组合数学.
组合数学例题和知识点总结
组合数学例题和知识点总结组合数学是一门研究离散对象的组合结构及其性质的数学分支。
它在计算机科学、统计学、物理学等领域都有着广泛的应用。
下面我们通过一些例题来深入理解组合数学中的重要知识点。
一、排列组合排列是指从给定的元素集合中取出若干个元素按照一定的顺序进行排列。
组合则是指从给定的元素集合中取出若干个元素组成一组,不考虑其顺序。
例题 1:从 5 个不同的元素中取出 3 个进行排列,有多少种不同的排列方式?解:根据排列的公式,\(A_{5}^3 = 5×4×3 = 60\)(种)例题 2:从 5 个不同的元素中取出 3 个进行组合,有多少种不同的组合方式?解:根据组合的公式,\(C_{5}^3 =\frac{5×4×3}{3×2×1} =10\)(种)知识点总结:1、排列数公式:\(A_{n}^m = n×(n 1)×(n 2)××(n m + 1)\)2、组合数公式:\(C_{n}^m =\frac{n!}{m!(n m)!}\)二、容斥原理容斥原理用于计算多个集合的并集的元素个数。
例题 3:在一个班级中,有 20 人喜欢数学,15 人喜欢语文,10 人既喜欢数学又喜欢语文,求喜欢数学或语文的人数。
解:设喜欢数学的集合为 A,喜欢语文的集合为 B,则喜欢数学或语文的人数为\(|A ∪ B| =|A| +|B| |A ∩ B| = 20 + 15 10= 25\)(人)知识点总结:容斥原理的一般形式:\(|\cup_{i=1}^{n} A_i| =\sum_{i=1}^{n} |A_i| \sum_{1\leq i < j\leq n} |A_i ∩ A_j| +\sum_{1\leq i < j < k\leq n} |A_i ∩ A_j∩ A_k| +(-1)^{n 1} |A_1 ∩ A_2 ∩ ∩ A_n|\)三、鸽巢原理鸽巢原理也叫抽屉原理,如果有 n + 1 个物体放入 n 个抽屉中,那么至少有一个抽屉中会放有两个或更多的物体。
组合数定理
组合数定理组合数定理是组合数学中的一个重要定理,它在排列组合问题的解决中起到了至关重要的作用。
本文将介绍什么是组合数定理、其重要性以及如何运用组合数定理解决实际问题。
首先,让我们来了解什么是组合数。
组合数是指从n个不同元素中取出r个元素(r≤n),不考虑元素的顺序,所组成的集合的个数。
用数学符号表示,组合数记作C(n, r)或者(nCr)。
组合数定理告诉我们,组合数可以通过以下公式计算出来:C(n, r) = n! / (r!(n-r)!)其中,n!表示n的阶乘,即n的所有正整数的乘积。
例如,5! =5 * 4 * 3 * 2 * 1 = 120。
组合数定理的重要性体现在以下几个方面:1. 组合数定理在概率论中的应用。
在计算概率时,有时需要计算从一个集合中选取特定数量的元素的可能性。
组合数定理提供了一种快速计算这种可能性的方法。
2. 组合数定理在组合优化中的应用。
组合优化是研究将元素排列或组合以获得最佳结果的一门学科。
组合数定理可以帮助寻找最优解的算法设计和解决问题。
3. 组合数定理在计算机科学中的应用。
在算法设计和分析中,我们经常需要计算从一个集合中选择特定数量的元素的可能性,以确定算法的复杂性。
组合数定理为计算这些可能性提供了有效的解决方法。
除了上述重要性之外,组合数定理还可以用于求解实际问题。
例如,在搭配衣服时,我们希望知道从若干种颜色中选择m种颜色进行搭配的可能性。
这时可以使用组合数定理来计算搭配的可能性。
另一个例子是在排列球队时,我们希望知道从n个球队中选择r个球队进行比赛的可能性。
同样,组合数定理可以帮助我们计算出这种选择的可能性。
综上所述,组合数定理是组合数学中重要的定理之一。
它不仅在理论研究中有着重要的地位,而且在实际问题的解决中也起到了指导作用。
通过运用组合数定理,我们可以更准确、高效地解决排列组合问题。
希望本文能为读者提供一些指导意义,帮助他们更好地掌握组合数定理的应用。
组合数公式大全
组合数公式大全组合数是组合数学中的一个重要概念,它描述了从一个集合中选择出若干元素进行组合的情况,而不考虑元素的顺序。
组合数在数学中有着广泛的应用,涉及到概率论、统计学、排列组合等领域。
本文将为您全面介绍组合数的相关理论和公式。
**一、组合数的定义**组合数通常记作C(n, k),表示从n个不同元素中选取k个元素的不同组合数目。
组合数的主要特点是不考虑元素的顺序,也就是说,选择元素a、b和选择元素b、a被视为同一种组合。
组合数的计算涉及到阶乘的概念,具体公式如下:C(n, k) = n! / (k! * (n - k)!)n!表示n的阶乘,即n的所有自然数乘积。
**二、组合数的递推公式**除了直接使用组合数的定义进行计算,还可以利用递推公式来快速计算组合数。
组合数有以下递推公式:C(n, k) = C(n-1, k) + C(n-1, k-1)这个递推公式的意义在于,从n个元素中选取k个元素的组合数,可以分解成两种情况:一种是包含第n个元素的组合,另一种是不包含第n个元素的组合。
通过这种递推关系,可以快速计算出较大规模的组合数。
**三、组合数的性质**组合数有一些重要的性质,例如:1. 对称性:C(n, k) = C(n, n-k),也就是说,从n个元素中选取k个元素的组合数等于从n个元素中选取n-k个元素的组合数。
2. 组合数的加法原理:C(n, k) + C(n, k+1) = C(n+1, k+1),也就是说,从n个元素中选取k个元素的组合数加上选取k+1个元素的组合数,等于从n+1个元素中选取k+1个元素的组合数。
3. 组合数的乘法原理:C(m, k) * C(n, r) = C(m+n, k+r),也就是说,从m个元素中选取k个元素的组合数乘以从n个元素中选取r个元素的组合数,等于从m+n个元素中选取k+r个元素的组合数。
**四、高级组合数公式**除了基本的组合数公式外,还有一些高级的组合数公式,如:1. Lucas定理:对于任意非负整数n和m以及质数p,Lucas定理表示C(n, m)对p取模的结果等于C(n%p, m%p)与C(n/p, m/p)的乘积对p取模的结果。
组合数学卢开澄课后习题答案
组合数学卢开澄课后习题答案组合数学是一门研究离散结构和组合对象的数学学科,它广泛应用于计算机科学、统计学、密码学等领域。
卢开澄是中国著名的组合数学家,他的教材《组合数学》是该领域的经典之作。
在学习组合数学的过程中,课后习题是巩固知识、提高能力的重要途径。
下面我将为大家提供一些卢开澄课后习题的答案。
第一章:集合与命题逻辑1.1 集合及其运算习题1:设集合A={1,2,3},B={2,3,4},求A∪B和A∩B的结果。
答案:A∪B={1,2,3,4},A∩B={2,3}。
习题2:证明若A∩B=A∩C,且A∪B=A∪C,则B=C。
答案:首先,由A∩B=A∩C可得B⊆C,同理可得C⊆B,因此B=C。
然后,由A∪B=A∪C可得B⊆C,同理可得C⊆B,因此B=C。
综上所述,B=C。
1.2 命题逻辑习题1:将下列命题用命题变元表示:(1)如果今天下雨,那么我就带伞。
(2)要么他很聪明,要么他很勤奋。
答案:(1)命题变元P表示今天下雨,命题变元Q表示我带伞,命题可表示为P→Q。
(2)命题变元P表示他很聪明,命题变元Q表示他很勤奋,命题可表示为P∨Q。
习题2:判断下列命题是否为永真式、矛盾式或可满足式:(1)(P∨Q)→(P∧Q)(2)(P→Q)∧(Q→P)答案:(1)该命题为可满足式,因为当P为真,Q为假时,命题为真。
(2)该命题为永真式,因为无论P和Q取何值,命题都为真。
第二章:排列与组合2.1 排列习题1:从10个人中选取3个人,按照顺序排成一队,有多少种不同的结果?答案:根据排列的计算公式,共有10×9×8=720种不同的结果。
习题2:从10个人中选取3个人,不考虑顺序,有多少种不同的结果?答案:根据组合的计算公式,共有C(10,3)=120种不同的结果。
2.2 组合习题1:证明组合恒等式C(n,k)=C(n,n-k)。
答案:根据组合的计算公式可得C(n,k)=C(n,n-k),因此组合恒等式成立。
组合数学pdf
组合数学
组合数学是数学中的一个分支,研究如何选出一些元素组成某种集合的数学问题。
组合数学是运用较为广泛的数学分支之一,它涉及面不仅局限于数学领域,还涉及计算机科学,物理学,统计学,生物学等领域。
在日常生活中,组合数学也有很多应用,例如密码学、图论、排列组合等方面。
组合数学主要涉及组合、排列、集合这些数学概念,下面将对这些概念逐一进行介绍。
组合数:组合数是指从n个不同元素中取r个元素(r≤n)不重不漏的所有情况的个数。
组合数可以简单地表示成C(n,r),其计算公式为:C(n,r)=n!/(r!(n-r)!)。
排列数:排列数是指从n个不同元素中取出r个元素进行排列,不放回地选取,可以表示为A(n,r),排列数的计算公式为
A(n,r)=n!/(n-r)!。
排列数也可以分为有放回排列和无放回排列。
集合:集合是由若干个元素组成的一个整体,集合内的元素没有重复且无序。
例如,{1,2,3}和{3,2,1}都代表同一个集合。
在实际应用中,组合数学的应用十分广泛。
例如在密码学中,组合数学可以用来生成密码,用来保护数据的安全性。
在图论中,组合数学可以用来研究图的结构,处理图的中间点,连通性等问题。
在排列组合中,组合问题是许多具有不同性质的排列问题的基础。
生物学中,组合数学也可以通过研究遗传物质的组合和排列等问题,来推断人类或动物的遗传基因情况。
总之,组合数学是一门综合性极强的数学学科,在实际中的应用和研究都有非常重要的地位。
组合数公式大全
组合数公式大全组合数公式是组合数学中重要的概念,它们在概率论、统计学、离散数学等领域都有广泛的应用。
组合数公式可以用来计算从n个不同元素中取出r个元素的组合数,它们的计算方法多种多样,其中包括排列组合公式、二项式定理、组合数的递推关系等。
接下来,我们将详细介绍组合数公式的各种计算方法,让我们一起来深入探讨。
一、排列组合公式排列组合公式是组合数学中最基本的概念之一,它用于计算从n个不同元素中取出r个元素的组合数。
排列组合公式的计算公式如下:C(n, r) = n! / (r! * (n-r)!)C(n, r)表示从n个不同元素中取出r个元素的组合数,n!代表n的阶乘,即n*(n-1)*(n-2)*...*1,r!代表r的阶乘,(n-r)!代表n-r的阶乘。
二、二项式定理二项式定理是组合数学中的一个重要定理,它用于计算二项式展开式中各项的系数。
二项式定理的公式如下:(a+b)^n = C(n,0)*a^n*b^0 + C(n,1)*a^(n-1)*b^1 + ... + C(n,r)*a^(n-r)*b^r + ... + C(n,n)*a^0*b^n(a+b)^n表示(a+b)的n次幂展开式,C(n,r)表示从n个不同元素中取出r个元素的组合数。
从上述公式可以看出,二项式定理可以用来计算二项式展开式中各项的系数,因此它在代数学和离散数学中有着广泛的应用。
三、组合数的递推关系组合数的递推关系是一种用来计算组合数的方法,它可以在一定程度上简化计算过程。
组合数的递推关系公式如下:C(n, r) = C(n-1, r-1) + C(n-1, r)C(n, r)表示从n个不同元素中取出r个元素的组合数,根据递推关系可以得到不同组合数之间的关系,从而简化计算过程。
以上介绍了排列组合公式、二项式定理和组合数的递推关系,它们是组合数学中常用的计算方法,对于理解和应用组合数具有重要的意义。
通过深入学习这些公式和定理,我们可以更好地理解组合数的概念,并且在实际问题中灵活运用。
第一章 什么是组合数学
当n为偶数时:
f(n)=
当n为奇数时:
f(n)=
证明:因为f(n)为2行n列的多米诺牌覆盖的棋盘。
所以当n为偶数时:
当所有多米诺牌都竖放时,有 种方法。
当只有1个(并列2个)多米诺牌横放,其余都竖放时,则有 种方法。
(1)当切除的方格位于奇数与奇数的位置时,因为m为奇数则m-1为偶数,因此除去方格所在的行,分成的剩余棋盘的行必然为偶数。所以该部分一定能完美覆盖;而方格所在的行数为1,列数为n-1为偶数,所以该部分也能被完美覆盖。因此,当切除的方格位于奇数行奇数列交叉处时剩下的棋盘可被完美覆盖。
(2)当切除的方格位于偶数行与偶数列交叉处时,以被切除的方格为中心分割出其周围紧邻的方格作为一部分,则该部分一定能被完美覆盖,而剩余部分经过分割必然会分成行与列至少有一个偶数的各部分棋盘。因此该各部分也能被完美覆盖。因此,当切除的白色方格位于偶数行与偶数交叉处时,剩下的棋盘可被多米诺牌完美覆盖。
综合(1)(2),则如果切除棋盘上的任意一个白色方格,那么剩下的棋盘可被多米诺牌完美覆盖。
3.解:犯人不能得到自由。
假设囚室为一张8行8列且由黑白方格构成的棋盘,设左上角方格为白色,则对角位置方格也为白色。如果从左上角白色方格能够依次通过每个方格到达右下角的白色方格,则需要跨越63次,然而左上角白格到白格需要跨越偶数次。因此假设于事实矛盾。所以,犯人不能得到自由。
当只有2个(并列4个)多米诺牌横放,其余都竖放时,则有 种方法。
当只有3个(并列6个)多米诺牌横放,其余都竖放时,则有 种方法。
……
当最多只有n/2个(并列即:f(n)=
同理:当n为奇数时:
组合数学基础知识
组合数学基础知识组合数学是一门研究离散对象的计数、排列、组合和优化等问题的数学分支。
它在计算机科学、密码学、统计学、物理学等众多领域都有着广泛的应用。
接下来,让我们一起走进组合数学的世界,了解一些它的基础知识。
首先,我们来谈谈排列与组合。
排列是指从给定的元素集合中按照一定的顺序选取若干个元素进行排列。
比如说,从 5 个不同的数字中选取 3 个进行排列,那么排列的方式就有 5×4×3 = 60 种。
而组合则是指从给定的元素集合中选取若干个元素,不考虑它们的顺序。
还是刚才的例子,从 5 个不同的数字中选取 3 个的组合方式,就有 5×4×3÷(3×2×1) = 10 种。
我们再来看一下加法原理和乘法原理。
加法原理说的是,如果完成一件事情有 n 类办法,在第一类办法中有 m1 种不同的方法,在第二类办法中有 m2 种不同的方法,……,在第 n 类办法中有 mn 种不同的方法,那么完成这件事情共有 m1 + m2 +… + mn 种不同的方法。
比如,要从 A 地到 C 地,可以先从 A 地到 B 地有 3 条路,再从 B 地到 C 地有 4 条路,那么从 A 地到 C 地就一共有 3 + 4 = 7 条路。
乘法原理则是,如果完成一件事情需要 n 个步骤,做第一步有 m1 种不同的方法,做第二步有 m2 种不同的方法,……,做第 n 步有 mn 种不同的方法,那么完成这件事情共有m1×m2×…×mn 种不同的方法。
比如,一个密码由三位数字组成,第一位可以是 0 到 9 中的任意一个数字,第二位和第三位也是如此,那么总共的密码组合就有 10×10×10 = 1000 种。
在组合数学中,还有一个重要的概念是容斥原理。
容斥原理用于计算多个集合的并集中元素的个数。
假设我们有三个集合 A、B、C,那么它们的并集中元素的个数可以通过以下公式计算:|A∪B∪C| =|A| +|B| +|C| |A∩B| |A∩C| |B∩C| +|A∩B∩C|。
组合数学简介
映射的个数
n元集上的幂等映射的个数 n元集上的部分映射的个数
n
C
k n
k
n
k
k 1
n
Cnk nk (1 n)n
k 0
例题
• 问题一:对三角形的三个顶点u,v,w染以红、蓝两 种颜色,求不同的染色方案数。
• 问题二:求集合{u,v,w}到集合{r,b}的映射的数目。
例题
• 问题1:求n元集合上有多少个不同的自反关系?
组合数学 Combinatorics
教材
课程安排
• 组合数学简介 • 排列组合公式 • 母函数 • 递推关系 • 容斥原理 • 抽屉原理 • Polya计数
组合数学简介
• 组合数学也称为组合分析或组合学,按研究的对象 归于离散数学家族。
• 早在中国古代的洛书、河图中就有组合数学的思想。 • 组合数学的历史渊源扎根于数学娱乐和游戏中。 • 现代组合数学在纯粹和应用科学上都有重要的价值。 • 组合数学与抽象代数、拓扑学、数学基础、图论、
• 主要内容:把有限集合的元素按一定的规则进行安排。 • 这种安排被考究地称为组态(Configuration)。
解决的问题
• 组态的存在性 • 组态的枚举、分类和计数 • 组态的构造 • 组态的优化
幻方
• 幻方是最古老最流行的一个数学游戏之一。 • 在中世纪时期曾存在与幻方相关的玄想,人们将
幻方佩戴身上辟邪。 • 本杰明·富兰克林就是一个幻方迷,他的论文中包
有m1种不同的方法,在第二类办法中有m2种不同的方法,…,在ห้องสมุดไป่ตู้n类 办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不 同方法。
组合数学:排列、组合与概率
组合数学是数学中一门重要的学科,它研究的是“选择”的问题,这种选择可以是排列、组合或者概率中的各种情况。
在组合数学中,排列、组合与概率是三个关键的概念。
首先,我们来看排列。
排列是指从一组元素中,按照一定的顺序选择几个元素进行排列。
例如,有A、B、C三个字母,我们要从中选择两个字母进行排列,那么可能的排列方式就是AB、AC、BA、BC、CA、CB。
排列的数量可以通过阶乘来计算,即 n! = n * (n-1) * (n-2) * … * 2 * 1,其中n表示元素的数量。
接着,我们来看组合。
组合是指从一组元素中,不考虑顺序选择几个元素进行组合。
例如,有A、B、C三个字母,我们要从中选择两个字母进行组合,那么可能的组合方式就是AB、AC、BC。
组合的数量可以通过公式 C(n,r) = n! /(r! * (n-r)!) 进行计算,其中n表示元素的数量,r表示选择的元素个数。
最后,我们来看概率。
概率是指某个事件发生的可能性的大小,它是一个介于0和1之间的实数。
概率可以通过排列和组合的方法来计算。
例如,有一副扑克牌,从中随机抽取一张牌,如果我们想计算摸到黑桃牌的概率,那么可以用排列的方法计算。
黑桃牌的数量为13张,总牌数为52张,所以摸到黑桃牌的概率为 P = 13/52 = 1/4。
又如,有4个红色球和6个蓝色球,从中抽取两个球,如果我们想计算摸到一个红色球和一个蓝色球的概率,那么可以用组合的方法计算。
红色球的数量为4个,蓝色球的数量为6个,总球数为10个,所以摸到一个红色球和一个蓝色球的概率为 P = C(4,1) * C(6,1) / C(10,2) =24/45。
综上所述,组合数学是一门研究“选择”的数学学科,其中排列、组合与概率是三个重要的概念。
通过排列和组合的方法,可以计算出各种“选择”的可能性。
而概率则用来计算某个事件发生的可能性大小。
组合数学在实际应用中有着广泛的应用,例如在概率统计、密码学、图论等领域。
组合和组合数公式
组合和组合数公式组合是组合数学中的一个重要概念,用来计算从n个元素中选取r个元素的方式数。
组合数公式是用来计算组合数的公式。
本文将详细介绍组合和组合数公式,并说明其应用和性质。
1.组合的定义组合由n个元素中选取r个元素所组成的集合,称为从n个元素中选取r个元素的组合。
组合中的元素是无序的,即选取的元素的顺序对组合没有影响。
2.组合的表示方法组合通常用C(n,r)来表示,其中n是总的元素个数,r是选取的元素个数。
例如,从4个元素中选取2个元素的组合可以表示为C(4,2)。
组合数公式用于计算从n个元素中选取r个元素的方式数。
常用的组合数公式有以下几种:3.1乘法法则根据乘法法则,从n个元素中选取r个元素的方式数等于从n中选择1个元素的方式数乘以从n-1个元素中选取r-1个元素的方式数。
这一公式可以表示为:C(n,r)=C(n-1,r-1)*n/r3.2递推公式根据递推关系,可以通过前一项的组合数计算后一项的组合数。
递推公式可以表示为:C(n,r)=C(n-1,r-1)+C(n-1,r)3.3组合公式组合公式是计算组合数的一种常用方法。
组合公式可以表示为:C(n,r)=n!/(r!(n-r)!)其中n!表示n的阶乘,即n!=n*(n-1)*(n-2)*...*14.组合的性质组合具有以下几个重要的性质:4.1对称性组合数具有对称性,即C(n,r)=C(n,n-r)。
这是因为从n个元素中选取r个元素的方式数与从n个元素中选取n-r个元素的方式数是一样的。
4.2递推性组合数具有递推性,即可以通过递推公式计算组合数。
这使得计算大规模组合数变得更加高效。
4.3性质的递推公式组合数的性质也可以通过递推公式计算。
例如,根据乘法法则和递推公式可以推导出组合数的对称性。
5.组合数的应用组合数在组合数学、概率论和统计学等领域具有广泛的应用。
以下是几个常见的应用:5.1排列组合组合数可以用于计算排列组合的方式数。
排列是组合的一种特殊情况,它要求选取的元素有序。
组合数学知识点总结
组合数学知识点总结组合数学是一门研究离散对象的计数、排列、组合和优化等问题的数学分支。
它在计算机科学、统计学、物理学、化学等众多领域都有着广泛的应用。
下面我们来详细总结一下组合数学的一些重要知识点。
一、基本计数原理1、加法原理如果完成一件事情有 n 类办法,在第一类办法中有 m1 种不同的方法,在第二类办法中有 m2 种不同的方法,……,在第 n 类办法中有mn 种不同的方法,那么完成这件事情共有 N = m1 + m2 +… + mn种不同的方法。
2、乘法原理如果完成一件事情需要 n 个步骤,做第一步有 m1 种不同的方法,做第二步有 m2 种不同的方法,……,做第 n 步有 mn 种不同的方法,那么完成这件事情共有 N =m1 × m2 × … × mn 种不同的方法。
这两个原理是组合数学中最基本的原理,许多计数问题都可以通过这两个原理来解决。
二、排列与组合1、排列从 n 个不同元素中取出 m(m ≤ n)个元素的排列数,记为 A(n, m),其计算公式为:A(n, m) = n! /(n m)!例如,从 5 个不同的元素中取出 3 个元素进行排列,排列数为 A(5, 3) = 5! /(5 3)!= 602、组合从 n 个不同元素中取出 m(m ≤ n)个元素的组合数,记为 C(n, m),其计算公式为:C(n, m) = n! / m! (n m)!例如,从 5 个不同的元素中取出 3 个元素的组合数为 C(5, 3) = 5!/ 3! (5 3)!= 10组合与排列的区别在于,排列考虑元素的顺序,而组合不考虑元素的顺序。
三、容斥原理容斥原理用于计算多个集合的并集中元素的个数。
设A1, A2, …, An 是有限集合,其元素个数分别为|A1|,|A2|,…,|An|,则它们的并集的元素个数为:|A1 ∪ A2 ∪ … ∪ An| =∑|Ai| ∑|Ai ∩ Aj| +∑|Ai ∩ Aj ∩Ak| … +(-1)^(n 1) |A1 ∩ A2 ∩ … ∩ An|容斥原理在解决包含与排除问题时非常有用。
组合数学
1
组合数学是一个古老而又年轻的数学分支。
传说,大禹在4000多年前就观察到神龟 背上的幻方…... 幻方可以看作是 一个3阶方阵,其元 素是1到9的正整数, 每行、每列以及两条 对角线的和都是15。
4
9
2
3
8
5
1
7
6
2
贾宪 北宋数学家(约11世纪) 著有《黄 帝九章细草》、《算法斅古集》斅 音“笑 (“古算法导引”)都已失传。 杨辉著《详解九章算法》(1261年)中 曾引贾宪的“开方作法本源”图(即指数为 正整数的二项式展开系数表,现称“杨辉三 角形”)和“增乘开方法”(求高次幂的正 根法)。 前者比帕斯卡三角形早600年,后者比霍 纳(William Geoge Horner,1786—1837)的 方法(1819年)早770年。
若此例改成底色和条纹都用红、蓝、橙 、黄四种颜色的话,则,方案数就不是4 4 = 16, 而只有 4 3 = 12 种。 在乘法法则中要注意事件 A 和 事件 B 的 相互独立性。
17
加法和乘法法则的综合运用
例1:我国曾经推行的02式汽车的牌照的式样 如下:999.999、999.XXX、XXX.999,那么 共有多少个不同的车牌号码?(其中9代表该 位为数字,X表示该位为大写字母) 例2:计算机系统的每个用户有一个6-8个字 符构成的登录密码,其中每个字符是一个大 写字母或数字,且每个密码必须至少包含一 个数字,有多少个可能的密码?
35
定理:如果把n+1个或更多的物体被放入到n
个盒子里,则至少有一个盒子包含了
两个或更多的物体。
36
2. 推广的鸽巢原理 鸽巢原理指出当物体比盒子多时,一定 至少有两个物体在同一个盒子里。
组合数学 常见结论
组合数学常见结论
组合数学是数学的一个分支,主要研究从给定的元素中抽取若干元素的组合方式,以及这些组合的性质和规律。
以下是一些常见的组合数学结论:
1. 组合恒等式:从n个元素抽取r个元素的组合数C(n,r)等于从n-1个元素抽取r-1个元素的组合数C(n-1,r-1)加上从n-1个元素抽取r个元素的组合数C(n-1,r)。
2. 组合计数公式:从n个元素中抽取r个元素的组合数C(n,r)等于
n!/(r!(n-r)!),其中"!"表示阶乘。
3. 乘法原理:如果有多个无放回的抽取过程,那么总的组合数等于各个过程中组合数的乘积。
4. 加法原理:如果有两个或多个独立的选取过程,那么总的组合数等于各个过程中组合数的和。
5. 二项式定理:对于任意实数x和q,(x+q)^n的展开式中,除首项和末项外,其余每一项都大于或等于0。
以上只是一些基本的组合数学结论,组合数学的研究还包括许多其他的问题,如排列组合、组合计数、组合设计等。
组合数学中的组合数问题
组合数学中的组合数问题组合数学是数学的一个分支,研究的是选择、排列和组合的问题。
其中,组合数问题是其中一个重要的研究方向。
本文将围绕组合数问题展开讨论,讲述其基本概念、应用以及解决方法。
一、基本概念组合数是由元素个数有限的集合中取出若干元素(不考虑有序)的不同选择数,用C(n, k)来表示,公式为:C(n, k) = n! / (k!(n-k)!),其中,n表示集合中元素的个数,k表示选择的元素个数,!表示阶乘。
二、组合数的应用1. 应用于排列组合问题排列组合问题是组合数学中的一个重要问题,它研究的是从给定元素中选取若干个元素进行排列或组合的问题。
例如,在一组数字中选取三个数字排列成不同的序列,即是一个排列问题;而从一组数字中选取三个数字组合成不同的组合,即是一个组合问题。
组合数正是解决这类问题的数学工具。
2. 应用于概率论在概率论中,组合数被广泛应用于计算随机事件发生的可能性。
以抽奖为例,假设有5个奖品,现有10个人参与抽奖,其中3个人将获得奖品。
那么,我们可以通过组合数来计算不同情况下的中奖概率。
具体计算公式为:中奖概率 = C(10, 3) / C(5, 3)。
通过组合数的使用,我们可以准确地计算出各种随机事件的概率。
三、组合数问题的解决方法1. 公式计算法组合数问题的最直接解决方法就是使用组合数公式进行计算。
在计算C(n, k)时,我们可以先通过计算n的阶乘,然后分别计算k和(n-k)的阶乘,最后将结果相除即可得到组合数。
这种方法适用于n和k较小的情况,计算较为方便。
2. 递推法递推法是一种高效地计算组合数的方法。
通过观察组合数的性质,我们可以得到递推公式:C(n, k) = C(n-1, k-1) + C(n-1, k),通过计算已知组合数的值,不断利用递推公式进行计算,最终得到所需的组合数。
3. 组合数的性质组合数具有一些重要的性质,可以用于简化计算。
例如:C(n, k) = C(n, n-k),C(n, 0) = C(n, n) = 1等。
组合数学的基本概念与计算
组合数学的基本概念与计算组合数学是一门研究离散对象的数学分支,它主要研究集合的组合和排列问题。
在计算机科学、运筹学、密码学等领域中有广泛的应用。
本文将介绍组合数学的基本概念、计算方法以及应用领域。
1. 组合数学的基本概念在组合数学中,有几个基本的概念需要了解:组合、排列和二项式系数。
- 组合是指从一个集合中选择出若干个元素,不考虑元素的顺序。
组合数C(n, k)表示从n个元素中选择k个元素的方式数目,其中n和k都为非负整数。
- 排列是指从一个集合中选择出若干个元素,考虑元素的顺序。
排列数P(n, k)表示从n个元素中选择k个元素并按照一定顺序排列的方式数目,其中n和k都为非负整数。
- 二项式系数是计算组合数的常用方法,用记号C(n, k)表示。
它定义为C(n, k) = n! / (k!(n-k)!),其中n!表示n的阶乘。
2. 组合数的计算方法计算组合数有多种方法,下面介绍两种常用的方法:递推关系和组合恒等式。
- 递推关系是指根据已知的组合数计算出新的组合数。
常见的递推关系有:杨辉三角形和帕斯卡三角形。
通过递推关系,可以通过已知结果计算出新的组合数,从而降低计算的复杂度。
- 组合恒等式是一些关于组合数的等式,可以根据这些等式来计算组合数。
常见的组合恒等式有二项式定理、二项式系数的计算等。
通过组合恒等式,可以将原来复杂的组合数计算问题转化为简单的形式,从而提高计算效率。
3. 组合数学的应用领域组合数学在许多领域中都有广泛的应用,下面介绍其中几个典型的应用领域。
- 计算机科学:组合数学在计算机科学中有着广泛的应用,例如在算法分析、数据结构设计、图论等方面都起着重要的作用。
经典的算法问题如旅行商问题、0/1背包问题等都与组合数学有着密切的关系。
- 运筹学:组合数学在运筹学中常用于求解集合覆盖、排列组合等问题。
运筹学是研究在有限资源下优化决策的学科,组合数学提供了一些重要的方法和工具。
- 密码学:组合数学在密码学中的应用主要体现在密码系统的设计与分析中。
组合数学
组合数学(combinatorial mathematics)有人认为广义的组合数学就是离散数学,也有人认为离散数学是狭义的组合数学和图论、代数结构、数理逻辑等的总称。
但这只是不同学者在叫法上的区别。
总之,组合数学是一门研究离散对象的科学。
随着计算机科学的日益发展,组合数学的重要性也日渐凸显,因为计算机科学的核心内容是使用算法处理离散数据。
狭义的组合数学主要研究满足一定条件的组态(也称组合模型)的存在、计数以及构造等方面的问题。
组合数学的主要内容有组合计数、组合设计、组合矩阵、组合优化等。
一些有趣的组合数学问题①地图着色问题:对世界地图着色,每一种国家使用一种颜色。
如果要求相邻国家的颜色相异,是否总共只需四种颜色?②船夫过河问题:船夫要把一匹狼、一只羊和一棵白菜运过河。
只要船夫不在场,羊就会吃白菜、狼就会吃羊。
船夫的船每次只能运送一种东西。
怎样把所有东西都运过河?③中国邮差问题:由中国组合数学家管梅谷教授提出。
邮递员要穿过城市的每一条路至少一次,怎样行走走过的路程最短?这是一个NP完全问题。
④任务分配问题(也称婚配问题):有一些员工要完成一些任务。
各个员工完成不同任务所花费的时间都不同。
每个员工只分配一项任务。
每项任务只被分配给一个员工。
怎样分配员工与任务以使所花费的时间最少?更详细的解释:1. 组合数学概述组合数学,又称为离散数学,但有时人们也把组合数学和图论加在一起算成是离散数学。
组合数学是计算机出现以后迅速发展起来的一门数学分支。
计算机科学就是算法的科学,而计算机所处理的对象是离散的数据,所以离散对象的处理就成了计算机科学的核心,而研究离散对象的科学恰恰就是组合数学。
组合数学的发展改变了传统数学中分析和代数占统治地位的局面。
现代数学可以分为两大类:一类是研究连续对象的,如分析、方程等,另一类就是研究离散对象的组合数学。
组合数学不仅在基础数学研究中具有极其重要的地位,在其它的学科中也有重要的应用,如计算机科学、编码和密码学、物理、化学、生物等学科中均有重要应用。
组合数学知识点总结
组合数学知识点总结组合数学是数学的一个分支,主要研究离散对象的组合和排列,包括组合数、排列数、计数原理、概率论和统计学等内容。
以下是一些组合数学的知识点总结:1. 计数原理:研究有多少个不同的元素有n个不同的排列,就有(n choose k) = n! / (k! * (n - k)) 种不同的组合。
其中,n choose k 表示从n个元素中选择k个元素的方案数,n! 表示n个元素的元素的全排列,k! 表示k个元素的元素的全排列。
2. 组合数:组合数是描述离散对象组合性质的数学量,包括完全组合数、部分组合数、排列组合和计数组合等。
完全组合数表示从n 个元素中选出k个元素的方案数,包括从1到n的所有可能取值;部分组合数表示从n个元素中选出k个元素的组合数,即 n选k 的系数;排列组合指的是从n个元素中选出k个元素的组合数,即n! / (k! * (n - k));计数组合指的是从n个元素中选出k个元素的组合数,仅考虑k个元素中前面的n-k个元素。
3. 排列与组合:排列是指从n个元素中选取任意一个元素进行排列,即p(n,k)表示从n个元素中选取k个元素进行排列的方案数;组合是指从n个元素中选取任意一个元素进行组合,即c(n,k)表示从n个元素中选取k个元素的组合数。
排列与组合的综合运用可以计算组合数和计数组合。
4. 概率论:概率论主要研究随机事件的可能性和随机变量的分布,其中概率分布是描述随机变量可能性大小的情况。
常见的概率分布包括泊松分布、正态分布、伽马分布等。
5. 离散概率空间:离散概率空间是指由离散事件和离散概率构成的数学空间。
离散概率空间可以分为连续概率空间和离散概率空间,其中连续概率空间是指可以用连续变量描述的数学空间,离散概率空间是指由离散事件和离散概率构成的数学空间。
离散概率空间中的随机变量的分布可以用概率分布理论解释。
组合数学的基本概念与方法
组合数学的基本概念与方法组合数学是数学领域中独立的一个分支,它研究的对象是集合和元素的组合方式,包括组合、排列、选择和分配等问题。
组合数学的方法和概念在各个学科领域中都有广泛的应用,特别是在计算机科学、统计学、集合论和图论等领域。
1.组合数学的基本概念1.1 组合组合是指从给定的集合中选择出若干元素形成一个子集的过程。
组合不考虑元素的顺序,只关心元素的选择和数量。
组合数学中的组合C(n, k)表示从n个元素中选择k个元素的方案数,计算公式为C(n, k) = n! / (k!(n-k)!),其中!表示阶乘运算。
1.2 排列排列是指从给定的集合中选择出若干元素,并按照一定的顺序排列的过程。
与组合不同,排列考虑元素的顺序,不同的元素排列顺序不同即为不同的排列。
排列数学中的排列A(n, k)表示从n个元素中选择k个元素,并按照一定顺序排列的方案数,计算公式为A(n, k) = n! / (n-k)!。
1.3 分配分配是指将一定数量的物品分配给一定数量的容器或者对象的过程。
在组合数学中,一般将分配问题称为离散分配问题,其中每个物品只能分配给一个容器或者对象,并且每个容器或者对象所接受的数量限制也要考虑在内。
离散分配问题的求解方法包括生成函数、递推关系和矩阵方法等。
2.组合数学的方法2.1 生成函数生成函数是组合数学中常用的一种分析工具,它可以将一个数列或者一个集合映射成一个函数,从而利用函数的性质求解数学问题。
在组合数学中,生成函数常用于求解排列、组合和分配等问题。
生成函数的求解过程涉及到级数的展开和函数的运算,具体方法包括幂级数展开、泰勒展开和拉普拉斯变换等。
2.2 递推关系递推关系是一种通过已知项和递推关系式来求解未知项的方法。
在组合数学中,递推关系常用于求解排列、组合和分配等问题的递推公式。
通过观察已知项的特点和递推关系,可以得到递推公式,从而求解未知项。
递推关系的求解过程涉及到数学归纳法和递推公式的推导。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
组合数学第一章 排列和组合1.1 计数的基本原则相等原则:设A 、B 是两个有限集,如果存在由A 到B 上一个一一对应映射(即双射),则 |A|=|B|.加法原则:设A 是有限集,),,...2,1(k i A A i=⊂如果 ki i A A 1== 且 =j i A A φ(1≤i <j ≤k ),则 ∑==ki iAA 1.★ 定理1.1 已知做一件事要经过两个步骤,完成第一个步骤的方法有m 种,完成第一个步骤之后,完成第二个步骤的方法有n 种,则做这件事情的方法共有mn 种.★ 定理1.2(乘法原则):已知做一件事情要依次经过k 个步骤,且在已完成前面i-1(1≤i ≤k )个步骤的情况下,完成第i 个步骤有i n 种方法,则做这件事情的方法共有∏==∙⋅⋅⋅∙∙ki i k n n n n 121 种.1.2 排列 n 元集的r-排列☻ 定义1.1 设A 是n 元集,如果序列r a a a ⋅⋅⋅21中的r 个元 ra a a ,,,21⋅⋅⋅都属于A 且彼此互异,则称序列r a a a ⋅⋅⋅21是n 元集A 的一个r-排列,并称k a (1≤k ≤r )是该r-排列的第k 个元,或称k a 在该r-排列中排在第k 位.☻ 定义1.2 n 元集A={n a a a ,,,21⋅⋅⋅}的n-排列称为n 元集A 的一个全排列,亦称为由n a a a ,,,21⋅⋅⋅作成的一个全排列.定理1.3 设n ,r (n ≥r )是正整数,以P(n,r)表示n 元集的r-排列的个数,则)!(!)1()1(),(r n n r n n n r n P -=+-⋅⋅⋅-=推论1.1 n 元集的全排列的个数为n !n 元集的r-可重复排列☻ 定义1.3 设A 为n 元集,如果序列r a a a ⋅⋅⋅21的元素都属于A ,则称序列r a a a ⋅⋅⋅21是n 元集A 的一个r-可重复排列.★ 定理1.4 n 元集的r-可重复排列的个数为r n .多重集的排列☻ 定义1.4 由k k a n a n a n 个个个,,,2211⋅⋅⋅组成的集合M 记为},,,{2211k k a n a n a n M ∙⋅⋅⋅∙∙=,M 称为多重集,也称M 是一个n-多重集,其中k n n n n +⋅⋅⋅++=21.☻ 定义1.5 设},,,{2211k k a n a n a n M ∙⋅⋅⋅∙∙=,π是集合},,,{21k a a a A ⋅⋅⋅=的一个n-可重复排列且π中有k k a n a n a n 个个个,,,2211⋅⋅⋅,则称π是多重集M 的一个全排列,此时也称π是由k k a n a n a n 个个个,,,2211⋅⋅⋅作成的全排列。
★ 定理1.5 多重集},,,{2211k k a n a n a n M ∙⋅⋅⋅∙∙=的全排列的个数为!!!)!(2121k k n n n n n n ⋅⋅⋅+⋅⋅⋅++☻ 定义1.6 设},,,{2211k k a n a n a n M ∙⋅⋅⋅∙∙=和},,,{2211k k a s a s a s A ∙⋅⋅⋅∙∙=都是多重集,且i i n s ≤≤0(1≤i ≤k ),则称M A 是的一个子集,如果r s s s k =+⋅⋅⋅++21,则称M A 是的一个r-子集.☻ 定义1.7 设},,,{2211k k a n a n a n M ∙⋅⋅⋅∙∙=是多重集,π是M 的某个r-子集的全排列,则称π是M 的一个r-排列.1.3 T 路的计数☻ 定义1.8 由p ×q 个单位正方形拼成的长为p ,宽为q 的长方形叫做一个p ×q 棋盘.★ 定理1.6 沿p ×q 棋盘上的线段,由顶点A 到顶点B 的最短路的条数为q!p!q)!p (+.☻ 定义1.9 在Oxy 坐标平面上,横坐标与纵坐标都是整数的点叫做整点.由任一个整点(x ,y )到整点(x+1,y+1)或(x+1,y-1)的有向线段叫做一个T 步.☻ 定义1.10 由整点A 到整点B 的一条T 路是指由若干个T 步组成的起点为A 、终点为B 的有向折线.★ 定理1.7 如果存在由整点),(αa A 到整点),(βb B 的T 路,则: ① b > a.② b - a ≥ │β-α│.③ a + α与 b + β的奇偶性相同. 上述三给条件合称为T 条件.★ 定理1.8 设整点),(αa A 与整点),(βb B 满足T 条件,则由A 到B 的T 路的条数为)!22()!22()!(αβαβ----+--a b a b a b .★ 定理1.9(反射定理) 设整点),(αa A 与整点),(βb B 满足T 条件,且,,0,0βαβα+≥->>a b 则由A 到B 且经过x 轴(即与x 轴有交点)的T 路的条数等于由),('α-a A 到B 的T 路的条数,为)!22()!22()!(αβαβ+--++--a b a b a b★ 定理1.10 设整点),(αa A 与整点),(βb B 满足T 条件,且,,0,0βαβα+≥->>a b 则由A 到B 且不经过x 轴的T 路的条数为)!22()!22()!()!22()!22()!(αβαβαβαβ+--++-------+--a b a b a b a b a b a b★ 定理1.11 (1)由点O (0,0)到点V (2n ,0),中途不经过x 轴且位于上半平面的T 路的条数为)!1(!)!22(--n n n .(2)由点O (0,0)到点V (2n ,0)且位于上半平面的T 路的条数为!)!1()!2(n n n +.令n n C n n n n C ),,3,2,1()!1(!)!22(⋅⋅⋅=--=叫做Catalan (卡塔兰)数★ 定理1.12 以n S 2表示满足条件⎪⎪⎪⎩⎪⎪⎪⎨⎧⋅⋅⋅==-⋅⋅⋅=<+⋅⋅⋅++=+⋅⋅⋅++)(或n j x n j j x x x nx x x j jn 2,,2,110)12,,2,1(2121221的解),,,(221n x x x ⋅⋅⋅的集合,则 )!1(!)!22(2--==n n n C S n n .★ 定理1.13 以n 2T 表示满足条件⎪⎪⎪⎩⎪⎪⎪⎨⎧⋅⋅⋅==-⋅⋅⋅=≤+⋅⋅⋅++=+⋅⋅⋅++)(或n j x n j j x x x nx x x j jn 2,,2,110)12,,2,1(2121221 的解),,,(221n x x x ⋅⋅⋅的集合,则 !)!1()!2(12n n n C T n n +==+.1.4 组合 n 元集的r-组合☻ 定义1.11 集合A 的含有r 个元素的子集称为A 的一个r-组合.设},,,{21n a a a A ⋅⋅⋅=是n 元集,则A 的任一个r-组合可表成},,,{21r i i i a a a ⋅⋅⋅, 其中r i i i ,,,21⋅⋅⋅均是整数,且 n i i i r ≤<⋅⋅⋅<<≤211.以 rn C 或 ⎪⎪⎭⎫⎝⎛r n 表示n 元集的r-组合的个数,简称为组合数.★ 定理1.14 设n 是正整数,r 是非负整数,则⎪⎪⎩⎪⎪⎨⎧≤≤->=⎪⎪⎭⎫ ⎝⎛.0,)!(!,0时当!时;当n r r n r n n r r nn 元集的r-可重复组合☻ 定义1.12 从集合A 中可重复地选取r 个元作成的多重集,称为集合A 的一个r-可重复组合.★ 定理1.15 n 元集的r-可重复组合的个数为⎪⎪⎭⎫⎝⎛-+r r n 1.推论1.2 不定方程 r x x x n =+⋅⋅⋅++21 的非负整数解的个数为⎪⎪⎭⎫⎝⎛-+r r n 1.推论1.3 不定方程 ()n r rx x x n ≥=+⋅⋅⋅++21 的正整数解的个数为⎪⎪⎭⎫⎝⎛--n r r 1. 应用公式 ()0)!(!!≥≥-=⎪⎪⎭⎫ ⎝⎛k n k n k n k n ,容易证明下面两个定理 ★ 定理1.16 (1) ()0≥≥⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫⎝⎛k n k n n k n (2) ()1111≥>⎪⎪⎭⎫⎝⎛--+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛k n k n k n k n(3) ()111≥≥⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛k n k n k n k n (4) ()111≥≥⎪⎪⎭⎫⎝⎛-+-=⎪⎪⎭⎫ ⎝⎛k n k n k k n k n (5) ()01≥>⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛k n k n k n n k n ★ 定理1.17 ()k m n k m k n k n k m m n ≥≥⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛多项式定理★ 定理1.18(多项式定理)设n 是正整数,k x x x ,,,21⋅⋅⋅是任意k 个实变数,则∑⋅⋅⋅==⋅+⋅⋅++⋅⋅⋅⋅⋅⋅=+⋅⋅⋅++是非负整数),,2,1(2121212121!!!!)(k i n nn n n n kn n k nk i k k x x x n n n n x x x .推论1.4 (二项式定理) 设n 是正整数,x 和y 是任意实数,则kn k nk ny x k n y x -=∑⎪⎪⎭⎫ ⎝⎛=+0)(.推论1.5 设n 是正整数,x 是任一实数,则k nk nx k n x ∑=⎪⎪⎭⎫ ⎝⎛=+0)1(. 推论1.6 设n 是正整数,则(1))0(20≥=⎪⎪⎭⎫ ⎝⎛∑=n k n nnk .(2))1(0)1(0≥=⎪⎪⎭⎫⎝⎛-∑=n k n n k k.1.5 二项式反演公式 二项式反演公式引理1.1 设n ,s 是非负整数且s n ≥,对于每个非负整数k )(n k s ≤≤,),,1,(,k s s i a i k ⋅⋅⋅+=是复数,则∑∑∑∑=====n s i nik i k n s k k si i k a a ,,★ 定理1.18 (二项式反演公式) 设 {}0≥n n a 和 {}0≥n n b 是两个数列,s 是非负整数,如果对任意的不小于s 的整数n ,都有k nsk n b k n a ∑=⎪⎪⎭⎫⎝⎛=,则对任意的不小于s 的整数n 。
都有k ns k kn n a k n b ∑=-⎪⎪⎭⎫ ⎝⎛-=)1(.有限集的覆盖设A 是n 元集,以)(*A P 表示A 的全体非空子集所成之集,则12)(*-=n A P ,)(*A P 共有1212--n 个非空子集.☻ 定义1.13 设A 是n 元集,)(*A P ⊆Γ,如果 Γ∈=F A F ,则称Γ是n 元集A 的一个覆盖.☻ 定义1.14 如果Γ是n 元集A 的一个覆盖且m =Γ,则称Γ是n 元集A 的一个m-覆盖. 多元二项式反演公式★ 定理1.20 设 r s s s ,,,21⋅⋅⋅ 是r 个给定的非负整数,又设对任意的r 个非负整数),,2,1,(,,,21r i s n n n n i i r ⋅⋅⋅=≥⋅⋅⋅,),,,(),,,(2121r r n n n g n n n f ⋅⋅⋅⋅⋅⋅及都是实数,且),,,(),,,(211,,2,121r i i ri ri n k s r k k k g k n n n n f i i i ⋅⋅⋅⎪⎪⎭⎫ ⎝⎛=⋅⋅⋅∏∑=⋅⋅⋅=≤≤. 则对任意r 个非负整数),,2,1,(,,,21r i s n n n n i ir ⋅⋅⋅=≥⋅⋅⋅,有),,,()1(),,,(211,,2,121r i i ri k n ri n k s r k k k f k n n n n g ii i i i ⋅⋅⋅⎪⎪⎭⎫ ⎝⎛-=⋅⋅⋅∏∑=-⋅⋅⋅=≤≤.。