, ………………………7分又,BHDH H BH =⊂平面BHD ,DH ⊂平面BHD ,∴EG ⊥平面BHD . ………………………8分 ∵BD ⊂平面BHD ,HADFEBGC∴BD EG ⊥. ………………………9分 解法2∵EF ⊥平面AEB ,AE ⊂平面AEB ,BE ⊂平面AEB ,∴EF AE ⊥,EF BE ⊥,又AE EB ⊥,∴,,EB EF EA 两两垂直. ……………………5分 以点E 为坐标原点,,,EB EF EA 分别为,,x y z 轴建立如图的空间直角坐标系.由已知得,A (0,0,2),B (2,0,0), C (2,4,0),F (0,3,0),D (0,2,2), G (2,2,0). …………………………6分∴(2,2,0)EG =,(2,2,2)BD =-,………7分 ∴22220BD EG ⋅=-⨯+⨯=, ………8分 ∴BD EG ⊥. …………………………9分(Ⅲ)由已知得(2,0,0)EB =是平面EFDA 的法向量. …………………………10分 设平面DCF 的法向量为(,,)x y z =n ,∵(0,1,2),(2,1,0)FD FC =-=, ∴00FD n FC n ⎧⋅=⎪⎨⋅=⎪⎩,即2020y z x y -+=⎧⎨+=⎩,令1z =,得(1,2,1)=-n . …………………………12分设二面角C DF E --的大小为θ, 则cos cos ,EB =<>==θn …………………………13分 ∴二面角C DF E --的余弦值为6- …………………………14分 17. (共13分)解:(Ⅰ)设随机选取一件产品,能够通过检测的事件为A …………………………1分事件A 等于事件 “选取一等品都通过检测或者是选取二等品通过检测” ……………2分151332104106)(=⨯+=A p …………………………4分 (Ⅱ) 由题可知X 可能取值为0,1,2,3.30463101(0)30C C P X C ===,21463103(1)10C C P X C ===, 12463101(2)2C C P X C ===,03463101(3)6C C P X C ===. ………………8分(Ⅲ)设随机选取3件产品都不能通过检测的事件为B ……………10分 事件B 等于事件“随机选取3件产品都是二等品且都不能通过检测” 所以,3111()()303810P B =⋅=. ……………13分18. (共13分)解:(Ⅰ)()f x 的定义域为(0,)+∞, ………………………1分 当1a =时,()ln f xx x =-,11()1x f x x x-'=-=, ………………………2分………………………3分所以()f x 在1x =处取得极小值1. ………………………4分 (Ⅱ)1()ln ah x x a x x+=+-, 22221(1)(1)[(1)]()1a a x ax a x x a h x x x x x +--++-+'=--==………………………6分 ①当10a +>时,即1a >-时,在(0,1)a +上()0h x '<,在(1,)a ++∞上()0h x '>, 所以()h x 在(0,1)a +上单调递减,在(1,)a ++∞上单调递增; ………………………7分 ②当10a +≤,即1a ≤-时,在(0,)+∞上()0h x '>,所以,函数()h x 在(0,)+∞上单调递增. ………………………8分 (III )在[]1,e 上存在一点0x ,使得0()f x <0()g x 成立,即 在[]1,e 上存在一点0x ,使得0()0h x <,即 函数1()ln ah x x a x x+=+-在[]1,e 上的最小值小于零. ………………………9分 由(Ⅱ)可知①即1e a +≥,即e 1a ≥-时, ()h x 在[]1,e 上单调递减,所以()h x 的最小值为(e)h ,由1(e)e 0eah a +=+-<可得2e 1e 1a +>-,因为2e 1e 1e 1+>--,所以2e 1e 1a +>-; ………………………10分 ②当11a +≤,即0a ≤时, ()h x 在[]1,e 上单调递增,所以()h x 最小值为(1)h ,由(1)110h a =++<可得2a <-; ………………………11分 ③当11e a <+<,即0e 1a <<-时, 可得()h x 最小值为(1)h a +, 因为0ln(1)1a <+<,所以,0ln(1)a a a <+< 故(1)2ln(1)2h a a a a +=+-+>此时,(1)0h a +<不成立. ………………………12分综上讨论可得所求a 的范围是:2e 1e 1a +>-或2a <-. ………………………13分19. (共14分)解:(Ⅰ)由已知可得222214a b e a -==,所以2234a b = ① ……………1分 又点3(1,)2M 在椭圆C 上,所以221914a b+= ② ……………2分 由①②解之,得224,3a b ==.故椭圆C 的方程为22143x y +=. ……………5分 (Ⅱ) 当0k =时,(0,2)P m 在椭圆C上,解得2m =±,所以||OP =……6分 当0k ≠时,则由22,1.43y kx m x y =+⎧⎪⎨+=⎪⎩消y 化简整理得:222(34)84120k x kmx m +++-=,222222644(34)(412)48(34)0k m k m k m ∆=-+-=+-> ③ ……………8分 设,,A B P 点的坐标分别为112200(,)(,)(,)x y x y x y 、、,则 012012122286,()23434km m x x x y y y k x x m k k=+=-=+=++=++. ……………9分 由于点P 在椭圆C 上,所以 2200143x y +=. ……………10分 从而222222216121(34)(34)k m m k k +=++,化简得22434m k =+,经检验满足③式. ………11分又||OP =====………………………12分因为12k<≤,得23434k<+≤,有2331443k≤<+,2OP<≤. ………………………13分综上,所求OP的取值范围是. ………………………14分(Ⅱ)另解:设,,A B P点的坐标分别为112200(,)(,)(,)x y x y x y、、,由,A B在椭圆上,可得2211222234123412x yx y⎧+=⎨+=⎩①②………………………6分①—②整理得121212123()()4()()0x x x x y y y y-++-+=③………………………7分由已知可得OP OA OB=+,所以120120x x xy y y+=⎧⎨+=⎩④⑤……………………8分由已知当1212y ykx x-=-,即1212()y y k x x-=-⑥………………………9分把④⑤⑥代入③整理得0034x ky=-………………………10分与22003412x y+=联立消x整理得202943yk=+……………………11分由22003412x y+=得2200443x y=-,所以222222000002413||4443343OP x y y y yk=+=-+=-=-+……………………12分因为12k≤,得23434k≤+≤,有2331443k≤≤+,2OP≤≤. ………………………13分所求OP的取值范围是2. ………………………14分20. (共13分)解:(1)根据题设中有关字母的定义,12342,1,0,1,0(5,6,7)jk k k k k j======12342,213,2103,4,4(5,6,7,)mb b b b b m==+==++====// 112123123412345(1)412(2)423,(3)434,(4)444,(5)45 4.g b g b b g b b b g b b b b g b b b b b =-⨯=-=+-⨯=-=++-⨯=-=+++-⨯=-=++++-⨯=-(2)一方面,1(1)()m g m g m b n ++-=-,根据“数列A 含有n 项”及j b 的含义知1m b n +≤, 故0)()1(≤-+m g m g ,即)1()(+≥m g m g ① …………………7分 另一方面,设整数{}12max ,,,n M a a a =,则当m M ≥时必有m b n =, 所以(1)(2)(1)()(1)g g g M g M g M ≥≥≥-==+=所以()g m 的最小值为(1)g M -. …………………9分 下面计算(1)g M -的值:1231(1)(1)M g M b b b b n M --=++++--1231()()()()M b n b n b n b n -=-+-+-++- 233445()()()()M M M M k k k k k k k k k k =----+----+----++- 23[2(1)]M k k M k =-+++-12312(23)()M M k k k Mk k k k =-++++++++123()n M a a a a b =-+++++ 123()n a a a a n =-+++++ …………………12分 ∵123100n a a a a n ++++-= , ∴(1)100,g M -=-∴()g m 最小值为100-. …………………13分说明:其它正确解法按相应步骤给分.。
最新2019年海淀高三年级第二学期数学期中练习试题-附标准答案(文)

海淀区高三年级第二学期期中练习数 学 (文科) 2019.4选择题 (共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1、已知集合{}30<<∈=x x A R ,{}42≥∈=x x B R ,则=B AA. {}2 23x x x ≤-≤<或 B. {}32<<x x C. {}32<≤x x D. R2. 设0.5323, log 2, cos 3a b c π===,则A. c b a <<B. c a b <<C. a b c <<D. b c a << 3.函数1()x f x x+=图象的对称中心为 A .(0,0) B.(0,1)C. (1,0)D. (1,1)4. 执行如图所示的程序框图,若输入x 的值为2,则输出的x 值为A. 25 B .24 C. 23 D .225.从集合{1,1,2}A =-中随机选取一个数记为k ,从集合{2,1,2}B =-中随机选取一个数记为b ,则直线y kx b =+不经过第三象限的概率为A . 29 B. 13 C. 49D. 596. 在同一个坐标系中画出函数,sin x y a y ax ==的部分图象,其中01a a >≠且,则下列所给图象中可能正确的是7.2a -≤≤A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件8.若直线l 被圆22:2C x y +=所截的弦长不小于2,则l 与下列曲线一定有公共点的是A .22(1)1x y -+= B ..2212x y += C. 2y x = D .221x y -=非选择题(共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9. 计算21i=+__________________. 10. 为了解本市居民的生活成本,甲、乙、丙三名同学利用假期分别对三个社区进行了“家庭每月日常消费额”的调查.他们将调查所得到的数据分别绘制成频率分布直方图(如图所示),记甲、乙、丙所调查数据的标准差分别为1s ,2s ,3,s 则它们的大小关系为 . (用“>”连接)11. 如图,在正方体1111ABCD A B C D -中,点P 是上底面1111A B C D 内一动点,则三棱锥P ABC -的主视图与左视图的面积的比值为_________.12. 已知函数()x f x xe =,则'()f x =________;函数()f x 图象在点(0,(0))f 处的切线方程为_______13. 已知向量(,2),(1,)a x b y ==,其中,0x y ≥.若4≤a b ,则y x -的取值范围为 .14.如图,线段AB =8,点C 在线段AB 上,且AC =2,P 为线段CB 上一动点,点A 绕点C 旋转后与点B 绕点P 旋转后重合于点D .设CP =x , △CPD 的面积为()f x .则()f x 的PDCBA1A 1D 1B 1C 左视主视乙丙甲定义域为________;()f x 的最大值为 ________.三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15. (本小题共13分)在ABC ∆中,内角A 、B 、C 所对的边分别为a b c 、、,已知1tan 2B =,1tan 3C =,且1c =. (Ⅰ) 求tan()B C +; (Ⅱ) 求a 的值.16. (本小题共13分)数列{}n a 的前n 项和为n S ,若12a =且12n n S S n -=+(2n ≥,*n ∈N ).( I )求n S ;( II ) 是否存在等比数列{}n b 满足112339, b a b a b a ===,?若存在,则求出数列{}n b 的通项公式;若不存在,则说明理由.17. (本小题共13分)如图:梯形ABCD 和正△PAB 所在平面互相垂直,其中//,AB DC 12AD CD AB ==,且O 为AB 中点.( I ) 求证://BC 平面POD ; ( II ) 求证:AC ⊥PD .18. (本小题共14分)已知函数1()ln (0,)f x a x a a x=+≠∈ R (Ⅰ)若1a =,求函数()f x 的极值和单调区间;(II) 若在区间[1,e]上至少存在一点0x ,使得0()0f x <成立,求实数a 的取值范围.BACDOP19. (本小题共14分)已知椭圆2222:1x y C a b+= (0)a b >>经过点3(1,),2M 其离心率为12.(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线l 与椭圆C 相交于A 、B 两点,以线段,OA OB 为邻边作平行四边形OAPB ,其中顶点P 在椭圆C 上,O 为坐标原点. 求O 到直线距离的l 最小值.20. (本小题共13分)已知每项均是正整数的数列123100,,,,a a a a ,其中等于i 的项有i k 个(1,2,3)i =,设j j k k k b +++= 21(1,2,3)j =,12()100m g m b b b m =+++-(1,2,3).m =(Ⅰ)设数列1240,30,k k ==34510020,10,...0k k k k =====,求(1),(2),(3),(4)g g g g ; (II) 若123100,,,,a a a a 中最大的项为50, 比较(),(1)g m g m +的大小; (Ⅲ)若12100200a a a +++=,求函数)(m g 的最小值.海淀区高三年级第二学期期中练习数 学(文)答案及评分参考 2019.4选择题 (共40分)一、选择题(本大题共8小题,每小题5分,共40分)二、填空题(本大题共6小题,每小题5分. 共30分.有两空的题目,第一空3分,第二空2分)9.1i - 10. s 1>s 2>s 3 11. 1 12. (1)x x e +, y x = 13. [4,2]- 14. (2,4),三、解答题(本大题共6小题,共80分) 15. (共13分) 解:(I )因为1tan 2B =,1tan 3C =,tan tan tan()1tan tan B CB C B C ++=- …………………3分 代入得到,1123tan()111123B C ++==-⨯. …………………6分 (II )因为180A B C =-- …………………7分 所以tan tan[180()]tan()1A B C B C =-+=-+=- …………………9分又0180A <<,所以135A =. …………………10分 因为1tan 03C =>,且0180C <<,所以sin C = , …………………11分 由sin sin a c A C=,得a = …………………13分16. (共13分)解:(I )因为12n n S S n -=+,所以有12n n S S n --=对2n ≥,*N n ∈成立 ………2分 即2n a n =对2n ≥成立,又1121a S ==⋅, 所以2n a n =对*N n ∈成立 …………………3分 所以12n n a a +-=对*N n ∈成立 ,所以{}n a 是等差数列, …………………4分 所以有212nn a a S n n n +=⋅=+ ,*N n ∈ …………………6分 (II )存在. …………………7分 由(I ),2n a n =,*N n ∈对成立所以有396,18a a ==,又12a =, ………………9分 所以由 112339, b a b a b a ===,,则23123b b b b == …………………11分 所以存在以12b =为首项,公比为3的等比数列{}n b , 其通项公式为123n n b -=⋅ . ………………13分17. (共13分)证明: (I) 因为O 为AB 中点, 所以1,2BO AB =…………………1分 又//,AB CD 12CD AB =, 所以有,//,CD BO CD BO = …………………2分所以ODCB 为平行四边形,所以//,BC OD …………………3分又DO ⊂平面,POD BC ⊄平面,POD所以//BC 平面POD . …………………5分BAC DOP(II)连接OC .因为,//,CD BO AO CD AO ==所以ADCO 为 平行四边形, …………………6分 又AD CD =,所以ADCO 为菱形,所以 AC DO ⊥, …………………7分 因为正三角形PAB ,O 为AB 中点,所以PO AB ⊥ , …………………8 分又因为平面A B C D ⊥平面PAB ,平面A B C D平面P A B A B= , 所以PO ⊥平面ABCD , …………………10分 而AC ⊂平面ABCD ,所以 PO AC ⊥, 又PODO O =,所以AC ⊥平面POD . …………………12分又PD ⊂平面POD ,所以AC ⊥PD . …………………13分18. (共14分) 解:(I )因为2211'()a ax f x x x x -=-+= , …………………2分 当1a =, 21'()x f x x-=, 令'()0f x =,得 1x =,…………………3分又()f x 的定义域为(0,)+∞, ()f x ',()f x 随x 的变化情况如下表:所以时,的极小值为5分()f x 的单调递增区间为(1,)+∞,单调递减区间为(0,1); …………………6分(II )解法一: 因为2211'()a ax f x x x x-=-+= ,且0a ≠, 令'()0f x =,得到1x a=, 若在区间(0,]e 上存在一点0x ,使得0()0f x <成立,其充要条件是()f x 在区间(0,]e 上的最小值小于0即可. …………………7分BACDOP(1)当10x a=<,即0a <时,'()0f x <对(0,)x ∈+∞成立, 所以,()f x 在区间(0,]e 上单调递减, 故()f x 在区间(0,]e 上的最小值为11()ln f e a e a e e=+=+, 由10a e +<,得1a e <-,即1(,)a e∈-∞- …………………9分 (2)当10x a=>,即0a >时, ① 若1e a≤,则'()0f x ≤对(0,]x e ∈成立,所以()f x 在区间(0,]e 上单调递减, 所以,()f x 在区间(0,]e 上的最小值为11()ln 0f e a e a e e=+=+>, 显然,()f x 在区间(0,]e 上的最小值小于0不成立 …………………11分 ② 若10e a <<,即1a e>时,则有所以()f x 在区间(0,]e 上的最小值为()lnf a a a a=+, 由11()ln(1ln )0f a a a a a a=+=-<, 得 1ln 0a -<,解得a e >,即(,)a e ∈+∞. …………………13分 综上,由(1)(2)可知:1(,)(,)a e e∈-∞-+∞符合题意. …………………14分解法二:若在区间(0,]e 上存在一点0x ,使得0()0f x <成立, 即001ln 0a x x +<, 因为00x >, 所以,只需001ln 0ax x +< …………………7分 令()1ln g x ax x =+,只要()1ln g x ax x =+在区间(0,]e 上的最小值小于0即可因为'()ln (ln 1)g x a x a a x =+=+, 令'()(ln 1)0g x a x =+=,得1x e= …………………9分 (1)当0a <时:因为(0,)x e∈时,()1ln 0g x ax x =+>,而()1ln 1g e ae e ae =+=+, 只要10ae +<,得1a e <-,即1(,)a e∈-∞- …………………11分 (2)当0a >时:所以,当 (0,]x e ∈时,()g x 极小值即最小值为1()1ln1a g a e e e e=+⋅=-, 由10ae-<, 得 a e >,即(,)a e ∈+∞. …………………13分 综上,由(1)(2)可知,有1(,)(,)a e e∈-∞-+∞ . …………………14分19. (共14分)解:(Ⅰ)由已知,222214a b e a -==,所以2234a b =, ① …………………1分 又点3(1,)2M 在椭圆C 上,所以221914a b += , ② …………………2分 由①②解之,得224,3a b ==.故椭圆C 的方程为22143x y +=. …………………5分 (Ⅱ) 当直线l 有斜率时,设y kx m =+时,则由22,1.43y kx m x y =+⎧⎪⎨+=⎪⎩消去y 得,222(34)84120k x kmx m +++-=, …………………6分222222644(34)(412)48(34)0k m k m k m ∆=-+-=+->, ③…………7分设A 、B 、P 点的坐标分别为112200(,)(,)(,)x y x y x y 、、,则:012012122286,()23434km mx x x y y y k x x m k k =+=-=+=++=++,…………8分 由于点P 在椭圆C 上,所以2200143x y +=. ……… 9分 从而222222216121(34)(34)k m m k k +=++,化简得22434m k =+,经检验满足③式. ………10分 又点O 到直线l 的距离为:d ===≥= ………11分 当且仅当0k =时等号成立 …………12分当直线l 无斜率时,由对称性知,点P 一定在x 轴上,从而P 点为(2,0),(2,0)-,直线l 为1x =±,所以点O 到直线l 的距离为1 ……13分所以点O 到直线l……14分20. (共13分)解: (I) 因为数列1240,30,k k ==320,k =410k =, 所以123440,70,90,100b b b b ====,所以(1)60,(2)90,(3)100,(4)100g g g g =-=-=-=-. …………………3分 (II) 一方面,1(1)()100m g m g m b ++-=-,根据j b 的含义知1100m b +≤,故0)()1(≤-+m g m g ,即 )1()(+≥m g m g , ① …………………5分 当且仅当1100m b +=时取等号. 因为123100,,,,a a a a 中最大的项为50,所以当50m ≥时必有100m b =,所以(1)(2)(49)(50)(51)g g g g g >>>===即当149m <<时,有()(1)g m g m >+; 当49m ≥时,有()(1)g m g m =+ . …………………7分(III )设M 为{}12100,,,a a a 中的最大值.由(II )可以知道,()g m 的最小值为()g M . 下面计算()g M 的值.123()100M g M b b b b M =++++-1231(100)(100)(100)(100)M b b b b -=-+-+-++-.......... 233445()()()()M M M M k k k k k k k k k k =----+----+----++- 23[2(1)]M k k M k =-+++- 12312(23)()M M k k k Mk k k k =-++++++++ 123100()M a a a a b =-+++++ 123100()100a a a a =-+++++, ∵123100200a a a a ++++= , ∴()100g M =-, ∴()g m 最小值为100-.…………………13分说明:其它正确解法按相应步骤给分.。
2019-2020学年海淀高三年级第二学期数学期中练习试题-附详细答案(理)

海淀区高三年级第二学期期中练习数 学 (理科) 2019.4选择题 (共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1、已知集合{}30<<∈=x x A R ,{}42≥∈=x x B R ,则=B AA. {}32<<x xB. {}32<≤x xC. {}322<≤-≤x x x 或D. R2.已知数列{}n a 为等差数列,n S 是它的前n 项和.若21=a ,123=S ,则=4S A .10 B .16 C .20 D .243. 在极坐标系下,已知圆C 的方程为2cos ρθ=,则下列各点在圆C 上的是 A .1,3π⎛⎫- ⎪⎝⎭B . 1,6π⎛⎫⎪⎝⎭C.34π⎫⎪⎭D .54π⎫⎪⎭4.执行如图所示的程序框图,若输出x 的值为23,则输入的x 值为A .0 B.1 C .2 D .11 5.已知平面l =αβ,m 是α内不同于l 的直线,那么下列命题中错误..的是 A .若β//m ,则l m // B .若l m //,则β//m C .若β⊥m ,则l m ⊥ D .若l m ⊥,则β⊥m 6. 已知非零向量,,a b c 满足++=a b c 0,向量,a b 的夹角为120,且||2||=b a ,则向量a 与c 的夹角为A .︒60B .︒90C .︒120D . ︒1507.如果存在正整数ω和实数ϕ使得函数)(cos )(2ϕω+=x x f (ω,ϕ为常数)的图象如图所示(图象经过点(1,0)),那么ω的值为A .1B .2C . 3 D. 48.已知抛物线M :24y x =,圆N :222)1(r y x =+-(其中r 为常数,0>r ).过点(1,0)的直线l 交圆N 于C 、D 两点,交抛物线M 于A 、B 两点,且满足BD AC =的直线l 只有三条的必要条件是A .(0,1]r ∈B .(1,2]r ∈C .3(,4)2r ∈D .3[,)2r ∈+∞非选择题(共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9.复数3i1i-+= . 10.为了解本市居民的生活成本,甲、乙、丙三名同学利用假期分别对三个社区进行了“家庭每月日常消费额”的调查.他们将调查所得到的数据分别绘制成频率分布直方图(如图所示),记甲、乙、丙所调查数据的标准差分别为1s ,2s ,3s ,则它们的大小关系为 . (用“>”连接)11.如图,A ,B ,C 是⊙O 上的三点,BE 切⊙O 于点B ,D 是CE 与⊙O 的交点.若︒=∠70BAC ,则=∠CBE ______;若2=BE ,4=CE , 则=CD .12.已知平面区域}11,11|),{(≤≤-≤≤-=y x y x D ,在区域D 内任取一点,则取到的点位于直线y kx =(k R ∈)下方的概率为____________ .13.若直线l 被圆22:2C x y +=所截的弦长不小于2,则在下列曲线中:乙丙0.0002甲①22-=x y ② 22(1)1x y -+= ③ 2212x y += ④ 221x y -=与直线l 一定有公共点的曲线的序号是 . (写出你认为正确的所有序号)14.如图,线段AB =8,点C 在线段AB 上,且AC =2,P 为线段CB 上一动点,点A 绕点C 旋转后与点B 绕点P 旋转后重合于点D .设CP =x , △CPD 的面积为()f x .则()f x 的定义域为 ; '()f x 的零点是 .三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15. (本小题共13分)在ABC ∆中,内角A 、B 、C 所对的边分别为,,a b c ,已知1tan 2B =,1tan 3C =,且1c =. (Ⅰ)求tan A ;(Ⅱ)求ABC ∆的面积.16. (本小题共14分)在如图的多面体中,EF ⊥平面AEB ,AE EB ⊥,//AD EF ,//EF BC ,24BC AD ==,3EF =,2AE BE ==,G 是BC 的中点.(Ⅰ) 求证://AB 平面DEG ; (Ⅱ) 求证:BD EG ⊥;(Ⅲ) 求二面角C DF E --的余弦值.17. (本小题共13分)某厂生产的产品在出厂前都要做质量检测,每一件一等品都能通过检测,每一件二等品通过检测的概率为23.现有10件产品,其中6件是一等品,4件是二等品. (Ⅰ) 随机选取1件产品,求能够通过检测的概率;ACP BD A DFEB G C(Ⅱ)随机选取3件产品,其中一等品的件数记为X ,求X 的分布列; (Ⅲ) 随机选取3件产品,求这三件产品都不能通过检测的概率.18. (本小题共13分)已知函数()ln f x x a x =-,1(), (R).ag x a x+=-∈ (Ⅰ)若1a =,求函数()f x 的极值;(Ⅱ)设函数()()()h x f x g x =-,求函数()h x 的单调区间;(Ⅲ)若在[]1,e (e 2.718...=)上存在一点0x ,使得0()f x <0()g x 成立,求a 的取值范围.19. (本小题共14分)已知椭圆2222:1x y C a b += (0)a b >>经过点3(1,),2M 其离心率为12.(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线1:(||)2l y kx m k =+≤与椭圆C 相交于A 、B 两点,以线段,OA OB 为邻边作平行四边形OAPB ,其中顶点P 在椭圆C 上,O 为坐标原点.求OP 的取值范围.20. (本小题共13分)已知每项均是正整数的数列A :123,,,,n a a a a ,其中等于i 的项有i k 个(1,2,3)i =⋅⋅⋅,设j j k k k b +++= 21 (1,2,3)j =,12()m g m b b b nm =+++-(1,2,3)m =⋅⋅⋅.(Ⅰ)设数列:1,2,1,4A ,求(1),(2),(3),(4),(5)g g g g g ; (Ⅱ)若数列A 满足12100n a a a n +++-=,求函数)(m g 的最小值.海淀区高三年级第二学期期中练习数 学(理)答案及评分参考 2019.4选择题 (共40分)一、选择题(本大题共8小题,每小题5分,共40分)二、填空题(本大题共6小题,每小题5分. 共30分.有两空的题目,第一空3分,第二空2分)9.12i - 10. s 1>s 2>s 3 11. 70; 3 12.1213. ① ③ 14. (2,4); 3 三、解答题(本大题共6小题,共80分) 15.(共13分) 解:(I )因为1tan 2B =,1tan 3C =,tan tan tan()1tan tan B CB C B C ++=-, …………………1分代入得到,1123tan()111123B C ++==-⨯ . …………………3分 因为180A B C =-- , …………………4分所以tan tan(180())tan()1A B C B C =-+=-+=-. …………………5分 (II )因为0180A <<,由(I )结论可得:135A = . …………………7分 因为11tan tan 023B C =>=>,所以090C B <<< . …………8分所以sin B=sin C =. …………9分由sin sin a cA C=得a =, …………………11分 所以ABC ∆的面积为:11sin 22ac B =. ………………13分16. (共14分)解:(Ⅰ)证明:∵//,//AD EF EF BC ,∴//AD BC .又∵2BC AD =,G 是BC 的中点, ∴//AD BG ,∴四边形ADGB 是平行四边形,∴ //AB DG . ……………2分 ∵AB ⊄平面DEG ,DG ⊂平面DEG ,∴//AB 平面DEG . …………………4分 (Ⅱ) 解法1证明:∵EF ⊥平面AEB ,AE ⊂平面AEB , ∴EF AE ⊥, 又,AE EB EBEF E ⊥=,,EB EF ⊂平面BCFE ,∴AE ⊥平面BCFE . ………………………5分过D 作//DH AE 交EF 于H ,则DH ⊥平面BCFE .∵EG ⊂平面BCFE , ∴DH EG ⊥. ………………………6分 ∵//,//AD EF DH AE ,∴四边形AEHD 平行四边形, ∴2EH AD ==,∴2EH BG ==,又//,EH BG EH BE ⊥, ∴四边形BGHE 为正方形,∴BH EG ⊥, ………………………7分H ADFEBGC又,BH DH H BH =⊂平面BHD ,DH ⊂平面BHD ,∴EG ⊥平面BHD . ………………………8分 ∵BD ⊂平面BHD ,∴BD EG ⊥. ………………………9分 解法2∵EF ⊥平面AEB ,AE ⊂平面AEB ,BE ⊂平面AEB ,∴EF AE ⊥,EF BE ⊥,又AE EB ⊥,∴,,EB EF EA 两两垂直. ……………………5分 以点E 为坐标原点,,,EB EF EA 分别为,,x y z 轴建立如图的空间直角坐标系.由已知得,A (0,0,2),B (2,0,0), C (2,4,0),F (0,3,0),D (0,2,2), G (2,2,0). …………………………6分∴(2,2,0)EG =,(2,2,2)BD =-,………7分 ∴22220BD EG ⋅=-⨯+⨯=, ………8分 ∴BD EG ⊥. …………………………9分(Ⅲ)由已知得(2,0,0)EB =是平面EFDA 的法向量. …………………………10分 设平面DCF 的法向量为(,,)x y z =n ,∵(0,1,2),(2,1,0)FD FC =-=,∴00FD n FC n ⎧⋅=⎪⎨⋅=⎪⎩,即2020y z x y -+=⎧⎨+=⎩,令1z =,得(1,2,1)=-n . …………………………12分设二面角C DF E --的大小为θ,则cos cos ,6EB =<>==-θn , …………………………13分 ∴二面角C DF E --的余弦值为 …………………………14分 17. (共13分)解:(Ⅰ)设随机选取一件产品,能够通过检测的事件为A …………………………1分事件A 等于事件 “选取一等品都通过检测或者是选取二等品通过检测” ……………2分151332104106)(=⨯+=A p …………………………4分 (Ⅱ) 由题可知X 可能取值为0,1,2,3.30463101(0)30C C P X C ===,21463103(1)10C C P X C ===, 12463101(2)2C C P X C ===,03463101(3)6C C P X C ===. ………………8分……………9分(Ⅲ)设随机选取3件产品都不能通过检测的事件为B ……………10分 事件B 等于事件“随机选取3件产品都是二等品且都不能通过检测” 所以,3111()()303810P B =⋅=. ……………13分18. (共13分)解:(Ⅰ)()f x 的定义域为(0,)+∞, ………………………1分 当1a =时,()ln f x x x =-,11()1x f x x x-'=-=, ………………………2分………………………3分所以()f x 在1x =处取得极小值1. ………………………4分 (Ⅱ)1()ln ah x x a x x+=+-, 22221(1)(1)[(1)]()1a a x ax a x x a h x x x x x +--++-+'=--==………………………6分 ①当10a +>时,即1a >-时,在(0,1)a +上()0h x '<,在(1,)a ++∞上()0h x '>, 所以()h x 在(0,1)a +上单调递减,在(1,)a ++∞上单调递增; ………………………7分 ②当10a +≤,即1a ≤-时,在(0,)+∞上()0h x '>,所以,函数()h x 在(0,)+∞上单调递增. ………………………8分 (III )在[]1,e 上存在一点0x ,使得0()f x <0()g x 成立,即 在[]1,e 上存在一点0x ,使得0()0h x <,即函数1()ln ah x x a x x+=+-在[]1,e 上的最小值小于零. ………………………9分 由(Ⅱ)可知①即1e a +≥,即e 1a ≥-时, ()h x 在[]1,e 上单调递减,所以()h x 的最小值为(e)h ,由1(e)e 0eah a +=+-<可得2e 1e 1a +>-, 因为2e 1e 1e 1+>--,所以2e 1e 1a +>-; ………………………10分 ②当11a +≤,即0a ≤时, ()h x 在[]1,e 上单调递增,所以()h x 最小值为(1)h ,由(1)110h a =++<可得2a <-; ………………………11分 ③当11e a <+<,即0e 1a <<-时, 可得()h x 最小值为(1)h a +, 因为0ln(1)1a <+<,所以,0ln(1)a a a <+< 故(1)2ln(1)2h a a a a +=+-+>此时,(1)0h a +<不成立. ………………………12分综上讨论可得所求a 的范围是:2e 1e 1a +>-或2a <-. ………………………13分19. (共14分)解:(Ⅰ)由已知可得222214a b e a -==,所以2234a b = ① ……………1分 又点3(1,)2M 在椭圆C 上,所以221914a b+= ② ……………2分 由①②解之,得224,3a b ==.故椭圆C 的方程为22143x y +=. ……………5分 (Ⅱ) 当0k =时,(0,2)P m 在椭圆C上,解得2m =±,所以||OP = ……6分 当0k ≠时,则由22,1.43y kx m x y=+⎧⎪⎨+=⎪⎩ 消y 化简整理得:222(34)84120k x kmx m +++-=,222222644(34)(412)48(34)0k m k m k m ∆=-+-=+-> ③ ……………8分 设,,A B P 点的坐标分别为112200(,)(,)(,)x y x y x y 、、,则012012122286,()23434km mx x x y y y k x x m k k =+=-=+=++=++. ……………9分 由于点P 在椭圆C 上,所以 2200143x y +=. ……………10分 从而222222216121(34)(34)k m m k k +=++,化简得22434m k =+,经检验满足③式. ………11分又||OP ===== ………………………12分因为102k <≤,得23434k <+≤,有2331443k ≤<+,2OP <≤. ………………………13分 综上,所求OP的取值范围是. ………………………14分 (Ⅱ)另解:设,,A B P 点的坐标分别为112200(,)(,)(,)x y x y x y 、、, 由,A B 在椭圆上,可得2211222234123412x y x y ⎧+=⎨+=⎩①② ………………………6分 ①—②整理得121212123()()4()()0x x x x y y y y -++-+=③ ………………………7分 由已知可得OP OA OB =+,所以120120x x x y y y +=⎧⎨+=⎩④⑤……………………8分由已知当1212y y k x x -=- ,即1212()y y k x x -=- ⑥ ………………………9分把④⑤⑥代入③整理得0034x ky =- ………………………10分与22003412x y +=联立消0x 整理得202943y k =+ ……………………11分由22003412x y +=得2200443x y =-, 所以222222000002413||4443343OP x y y y y k =+=-+=-=-+ ……………………12分因为12k≤,得23434k≤+≤,有2331443k≤≤+,2OP≤≤. ………………………13分所求OP的取值范围是. ………………………14分20. (共13分)解:(1)根据题设中有关字母的定义,12342,1,0,1,0(5,6,7)jk k k k k j======12342,213,2103,4,4(5,6,7,)mb b b b b m==+==++====112123123412345(1)412(2)423,(3)434,(4)444,(5)45 4.g bg b bg b b bg b b b bg b b b b b=-⨯=-=+-⨯=-=++-⨯=-=+++-⨯=-=++++-⨯=-(2)一方面,1(1)()mg m g m b n++-=-,根据“数列A含有n项”及jb的含义知1mb n+≤,故0)()1(≤-+mgmg,即)1()(+≥mgmg①…………………7分另一方面,设整数{}12max,,,nM a a a=,则当m M≥时必有mb n=,所以(1)(2)(1)()(1)g g g M g M g M≥≥≥-==+=所以()g m的最小值为(1)g M-. …………………9分下面计算(1)g M-的值:1231(1)(1)Mg M b b b b n M--=++++--1231()()()()Mb n b n b n b n-=-+-+-++-233445()()()()M M M M k k k k k k k k k k =----+----+----++-23[2(1)]Mk k M k=-+++-12312(23)()M Mk k k Mk k k k=-++++++++123()n Ma a a a b=-+++++123()na a a a n=-+++++…………………12分∵123100na a a a n++++-=,∴(1)100,g M-=-∴()g m最小值为100-. …………………13分说明:其它正确解法按相应步骤给分.。
【最新】北京市海淀区高三下册第二学期期中考试练习数学(理)试题及答案.doc

3
(Ⅲ)当 PA= AB= 2,二面角 C- AN -D的大小为 时,求 PN 的长.
3
18.(本小题满分 13 分)
已知函数 f ( x) = ln x+ 1 - 1, g( x) x
(Ⅰ)求函数 f ( x) 的最小值;
x1 ln x
(Ⅱ)求函数 g( x) 的单调区间;
(Ⅲ)求证:直线 y= x不是曲线 y = g( x) 的切线。
,即
,………………… 10
AD n 0
2y 0
分
取 z 1, 得到 n (
1 ,0,1) ,
………………… 11
分 因为 AP (0,0,2) , AC (2,2,0)
AP m 0
2c 0
所以
,即
,
AC m 0
2a 2b 0
取 a 1 得 , 到 m (1, 1,0) ,
分
π1
因为二面 C AN D 大小为 , 所以 |cos m, n | cos
3
………………… 9 分 ………………… 11 ………………… 13
16 解 : (I) 由山下试验田 4 株青蒿样本青蒿素产量数据,得样本平均数
x 3.6 4.4 4.4 3.6 4 4
则山下试验田 100株青蒿的青蒿素产量 S 估算为
………………… 2 分
S 100x 400 g
………………… 3 分
在 ACD 中,由正弦定理 , 有 AC
AD
sin ADC sin
分
在 BCD 中,由正弦定理 , 有 BC
BD
sin BDC sin
分
因
为
A
D
Cπ
, B 所D
2019-2020海淀区高三年级第一学期期中练习试题【附答案】

海淀区高三年级第一学期期中练习数 学 2019.11本试卷共4页,150分。
考试时长120分钟。
考生务必将答案答在答题纸上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合{|10}A x x =+≤,{|}B x x a =≥. 若A B =R ,则实数a 的值可以为(A )2 (B )1 (C )0(D )2-(2)下列函数中,在区间(0,)+∞上不是..单调函数的是 (A )y x = (B )2y x =(C)y x =(D )|1|y x =-(3)已知等差数列{}n a 的前n 项和为n S . 若33S a =,且30a ≠,则43S S = (A )1 (B )53(C )83(D )3(4)不等式11x>成立的一个充分不必要条件是 (A )102x <<(B )1x > (C )01x <<(D )0x <(5)如图,角α以Ox 为始边,它的终边与单位圆O 相交于点P点P 的横坐标为35,则sin()2απ+的值为 (A )35-(B )35(C )45-(D )45(6)在四边形ABCD 中,AB ∥CD , AC AB AD λμ=+(λ,)μ∈R . 若λμ+=32, 则||||CD AB = (A )13(B )12(C )1 (D )2(7)已知函数()322f x x x x k =+--. 若存在实数0x ,使得00()()f x f x -=-成立,则实数k 的取值范围是 (A )[1,)-+∞ (B )(,1]-∞- (C )[0,)+∞(D )(,0]-∞(8)设集合A 是集合*N 的子集,对于i ∈*N ,定义1, ,()0, .i i A A i A ϕ∈⎧=⎨∉⎩给出下列三个结论:①存在*N 的两个不同子集A ,B ,使得任意i ∈*N 都满足()0i AB ϕ=且()1i A B ϕ=;②任取*N 的两个不同子集A ,B ,对任意i ∈*N 都有()()()i i i A B A B ϕϕϕ=⋅; ③任取*N 的两个不同子集A ,B ,对任意i ∈*N 都有()()()i i i A B A B ϕϕϕ=+.其中所有正确结论的序号是 (A )①② (B )②③ (C )①③(D )①②③第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。
2019-2020第二学期北京海淀高三期中数学试卷

②函数 的图象的对称轴方程为 ;
③关于 的方程 最多有 个实数根.
其中,所有正确结论的序号是.
注:本题给出的结论中,有多个符合题目要求。全部选对得5分,不选或有错选得0分,其他得3分。
三、解答题共6小题,共85分。解答应写出文字说明、演算步骤或证明过程。
(16)(本小题共14分)
(18)(本小题共14分)
科技创新能力是决定综合国力和国际竞争力的关键因素,也是推动经济实现高质量发展的重要支撑,而研发投入是科技创新的基本保障.下图是某公司从2010年到2019年这10年研发投入的数据分布图:
其中折线图是该公司研发投入占当年总营收的百分比,条形图是当年研发投入的数值(单位:十亿元).
海淀区高三年级第二学期阶段性测试
数学
第一部分(选择题共40分)
一、选择题共10小题,每小题4分,共40分。在每小题列出的四个选项中,选出符合题目要求的一项。
(1)在复平面内,复数 对应的点位于
(A)第一象限
(B)第二象限
(C)第三象限
(D)第四象限
(2)已知集合 , ,则集合 可以是
(A)
(B)
(C)
(D)
(3)已知双曲线 的离心率为 ,则 的(D)
(4)已知实数 , , 在数轴上对应的点如图所示,则下列式子中正确的是
(A)
(B)
(C)
(D)
(5)在 的展开式中,常数项为
(A)
(B)
(C)
(D)
(6)如图,半径为 的圆 与直线 相切于点 ,圆 沿着直线 滚动.当圆 滚动到圆 时,圆 与直线 相切于点 ,点 运动到点 ,线段 的长度为 ,则点 到直线 的距离为
(C)充分必要条件
(新课标人教版)北京市海淀区2019-2020学年高二下期中考试数学理测试题(附详细答案)

海淀区高二年级第二学期期中练习数 学(理科)2019.4学校 班级 姓名 成绩本试卷共100分.考试时间90分钟.一、选择题:本大题共8小题, 每小题4分,共32分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数12i z =-的虚部是A. 2-B. 2C.2i -D. 2i 2.下列导数运算错误..的是( ) A. 21()'2x x --=- B.(cos )'sin x x =- C. (ln )'1ln x x x =+ D. (2)'2ln 2x x = 3. 函数()f x 的图象如图所示,则()f x 的极大值点的个数为( ) A. 0 B. 1 C. 2 D. 34.若函数()f x 的导函数'()(2)e x f x x x -=-,则下列关系一定成立的是( )A.(2)0f >B. (0)(1)f f >C. (2)(1)f f <D. (2)(3)f f > 5. 已知两个命题::p “若复数12,z z 满足120z z ->,则1z >2z .”:q “存在唯一的一个实数对(,)a b 使得i i(2i)a b -=+.” 其真假情况是( )A.p 真q 假B. p 假q 假C. p 假q 真D. p 真q 真 6.若小球自由落体的运动方程为21()2s t gt =(g 为常数),该小球在1t =到3t =的平均速度为v ,在2t =的瞬时速度为2v ,则v 和2v 关系为( ) A .2vv > B .2v v < C .2v v = D .不能确定7.如图,过原点斜率为k 的直线与曲线ln y x =交于两点11(,)A x y ,22(,)B x y . ① k 的取值范围是1(0,)e.②1211k x x <<. ③ 当12(,)x x x ∈时,()ln f x kx x =-先减后增且恒为负. 以上结论中所有正确结论的序号是( ) A.① B.①② C.①③ D.②③8.已知函数32()f x ax bx cx d =+++,其导函数的图象如图所示,则函数()f x 的图象可能是( )二、填空题:本大题共4小题, 每小题4分,共16分.把答案填在题中横线上.9.计算1+2ii=_________. 10.2(3)x dx -=⎰_____________.11.已知()1xf x x =- ,则'()f x =______________. 12. 方程(1)1x x e -=的解的个数为_______________.三、解答题:本大题共5小题,共52分. 解答应写出文字说明,证明过程或演算步骤.13.(本小题12分)已知函数cx bx ax x f ++=23)(,其导函数为)('x f 的部分值如下表所示:根据表中数据,回答下列问题:(Ⅰ)实数c 的值为___________;当x = ________时,()f x 取得极大值...(将答案填写在横线上). (Ⅱ)求实数a ,b 的值.(Ⅲ)若()f x 在(,2)m m +上单调递减,求m 的取值范围.14.(本小题10分)-的底面ACDE满足DE //AC,AC=2DE.如图,四棱锥B ACDE(Ⅰ)若DC⊥平面ABC,AB⊥BC,求证:平面ABE⊥平面BCD;(Ⅱ)求证:在平面ABE内不存在直线与DC平行;某同学用分析法证明第(1)问,用反证法证明第(2)问,证明过程如下,请你在横线上填上合适的内容. (Ⅰ)证明:欲证平面ABE⊥平面BCD,Array只需证_______________________________,由已知AB⊥BC,只需证_________________,由已知DC⊥平面ABC可得DC⊥AB成立,所以平面ABE⊥平面BCD.(Ⅱ)证明:假设________________________________________,DC平面ABE.又因为DC⊄平面ABE,所以//又因为平面ACDE平面ABE=AE,所以__________________,又因为DE //AC,所以ACDE是平行四边形,=,这与_______________________________矛盾,所以AC DE所以假设错误,原结论正确.15.(本小题12分)已知函数()ln f x x ax =+(a ∈R ).(Ⅰ)若函数)(x f 在点))1(,1(f 处的切线与直线x y 2=平行,求实数a 的值及该切线方程; (Ⅱ)若对任意的),0(+∞∈x ,都有1)(≤x f 成立,求实数a 的取值范围.16. (本小题8分)请阅读问题1的解答过程,然后借鉴问题1的解题思路完成问题2的解答: 问题1:已知数集{}()1212,,1,2n n A a a a a a a n =≤<<<≥具有性质P :对任意的(),1i j i j n ≤≤≤,i j a a 与j ia a 两数中至少有一个属于A .若数集{}14,2,3,a a 具有性质P ,求14,a a 的值.1212n n 具有性质P :对任意的(),1i j i j n ≤≤≤,i j a a +与j i a a -两数中至少有一个属于A .若数集{}14,1,3,a a 具有性质P ,求14,a a 的值.17. (本小题10分)已知函数1()(0)f x x x=>,对于正数1x ,2x ,…,n x (n ∈N +),记12n n S x x x =+++,如图,由点(0,0),(,0)i x ,(,())i i x f x ,(0,())i f x 构成的矩形的周长为i C (1,2,,)i n =,都满足4i i C S =(1,2,,)i n =.(Ⅰ)求1x ;(Ⅱ)猜想n x 的表达式(用n 表示),并用数学归纳法证明.海淀区高二年级第二学期期中练习参考答案数 学(理科)一、选择题:本大题共8小题, 每小题4分,共32分.AABD CC C D二、填空题:本大题共4小题, 每小题4分,共16分.9.2i - 10. 4- 11. 21(1)x -- 12. 1三、解答题:本大题共5小题,共52分. 解答应写出文字说明,证明过程或演算步骤. 13.(本小题12分)(Ⅰ)6,3. ------------------------------------------------------------------4分 (Ⅱ)解:2'()32f x ax bx c =++,--------------------------------------------------------------5分由已知表格可得'(1)8,'(3)0,f f =⎧⎨=⎩解得2,32.a b ⎧=-⎪⎨⎪=⎩---------------------------------------------7分(Ⅲ)解:由(Ⅱ)可得2'()2462(3)(1)f x x x x x =-++=--+,-----------------------8分 由'()0f x <可得(,1)x ∈-∞-(3,)+∞,------------------------------------------------9分因为()f x 在(,2)m m +上单调递减,所以仅需21m +≤-或者3m ≥, ------------------------------------------------------11分 所以m 的取值范为3m ≥或3m ≤-.-----------------------------------------------------12分 14.(本小题10分)(Ⅰ)证明:欲证平面ABE ⊥平面BCD ,---------------------------------------------------------------2分由已知AB ⊥BC ----------------------------------------------------4分 由已知DC ⊥平面ABC 可得DC ⊥AB 成立,所以平面ABE ⊥平面BCD .------------------------------------6分又因为DC ⊄平面ABE ,所以//DC 平面ABE . 又因为平面ACDE平面ABE =AE ,------------------------------------------8分 又因为DE //AC ,所以ACDE 是平行四边形,所以AC DE =-----------------------------------------------10分 所以假设错误,原结论正确.15.(本小题12分) (Ⅰ)解:11'()ax f x a x x+=+=,0x >.----------------------------------------------------------2分 由已知可得'(1)12f a =+=,解得1a =.---------------------------------------------------3分因为(1)1f =,所以在点))1(,1(f 处的切线方程为21y x =-.------------------------4分(Ⅱ)解1:若对任意),0(+∞∈x ,都有1)(≤x f 成立,即1ln xa x-≤成立.------------6分 设1ln ()xg x x-=, --------------------------------------------------------------7分 2ln 2'()x g x x-=,令'()0g x =,解得2e x =,则'(),()g x g x 的情况如下:分 所以()g x 的最小值为22(e )e g -=-, ------------------------------------------10分 所以,依题意只需实数a 满足2e a -≤-,---------------------------------------11分故所求a 的取值范围是2(,e ]--∞-. --------------------------------------------12分 解2:当0a ≥时,'()0f x >恒成立,所以函数()f x 的单调递增区间为(0,)+∞又因为11(1)ln(1)11f a a a+=+++>,所以不符题意,舍.--------------------6分当0a <时,令'()0f x =,得1x a=-.----------------------------------------------7分 所以'(),()f x f x 随x 的变化如下表所示:分 所以()f x 的最大值为1()f a-,------------------------------------------------------10分 所以,依题意只需11()ln()11f a a-=--≤即可,解得2e a -≤-.---------------11分 综上,a 的取值范围是2(,e ]--∞-.---------------------------------------------------12分16. (本小题8分)解:对于集合中最大的数4a ,因为444a a a +>,443a a +>,441a a +>-----------------2分所以44a a -,43a -,41a -,41a a -都属于该集合.--------------------------------------------4分 又因为14013a a ≤<<<,所以44a a -<43a -<41a -41a a <-.-----------------------6分-- 所以1440a a a =-=,431a -=,------------------------------------------------------------------7分 即140,4a a ==.-------------------------------------------------------------------------------------8分17. (本小题10分) (Ⅰ)解:由题意知,12(())2()i i i i i C x f x x x =+=+(1,2,,)i n =, 所以12i i i S x x =+(1,2,,)i n =.--------------------------------------------------------------1分令i =1,得11112S x x =+, 又11S x =,且1x >0,故11x =.---------------------------------------------------------------2分 (Ⅱ)解:令i =2,得22212S x x =+, 又212S x x =+,11x =,且2x >0,故21x =;------------------------------------3分 令i =3,得33312S x x =+, 又3123S x x x =++,11x =,21x =,且3x >0,故3x =----------4分由此猜想,n x =n ∈N +).-------------------------------------------------------5分 下面用数学归纳法证明:①当n =1时,11x =,命题成立;---------------------------------------------------------6分 ②假设n =k时命题成立,即k x =(k ∈N +), -----------------------------7分 则当n =k +1时,11112k k k S x x +++=+,又11k k k S S x ++=+,12k k k S x x =+, 故11111()2k k k k k x x x x x +++++=+,由k x =,得21110k k x +++-=,--------------------------------------8分所以1k x +=).-------------------------------------------9分 即当n =k +1时命题成立。
2019-2020学年北京市海淀区高三(上)期中数学试卷 (含答案解析)

2019-2020学年北京市海淀区高三(上)期中数学试卷一、选择题(本大题共8小题,共40.0分)1. 设集合A ={x|−5≤x <1},B ={x|x ≤2},则A ∪B =( )A. {x|x ≤2}B. {x|−5≤x <1}C. {x|−5≤x ≤2}D. {x|x <1}2. 下列函数中,在(−∞,0)上单调递减的是( )A. y =xx+1 B. y =1−xC. y =x 2+xD. y =1−x 23. 已知等差数列{a n }的前n 项和为S n ,a 10=15,且S 2=S 7,则a 8=( )A. 6B. 7C. 8D. 9 4. 不等式x 2−2x −3<0成立的一个充分不必要条件是 ( )A. (−1,3)B. (−2,0)C. (−12,32)D. (−1,4)5. 设角α的终边与单位圆相交于点P(−35,45),则sinα−cosα的值是( )A. −75B. −15C. 15 D. 756. 在梯形ABCD 中,DC ⃗⃗⃗⃗⃗ =2AB ⃗⃗⃗⃗⃗ =4PC ⃗⃗⃗⃗⃗ ,且AP ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μAD⃗⃗⃗⃗⃗⃗ ,则λ+μ的值为( )A. 1B. 2C. 52D. 37. 已知函数f(x)={x 2−x +3,x ⩽1x +2x ,x >1,设a ∈R ,若关于x 的方程f(x)=a|x −1|有且仅有一个实数解,则a 的取值范围是( )A. (1,3)B. (2√6−4,3)C. (1,2√3−1)D. (2√6−4,2√3−1)8. 设集合A ={a, b},集合,若A ∩B ={0},则A ∪B 等于( )A. {−1,0,3}B. {−2,0,3}C. {0,3,4}D. {1,0,3}二、填空题(本大题共6小题,共30.0分)9. 若向量a ⃗ =(1,k),b ⃗ =(−2,6),且a ⃗ //b ⃗ ,则实数k = ______ . 10. 已知函数f(x)={x(x +4),x <0,x(x −4),x ≥0,则该函数的零点的个数为________.11. 若数列{a n }的前n 项和为S n =log 3(n +1),则a 5=_________.12. 已知两个单位向量a ⃗ 和b ⃗ 的夹角为120°,则a ⃗ +b ⃗ 在b ⃗ 方向上的投影为___________.13.若函数f(x)=x+a2x , g(x)=x−lnx,对任意x1∈[1e,1],存在x2∈[1e,1],使得g(x1)≤f(x2)成立,则实数a的取值范围是________.14.已知ω>0,函数f(x)=cos(ωx−π3)过点(π2,0),则ω的最小值为________.三、解答题(本大题共6小题,共80.0分)15.已知等比数列{a n}的各项均为正数,且6a2,1,4a1成等差数列,3a6,a3,3a2成等比数列.(1)求数列{a n}的通项公式;(2)已知b n=log31a n,记c n=a n⋅b n,求数列{c n}的前n项和S n.16.已知函数f(x)=cos4x−2sinxcosx−sin4x.(1)求f(x)的最小正周期。
北京一零一中2019-2020学年度第二学期高三数学统练3试卷及答案

max{a1, a2, · · · , an−1} 表示 a1, a2, · · ·, an−1 中的最大项), 则以下结论:
①若数列 {an} 是常数列, 则 an = 0 (n ∈ N∗);
②若数列 {an} 是公差 d 0 的等差数列, 则 d < 0;
③若数列 {an} 是公比为 q 的等比数列, 则 q > 1;
13.
已知圆 x2 + y2 + mx +
1 4
= 0 与双曲线
y2 4
− x2 = 1 的渐近线相切, 则 m 的值为 _____ .
√
【参考答案】± 5.
14. 已知点 M(1, 0), N(0, −1), 若点 P 在函数 y = ln(x + 2) 的图像上, 则使得 △PMN 的面积为 1 的点 P 的个数为 _____ . 【参考答案】3.
北京一零一中 2019-2020 学年度第二学期高三数学统考三
一、选择题共 10 小题。在每小题列出的四个选项中,选出符合题目要求的一项。
1. 设集合 A = {x ∈ Z | x2 − 3x − 4 0}, B = {x | ex−2 < 1}, 则 A ∩ B = ( )
(A) {−1, 0, 1, 2}
④若存在正整数 T , 对任意 n ∈ N∗, 都有 an+T = an, 则 a1 是数列 {an} 的最大项.
所有正确的结论是 ( )
(A) ①②
(B) ②③
(C) ①②③
(D) ①②③④
【参考答案】(2019 上海闵行区一模 (改编) ) D
北京一零一中 2019-2020 学年度第二学期高三数学统考三 第 2 页(共 11 页)
【最新】北京市海淀区高三下学期期中考试练习数学理试卷及答案.doc

北京市海淀区2019届高三下学期期中练习数学(理)试题本试卷共4 页,150 分.考试时长120 分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.一、选择题共8 小题,每小题5 分,共40 分.在每小题列出的四个选项中,选出符合题目要求的一项.1.函数()f x=A.[0,+∞).[1,+∞).(-∞,0].(-∞,1]【知识点】函数的定义域与值域【试题解析】要使函数有意义,需满足:即所以函数的定义域为:.故答案为:A【答案】A2.某程序的框图如图所示,若输入的z=i(其中i为虚数单位),则输出的S 值为A.-1B.1C.-iD.i【知识点】算法和程序框图【试题解析】由题知:n=9时,否,是,则输出的值为。
故答案为:D【答案】D3.若x,y 满足2040x yx yy-+≥⎧⎪+-≤⎨⎪≥⎩,则12z x y=+的最大值为A.52B.3C.72D.4【知识点】线性规划【试题解析】作可行域:由图知:当目标函数线过点C (1,3)时,目标函数值最大,为故答案为:C 【答案】C4.某三棱锥的三视图如图所示,则其体积为A .3B .2C D 【知识点】空间几何体的表面积与体积空间几何体的三视图与直观图【试题解析】该三棱锥的底面是以2为底,以为高的三角形,高为1, 所以故答案为:A 【答案】A5.已知数列{}n a 的前n 项和为Sn ,则“ {}n a 为常数列”是“*,n n n N S na ∀∈=”的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【知识点】充分条件与必要条件 【试题解析】若为常数列,则; 反过来,若,则,即为常数列。
所以“为常数列”是“,”的充分必要条件。
故答案为:C 【答案】C6.在极坐标系中,圆C 1 :2cos ρθ=与圆C 2:2sin ρθ=相交于 A ,B 两点,则|AB |=A .1BCD . 2 【知识点】圆与圆的位置关系 【试题解析】化圆为标准方程,两圆方程作差,得相交弦AB 所在直线方程为:圆的圆心为(1,0),半径为1.所以圆心到直线AB 的距离为:所以弦长的一半为:即弦长为:。
2019年海淀高三年级第二学期数学期中练习试题-附答案(文)(精校版)

海淀区高三年级第二学期期中练习数 学 (文科) 2019.4选择题 (共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1、已知集合{}30<<∈=x x A R ,{}42≥∈=x x B R ,则=B AA. {}2 23x x x ≤-≤<或 B. {}32<<x x C. {}32<≤x x D. R2. 设0.5323, log 2, cos 3a b c π===,则A. c b a <<B. c a b <<C. a b c <<D. b c a << 3.函数1()x f x x+=图象的对称中心为 A .(0,0) B.(0,1)C. (1,0)D. (1,1)4. 执行如图所示的程序框图,若输入x 的值为2,则输出的x 值为A. 25 B .24 C. 23 D .225.从集合{1,1,2}A =-中随机选取一个数记为k ,从集合{2,1,2}B =-中随机选取一个数记为b ,则直线y kx b =+不经过第三象限的概率为A . 29 B. 13 C. 49D. 596. 在同一个坐标系中画出函数,sin xy a y ax ==的部分图象,其中01a a >≠且,则下列所给图象中可能正确的是7.2a -≤≤A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件8.若直线l 被圆22:2C x y +=所截的弦长不小于2,则l 与下列曲线一定有公共点的是A .22(1)1x y -+= B ..2212x y += C. 2y x = D .221x y -=非选择题(共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9. 计算21i=+__________________. 10. 为了解本市居民的生活成本,甲、乙、丙三名同学利用假期分别对三个社区进行了“家庭每月日常消费额”的调查.他们将调查所得到的数据分别绘制成频率分布直方图(如图所示),记甲、乙、丙所调查数据的标准差分别为1s ,2s ,3,s 则它们的大小关系为 . (用“>”连接)11. 如图,在正方体1111ABCD A B C D -中,点P 是上底面1111A B C D 内一动点,则三棱锥P ABC -的主视图与左视图的面积的比值为_________.12. 已知函数()x f x xe =,则'()f x =________;函数()f x 图象在点(0,(0))f 处的切线方程为_______13. 已知向量(,2),(1,)a x b y ==,其中,0x y ≥.若4≤a b ,则y x -的取值范围为 .14.如图,线段AB =8,点C 在线段AB 上,且AC =2,P 为线段CB 上一动点,点A 绕点C 旋转后与点B 绕点P 旋转后重合于点D .设CP =x , △CPD 的面积为()f x .则()f x 的PDCBA 1A 1D 1B 1C 左视主视乙丙甲定义域为________;()f x 的最大值为 ________.三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15. (本小题共13分)在ABC ∆中,内角A 、B 、C 所对的边分别为a b c 、、,已知1tan 2B =,1tan 3C =,且1c =. (Ⅰ) 求tan()B C +; (Ⅱ) 求a 的值.16. (本小题共13分)数列{}n a 的前n 项和为n S ,若12a =且12n n S S n -=+(2n ≥,*n ∈N ).( I )求n S ;( II ) 是否存在等比数列{}n b 满足112339, b a b a b a ===,?若存在,则求出数列{}n b 的通项公式;若不存在,则说明理由.17. (本小题共13分)如图:梯形ABCD 和正△PAB 所在平面互相垂直,其中//,AB DC 12AD CD AB ==,且O 为AB 中点.( I ) 求证://BC 平面POD ; ( II ) 求证:AC ⊥PD .18. (本小题共14分)已知函数1()ln (0,)f x a x a a x=+≠∈ R (Ⅰ)若1a =,求函数()f x 的极值和单调区间;(II) 若在区间[1,e]上至少存在一点0x ,使得0()0f x <成立,求实数a 的取值范围.BACDOP19. (本小题共14分)已知椭圆2222:1x y C a b += (0)a b >>经过点3(1,),2M 其离心率为12.(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线l 与椭圆C 相交于A 、B 两点,以线段,OA OB 为邻边作平行四边形OAPB ,其中顶点P 在椭圆C 上,O 为坐标原点. 求O 到直线距离的l 最小值.20. (本小题共13分)已知每项均是正整数的数列123100,,,,a a a a ,其中等于i 的项有i k 个(1,2,3)i =,设j j k k k b +++= 21(1,2,3)j =,12()100m g m b b b m =+++-(1,2,3).m =(Ⅰ)设数列1240,30,k k ==34510020,10,...0k k k k =====,求(1),(2),(3),(4)g g g g ; (II) 若123100,,,,a a a a 中最大的项为50, 比较(),(1)g m g m +的大小; (Ⅲ)若12100200a a a +++=,求函数)(m g 的最小值.海淀区高三年级第二学期期中练习数 学(文)答案及评分参考 2019.4选择题 (共40分)一、选择题(本大题共8小题,每小题5分,共40分)二、填空题(本大题共6小题,每小题5分. 共30分.有两空的题目,第一空3分,第二空2分)9.1i - 10. s 1>s 2>s 3 11. 1 12. (1)x x e +, y x = 13. [4,2]- 14. (2,4),三、解答题(本大题共6小题,共80分) 15. (共13分) 解:(I )因为1tan 2B =,1tan 3C =,tan tan tan()1tan tan B CB C B C ++=- …………………3分 代入得到,1123tan()111123B C ++==-⨯. …………………6分 (II )因为180A B C =-- …………………7分 所以tan tan[180()]tan()1A B C B C =-+=-+=- …………………9分又0180A <<,所以135A =. …………………10分 因为1tan 03C =>,且0180C <<,所以sin 10C = , …………………11分 由sin sin a c A C=,得a =. …………………13分16. (共13分)解:(I )因为12n n S S n -=+,所以有12n n S S n --=对2n ≥,*N n ∈成立 ………2分 即2n a n =对2n ≥成立,又1121a S ==⋅, 所以2n a n =对*N n ∈成立 …………………3分 所以12n n a a +-=对*N n ∈成立 ,所以{}n a 是等差数列, …………………4分 所以有212nn a a S n n n +=⋅=+ ,*N n ∈ …………………6分 (II )存在. …………………7分 由(I ),2n a n =,*N n ∈对成立所以有396,18a a ==,又12a =, ………………9分 所以由 112339, b a b a b a ===,,则23123b b b b == …………………11分 所以存在以12b =为首项,公比为3的等比数列{}n b ,其通项公式为123n n b -=⋅ . ………………13分17. (共13分)证明: (I) 因为O 为AB 中点, 所以1,2BO AB =…………………1分 又//,AB CD 12CD AB =, 所以有,//,CD BO CD BO = …………………2分所以ODCB 为平行四边形,所以//,BC OD …………………3分又DO ⊂平面,POD BC ⊄平面,POD所以//BC 平面POD . …………………5分BAC DOP(II)连接OC .因为,//,CD BO AO CD AO ==所以ADCO 为 平行四边形, …………………6分 又AD CD =,所以ADCO 为菱形,所以 AC DO ⊥, …………………7分 因为正三角形PAB ,O 为AB 中点,所以PO AB ⊥ , …………………8 分又因为平面A B C D ⊥平面PAB ,平面A B C D 平面P A B A B= , 所以PO ⊥平面ABCD , …………………10分 而AC ⊂平面ABCD ,所以 PO AC ⊥, 又PODO O =,所以AC ⊥平面POD . …………………12分又PD ⊂平面POD ,所以AC ⊥PD . …………………13分18. (共14分) 解:(I )因为2211'()a ax f x x x x-=-+= , …………………2分 当1a =, 21'()x f x x-=, 令'()0f x =,得 1x =,…………………3分又()f x 的定义域为(0,)+∞, ()f x ',()f x 随x 的变化情况如下表:所以时,的极小值为5分()f x 的单调递增区间为(1,)+∞,单调递减区间为(0,1); …………………6分(II )解法一: 因为2211'()a ax f x x x x-=-+= ,且0a ≠, 令'()0f x =,得到1x a=, 若在区间(0,]e 上存在一点0x ,使得0()0f x <成立,其充要条件是()f x 在区间(0,]e 上的最小值小于0即可. …………………7分BACDO P(1)当10x a=<,即0a <时,'()0f x <对(0,)x ∈+∞成立, 所以,()f x 在区间(0,]e 上单调递减, 故()f x 在区间(0,]e 上的最小值为11()ln f e a e a e e=+=+, 由10a e +<,得1a e <-,即1(,)a e∈-∞- …………………9分 (2)当10x a=>,即0a >时, ① 若1e a≤,则'()0f x ≤对(0,]x e ∈成立,所以()f x 在区间(0,]e 上单调递减, 所以,()f x 在区间(0,]e 上的最小值为11()ln 0f e a e a e e=+=+>, 显然,()f x 在区间(0,]e 上的最小值小于0不成立 …………………11分 ② 若10e a <<,即1a e>时,则有所以()f x 在区间(0,]e 上的最小值为()lnf a a a a=+, 由11()ln(1ln )0f a a a a a a=+=-<, 得 1ln 0a -<,解得a e >,即(,)a e ∈+∞. …………………13分 综上,由(1)(2)可知:1(,)(,)a e e∈-∞-+∞符合题意. …………………14分解法二:若在区间(0,]e 上存在一点0x ,使得0()0f x <成立, 即001ln 0a x x +<, 因为00x >, 所以,只需001ln 0ax x +< …………………7分 令()1ln g x ax x =+,只要()1ln g x ax x =+在区间(0,]e 上的最小值小于0即可因为'()ln (ln 1)g x a x a a x =+=+, 令'()(ln 1)0g x a x =+=,得1x e= …………………9分 (1)当0a <时:因为(0,)x e∈时,()1ln 0g x ax x =+>,而()1ln 1g e ae e ae =+=+, 只要10ae +<,得1a e <-,即1(,)a e∈-∞- …………………11分 (2)当0a >时:所以,当 (0,]x e ∈时,()g x 极小值即最小值为1()1ln1a g a e e e e=+⋅=-, 由10ae-<, 得 a e >,即(,)a e ∈+∞. …………………13分 综上,由(1)(2)可知,有1(,)(,)a e e∈-∞-+∞ . …………………14分19. (共14分)解:(Ⅰ)由已知,222214a b e a -==,所以2234a b =, ① …………………1分 又点3(1,)2M 在椭圆C 上,所以221914a b += , ② …………………2分 由①②解之,得224,3a b ==.故椭圆C 的方程为22143x y +=. …………………5分 (Ⅱ) 当直线l 有斜率时,设y kx m =+时,则由22,1.43y kx m x y =+⎧⎪⎨+=⎪⎩消去y 得,222(34)84120k x kmx m +++-=, …………………6分222222644(34)(412)48(34)0k m k m k m ∆=-+-=+->, ③…………7分 设A 、B 、P 点的坐标分别为112200(,)(,)(,)x y x y x y 、、,则:012012122286,()23434km mx x x y y y k x x m k k =+=-=+=++=++,…………8分 由于点P 在椭圆C 上,所以2200143x y +=. ……… 9分 从而222222216121(34)(34)k m m k k +=++,化简得22434m k =+,经检验满足③式. ………10分 又点O 到直线l 的距离为:2d ===≥= ………11分 当且仅当0k =时等号成立 …………12分当直线l 无斜率时,由对称性知,点P 一定在x 轴上,从而P 点为(2,0),(2,0)-,直线l 为1x =±,所以点O 到直线l 的距离为1 ……13分所以点O 到直线l的距离最小值为2……14分 20. (共13分)解: (I) 因为数列1240,30,k k ==320,k =410k =, 所以123440,70,90,100b b b b ====,所以(1)60,(2)90,(3)100,(4)100g g g g =-=-=-=- . …………………3分 (II) 一方面,1(1)()100m g m g m b ++-=-,根据j b 的含义知1100m b +≤,故0)()1(≤-+m g m g ,即 )1()(+≥m g m g , ① …………………5分 当且仅当1100m b +=时取等号. 因为123100,,,,a a a a 中最大的项为50,所以当50m ≥时必有100m b =,所以(1)(2)(49)(50)(51)g g g g g >>>===即当149m <<时,有()(1)g m g m >+; 当49m ≥时,有()(1)g m g m =+ . …………………7分(III )设M 为{}12100,,,a a a 中的最大值.由(II )可以知道,()g m 的最小值为()g M . 下面计算()g M 的值.123()100M g M b b b b M =++++-1231(100)(100)(100)(100)M b b b b -=-+-+-++-_.__._ 233445()()()()M M M M k k k k k k k k k k =----+----+----++- 23[2(1)]M k k M k =-+++- 12312(23)()M M k k k Mk k k k =-++++++++ 123100()M a a a a b =-+++++ 123100()100a a a a =-+++++, ∵123100200a a a a ++++= , ∴()100g M =-, ∴()g m 最小值为100-.…………………13分说明:其它正确解法按相应步骤给分.。
海淀区2019年高三年级第二学期数学(文)期中试题

海淀区2019年高三年级第二学期期中练习数 学 (文科)选择题 (共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1、已知集合{}30<<∈=x x A R ,{}42≥∈=x x B R ,则=B AA. {}2 23x x x ≤-≤<或 B. {}32<<x x C. {}32<≤x x D. R2. 设0.5323, log 2, cos 3a b c π===,则A. c b a <<B. c a b <<C. a b c <<D. b c a << 3.函数1()x f x x+=图象的对称中心为 A .(0,0) B.(0,1)C. (1,0)D. (1,1)4. 执行如图所示的程序框图,若输入x 的值为2,则输出的x 值为A. 25 B .24 C. 23 D .225.从集合{1,1,2}A =-中随机选取一个数记为k ,从集合{2,1,2}B =-中随机选取一个数记为b ,则直线y kx b =+不经过第三象限的概率为A . 29 B. 13 C. 49D. 596. 在同一个坐标系中画出函数,sin xy a y ax ==的部分图象,其中01a a >≠且,则下列所给图象中可能正确的是7. 已知函数221, 1,()1, 1,x ax x f x ax x x ⎧++≥⎪=⎨++<⎪⎩ 则“20a -≤≤”是“()f x 在R 上单调递增”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件8.若直线l 被圆22:2C x y +=所截的弦长不小于2,则l 与下列曲线一定有公共点的是A .22(1)1x y -+= B ..2212x y += C. 2y x = D .221x y -=非选择题(共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9. 计算21i=+__________________.10. 为了解本市居民的生活成本,甲、乙、丙三名同学利用假期分别对三个社区进行了“家庭每月日常消费额”的调查.他们将调查所得到的数据分别绘制成频率分布直方图(如图所示),记甲、乙、丙所调查数据的标准差分别为1s ,2s ,3,s 则它们的大小关系为 . (用“>”连接)11. 如图,在正方体1111ABCD A B C D -中,点P 是上底面1111A B C D 内一动点,则三棱锥P ABC -的主视图与左视图的面积的比值为_________.12. 已知函数()x f x xe =,则'()f x =________;函数()f x 图象在点(0,(0))f 处的切线方程为_______ 13. 已知向量(,2),(1,)a x b y ==,其中,0x y ≥.若4≤a b ,则y x -的取值范围为 .PDCBA1A 1D 1B 1C 左视主视乙丙甲14.如图,线段AB =8,点C 在线段AB 上,且AC =2,P 为线段CB 上一动点,点A 绕点C 旋转后与点B 绕点P 旋转后重合于点D .设CP =x , △CPD 的面积为()f x .则()f x 的定义域为________;()f x 的最大值为 ________.三、解答题: 本大题共6小题,共80分.解答应写出文字说明, 演算步骤或证明过程.15. (本小题共13分)在ABC ∆中,内角A 、B 、C 所对的边分别为a b c 、、,已知1tan 2B =,1tan 3C =,且1c =. (Ⅰ) 求tan()B C +; (Ⅱ) 求a 的值.16. (本小题共13分)数列{}n a 的前n 项和为n S ,若12a =且12n n S S n -=+(2n ≥,*n ∈N ).( I )求n S ;( II ) 是否存在等比数列{}n b 满足112339, b a b a b a ===,?若存在,则求出数列{}n b 的通项公式;若不存在,则说明理由.17. (本小题共13分)如图:梯形ABCD 和正△PAB 所在平面互相垂直,其中//,AB DC 12AD CD AB ==,且O 为AB 中点.( I ) 求证://BC 平面POD ; ( II ) 求证:AC ⊥PD .CBDBACDOP18. (本小题共14分)已知函数1()ln (0,)f x a x a a x=+≠∈ R (Ⅰ)若1a =,求函数()f x 的极值和单调区间;(II) 若在区间[1,e]上至少存在一点0x ,使得0()0f x <成立,求实数a 的取值范围.19. (本小题共14分)已知椭圆2222:1x y C a b += (0)a b >>经过点3(1,),2M 其离心率为12.(Ⅰ)求椭圆C 的方程;(Ⅱ)设直线l 与椭圆C 相交于A 、B 两点,以线段,OA OB 为邻边作平行四边形OAPB ,其中顶点P 在椭圆C 上,O 为坐标原点. 求O 到直线距离的l 最小值.20. (本小题共13分)已知每项均是正整数的数列123100,,,,a a a a ,其中等于i 的项有i k 个(1,2,3)i =,设j j k k k b +++= 21(1,2,3)j =,12()100m g m b b b m =+++-(1,2,3).m =(Ⅰ)设数列1240,30,k k ==34510020,10,...0k k k k =====,求(1),(2),(3),(4)g g g g ; (II) 若123100,,,,a a a a 中最大的项为50, 比较(),(1)g m g m +的大小; (Ⅲ)若12100200a a a +++=,求函数)(m g 的最小值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学 第1页(共6页)
海淀区高三年级第二学期阶段性测试
数 学 2020春
本试卷共6页,150分。
考试时长120分钟。
考生务必将答案答在答题纸上,在试卷上作答无效。
考试结束后,将本试卷和答题纸一并交回。
第一部分(选择题 共40分)
一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)在复平面内,复数i(2i)-对应的点位于
(A )第一象限 (B )第二象限 (C )第三象限
(D )第四象限
(2)已知集合{ |0 3 }A x x =<<,A B =I { 1 },则集合B 可以是
(3)已知双曲线2
2
21(0)y x b b
-=>的离心率为5,则b 的值为
(A )1 (B )2
(C )3 (D )4
(4)已知实数a ,b ,c 在数轴上对应的点如图所示,则下列式子中正确的是
(A )b a c a -<+ (B )2c ab < (C )
c c
b a
> (D )||||b c a c <
(5)在61
(2)x x
-的展开式中,常数项为
(A )120-
(B )120 (C )160- (D )160
(6)如图,半径为1的圆M 与直线l 相切于点A ,圆M 沿着直线l 滚动.当圆M 滚动到圆M '
(A ){ 1 2 }, (B ){ 1 3 }, (C ){ 0 1 2 },
, (D ){ 1 2 3 },
,
数学 第2页(共6页)
俯视图
左视图
主视图
1 1 2
2
时,圆M '与直线l 相切于点B ,点A 运动到点A ',线段AB 的长度为3π
2
,则点M '到直线BA '的距离为 (A )1 (B )32
(C )
(D )
(7)已知函数
与函数
的图象关于
轴对称.若
在区间(1,2)内单调
递减,则m 的取值范围为 (A )[1,)-+∞ (B )(,1]-∞- (C )[2,)-+∞
(D )
(8)某四棱锥的三视图如图所示,该四棱锥中最长棱的棱长为
(A ) (B ) (C )
(D )
(9)若数列
满足
,则“
,
,
”
是“为等
比数列”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件
(10)形如
(是非负整数)的数称为费马数,记为n F .数学家费马根据0F ,1F ,2F ,
3F ,4F 都是质数提出了猜想:费马数都是质数.多年之后,数学家欧拉计算出5F 不是质数,那么5F 的位数是 (参考数据:lg20.3010≈)
(A )9 (B )10 (C )11
(D )12
第二部分(非选择题 共110分)
数学 第3页(共6页)
二、填空题共5小题,每小题5分,共25分。
(11)已知点(1,2)P 在抛物线2:2C y px =上,则抛物线C 的准线方程为 . (12)在等差数列{}n a 中, 13a =,2516a a +=,则数列{}n a 的前4项的和为 . (13)已知非零向量a ,b 满足||=||-a a b ,则1
()2
-⋅=a b b .
(14)在△ABC 中,43AB =,4B π∠=
,点D 在边BC 上,23
ADC π∠=,2CD =, 则AD = ;△ACD 的面积为 .
(15)如图,在等边三角形ABC 中,6AB =. 动点P 从点A 出发,沿着此三角形三边逆时针
运动回到A 点,记P 运动的路程为x ,点P 到此三角形中心O 距离的平方为()f x ,给出下列三个结论:
①函数()f x 的最大值为12;
②函数()f x 的图象的对称轴方程为9x =; ③关于x 的方程()3f x kx =+最多有5个实数根. 其中,所有正确结论的序号是 .
注:本题给出的结论中,有多个符合题目要求。
全部选对得5分,不选或有错选得0
分,其他得3分。
三、解答题共6小题,共85分。
解答应写出文字说明、演算步骤或证明过程。
O
B
C
A
P
数学 第4页(共6页)
(16)(本小题共14分)
如图,在三棱柱111ABC A B C -中, AB ⊥平面11BB C C ,122AB BB BC ===,13BC =, (Ⅰ)求证:1C B ⊥平面ABC ; (Ⅱ)求二面角A BC E --的大小.
(17)(本小题共14分)
已知函数212()2cos sin f x x x ωω=+. (Ⅰ)求(0)f 的值;
(Ⅱ)从①11ω=,22ω=; ②11ω=,21ω=这两个条件中任选一个,作为题目的已知条件,
求函数()f x 在[2π-,]6
π
上的最小值,并直接写出函数()f x 的一个周期. 注:如果选择两个条件分别解答,按第一个解答计分。
(18)(本小题共14分)
E
C
A
B
科技创新能力是决定综合国力和国际竞争力的关键因素,也是推动经济实现高质量发展的重要支撑,而研发投入是科技创新的基本保障.下图是某公司从2010年到2019年这10年研发投入的数据分布图:
其中折线图是该公司研发投入占当年总营收的百分比,条形图是当年研发投入的数值(单位:十亿元).
(Ⅰ)从2010年至2019年中随机选取一年,求该年研发投入占当年总营收的百分比超过10%的概率;
(Ⅱ)从2010年至2019年中随机选取两个年份,设X表示其中研发投入超过500亿元的年份的个数,求X的分布列和数学期望;
(Ⅲ)根据图中的信息,结合统计学知识,判断该公司在发展的过程中是否比较重视研发,并说明理由.
(19)(本小题共15分)
数学第5页(共6页)
数学 第6页(共6页)
已知函数()e x f x ax =+.
(Ⅰ)当1a =-时,
①求曲线()y f x =在点(0,(0))f 处的切线方程;
②求函数()f x 的最小值;
(Ⅱ)求证:当(2a ∈-,0)时,曲线()y f x =与1ln y x =-有且只有一个交点. (20)(本小题共14分)
已知椭圆22
22:1x y C a b
+=(0)a b >>
,1(,0)A a -,2(,0)A a ,(0,)B b ,
△12A BA 的面积为2. (Ⅰ)求椭圆C 的方程;
(Ⅱ)设M 是椭圆C 上一点,且不与顶点重合,若直线1A B 与直线2A M 交于点P ,直线
1A M 与直线2A B 交于点Q . 求证:△BPQ 为等腰三角形.
(21)(本小题共14分)
已知数列{}n a 是由正整数组成的无穷数列. 若存在常数*k ∈N ,使得212n n n a a ka -+=对任意的*n ∈N 成立,则称数列{}n a 具有性质()k ψ.
(Ⅰ)分别判断下列数列{}n a 是否具有性质(2)ψ;(直接写出结论)
①1n a =; ②2n n a =.
(Ⅱ)若数列{}n a 满足1n a +≥(1,2,3,)n a n =L ,求证:“数列{}n a 具有性质(2)ψ”是“数列
{}n a 为常数列”的充分必要条件;
(Ⅲ)已知数列{}n a 中11a =,且1(1,2,3,)n n a a n +>=L .若数列{}n a 具有性质(4)ψ,求数列
{}n a 的通项公式.。