勾股定理(四)
勾股定理教案范本 勾股定理教案教学方法优秀7篇
勾股定理教案范本勾股定理教案教学方法优秀7篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理教案范本勾股定理教案教学方法优秀7篇作为一位优秀的人·民教师,常常需要准备教学设计,借助教学设计可以促进我们快速成长,使教学工作更加科学化。
勾股定理
勾股定理勾股定理,又称商高定理,西方称毕达哥拉斯定理或毕氏定理(英文:Pythagorean theorem或Pythagoras's theorem)是一个基本的几何定理,相传由古希腊的毕达哥拉斯首先证明。
据说毕达哥拉斯证明了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”。
在中国,相传于商代就由商高发现,记载在一本名为《周髀算经》的古书中。
而三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释。
法国和比利时称为驴桥定理,埃及称为埃及三角形。
直角边的平方和等于斜边的平方勾股定理指出:直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。
也就是说,设直角三角形两直角边为a和b,斜边为c,那么A2+ b2= c2勾股定理现发现约有400种证明方法,是数学定理中证明方法最多的定理之一。
一种证明方法的图示:左右两正方形面积相等,各扣除四块蓝色三角形后面积仍相等勾股定理勾股定理的美妙证明证明[广西梁卷明的证法]:如图1,分别以AC、CB、BA为边长作正方形ACNM、正方形CBSQ、正方形BAPR,则易知⊿ABC≌⊿RBS,从而点Q 必在SR上,又把梯形ABNM沿BR方向平移,使点B与点R重合,则梯形ABNM平移至梯形PRQT的位置;显然⊿RSB≌⊿PTA, 如图2,再把⊿RSB沿BA方向平移,使点B与点A重合,则⊿RSB必与⊿PTA重合!故有:正方形ACNM的面积+正方形CBSQ的面积=正方形BAPR的面积,即得: a的平方 + b的平方 = c的平方.勾股定理【梁卷明证法】勾股定理 - 勾股数组勾股数组是满足勾股定理a2+ b2= c2的正整数组(a,b,c),其中的a,b,c称为勾股数。
例如(3,4,5)就是一组勾股数组。
任意一组勾股数(a,b,c)可以表示为如下形式:a = m−n,b = 2mn,c = m + n,其中勾股定理。
勾股定理公元前500-200年,《周髀算经》的图解《勾股圆方图》勾股定理 - 参考资料勾股定理 - 历史上的勾股定理定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a2+b2=c2;即直角三角形两直角边的平方和等于斜边的平方。
第四讲 勾股定理(总复习)(教案)
京师蜀都学堂创新教材系列勾股定理(总复习)专题第讲时间:2014年月日老师:电话:一、兴趣导入(Topic-in):专题简析:1、勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方。
2、勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,即三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
(C为斜边最长,c>a,c>b )注释:(1)勾股定理揭示了一个直角三角形三边之间的数量关系。
(2)勾股定理只适用于直角三角形,而不适用于锐角三角形和钝角三角形。
(3)理解勾股定理的一些变式: c2=a2+b2,a2=c2-b2, b2=c2-a23、图形解释:4、勾股数:满足a2+b2=c2的三个正整数成为勾股数.例如:(3,4,5),(6,8,10),(5,12,13),(7,24,25)注释:勾股数的每一项的整数倍的组合也是勾股数,例如(3,4,5)的二倍(6,8,10)同样也为勾股数。
二、知识讲解及例题分析(Teaching):例1 已知两边求第三边:1.在△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边①若a=5,b=12,则c=________;②若c=41,a=40,则b=________;③若∠A=45°,a=1.则b=________,c=________ ,a:b:c= .2. 在直角三角形中,若两直角边的长分别为1cm,2cm ,则斜边长为_____________.3. 已知直角三角形的两边长为3、2,则另一条边长是________________.4.如图,在△ABC中,AB=AC,∠BAC的角平分线交BC边于点D,AB=5,BC=6,则AD= 。
5. 如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少?总结:在应用勾股定理进行计算时,一定要分清哪条是直角边哪条是斜边。
勾股定理的优秀教案5篇
勾股定理的优秀教案5篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、讲话致辞、条据文书、合同协议、策划方案、规章制度、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, speeches, written documents, contract agreements, planning plans, rules and regulations, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理的优秀教案5篇教案的制定可以帮助教师思考教学策略和方法是否合理,激发学生的学习兴趣和积极参与,写好教案帮助教师评估学生的学习情况和教学效果,及时调整教学计划和教学内容,以下是本店铺精心为您推荐的勾股定理的优秀教案5篇,供大家参考。
八年级数学下册【勾股定理】4种简单应用
八年级数学下册【勾股定理】4种简单应用一、勾股定理在网格中的应用例1、已知正方形的边长为1,(1)如图a,可以计算出正方形的对角线长为根号2.①分别求出图(b),(c),(d)中对角线的长_.②九个小正方形排成一排,对角线的长度(用含n的式子表示)为_.分析:借助于网格,构造直角三角形,直接利用勾股定理.二、勾般定理在最短距离中的应用例2、如图,已知C是SB的中点,圆锥的母线长为10cm,侧面展开图是一个半圆,A处有一只蜗牛想吃到C处的食物,它只能沿圆锥曲面爬行.请你求出蜗牛爬行的最短路程.分析在求解几何图形两点间最短距离的问题时,将几何体表面展开,求展开图中两点之间的距离,展开过程中必须要弄清楚所要求的是哪两点之间的距离,以及它们在展开图中的相应位置.点评在求立体几何图形的问题时,一般是通过平面展开图,将其转化成平面图形问题,然后求解.三、勾股定理在生活中的应用例3、如图,学校有一块长方形花园,有较少数同学为了避开拐角走“捷径”,在校园内走出了一条“路”.请同学们算一算,其实这些同学仅仅少走多少步路,却踩伤了花草.(假设1步为0.5m)点评:走“捷径”问题为出发点是常遇到情况,在考查勾股定理的同时,融入了环保教育:少走几步路,就可以留下一片期待的绿色.四、勾股定理在实际生活中的应用例4 小华想知道自家门前小河的宽度,于是按以下办法测出了如下数据:小华在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°,小华沿河岸向前走30m 选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小华计算小河的宽度.点评:此题考查直角三角形的应用,解答本题的关键在于画出示意图,将问题转化为解直角三角形的问题.。
勾股定理16种证明方法
勾股定理的证明【证法1】(课本的证明)做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即abc ab b a 214214222⨯+=⨯++, 整理得 222c b a =+.【证法2】(邹元治证明)以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积等于ab 21.把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上. ∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF .∵ ∠AEH + ∠AHE = 90º, ∴ ∠AEH + ∠BEF = 90º. ∴ ∠HEF = 180º―90º= 90º.∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c 2.∵ Rt ΔGDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA .∵ ∠HGD + ∠GHD = 90º, ∴ ∠EHA + ∠GHD = 90º. 又∵ ∠GHE = 90º,∴ ∠DHA = 90º+ 90º= 180º.∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2b a +.∴()22214c ab b a +⨯=+. ∴ 222c b a =+.【证法3】(赵爽证明) 以a 、b 为直角边(b>a ), 以c 为斜边作四个全等的直角三角形,则每个直角三角形的面积等于ab 21. 把这四个直角三角形拼成如图所示形状.∵ Rt ΔDAH ≌ Rt ΔABE, ∴ ∠HDA = ∠EAB .∵ ∠HAD + ∠HAD = 90º, ∴ ∠EAB + ∠HAD = 90º,∴ ABCD 是一个边长为c 的正方形,它的面积等于c 2. ∵ EF = FG =GH =HE = b ―a , ∠HEF = 90º.∴ EFGH 是一个边长为b ―a 的正方形,它的面积等于()2a b -.∴ ()22214c a b ab =-+⨯.∴ 222c b a =+. 【证法4】(1876年美国总统Garfield 证明)以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角形的面积等于ab 21. 把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上.∵ Rt ΔEAD ≌ Rt ΔCBE, ∴ ∠ADE = ∠BEC .∵ ∠AED + ∠ADE = 90º,∴ ∠AED + ∠BEC = 90º.∴ ∠DEC = 180º―90º= 90º. ∴ ΔDEC 是一个等腰直角三角形,它的面积等于221c .又∵ ∠DAE = 90º, ∠EBC = 90º,∴ AD ∥BC .∴ ABCD 是一个直角梯形,它的面积等于()221b a +. ∴ ()222121221c ab b a +⨯=+. ∴ 222c b a =+.【证法5】(梅文鼎证明)做四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c . 把它们拼成如图那样的一个多边形,使D 、E 、F 在一条直线上. 过C 作AC 的延长线交DF 于点P .∵ D 、E 、F 在一条直线上, 且Rt ΔGEF ≌ Rt ΔEBD,∴ ∠EGF = ∠BED ,∵ ∠EGF + ∠GEF = 90°,∴ ∠BED + ∠GEF = 90°,∴ ∠BEG =180º―90º= 90º.又∵ AB = BE = EG = GA = c , ∴ ABEG 是一个边长为c 的正方形∴ ∠ABC + ∠CBE = 90º. ∵ Rt ΔABC ≌ Rt ΔEBD, ∴ ∠ABC = ∠EBD . ∴ ∠EBD + ∠CBE = 90º.即 ∠CBD= 90º. 又∵ ∠BDE = 90º,∠BCP = 90º,BC = BD = a .∴ BDPC 是一个边长为a 的正方形. 同理,HPFG 是一个边长为b 的正方形. 设多边形GHCBE 的面积为S ,则,21222ab S b a ⨯+=+ abS c 2122⨯+=,∴ 222c b a =+.【证法6】(项明达证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ) ,斜边长为c . 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形,使E 、A 、C 三点在一条直线上.过点Q 作QP ∥BC ,交AC 于点P . 过点B 作BM ⊥PQ ,垂足为M ;再过点 F 作FN ⊥PQ ,垂足为N . ∵ ∠BCA = 90º,QP ∥BC , ∴ ∠MPC = 90º, ∵ BM ⊥PQ , ∴ ∠BMP = 90º, ∴ BCPM 是一个矩形,即∠MBC = 90∵ ∠QBM + ∠MBA = ∠QBA = 90º,∠ABC + ∠MBA = ∠MBC = 90º, ∴ ∠QBM = ∠ABC ,又∵ ∠BMP = 90º,∠BCA = 90º,BQ = BA = c , ∴ Rt ΔBMQ ≌ Rt ΔBCA .同理可证Rt ΔQNF ≌ Rt ΔAEF .从而将问题转化为【证法4】(梅文鼎证明). 【证法7】(欧几里得证明)做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使H 、C 、B 三点在一条直线上,连结BF 、CD . 过C 作CL ⊥DE ,交AB 于点M ,交DE 于点L . ∵ AF = AC ,AB = AD , ∠FAB = ∠GAD ,∴ ΔFAB ≌ ΔGAD , ∵ ΔFAB 的面积等于221aΔGAD 的面积等于矩形ADLM的面积的一半,∴ 矩形ADLM 的面积 =2a 同理可证,矩形MLEB 的面积 =2b .∵ 正方形ADEB 的面积= 矩形ADLM 的面积 + 矩形MLEB 的面积 ∴ 222b a c += ,即 222c b a =+. 【证法8】(利用相似三角形性质证明)如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D .在ΔADC 和ΔACB 中,∵ ∠ADC = ∠ACB = 90º,∠CAD = ∠BAC , ∴ ΔADC ∽ ΔACB .AD ∶AC = AC ∶AB , 即 AB AD AC ∙=2.同理可证,ΔCDB ∽ ΔACB ,从而有 AB BD BC ∙=2.∴ ()222AB AB DB AD BC AC =∙+=+,即 222c b a =+. 【证法9】(杨作玫证明)做两个全等的直角三角形,设它们的两条直角边长分别为a 、b (b>a ),斜边长为c . 再做一个边长为c 的正方形. 把它们拼成如图所示的多边形. 过A 作AF ⊥AC ,AF 交GT 于F ,AF 交DT 于R . 过B 作BP ⊥AF ,垂足为P . 过D 作DE 与CB 的延长线垂直,垂足为E ,DE 交AF 于H .∵ ∠BAD = 90º,∠PAC = 90º, ∴ ∠DAH = ∠BAC .又∵ ∠DHA = 90º,∠BCA = 90º, AD = AB = c ,∴ Rt ΔDHA ≌ Rt ΔBCA .∴ DH = BC = a ,AH = AC = b . 由作法可知, PBCA 是一个矩形, 所以 Rt ΔAPB ≌ Rt ΔBCA . 即PB = CA = b ,AP= a ,从而PH = b ―a .∵ Rt ΔDGT ≌ Rt ΔBCA , Rt ΔDHA ≌ Rt ΔBCA . ∴ Rt ΔDGT ≌ Rt ΔDHA .∴ DH = DG = a ,∠GDT = ∠HDA . 又∵ ∠DGT = 90º,∠DHF = 90º,∠GDH = ∠GDT + ∠TDH = ∠HDA+ ∠TDH = 90º, ∴ DGFH 是一个边长为a 的正方形.∴ GF = FH = a . TF ⊥AF ,TF = GT ―GF = b ―a .∴ TFPB 是一个直角梯形,上底TF=b ―a ,下底BP= b ,高FP=a +(b ―a ). 用数字表示面积的编号(如图),则以c 为边长的正方形的面积为543212S S S S S c ++++= ①∵()[]()[]a b a a b b S S S -+∙-+=++21438 =ab b 212-, 985S S S +=,∴ 824321S ab b S S --=+= 812S S b -- . ②把②代入①,得98812212S S S S b S S c ++--++== 922S S b ++ = 22a b +.∴ 222c b a =+.【证法10】(李锐证明)设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c . 做三个边长分别为a 、b 、c 的正方形,把它们拼成如图所示形状,使A 、E 、G 三点在一条直线上. 用数字表示面积的编号(如图).∵ ∠TBE = ∠ABH = 90º, ∴ ∠TBH = ∠ABE . 又∵ ∠BTH = ∠BEA = 90º, BT = BE = b , ∴ Rt ΔHBT ≌ Rt ΔABE . ∴ HT = AE = a . ∴ GH = GT ―HT = b ―a .又∵ ∠GHF + ∠BHT = 90º,∠DBC + ∠BHT = ∠TBH + ∠∴ ∠GHF = ∠DBC .∵ DB = EB ―ED = b ―a , ∠HGF = ∠BDC = 90º,∴ Rt ΔHGF ≌ Rt ΔBDC . 即 27S S =.过Q 作QM ⊥AG ,垂足是M . 由∠BAQ = ∠BEA = 90º,可知 ∠ABE = ∠QAM ,而AB = AQ = c ,所以Rt ΔABE ≌ Rt ΔQAM . 又Rt ΔHBT ≌ Rt ΔABE . 所以Rt ΔHBT ≌ Rt ΔQAM . 即 58S S =.由Rt ΔABE ≌ Rt ΔQAM ,又得QM = AE = a ,∠AQM = ∠BAE .∵ ∠AQM + ∠FQM = 90º,∠BAE + ∠CAR = 90º,∠AQM = ∠BAE , ∴ ∠FQM = ∠CAR .又∵ ∠QMF = ∠ARC = 90º,QM = AR = a ,∴ Rt ΔQMF ≌ Rt ΔARC . 即64S S =.∵ 543212S S S S S c ++++=,612S S a +=,8732S S S b ++=,又∵ 27S S =,58S S =,64S S =,∴ 8736122S S S S S b a ++++=+=52341S S S S S ++++ =2c , 即 222c b a =+.【证法11】(利用切割线定理证明)在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c . 如图,以B 为圆心a 为半径作圆,交AB 及AB 的延长线分别于D 、E ,则BD = BE = BC = a . 因为∠BCA = 90º,点C 在⊙B 上,所以AC 是⊙B 的切线. 由切割线定理,得AD AE AC ∙=2=()()BD AB BE AB -+=()()a c a c -+= 22a c -,即222a c b -=,∴ 222c b a =+.【证法12】在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c (如图). 过点A 作AD ∥CB ,过点B 作BD ∥CA ,则ACBD 为矩形,矩形ACBD 内接于一个圆. 根据多列米定理,圆内接四边形对角线的乘积等于两对边乘积之和,有BD AC BC AD DC AB ∙+∙=∙,∵ AB = DC = c ,AD = BC = a ,AC = BD = b ,∴ 222AC BC AB +=,即 222b a c +=,∴ 222c b a =+.【证法13】(作直角三角形的内切圆证明)在Rt ΔABC 中,设直角边BC = a ,AC = b ,斜边AB = c . 作Rt ΔABC 的内切圆⊙O ,切点分别为D 、E 、F (如图),设⊙O 的半径为r .∵ AE = AF ,BF = BD ,CD = CE ,∴ ()()()BF AF CD BD CE AE AB BC AC +-+++=-+= CD CE += r + r = 2r,即 r c b a 2=-+, ∴ c r b a +=+2.∴ ()()222c r b a +=+,即 ()222242c rc r ab b a ++=++,∵ab S ABC 21=∆,∴ ABC S ab ∆=42, 又∵ AOC BOCAOB ABC S S S S ∆∆∆∆++= = br ar cr 212121++ = ()r c b a ++21= ()r c c r ++221= rc r +2,∴()ABC S rc r ∆=+442, ∴ ()ab rc r242=+,∴ 22222c ab ab b a +=++, ∴ 222c b a =+.【证法14】(利用反证法证明)如图,在Rt ΔABC 中,设直角边AC 、BC 的长度分别为a 、b ,斜边AB 的长为c ,过点C 作CD ⊥AB ,垂足是D .假设222c b a ≠+,即假设 222AB BC AC ≠+,则由AB AB AB ∙=2=()BD AD AB +=BD AB AD AB ∙+∙可知 AD AB AC ∙≠2,或者 BD AB BC ∙≠2. 即 AD :AC ≠AC :AB ,或者 BD :BC ≠BC :AB .在ΔADC 和ΔACB 中,∵ ∠A = ∠A ,∴ 若 AD :AC ≠AC :AB ,则∠ADC ≠∠ACB . 在ΔCDB 和ΔACB 中, ∵ ∠B = ∠B , ∴ 若BD :BC ≠BC :AB ,则 ∠CDB ≠∠ACB.又∵ ∠ACB = 90º,∴ ∠ADC ≠90º,∠CDB ≠90º.这与作法CD ⊥AB 矛盾. 所以,222AB BC AC ≠+的假设不能成立.∴ 222c b a =+.【证法15】(辛卜松证明)设直角三角形两直角边的长分别为a 、b ,斜边的长为c . 作边长是a+b 的正方形ABCD . 把正方形ABCD 划分成上方左图所示的几个部分,则正方形ABCD 的面积为()ab b a b a2222++=+;把正方形ABCD划分成上方右图所示的几个部分,则正方形ABCD 的面积为 ()22214c ab b a +⨯=+ =22c ab +.∴ 22222c ab ab b a +=++,∴ 222c b a =+.【证法16】(陈杰证明)设直角三角形两直角边的长分别为a 、b (b>a ),斜边的长为c . 做两个边长分别为a 、b 的正方形(b>a ),把它们拼成如图所示形状,使E 、H 、M 三点在一条直线上. 用数字表示面积的编号(如图). 在EH = b 上截取ED = a ,连结DA 、则 AD = c .∵ EM = EH + HM = b + a , ED = a ∴ DM = EM ―ED = ()a b +―a = b . 又∵ ∠CMD = 90º,CM = a , ∠AED = 90º, AE = b , ∴ Rt ΔAED ≌ Rt ΔDMC .∴ ∠EAD = ∠MDC ,DC = AD = c . ∵ ∠ADE + ∠ADC+ ∠MDC =180º,∠ADE + ∠MDC = ∠ADE + ∠EAD = 90º, ∴ ∠ADC = 90º.∴ 作AB ∥DC ,CB ∥DA ,则ABCD 是一个边长为c 的正方形.D∵ ∠BAF + ∠FAD = ∠DAE + ∠FAD = 90º, ∴ ∠BAF=∠DAE .连结FB ,在ΔABF 和ΔADE 中,∵ AB =AD = c ,AE = AF = b ,∠BAF=∠DAE , ∴ ΔABF ≌ ΔADE .∴ ∠AFB = ∠AED = 90º,BF = DE = a . ∴ 点B 、F 、G 、H 在一条直线上. 在Rt ΔABF 和Rt ΔBCG 中,∵ AB = BC = c ,BF = CG = a , ∴ Rt ΔABF ≌ Rt ΔBCG .∵ 54322S S S S c +++=, 6212S S S b ++=, 732S S a +=,76451S S S S S +===,∴ 6217322S S S S S b a ++++=+=()76132S S S S S ++++=5432S S S S +++ =2c ∴ 222c b a =+.。
3个证明勾股定理的方法
3个证明勾股定理的方法勾股定理可神奇啦,就是直角三角形两条直角边的平方和等于斜边的平方,那怎么证明它呢?今天就给你分享三种超有趣的方法哦。
一、拼图法证明勾股定理咱就拿四个完全一样的直角三角形来玩一玩。
直角边设为a和b,斜边是c。
把这四个直角三角形拼成像一个大正方形中间套着一个小正方形的样子。
这个大正方形的边长就是a + b。
那它的面积就是(a + b)²。
展开这个式子就是a²+ 2ab+ b²。
再看看这个图形,大正方形其实是由四个直角三角形和中间那个小正方形组成的。
四个直角三角形的面积就是4×(1/2)ab = 2ab,小正方形的边长是c,它的面积就是c²。
所以大正方形的面积也可以表示成2ab + c²。
因为这两种方法表示的都是大正方形的面积呀,所以a²+ 2ab + b² = 2ab + c ²,两边的2ab一抵消,就得到a² + b² = c²啦,勾股定理就这么证明出来啦,是不是像玩拼图游戏一样好玩呢?二、利用相似三角形证明勾股定理在直角三角形ABC里,角C是直角,过点C作CD垂直于AB于D。
这样就形成了三个相似的三角形,大的直角三角形ABC,还有小一点的直角三角形ACD和BCD。
根据相似三角形的性质,对应边成比例。
在三角形ABC和ACD里,AC/AB = AD/AC,也就是AC² = AD×AB。
在三角形ABC和BCD里,BC/AB = BD/BC,也就是BC² = BD×AB。
把这两个式子加起来,AC²+ BC² = AD×AB + BD×AB = (AD + BD)×AB,而AD + BD就是AB呀,所以就得到AC² + BC² = AB²啦,是不是感觉很巧妙呢?三、总统证法(加菲尔德证法)这个可有意思啦。
勾股定理基础知识点
知识点一:勾股定理如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2.即直角三角形中两直角边的平方和等于斜边的平方.要点诠释:(1)勾股定理揭示的是直角三角形平方关系的定理。
勾股定理只适用于直角三角形,而不适用于锐角三角形和钝角三角。
(2) 勾:直角三角形较短的直角边股:直角三角形较长的直角边弦:斜边(3)理解勾股定理的一些变式(在三角形ABC 中,∠C=90°): c 2=a 2+b 2,a2=c 2-b 2, b 2=c 2-a 2 , c 2=(a+b)2-2ab知识点二:用面积证明勾股定理方法一:将四个全等的直角三角形拼成如图(1)所示的正方形。
图(1)中,所以。
方法二:将四个全等的直角三角形拼成如图(2)所示的正方形。
图(2)中,所以。
方法三:将四个全等的直角三角形分别拼成如图(3)—1和(3)—2所示的两个形状相同的正方形。
c a b =+22a cb =-22b c a =-22在(3)—1中,甲的面积=(大正方形面积)—(4个直角三角形面积),在(3)—2中,乙和丙的面积和=(大正方形面积)—(4个直角三角形面积),所以,甲的面积=乙和丙的面积和,即:.方法四:如图(4)所示,将两个直角三角形拼成直角梯形。
,所以。
知识点三:勾股定理的作用1.已知直角三角形的两条边长求第三边;2.已知直角三角形的一条边,求另两边的关系;3.用于证明平方关系的问题;知识点四:勾股数满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么当k>0时,ka,kb,kc同样也是勾股数组)常见勾股数:①3、4、5;②5、12、13;口诀:5月12记一生(13)③8、15、17;口诀:八月十五在一起(17)④7、24、25;⑤10、24、26;⑥9、40、41;⑦6、8、10;⑧9;12;15;⑨15、20、25.知识点五:勾股树知识点六:勾股定理的逆定理如果三角形的三边长分别为:a、b、c,且满足a2+b2=c2,那么这个三角形是直角三角形。
勾股定理四大核心知识讲义(解析版)
专题02 勾股定理四大核心知识讲义【勾股定理证明】赵爽弦图ab c()22142c ab b a =⨯+-,化简得:222a b c +=.欧几里得证明方法证明:S 1+S 2=S 3;△ABF ≌△ADE →S △ABF =S △ADE →2 S △ADE =S 长方形AENM =S 正方形ABCD =2 S △ABF 同理,S MNPF =S 1 故S 1+S 2=S 3 方法3ABD C BD D BDDAC D S S S S '''''=++△△△梯形,即:()2211112222a b ab ab c ⨯+=++化简得:222a b c += 方法422211112222c ab ab a b ab ab ++=+++,化简得:222a b c +=.总统证明法A BD C A'D'C'a bca bcca bac bac bac bb ac()2211112222a b ab ab c ⨯+=++化简得:222a b c += 达芬奇证明法a 2+b 2+2×12ab =c 2+ ab ,a 2+b 2=c 2【勾股定理应用】【勾股数】1. 毕达哥拉斯学派提出2221,22,221a n b n n c n n =+=+=++(n 为正整数)是一组勾股数.2. 我国《九章算术》中提到:()2212a m n =-,()221,(2b mn c m n m n ==+、为正整数,m n >)时,,,a b c 构成一组勾股数; 3. a 2-b 2,2ab ,a 2+b 2(a 、b 为正整数,且a >b )4. 常见勾股数:3、4、5;5、12、13;6、8、10;7、24、25;9、40、41……5. 直角三角形三边长为a 、b 、c ,斜边c 上的高为h ,则:以111,,a b h为边的三角形是直角三角形.6. 若a 、b 、c 是一组勾股数,则ka 、kb 、kc (k 为正整数)是一组勾股数.【在做某些题时较为简便】 【几个经典图形】结论:S 阴影=S △结论:23c a b a ===、、结论: c a ==、 ∠A =∠B =30°结论:2c a S ==△、、结论:2h S =△、 【勾股定理逆定理证明】命题:由题设和结论组成.将原命题的题设与结论互换即为其逆命题.如:“对顶角相等”的逆命题为:“相等的角是对顶角”.勾股定理逆定理证法:(构造全等三角形)【典例解析】【题型一】勾股定理及其应用 赵爽弦图【例1】(2020·河南南阳市月考)下图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x ,y 表示直角三角形的两直角边()x y >,下列四个说法:①2249x y +=,②2x y -=,③2449xy +=,④9x y +=.其中说法正确的是( ).A .①③B .①②③C .②④D .①②③④【答案】B .【解析】解:如图所示,∵△ABC 是直角三角形, ∴x 2+y 2=49,故①正确; 由图可知x -y =CE =2,故②正确;四个直角三角形的面积与小正方形的面积之和为大正方形的面积, 即:2xy +4=49,故③正确; 2xy =45, ∵x 2+y 2=49,∴(x +y )2=45+49=94,故④错误; 故答案为:B .【例2】(2021·沙坪坝区期末)我国古代著名的“赵爽弦图”的示意图如图所示,它是由四个全等的直角三角形围成的.若AC =2,BC =3,将四个直角三角形中边长为3的直角边分别向外延长一倍,得到一个如图所示“数学风车”,则这个风车的外围周长是()A.B.C.12D.12【答案】D.【解析】解:如图,CB=BD,∵AC=2,CD=2BC=6由勾股定理得:AD==AD+BD=3,+=.∴风车的外围周长是:4×()312故答案为:D.【变式1】(2021·四川资阳市期末)中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位,体现了数学研究中的继承和发展,现用4个全等的直角三角形拼成如图所示“弦图”.Rt△ABC中,∠ACB=90°.AC=b,BC=a,AB=c,请你利用这个图形解决下列问题:(1)试说明:a2+b2=c2;(2)如果大正方形的面积是13,小正方形的面积是3,求(a+b)2的值.【答案】(1)见解析;(2)23.【解析】解:(1)大正方形面积为c2,直角三角形面积为12ab,小正方形面积为(b﹣a)2,∴c2=4×12ab+(a﹣b)2=2ab+a2﹣2ab+b2,即c2=a2+b2;(2)由图可知:(b﹣a)2=3,4×12ab=13﹣3=10,∴2ab=10,∴(a+b)2=(b﹣a)2+4ab=3+2×10=23.【变式2】(2021·浙江湖州市期末)在每个小正方形的边长为1的网格图形中.每个小正方形的顶点称为格点.以顶点都是格点的正方形ABCD的边为斜边,向外作四个全等的直角三角形,使四个直角顶点,,,E F G H都是格点,且四边形EFGH为正方形,我们把这样的图形称为格点弦图.例如,在图中所示的格点弦图中,正方形ABCD,此时正方形EFGH的面积为52.问:当格点弦图中的正方形ABCD时,正方形EFGH的面积的所有可能值是________(不包括52).【答案】36或50.【解析】解:设四个全等的直角三角形的直角边边长分别为a,b.则正方形EFGH的边长为a+b,即S EFGH=(a+b)2.①当a=5,b=1或a=1,b=5时,此时S EFGH=36.②当a =b , 此时S EFGH =52.③当a =b =S EFGH =50 故答案为:36或50.【变式3】(2020·山东威海市期末)“赵爽弦图”巧妙的利用面积证明了勾股定理.如图所示的“赵爽弦图”是用四个全等的直角三角形和一个小正方形拼成一个大正方形.若直角三角形两直角边分别为a ,()b a b >,且3ab =,大正方形的面积为8,则a b -=____.【解析】解:小正方形的边长为a -b ,ab =3, (a -b )2=8-2ab =2,∴a -b ;【变式4】(2020·河南南阳市期末)勾股定理是人类最伟大的十个科学发现之一,在《周髀算经》中就有“若勾三,股四,则弦五”的记载,汉代数学家赵爽为证明勾股定理创制的“赵爽弦图”也流传至今.迄今为止已有400多种证明勾股定理的方法.下面是数学课上创新小组验证过程的一部分.请认真阅读并根据他们的思路将后续的过程补充完整:将两张全等的直角三角形纸片按图1所示摆放,其中b a >,点E 在线段AC 上,点B 、D 在边AC 两侧,试证明:222+=a b c .【答案】见解析.【解析】证明:如图2,连接BD 、CD ,过点D 作DF ⊥BC 于F ,则DF =CE =b -a . ∵△ABC ≌△DAE ∴∠ABC =∠DAE ,∵△ABC 是直角三角形,∠ACB =90°, ∴∠ABC +∠BAC =90°, ∴∠DAB =∠DAE +∠BAC =90°.∵S 四边形ADCB =S △ADB +S △DCB =212c +1()2a b a -. S 四边形ADCB =S △ADC +S △ACB =21122b ab +,∴212c +1()2a b a -=21122b ab +, ∴a 2+b 2=c 2. 勾股定理与面积【例1】(2021·陕西西安市期末)如图是一棵勾股树,它是由正方形和直角三角形排成的,若正方形A ,B ,C ,D 的边长分别是4,5,3,4,则最大正方形E 的面积是___.【答案】66.【解析】解: A 、B 的面积和为S 1,C 、D 的面积和为S 2, S 1=42+52,S 2=32+42,则S 3=S 1+S 2,S 3=16+25+9+16=66. 故答案为:66.【例2】(2020·浙江杭州市)勾股定理相传在商代由商高发现,故又称“商高定理”.如图1,以直角三角形ABC 的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大的正方形内,三块阴影区域面积分别记为123,,S S S ,两个较小正方形纸片的重叠部分(六边形PQMNHG )的面积记为4S ,则1234,,,S S S S 的关系为( )A .1234S S S S +=+B .1324S S S S +=+C .1234S S S S ++=D .1234S S S S ++<【答案】C .【解析】解:设图1最大正方形的面积为S 5,较小正方形面积为S 6,最小正方形面积为S 7, 则S 5= S 6+ S 7,图2中空白部分面积为:S 6+ S 7-S 4, 而S 1+S 2+S 3+S 空白=S 5= S 6+ S 7, 即S 1+S 2+S 3+ S 6+ S 7-S 4 = S 6+ S 7 S 1+S 2+S 3= S 4 故答案为:C .【例3】(2020·扬州市期中)如图1,有一个面积为2的正方形,经过一次“生长”后,在它的左右肩上生出两个小正方形,如图2,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长后,变成图3:“生长”10次后,如果继续“生长”下去,它将变得更加“枝繁叶茂”.随着不断地“生长”,形成的图形中所有正方形的面积和也随之变化.若生长n 次后,变成的图中所有正方形的面积用n S 表示,则n S =______.【答案】2n+2.【解析】解:经过n次生长后,所有正方形的面积和等于第一个正方形的面积的(n+1)倍,∴生长n次后,变成的图中所有正方形的面积S n=2n+2,故答案为:2n+2.【变式1】(2019·北京昌平区期中)有一个面积为1的正方形,经过一次“生长”后,在它的左右肩上生出了2个小正方形(如图①),其中,3个正方形围成的三角形是直角三角形.再经过一次“生长”后,又生出了4个小正方形(如图②),如果按此规律继续“生长”下去,它将变得“枝繁叶茂”,在“生长”了2019次后形成的图形中所有正方形的面积和是()A.2018 B.2019 C.2020 D.2021【答案】C.【解析】解:设直角三角形的是三条边分别是a,b,c.根据勾股定理,得a2+b2=c2,即正方形A的面积+正方形B的面积=正方形C的面积=1,生长1次后,所有的正方形的面积和是2,同理可得,生长2次后,所有的正方形的面积和是3,生长3次后,所有的正方形的面积和是4,⋯⋯所以,“生长”了2019次后形成的图形中所有的正方形的面积和是2020×1=2020.故答案为:C.【变式2】(2020·浙江期末)在ABC中,已知::5:12:13AC BC AB=,AD是ABC 的角平分线,DE AB⊥于点E.若ABC的面积为S,则ACD△的面积为()A.14S B.518S C.625S D.725S【答案】B.【解析】设AC=5k,BC=12k,AB=13k,∴AC2+BC2=AB2∴△ABC为直角三角形,∠C=90°,∵AD是△ABC的角平分线,DE⊥AB,∴∠CAD=∠BAD,∠C=∠AED =90°,∵AD=AD,∴△ACD≌△AED,∴S△ACD=S△AED,AE=AC=5k,∴BE=13k-5k=8k,S△BED:S△AED=8:5∴S△ACD=518S.故答案为:B.勾股定理及勾股数应用【例1】(2020·长汀县月考)如图,某港口P位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一个半小时后分别位于Q、R处,且相距30海里.如果知道“远航”号沿北偏东50°方向航行,则“海天”号沿哪个方向航行?【答案】沿北偏西40°方向航行.【解析】解:PQ =16×1.5=24(海里), PR =12×1.5=18(海里),∵QR =30,242+182=302,即PQ 2+PR 2=QR 2,∴∠QPR =90°.由“远航”号沿北偏东50°方向航行可知,∠QPS =50°.则∠RPS =∠QPR -∠QPS =90°-50°=40°,即“海天”号沿北偏西40°方向航行.【例2】阅读:能够成为直角三角形三条边长的三个正整数a ,b ,c ,称为勾股数.世界上第一次给出勾股数通解公式的是我国古代数学著作《九章算术》,其勾股数组公式为:22221()21()2a m n b mnc m n ⎧=-⎪⎪=⎨⎪⎪=+⎩其中m >n >0,m ,n 是互质的奇数. 应用:当n =1时,求有一边长为5的直角三角形的另外两条边长.【答案】12,13或3,4.【解析】解:当n =1,a =12(m 2﹣1),b =m ,c =12(m 2+1), ∵直角三角形有一边长为5,∴当a =5时,12(m 2﹣1)=5,解得:m, 当b =5时,即m =5,得,a =12,c =13,当c =5时,12(m 2+1)=5,解得:m =±3, ∵m >0,∴m =3,得,a =4,b =3,综上所述,直角三角形的另外两条边长分别为12,13或3,4.【例3】(2021·河南洛阳市期末)在Rt ABC △中,90ACB ∠=︒,5cm =BC ,12cm AC =,三个内角的平分线交于点P ,则点P 到AB 的距离PH 为( )A .1cmB .2cmC .3013cmD .6013cm 【答案】B . 【解析】解:在Rt △ABC 中,由勾股定理得:AB =13∵三个内角的平分线交于点P∴P 到三角形ABC 三边的距离相等,均为PH 的长S △ABC =S △APC +S △APB +S △BCP =12(AC +BC +AB )·PH S △ABC =12·BC ·AC ∴12×5×12=12×(5+12+13)·PH ∴PH =2故答案为:B .【变式1】(2020·浙江嘉兴市期末)如图,在ABC 中,13,17,AB AC AD BC ==⊥,垂足为D ,M 为AD 上任一点,则22MC MB -等于( )A .93B .30C .120D .无法确定【答案】C .【解析】解:由题意知∠ADB =∠ADC =90°∴由勾股定理得:AB 2=AD 2+BD 2,AC 2=AD 2+CD 2,∴AC 2-AB 2=CD 2-BD 2,即172-132= CD 2-BD 2同理,CM 2-MB 2=CD 2-BD 2=172-132=120故答案为:C .【变式2】阅读:所谓勾股数就是满足方程222x y z +=的正整数解,即满足勾股定理的三个正整数构成的一组数.我国古代数学专著《九章算术》一书,在世界上第一次给出该方程的解为:2212x m n ()=-,y mn =,2212z m n =+(),其中0m n >>,m ,n 是互质的奇数.应用:当3n =时,求一边长为8的直角三角形另两边的长.【答案】15,17.【解析】解:当x =8 时,()221382m -=, 解得m =5或m =-5(舍),∴y =mn =15,z =17.当y =8时,3m =8,m =83(舍)当z =8时,()221382m +=,解得m =(舍) 综上所述,当n =3时,一边长为8的直角三角形另两边的长分别为15,17.特殊三角形中的应用【例1】(2020·山东威海市期末)七巧板是大家熟悉的一种益智类玩具.用七巧板能拼出许多有趣的图案.小明将一个直角边长为20cm 的等腰直角三角形纸板,切割七块.正好制成一副七巧板,则图中阴影部分的面积为( )A .210cmB .225cm 2C 2D .225cm【答案】B .【解析】解:如图,BC =20,CD =BD =EM ,∴EG =GM ,∴EF =FG =5,∴S =12EF 2=252, 故答案为:B .【例2】(2021·北京房山区期末)如图甲,直角三角形ABC 的三边a ,b ,c ,满足222+=a b c 的关系.利用这个关系,探究下面的问题:如图乙,OAB 是腰长为1的等腰直角三角形,90OAB ∠=︒,延长OA 至1B ,使1AB OA =,以1OB 为底,在OAB 外侧作等腰直角三角形11OA B ,再延长1OA 至2B ,使121A B OA =,以2OB 为底,在11OA B 外侧作等腰直角三角形22OA B ,……,按此规律作等腰直角三角形n n OA B (1n ≥,n 为正整数),则22A B 的长及20212021OA B 的面积分别是( )A .2,20202B .4,20212C .20202D .2,20192【答案】A . 【解析】解:由题意可得:OA =AB =AB 1=1,OB 1=2,∵△OA 1B 1为等腰直角三角形,∴OA 1=A 1B 1,∴OB 2=2OA 1=OA 2=A 2B 2=2,……∴OA n=n, ∵S △OAB =12,S △OA 1B 1=1,S △OA 2B 2=2,…… ∴S △OAnBn =12n -,∴S △OA 2021B 2021=20202,故答案为:A .【例3】(2021·福建厦门期末)如图,△ABC 与△BED 全等,点A ,C 分别与点B ,D 对应,点C 在BD 上,AC 与BE 交于点F .若∠ABC =90°,∠D =60°,则AF :BD 的值为_____.【答案】3:4.【解析】解:根据题意知,△ABC ≌△BED ,则∠ACB =∠D =60°,∠ABC =∠BED =90°,AC =BD ,∴AC //ED .∴∠AFB =∠E =90°∴∠DBE =∠A =30°设AF =x ,BF =a ,在Rt △ABF 中,AB =2BF =2a ,由勾股定理得:(2a )2=a 2+x 2,即a=3x ,BF=3x ,AB=3x 同理,在Rt △ABC 中,CF =13x ,AC =AF +CF =43x , ∴3443AF x AC x == 故答案为:3:4.【变式1】(2021·安徽安庆市期末)如图,在平面直角坐标系中,12OA =,130AOx ∠=︒,以1OA 为直角边作12Rt OA A △,并使1260AOA ∠=︒,再以12A A 为直角边作123Rt A A A △,并使21360A A A ∠=︒,再以23A A 为直角边作234Rt A A A △,并使32460A A A ∠=︒,…,按此规律进行下去,则2020A 的坐标是_______.【答案】(0,1-31010).【解析】解:∵∠A 1Ox =30°,∠A 1OA 2=60°,∴∠A 2Ox =90°,A 2在y 轴上,在Rt △A 1A 2O 中,OA 1=2,∴OA 2=2OA 1=4,A 1A 2∴A 2的纵坐标为:4,∴A 2(0,4),同理,A 3(-1),A 4(0,-8),A 1在第一象限,A 2在y 轴正半轴上,A 3在第二象限,A 2在y 轴负半轴上,由此发现:点A 1,A 2,A 3,A 4,…,A n ,每四次一循环,2020÷4=505,∴点A 2020在y 轴的负半轴上,纵坐标是:20201010131⎡⎤--=-+⎢⎥⎣⎦, 故答案为:(0,1-31010).影响时间【例1】如图,有两条公路OM、ON相交成30°角,沿公路OM方向离O点160m处有一所医院A,当卡车P沿道路ON方向行驶时,在以P为圆心,100米为半径的圆形区域内都会受到噪声的影响.若已知卡车的速度为250米/分钟,则卡车P沿道路ON方向行驶一次时,给医院A带来噪声影响的持续时间是分钟.【答案】0.48.【解析】解:过点A作AD⊥ON于D,∵∠MON=30°,AO=160m,∴AD=12OA=80m,以A为圆心100m为半径画圆,交ON于B、C两点,∵AD⊥BC,∴BD=CD=12 BC,在Rt△ABD中,BD60m==,∴BC=120m,∵卡车的速度为250米/分钟,∴卡车经过BC的时间=120÷250=0.48分钟,故答案为:0.48.【例2】(2021·四川资阳期末)拖拉机行驶过程中会对周围产生较大的噪声影响.如图,有一台拖拉机沿公路AB由点A向点B行驶,已知点C为一所学校,且点C与直线AB上两点A,B的距离分别为150m和200m,又AB=250m,拖拉机周围130m以内为受噪声影响区域.(1)学校C会受噪声影响吗?为什么?(2)若拖拉机的行驶速度为每分钟50米,拖拉机噪声影响该学校持续的时间有多少分钟?【答案】(1)会受噪声影响,见解析;(2)2分钟.【解析】解:(1)学校C会受噪声影响.理由:过点C作CD⊥AB于D,∵AC=150m,BC=200m,AB=250m,∴AC2+BC2=AB2.∴△ABC是直角三角形.∴AC×BC=CD×AB,∴150×200=250×CD,∴CD=150200250⨯=120(m),∵拖拉机周围130m以内为受噪声影响区域,∴学校C会受噪声影响.(2)当EC=130m,FC=130m时,正好影响C学校,∵ED=(m),∴EF=50×2=100(m),∵拖拉机的行驶速度为每分钟50米,∴100÷50=2(分钟),即拖拉机噪声影响该学校持续的时间有2分钟.【例3】(2021·重庆万州期末)“某市道路交通管理条例”规定:小汽车在城市街路上行驶速度不得超过40千米/时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪A 正前方18米的C 处,过了2秒后到达B 处(BC ⊥AC ),测得小汽车与车速检测仪间的距离AB 为30米,请问这辆小汽车是否超速?若超速,则超速了多少?【答案】超速,每小时超速3.2千米.【解析】解:根据题意,得AC =18,AB =30,∠C =90°,在Rt △ACB 中,由勾股定理可得:BC =24即小汽车2秒行驶24米,即小汽车行驶速度为:43.2千米/时,43.2>40,所以小汽车超速行驶,超速3.2(千米/时).【变式1】(2021·重庆期末)如图,公路MN 和公路PQ 在点P 处交汇,且30QPN ∠=︒,在A 处有一所中学,120AP =米,此时有一辆消防车在公路MN 上沿PN 方向以每秒5米的速度行驶,假设消防车行驶时周围100米以内有噪音影响.(1)学校是否会受到影响?请说明理由.(2)如果受到影响,则影响时间是多长?【答案】(1)学校受到噪音影响,见解析;(2)32秒.【解析】解:(1)学校受到噪音影响.理由如下:过A 作AB ⊥MN 于B ,∵PA =120,∠QPN =30°∴AB =12PA =60 而60<100,故消防车在公路MN 上沿PN 方向行驶时,学校受到噪音影响;(2)以点A 为圆心,100m 为半径作圆交MN 于C 、D ,在Rt △ABC 中,AC =100,AB =60,由勾股定理得:BC =80同理,BD =80∴CD =160,拖拉机在线段CD 上行驶所需要的时间为:160÷5=32(秒),∴学校受影响的时间为32秒.【变式2】(2020·吉林长春市期末)《城市交通管理条例》规定:小汽车在城市街路上的行驶速度不得超过70千米/时.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到车速检测仪正前方30米的处,过了2秒后,小汽车行驶至处,若小汽车与观测点间的距离为50米,请通过计算说明:这辆小汽车是否超速?【答案】超速.【解析】解:根据题意,得AC =30m ,AB =50m ,∠C =90°,在Rt △ACB 中,BC =40m∴小汽车的速度为40÷2=20 m /s =72 km /h >70 km /h ;A C BAB∴这辆小汽车超速.最值问题【例1】(2021·江苏泰州市期末)已知△ABC 中,AB =AC =5,BC =6,动点P 在线段BC 上从B 点向C 点运动,连接AP ,则AP 的最小值为等于________.【答案】4.【解析】解:过A 作AP ⊥BC 于P ,∵AB =AC =5,∴BP =12BC =3, 在Rt △ABP 中,由勾股定理得,AP =4由垂线段最短知,AP 的最小值为4故答案为:4.【例2】(2021·重庆渝北区期末)如图,在等腰ABC 中,13AB AC ==,AD 是ABC 的高,12AD =,10BC =,E 、F 分别是AC 、AD 上一动点,则CF EF +的最小值为______.【答案】12013. 【解析】解:作E 关于AD 的对称点M ,连接CM 交AD 于F ,连接EF ,过C 作CN ⊥AB 于N ,∵AB =AC =13,BC =10,AD 是BC 边上的高,∴BD =DC =5,AD ⊥BC ,AD 平分∠BAC ,在Rt △ABD 中,AD =12,∴S △ABC =12×BC ×AD =12×AB ×CN , ∴CN =BC ×AD ÷AB =12013, ∵E 关于AD 的对称点M ,∴EF =FM ,∴CF +EF =CF +FM =CM ,根据垂线段最短得出:CM ≥CN ,即CF +EF ≥12013, 即CF +EF 的最小值是12013, 故答案为:12013. 【例3】(2021·江苏连云港市期末)如图,90MON ∠=︒,已知ABC ∆中,10AC BC ==,12AB =,ABC ∆的顶点A 、B 分别在边OM 、ON 上,当点B 在边ON 上运动时,点A 随之在边OM 上运动,ABC ∆的形状保持不变,在运动过程中,点C 到点O 的最大距离为( )A .12.5B .13C .14D .15【答案】C .【解析】解:取AB的中点D,连接CD∵AC=BC=10,AB=12,∵点D是AB边中点,∴BD=12AB=6,CD⊥AB,∴CD=8,连接OD,OC,有OC≤OD+DC,当O、D、C共线时,OC有最大值,最大值=OD+CD,∵△AOB为直角三角形,D为斜边AB的中点,∴OD=12AB=6∴OD+CD=6+8=14,即OC的最大值=14,故答案为:C.新定义问题【例1】(2020·渠县月考)阅读下面的情景对话,然后解答问题:老师:我们新定义一种三角形,两边平方和等于第三边平方的2倍的三角形叫做奇异三角形.小华:等边三角形一定是奇异三角形!小明:那直角三角形是否存在奇异三角形呢?(1)根据“奇异三角形”的定义,请你判断小华的说法:“等边三角形一定是奇异三角形”______正确(填“是”或“不是”)(2)在Rt ABC中,两边长分别是a=10c=,这个三角形是否是奇异三角形?请说明理由.【答案】(1)是;(2)①当c为斜边时,Rt△ABC不是奇异三角形;②当b为斜边时,Rt△ABC 是奇异三角形.【解析】解:(1)设等边三角形的边长为a,∵a2+a2=2a2,∴等边三角形一定是奇异三角形,∴“等边三角形一定是奇异三角形”是正确的,故答案为:是;(2)①当c为斜边时,Rt△ABC不是奇异三角形;②当b为斜边时,Rt△ABC是奇异三角形;理由如下,分两种情况:①当c为斜边时,b=∴a=b,∴a2+c2≠2b2(或b2+c2≠2a2),∴Rt△ABC不是奇异三角形;②当b为斜边时,b ,∵a2+b2=200,∴2c2=200,∴a2+b2=2c2,∴Rt△ABC是奇异三角形.【例2】(2021·北京昌平区)定义:点P是ABC内部的一点,若经过点P和ABC中的一个顶点的直线把ABC平分成两个面积相等的图形,则称点P是ABC关于这个顶点的均分点.例如图中,点P是ABC关于顶点A的均分点.(1)下列图形中,点D一定是ABC关于顶点B的均分点的是________;(填序号)(2)如图,在ABC 中,9,010BAC BC ︒∠==,点P 是ABC 关于顶点A 的均分点,直线AP 与BC 交于点D ,当BP AD ⊥时,4BP =,求CP 的长.【答案】(1)④;(2)【解析】解:(1)①D 点在直线AE 上,故D 点不是△ABC 关于顶点B 的均分点. ②D 点在直线AE 上,故D 点不是△ABC 关于顶点B 的均分点.③不能推出AE =EC ,即不能说明△ABE 和△BCE 面积相等,故不能证明D 点是△ABC 关于顶点B 的均分点.④由AE =EC ,可知△ABE 和△BCE 面积相等,所以D 点是△ABC 关于顶点B 的均分点. 故答案为:④.(2)过点C 点作CE ⊥AP 于E ,∵点P是△ABC关于顶点A的均分点,BC=10,∴BD=CD=5,在Rt△BPD中,由勾股定理得:PD=3,易证:△BPD≌△CDE,∴PD=DE=3,PB=CE=4,∴PE=2PD=6在Rt△PEC中,由勾股定理得:PC【例3】(2020·浙江嘉兴市期末)我们新定义一种三角形:若一个三角形中存在两边的平方差等于第三边上高的平方,则称这个三角形为勾股高三角形,这两边交点为勾股顶点.(1)特例感知①等腰直角三角形_________勾股高三角形(请填写“是”或者“不是”);②如图1,已知ABC为勾股高三角形,其中C为勾股顶点,CD是AB边上的高.若AD=,试求线段CD的长度.BD=1(2)深入探究>,CD是AB边上试如图2,已知ABC为勾股高三角形,其中C为勾股顶点且CA CB探究线段AD与CB的数量关系,并给予证明;【答案】(1)①是;②2;(2)见解析.【解析】解:(1)是;②由题意知,CD⊥AB,BD AD=1,由勾股定理可得:BC2=DC2+BD2=DC2+5,AC2=CD2+1,∵△ABC为勾股高三角形,C为勾股顶点,CD是AB边上的高,∴CD2=BC2-AC2,∴CD2=4,解得:CD=2(-2舍去);(2)AD=CB,∵△ABC为勾股高三角形,C为勾股顶点且CA>CB,CD是AB边上的高,∴CD2=AC2-BC2,∵CD⊥AB∴AC2-CD2=AD2∴BC2=AD2∴BC=AD【变式1】我们知道,到线段两端距离相等的点在线段的垂直平分线上.由此,我们可以引入如下新定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.(1)如图1,点P在线段BC上,∠ABP=∠APD=∠PCD=90°,BP=CD.求证:点P 是△APD的准外心;(2)如图2,在Rt△ABC中,∠BAC=90°,BC=5,AB=3,△ABC的准外心P在△ABC 的直角边上,试求AP的长.【答案】(1)见解析;(2)AP的长为32或2或78.【解析】解:(1)证明:∵∠ABP=∠APD=∠PCD=90°,∴∠APB+∠P AB=90°,∠APB+∠DPC=90°,∴∠P AB=∠DPC,∴△ABP≌△PCD,∴AP=PD,∴点P是△APD的准外心;(2)解:∵∠BAC=90°,BC=5,AB=3,∴AC=4,当P点在AB上,P A=PB,则AP12=AB32=;当P点在AC上,P A=PC,则AP12=AC=2,当P 点在AC 上,PB =PC ,如图,设AP =t ,则PC =PB =4﹣x ,在Rt △ABP 中,32+t 2=(4﹣t )2,解得t 78=, 即此时AP 78=, 综上所述,AP 的长为32或2或78. 【变式2】(2021·浙江宁波市)定义:如果一个三角形中有两个内角α,β满足290αβ+=︒,那我们称这个三角形为“近直角三角形”.(1)若ABC 是“近直角三角形”,90B ∠>︒,50C ∠=︒,则A ∠=_____度;(2)如图,在Rt ABC △中,90BAC ∠=︒,3AB =,4AC =.若CD 是ACB ∠的平分线,①求证:BDC 是“近直角三角形”;②求BD 的长.(3)在(2)的基础上,边AC 上是否存在点E ,使得BCE 也是“近直角三角形”?若存在,直接写出....CE 的长;若不存在,请说明理由.【答案】(1)20,(2)①见解析;②53;(3)52或74. 【解析】解:(1)∠B 不可能是α或β,当∠A =α时,∠C =β=50°,此时,α+2β=90°,不成立当∠A =β,∠C =α=50°时,β=20°(2)①∵CD 平分∠ACB ,∴∠ACB=2∠BCD又∠BAC=90°∴∠ACB+∠B=90°即2∠BCD+∠B=90°∴△BCD是“近直角三角形”.②过点D作DH⊥BC于H在Rt△BAC中,由勾股定理得:AC=5 可得:△ACD≌△HCD∴DH=AD,AC=CH=4,∴BH=1设BD=x,则DH=3-x,在Rt△BDH中,x2=(3-x)2+1,解得:x=53,即BD=5 3 .(3)①过点E作EF⊥BC于F,设CE=x,则AE=4-x,EF=4-x由AB=BF=3得:CF=2,在Rt△CEF中,x2=22+(4-x)2,解得:x=5 2②当∠ABE =∠C 时,延长EA 至G ,使得AE =AG ,根据条件可得:△ABG ≌△ABE ,∴∠GBA =∠C =∠EBA由∠GBA +∠G =90°,知∠C +∠G =90°,故∠GBC =90°设CE =x ,则AE =AG =4-x ,∴(4-x )2+32=(8-x )2-52,解得:x =74综上所述,满足题的CE 值为52或74. 【变式3】(2021·浙江宁波期末)定义:若一个三角形存在两边平方和等于第三边平方的3倍,则称此三角形为“平方倍三角形”.(12,次三角形是否为平方倍三角形?请你作出判断并说明理由;(2)若一个直角三角形是平方倍三角形,求该直角三角形的三边之比(结果按从小到大的顺序排列);(3)如图,Rt ABC 中,90ACB ∠=︒,5BC =,CD 为ABC 的中线,若BCD △是平方倍三角形,求ABC 的面积.【答案】(1)是;(2)1:1;(3252. 【解析】解:(1)此三角形是平方倍三角形,理由如下:∵22223+=⨯,满足是平方倍三角形的定义,2的三角形是平方倍三角形;(2)在Rt ∆ABC 中,则a 2+b 2=c 2,∵Rt ∆ABC 是平方倍三角形,∴c 2+b 2=3a 2,∴a 2+b 2=3a 2-b 2∴a =b ,c a故该直角三角形的三边之比为1:1;(3)∵Rt △ABC 中,CD 为△ABC 的中线,∴CD =12AB =AD =BD , 设CD =12AB =AD =BD =x ,则AB =2x , ∵AB >BC ,∴2x >5,即:x >52, ∵△BCD 是平方倍三角形,①当BD 2+CD 2=3BC 2,即x 2+x 2=3×52,解得:x (舍负),∴AB =2x =AC =∴△ABC 的面积=152⨯= ②当BC 2+BD 2=3DC 2,则52+x 2=3x 2,解得:x =2(舍负),∴AB =2x =AC =5,∴△ABC的面积=2555122⨯⨯=,综上所述,△ABC 25 2.【题型二】勾股定理逆定理及其应用判断三角形形状【例1】(2021·江苏苏州市期末)在△ABC中,∠A、∠B、∠C的对边分别为a、b、c,下列条件不能判断△ABC是直角三角形的是()A.∠B=∠C+∠A B.a2=(b+c)(b﹣c)C.∠A:∠B:∠C=3:4:5 D.a:b:c=3:4:5【答案】C.【例2】(2021·山西长治市期末)如图,每个小正方形的边长都相等,A,B,C是小正方形的顶点,则ABC∠的度数为()A.45︒B.50︒C.55︒D.60︒【答案】A.【解析】解:如图,连接AC,由题意可得:22221310,125=AB AC BC=+==+=∴AC=BC,AB2=AC2+BC2,∴△ABC是等腰直角三角形,∴∠ABC=∠BAC=45°,故答案为:A.【变式1】(2021·浙江绍兴市期末)如图,已知A、B是线段MN上的两点,MN=4,MA=1,MB>1.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成ABC.设AB=x,若ABC为直角三角形,则x=__.【答案】43或53.【解析】解:∵在△ABC中,AC=1,AB=x,BC=3-x ∴1+x>3-x,1+3-x>x解得:1<x<2.①∵1<x,∴AC不能为斜边,②若AB为斜边,则x2=(3-x)2+1,解得x=53,满足1<x<2,③若BC为斜边,则(3-x)2=1+x2,解得x=43,满足1<x<2,故答案为:43或53.【变式2】(2021·江西吉安市期末)如图,在四边形ABCD中,CD=AD=,∠D=90°,AB=5.BC=3.(1)求∠C的度数;(2)求四边形ABCD的面积.【答案】(1)135°;(2)10.【解析】解:连接AC,如图,∵∠D=90°,∴AD2+CD2=AC2∵CD=AD=∴AC=4∵AB=5.BC=3∴AC2+BC2=AB2∴∠ACB=90°∵CD=AD∴∠ACD=45°∴∠BCD=∠ACB+∠ACD=135°. (2)S四边形ABCD=S△ABC+S△ACD=1122AC BC AD CD ⨯+⨯=114322⨯⨯+⨯=10.【变式3】(2021·广东佛山市期末)在△ABC中,(1)如图1,AC=15,AD=9,CD=12,BC=20,求△ABC的面积;(2)如图2,AC=13,BC=20,AB=11,求△ABC的面积.【答案】(1)150;(2)66.【解析】解:(1)∵AC=15,AD=9,CD=12 ∴CD2+AD2=AC2,∴∠ADC=90°,∠BDC=90°在Rt△BCD中,由勾股定理得:BD=16∴AB=AD+BD=25∴S△ABC=112512150 22AB CD⋅=⨯⨯=.(2)过点C作CD⊥AB于点D,则∠ADC=∠BDC=90°设AD=x,则BD=x+11由勾股定理得:CD2=132-x2=202-(x+11)2,解得:x=5∴CD2=144,即CD=12,∴S△ABC=11111222AB CD⋅=⨯⨯=66.三角形存在性问题【例1】(2021·福建泉州市期末)Rt△ABC中,∠ACB=90°,AC=3,AB=5.图1 图2(1)如图1,点E在边BC上,且∠AEC=2∠B.①在图1中用尺规作图作出点E,并连结AE(保留作图痕迹,不写作法与证明过程);②求CE的长.(2)如图2,点D为斜边上的动点,连接CD,当△ACD是以AC为底的等腰三角形时,求AD的长.【答案】(1)①见解析;②78;(2)2.5.【解析】解:(1)①作∠BAE=∠B②由勾股定理,得BC=4∵∠AEC=∠B+∠BAE,又∵∠AEC=2∠B,∴∠BAE=∠B ,∴BE=AE,.设CE=x,则BE=AE=4-x,在Rt△AEC中,x2+32=(4-x)2,∴x=7 8 .(2)AC为底时,AD=CD,∴∠A=∠DCA∵∠A+∠B=90°,∠DCA+∠BCD=90°,∴∠B=∠BCD,∴BD=CD,即AD =BD =2.5.【例2】(2021·广东佛山市期末)如图,在Rt ABC 中,90ACB ∠=︒,20AB cm =,16AC cm =,点P 从点A 出发,以每秒1cm 的速度向点C 运动,连接PB ,设运动时间为t 秒(0t >)(1)求BC 的长.(2)当PA PB =时,求t 的值.【答案】(1)12;(2)252. 【解析】解:(1)由勾股定理可得:BC 2+AC 2=AB 2,BC ;(2)由题意知P A =PB =t ,PC =16-t ,在Rt △PCB 中,(16-t )2=t 2-122,解得:t =252, ∴当点P 运动到P A =PB 时,t 的值为252. 【变式1】(2020·南阳市月考)如图,在Rt ABC △中,90ABC ∠=︒,20AB =,15BC =,点D 为AC 边上的动点,点D 从点C 出发,沿边CA 往A 运动,当运动到点A 时停止,若设点D 运动的时间为t 秒,点D 运动的速度为每秒2个单位长度.(1)当2t =时,CD =______,AD =______;(请直接写出答案)(2)当t 为何值时,CBD 是直角三角形;(写出解答过程)(3)求当t 为何值时,CBD 是等腰三角形?并说明理由.【答案】(1)4,21;(2)92或252;(3)254或152或9.【解析】解:(1)t=2时,CD=2×2=4,∵∠ABC=90°,AB=20,BC=15,∴AC=,AD=AC-CD=25-4=21;故答案为:4,21;(2)①∠CDB=90°时,S△ABC=12AC•BD=12AB•BC,∴BD=12,CD=,∴2t=9,解得:t=92(秒);②∠CBD=90°时,点D和点A重合,∴2t=25,解得:t=252(秒);综上所述,当t=92或252秒时,△CBD是直角三角形;(3)①CD=BD时,过点D作DE⊥BC于E,则CE=BE,DE∥AB,∴CD=AD=12AC=252,∴2t=25 2,解得:t=254(秒);②CD=BC时,CD=15,∴2t=15,解得:t=152(秒);③BD=BC时,过点B作BF⊥AC于F,同理可得:CF=9,则CD=2CF=18,∴2t=18,t=9(秒);综上所述,当t=254或152或9秒时,△CBD是等腰三角形.41。
勾股定理的5种方式
勾股定理的五种证明方式1.画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。
这两个正方形全等,故面积相等。
左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。
从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。
左图剩下两个正方形,分别以a、b为边。
右图剩下以c为边的正方形。
于是a2+b2=c2。
这就是我们几何教科书中所介绍的方法。
既直观又简单,任何人都看得懂。
2.直接在直角三角形三边上画正方形,如图。
容易看出,△ABA’ ≌△AA’’ C。
过C向A’’B’’引垂线,交AB于C’,交A’’B’’于C’’。
△ABA’与正方形ACDA’同底等高,前者面积为后者面积的一半,△AA’’C与矩形AA’’C’’C’同底等高,前者的面积也是后者的一半。
由△ABA’≌△AA’’C,知正方形ACDA’的面积等于矩形AA’’C’’C’的面积。
同理可得正方形BB’EC的面积等于矩形B’’BC’C’’的面积。
于是,S正方形AA’’B’’B=S正方形ACDA’+S正方形BB’EC,即a2+b2=c2。
3.将四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。
即“勾股各自乘,并之为弦实,开方除之,即弦也”。
4.S梯形ABCD= (a+b)2 = (a2+2ab+b2),①又S梯形ABCD=S△AED+S△EBC+S△CED = ab+ ba+ c2 = (2ab+c2)。
②比较以上二式,便得a2+b2=c25.在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。
Rt△ABC中,∠ACB=90°。
作CD⊥BC,垂足为D。
则△BCD∽△BAC,△CAD∽△BAC。
由△BCD∽△BAC可得BC2=BD • BA,①由△CAD∽△BAC可得AC2=AD • AB。
勾股定理的8种证明方法
勾股定理的8种证明方法这个定理有许多证明的方法,其证明的方法可能是数学众多定理中最多的。
路明思(Elisha Scott Loomis)的Pythagorean Proposition(《毕达哥拉斯命题》)一书中总共提到367种证明方式。
有人会尝试以三角恒等式(例如:正弦和余弦函数的泰勒级数)来证明勾股定理,但是,因为所有的基本三角恒等式都是建基于勾股定理,所以不能作为勾股定理的证明(参见循环论证)。
证法1作四个全等的直角三角形,设它们的两条直角边长分别为a、b ,斜边长为c. 把它们拼成如图那样的一个多边形,使D、E、F在一条直线上. 过点C作AC的延长线交DF于点P.∵ D、E、F在一条直线上, 且RtΔGEF ≌ RtΔEBD,∴ ∠EGF = ∠BED,∵ ∠EGF + ∠GEF = 90°,∴ ∠BED + ∠GEF = 90°,∴ ∠BEG =180°―90°= 90°又∵ AB = BE = EG = GA = c,∴ ABEG是一个边长为c的正方形.∴ ∠ABC + ∠CBE = 90°∵ RtΔABC ≌ RtΔEBD,∴ ∠ABC = ∠EBD.∴ ∠EBD + ∠CBE = 90°即∠CBD= 90°又∵ ∠BDE = 90°,∠BCP = 90°,BC = BD = a.∴ BDPC是一个边长为a的正方形.同理,HPFG是一个边长为b的正方形.设多边形GHCBE的面积为S,则a^2+b^2=c^2证法2作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c. 再做一个边长为c的正方形. 把它们拼成如图所示的多边形,使E、A、C三点在一条直线上.过点Q作QP∥BC,交AC于点P.过点B作BM⊥PQ,垂足为M;再过点F作FN⊥PQ,垂足为N.∵ ∠BCA = 90°,QP∥BC,∴ ∠MPC = 90°,∵ BM⊥PQ,∴ ∠BMP = 90°,∴ BCPM是一个矩形,即∠MBC = 90°.∵ ∠QBM + ∠MBA = ∠QBA = 90°,∠ABC + ∠MBA = ∠MBC = 90°,∴ ∠QBM = ∠ABC,又∵ ∠BMP = 90°,∠BCA = 90°,BQ = BA = c,∴ RtΔBMQ ≌ RtΔBCA.同理可证RtΔQNF ≌ RtΔAEF.即a^2+b^2=c^2证法3作两个全等的直角三角形,设它们的两条直角边长分别为a、b(b>a),斜边长为c. 再作一个边长为c的正方形. 把它们拼成如图所示的多边形.分别以CF,AE为边长做正方形FCJI和AEIG,∵EF=DF-DE=b-a,EI=b,∴FI=a,∴G,I,J在同一直线上,∵CJ=CF=a,CB=CD=c,∠CJB = ∠CFD = 90°,∴RtΔCJB ≌ RtΔCFD ,同理,RtΔABG ≌ RtΔADE,∴RtΔCJB ≌ RtΔCFD ≌ RtΔABG ≌ RtΔADE∴∠ABG = ∠BCJ,∵∠BCJ +∠CBJ= 90°,∴∠ABG +∠CBJ= 90°,∵∠ABC= 90°,∴G,B,I,J在同一直线上,a^2+b^2=c^2证法4作三个边长分别为a、b、c的三角形,把它们拼成如图所示形状,使H、C、B三点在一条直线上,连结BF、CD. 过C作CL⊥DE,交AB于点M,交DE于点L.∵ AF = AC,AB = AD,∠FAB = ∠GAD,∴ ΔFAB ≌ ΔGAD,∵ ΔFAB的面积等于,ΔGAD的面积等于矩形ADLM的面积的一半,∴ 矩形ADLM的面积 =.同理可证,矩形MLEB的面积 =.∵ 正方形ADEB的面积= 矩形ADLM的面积 + 矩形MLEB的面积∴ 即a^2+b^2=c^2证法5(欧几里得的证法)《几何原本》中的证明在欧几里得的《几何原本》一书中提出勾股定理由以下证明后可成立。
勾股定理
第四讲 勾股定理知识梳理一、勾股定理定义:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么 a 2+b 2=c 2. 即直角三角形两直角边的平方和等于斜边的平方二、勾股定理的逆定理:如果三角形的三边长a ,b ,c 有下面关系:a 2+b 2=c 2,那么这个三角形是直角三角形。
三、常见勾股数:3,4,5; 6,8,10; 9,12,15; 5,12,13四、勾股定理的作用(1)已知直角三角形的两边求第三边。
(2)已知直角三角形的一边,求另两边的关系。
(3)用于证明线段平方关系的问题。
(4)利用勾股定理,作出长为n 的线段。
例题讲解1、在ABC ∆中,o90=∠C(1)若25c 20b ==,,则=a (2)若4:3:=b a ,20=c ,则=a (3)若b a 3=,10=c ,则=∆ABC S2、已知一个Rt △的两直角边长分别为3和4,则第三边长的平方是( ) A .25 B .7 C .7或25 D .无法确定3、已知一个Rt △的两边长分别为3和4,则第三边长的平方是( ) A .25 B .7 C .7或25 D .无法确定4、已知一个△的两边长分别为3和4,则第三边长的平方是( ) A .25 B .7C .7或25D .无法确定5、Rt △ABC 中,斜边BC =2,则AB 2+AC 2+BC 2的值为( ) A .8 B .4C .6D .无法计算6、如图,△ABC 中,AB =AC =10,BD 是AC 边上的高线,DC =2,则BD 等于( ) A .4B .6C .8D .102勾股数树1、如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中正方形A ,B ,C ,D 的边和长分别为2cm 、1cm 、2cm 、4cm ,则最大的正方形的面积之和为___________cm 2.2、如图,所有的四边形都是正方形,所有的三角形都 是直角三角形,其中最大的正方形的边长为6cm,则正方形A ,B ,C ,D 的面积之和为__________cm 2。
勾股定理经典例题详解
勾股定理经典例题详解知识点一:勾股定理如果直角三角形的两直角边长分别为:a,b,斜边长为c,那么a2+b2=c2.即直角三角形中两直角边的平方和等于斜边的平方.要点诠释:(1)勾股定理揭示的是直角三角形平方关系的定理。
(2)勾股定理只适用于直角三角形,而不适用于锐角三角形和钝角三角。
(3)理解勾股定理的一些变式:c2=a2+b2, a2=c2-b2, b2=c2-a2,c2=(a+b)2-2ab知识点二:用面积证明勾股定理方法一:将四个全等的直角三角形拼成如图(1)所示的正方形。
图(1)中,所以。
方法二:将四个全等的直角三角形拼成如图(2)所示的正方形。
图(2)中,所以。
方法三:将四个全等的直角三角形分别拼成如图(3)—1和(3)—2所示的两个形状相同的正方形。
在(3)—1中,甲的面积=(大正方形面积)—(4个直角三角形面积),在(3)—2中,乙和丙的面积和=(大正方形面积)—(4个直角三角形面积),所以,甲的面积=乙和丙的面积和,即:.方法四:如图(4)所示,将两个直角三角形拼成直角梯形。
,所以。
知识点三:勾股定理的作用1.已知直角三角形的两条边长求第三边;2.已知直角三角形的一条边,求另两边的关系;3.用于证明平方关系的问题; 4.利用勾股定理,作出长为的线段。
2. 在理解的基础上熟悉下列勾股数满足不定方程x2+y2=z2的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x,y,z为三边长的三角形一定是直角三角形。
熟悉下列勾股数,对解题是会有帮助的:①3、4、5②5、12、13;③8、15、17;④7、24、25;⑤10、24、26;⑥9、40、41.如果(a,b,c)是勾股数,当t>0时,以at,bt,ct为三角形的三边长,此三角形必为直角三角形。
经典例题透析类型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6, c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。
勾股定理的应用范围
勾股定理的应用范围勾股定理,那可是数学界的一个超级明星啊!它的应用范围可广啦。
一、建筑领域在建筑工程里,勾股定理就像是一个默默守护的小天使。
比如说盖房子的时候,要确保房子的墙角是直角。
工人师傅们就可以利用勾股定理来进行测量。
假如一条直角边的长度是3米,另一条直角边是4米,那斜边就应该是5米呀。
要是测量出来不是5米,那这个墙角可就不是直角啦,房子的结构稳定性可能就会受到影响呢。
而且在搭建一些特殊形状的建筑构件时,也需要用到勾股定理来计算边长,确保各个部分能够完美拼接在一起。
二、测量领域测量土地面积的时候,勾股定理也能大显身手。
当遇到不规则形状的土地,我们可以把它分割成一些直角三角形,然后用勾股定理求出各个三角形的边长,进而算出面积。
还有在测绘地形的时候,如果知道了两个地点之间的水平距离和垂直距离,就可以用勾股定理算出它们之间的实际直线距离。
就像测量山的高度和两个山峰之间的距离,通过在不同位置测量角度和距离,利用勾股定理就能算出想要的数据。
三、航海领域对于在海上航行的船只来说,勾股定理也是个得力助手。
比如说知道了灯塔和船只之间的两条相互垂直方向上的距离,就可以算出船只离灯塔的实际距离,这有助于船只确定自己的位置,避免触礁等危险。
而且在规划航线的时候,如果把航线看作是斜边,其他方向上的距离看作直角边,也可以通过勾股定理来进行计算和调整。
四、物理学中的力的分解在物理学里,当一个力作用在一个物体上,我们有时候需要把这个力分解成不同方向上的分力。
如果这几个分力的方向是相互垂直的,就可以利用勾股定理来计算各个分力的大小。
就像一个斜面上的物体受到的重力,我们可以把它分解成垂直于斜面和平行于斜面的两个分力,通过勾股定理来准确求出这两个分力的大小,进而分析物体在斜面上的运动状态。
勾股定理在很多很多领域都有着不可替代的作用,就像一个万能钥匙,虽然它看起来只是一个简单的数学定理,但却能开启这么多领域的大门呢!。
《勾股定理》模型(四)——风吹树折模型
《勾股定理》模型(四)——风吹树折模型“风吹树折”问题又称为“折竹抵地”,源自《九章算术》,原文为∶“今有竹高一丈,末折抵地,去本三尺.问折者高几何?”意思是∶一根竹子,原高一丈,一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部 3 尺远,则折断后的竹子高度为多少尺?(1丈=10尺)【模型】如图所示,折断后的两段竹子与地面形成一直角三角形,其中一直角边长三尺,其余两边长度之和为 10尺.【思路】根据勾股定理建立方程,求出折断后的竹子高度为4.55 尺.【解析】设折断后的竹子高度为 x 尺,则被折断的竹子长度为(10—x )尺.由勾股定理得 x2+32=(10—x )2,解得 x= 4.55.答∶折断后竹子的高度是 4.55 尺此模型主要考查勾股定理的运用.在此模型中,已知三角形一条直角边的长度与其余两条边长度之和,即可设所求的一边长度为 x ,通过勾股定理建立方程,求出答案.典例1☆☆☆☆☆由于台风的影响,一棵树在离地面6m 处折断,树顶落在离树干底部8 m 处,则这棵树在折断前(不包括树根)的高度是( )A.8mB.10 mC.16 mD.18 m【答案】C【解析】如图,根据勾股定理得 AB==10(m ),所以大树的高度是 10+6=16(m ).故选 C.模型讲解典例秒杀典例2 ☆☆☆☆☆如图,已知一根长8m 的竹竿在离地面3 m 处断裂,竹竿顶部抵着地面,此时,顶部距底部______m.【答案】4【解析】设竹竿顶部距离底部 x m ,则 32+x ²=(8-3)2,解得 x = 4.故竹竿顶部距离底部 4 m.1(★★☆☆☆)如图,一旗杆在离地面6 m 处折断,旗杆顶部落在离旗杆底部 8 m 处,则旗杆折断之前的高度是 _______ m.2.(★★★☆☆)一阵大风把一棵高为9m 的树在离地 4 m 的 B 处折断,折断处仍相连,此时在离树3.9m 的 D 处,一头高1m 的小马正在吃草,小马有危险吗?为什么?1. 《九章算术》是中国传统数学的重要著作之一,奠定了中国传统数学的基本框架.如图所示是其中记载的一道“折竹”问题:“今有竹高一丈,末折抵地,去本三尺,问折者高几何?”题意是∶一根竹子原高1丈 小试牛刀直击中考(1丈=10 尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?答∶折断处离地面_______尺高。
八下数学勾股定律
有关“数学”的勾股定理
有关“数学”的勾股定理如下:
勾股定理是一个基本的几何定理,指直角三角形的两条直角边的平方和等于斜边的平方。
中国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一长直角边为股,斜边为弦,所以称这个定理为勾股定理,也有人称商高定理。
勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。
在中国,周朝时期的商高提出了“勾三股四弦五”的勾股定理的特例。
在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派。
勾股定理的公式为a²+b²=c²,其中a、b代表两条直角边,c代表斜边。
这个定理的证明方法有很多种,其中最有代表性的是几何证明。
此外,还有代数证明、三角函数证明等多种证明方法。
勾股定理不仅在数学中有着广泛的应用,它在日常生活中也有着很多用途。
比如,可以用勾股定理测量房屋的面积、修建水平线等等。
此外,勾股定理也是其他学科的基础,比如实验物理中的力学、声学等等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
勾股定理(四)
一、教学目标
1.会用勾股定理解决较综合的问题。
2.树立数形结合的思想。
二、重点、难点
1.重点:勾股定理的综合应用。
2.难点:勾股定理的综合应用。
3.难点的突破方法:
⑴数形结合,正确标图,将条件反应到图形中,充分利用图形的功能和性质。
⑵分类讨论,从不同角度考虑条件和图形,考虑问题要全面,在讨论的过程中提高学生的灵活应用能力。
⑶作辅助线,作高是常用的创造直角三角形的辅助线做法,在做辅助线的过程中,提高学生的综合应用能力。
⑷优化训练,在不条件、不同环境中反复运用定理,使学生达到熟练使用,灵活运用的程度。
三、例题的意图分析
例1(补充)“双垂图”是中考重要的考点,熟练掌握“双垂图”的图形结构和图形性质,通过讨论、计算等使学生能够灵活应用。
目前“双垂图”需要掌握的知识点有:3个直角三角形,三个勾股定理及推导式BC2-BD2=AC2-AD2,两对相等锐角,四对互余角,及30°或
45°特殊角的特殊性质等。
例2(补充)让学生注意所求结论的开放性,根据已知条件,作适当辅助线求出三角形中的边和角。
让学生掌握解一般三角形的问题常常通过作高转化为直角三角形的问题。
使学生清楚作辅助线不能破坏已知角。
例3(补充)让学生掌握不规则图形的面积,可转化为特殊图形求解,本题通过将图形转化为直角三角形的方法,把四边形面积转化为三角形面积之差。
在转化的过程中注意条件的合理运用。
让学生把前面学过的知识和新知识综合运用,提高解题的综合能力。
例4(教材P76页探究3)让学生利用尺规作图和勾股定理画出数轴上的无理数点,进一步体会数轴上的点与实数一一对应的理论。
四、课堂引入
复习勾股定理的内容。
本节课探究勾股定理的综合应用。
五、例习题分析
例1(补充)1.已知:在Rt △ABC 中,∠C=90°,CD ⊥BC 于D ,∠A=60°,CD=,
求线段AB 的长。
分析:本题是“双垂图”的计算题,“双垂图”是中考重要的考点,所以要求学生对图形及性质掌握非常熟练,能够
灵活应用。
目前“双垂图”需要掌握的知识点有:
3个直角三
角形,三个勾股定理及推导式BC 2-BD 2=AC 2-AD 2,两对相等锐角,四对互余角,及30°或45°特殊角3C D
的特殊性质等。
要求学生能够自己画图,并正确标图。
引导学生分析:欲求AB ,可由AB=BD+CD ,分别在两个三角形中利用勾股定理和特殊角,求出BD=3和AD=1。
或欲求AB ,可由,分别在两个三角形中利用勾股定理和特殊角,求出AC=2和BC=6。
例2(补充)已知:如图,△ABC 中,AC=4,
∠B=45°,∠A=60°,根据题设可知什么?
分析:由于本题中的△ABC 不是直角三角形,所
以根据题设只能直接求得∠ACB=75°。
在学生充
分思考和讨论后,发现添置AB 边上的高这条辅助线,就可以求得AD ,CD ,BD ,AB ,BC 及S △ABC 。
让学生充分讨论还可以作其它辅助线吗?
为什么?
小结:可见解一般三角形的问题常常通过作高转化为直角三角形的问题。
并指出如何作辅助线?
解略。
例3(补充)已知:如图,∠B=∠D=90°,
∠A=60°,AB=4,CD=2。
求:四边形ABCD 的
面积。
分析:如何构造直角三角形是解本题的关键,可以连结AC ,或延长AB 、DC 交于F ,或延长AD 、BC 交于E ,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。
教学中要逐层展示给学生,让学生深入体会。
22BC AC AB +=C
A
D
B C
解:延长AD 、BC 交于E 。
∵∠A=∠60°,∠B=90°,∴∠E=30°。
∴AE=2AB=8,CE=2CD=4,
∴BE 2=AE 2-AB 2=82-42=48,BE==。
∵DE 2= CE 2-CD 2=42-22=12,∴DE==。
∴S 四边形ABCD =S △ABE -S △CDE =AB ·BE-CD ·DE=
小结:不规则图形的面积,可转化为特殊图形求解,本题通过将图形转化为直角三角形的方法,把四边形面积转化为三角形面积之差。
例4(教材P76页探究3) 分析:利用尺规作图和勾股定理画出数轴上的无理数点,进一步体会数轴上的点与实数一一对应的理论。
变式训练:在数轴上画出表示的点。
六、课堂练习
1.△ABC
中,AB=AC=25cm ,高AD=20cm,则BC= ,S △ABC = 。
2.△ABC 中,若∠A=2∠B=3∠C ,AC=cm ,则∠A= 度,∠B= 度,∠C= 度,
BC= ,S △ABC = 。
3.△ABC 中,∠C=90°,AB=4,BC=,CD ⊥AB 于D ,则AC= ,CD= ,BD= ,AD= ,S △ABC = 。
4.已知:如图,△ABC 中,AB=26,BC=25,AC=17,
4834123221213622,13--3232C
求S △ABC 。
七、课后练习
1.在Rt △ABC 中,∠C=90°,CD ⊥BC 于D ,∠A=60°,CD=,AB= 。
2.在Rt △ABC 中,∠C=90°,S △ABC =30,c=13,且a <b ,则a= ,
b= 。
3.已知:如图,在△ABC 中,∠B=30°,∠C=45°,AC=,
求(1)AB 的长;(2)
S △ABC 。
4.在数轴上画出表示-的点。
八、参考答案:
课堂练习:
1.30cm ,300cm 2;
2.90,60,30,4,;
3.2,,3,1,;
4.作BD ⊥AC 于D ,设AD=x ,则CD=17-x ,252-x 2=262-(17-x )2,x=7,BD=24,
S △ABC =AC ·BD=254;
课后练习:
1.4;
2.5,12;
32252,5 323322
1C
3.提示:作AD ⊥BC 于D ,AD=CD=2,AB=4,BD=,BC=2+,S △ABC = =2+;
323232。