江苏大数学分析-第十二章 数项级数习题课
高等数学课件--D12_2数项级数及审敛法
发散 .
2012-10-12
同济版高等数学课件
目录 上页 下页 返回 结束
2) 若 p 1, 因为当
1 n
p
时,
dx
1
1 n
p
1 x
p
, 故
n
1
p
n 1 n n
1 1 p 1 dx p 1 p n 1 x p 1 (n 1) n
1
1 1 1 11 1 1 1 p 1 考虑强级数 p 1 p p p1 p的部分和 p 1 1 1 1 2 2 n 2 ( n 1) n 3 n (n 1)
目录 上页 下页 返回 结束
是两个正项级数,
(1) 当 0 l 时, 两个级数同时收敛或发散 ;
(2) 当 l 0 且 vn 收敛时,
(3) 当 l 且 vn 发散时,
也收敛 ;
也发散 .
注: 1) un , vn均为无穷小时, l 的值反映了它们不同阶的比较.
2) 特别取 vn
发散, 则有 这说明强级数
同济版高等数学课件
目录 上页 下页 返回 结束
也发散 .
例1. 讨论 p 级数 1
的敛散性.
1 2
p
1 3
p
1 n
p
(常数 p > 0)
解: 1) 若 p 1, 因为对一切
1 n
而调和级数
n 1
1 n
发散 , 由比较审敛法可知 p 级数
证: 设 收敛 , 令
vn
1 2 ( un un )
数学分析12-1
1 1 ), = (1 − 2 2n + 1
1 1 ) ∴ lim sn = lim (1 − n→ ∞ n→ ∞ 2 2n + 1
1 = , 2
1 ∴ 级数收敛 , 和为 . 2
第十二章
数项级数
§1 级数的收敛性
一 问题的提出
有限个实数相加是实数,无限个实数相加会 有限个实数相加是实数, 是什么结果? 是什么结果? 一尺之棰,日取其半,万世不竭。 一尺之棰,日取其半,万世不竭。 将每天取下的长度“ 将每天取下的长度“加”起来: 起来:
1 1 1 1 + 2 + 3 +L+ n +L 2 2 2 2
1 1 1 1 + 2 + 3 +L+ n +L 2 2 2 2
——无限个数相加! 无限个数相加! 无限个数相加 直观上感觉结果( 直观上感觉结果(和)应该是1。 应该是 。 再如: 再如: 如果 如果
1−1+1−1+1−1+L
( 1 − 1 ) 1 − 1 ) 1 − 1) L ( + + + ( 结果是0。 结果是 。 结果是1。 结果是 。
1
1 收敛。 例6 证明级数 ∑ 2 收敛。 n =1 n
∞
证
| um +1 + um + 2 + L + um + p |
1 1 1 L+ = 2 + 2 + 2 ( m + 1) ( m + 2) (m + p) 1 1 1 < + +L+ m ( m + 1) ( m + 1)( m + 2) ( m + p − 1)( m + p ) 1 1 1 1 1 1 = − + − +L+ − m m +1 m +1 m + 2 m + p−1 m + p 1 1 1 = − → 0, ( m → ∞ ) < m m+ p m
华东师范大学数学系《数学分析》(第4版)(下册)课后习题-数项级数(圣才出品)
十万种考研考证电子书、题库视频学习平台
第二部分 课后习题
第 12 章 数项级数
§1 级数的收敛性
1.证明下列级数的收敛性,并求其和: (1) (2) (3) (4) (5) 证明:(1)
所以原级数收敛,且和数 (2)
1 / 26
圣才电子书 十万种考研考证电子书、题库视频学习平台
也发散.
证明:假设
收敛.因 c≠0,故级数
矛盾,所以若
发散.
也发散(c≠0).
收敛,这与题设
发散
3.设级数 与级数 都发散,试问
一定发散吗?又若 un 与 vn(n=1,
2,…)都是非负数,则能得出什么结论?
解:(1)当 与 都发散时,
不一定发散.如
两级数均发散,但
,即
收敛.
又如,
,两级数均发散,且
所以
从而级数
由比较原则知 收敛.
.又
收敛,
6.设级数 收敛,证明 证明:因为
也收敛.
又及
收敛,故
收敛,所以由比较原则得
收敛.
7.设正项级数 收敛,证明级数
也收敛.
证明:因为
,义由已知碍 及
收敛,所以
收敛,进而由比较原则得
收敛.
8.利用级数收敛的必要条件,证明下列等式:
证明:(1)设
,考察正项级数 的收敛性,因为
发敛.
8 / 26
圣才电子书 十万种考研考证电子书、题库视频学习平台
(5)因
,而级数
收敛,故级数
收敛.
(6)因
,而级数
发散,故级数
发散.
(7)因
,而级数
发散,故级数
2018版高考数学文江苏专用大一轮复习讲义文档 第十二
1.直接证明(1)综合法①定义:从已知条件出发,以已知的定义、公理、定理为依据,逐步下推,直到推出要证明的结论为止,这种证明方法常称为综合法.②框图表示:已知条件⇒…⇒…⇒结论③思维过程:由因导果.(2)分析法①定义:从问题的结论出发,追溯导致结论成立的条件,逐步上溯,直到使结论成立的条件和已知条件或已知事实吻合为止.这种证明方法常称为分析法.②框图表示:结论⇐…⇐…⇐已知条件③思维过程:执果索因.2.间接证明反证法:要从否定结论开始,经过正确的推理,导致逻辑矛盾,从而达到新的否定(即肯定原命题).这个过程包括下面3个步骤:(1)反设——假设命题的结论不成立,即假定原结论的反面为真;(2)归谬——从反设和已知条件出发,经过一系列正确的逻辑推理,得出矛盾结果;(3)存真——由矛盾结果,断定反设不真,从而肯定原结论成立.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)综合法是直接证明,分析法是间接证明.( × )(2)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.( × ) (3)用反证法证明结论“a >b ”时,应假设“a <b ”.( × ) (4)反证法是指将结论和条件同时否定,推出矛盾.( × )(5)在解决问题时,常常用分析法寻找解题的思路与方法,再用综合法展现解决问题的过程.( √ )(6)证明不等式2+7<3+6最合适的方法是分析法.( √ )1.(2016·扬州质检)已知点A n (n ,a n )为函数y =x 2+1图象上的点,B n (n ,b n )为函数y =x 图象上的点,其中n ∈N *,设c n =a n -b n ,则c n 与c n +1的大小关系为______________________. 答案 c n +1<c n 解析 由条件得 c n =a n -b n =n 2+1-n =1n 2+1+n,则c n 随n 的增大而减小,∴c n +1<c n .2.用反证法证明命题:“a ,b ∈N ,若ab 不能被5整除,则a 与b 都不能被5整除”时,假设的内容应为____________________________. 答案 a ,b 至少有一个能被5整除解析 “都不能”的否定为“至少有一个能”,故假设的内容应为“a ,b 至少有一个能被5整除”.3.要证a 2+b 2-1-a 2b 2≤0只要证明________(填正确的序号). ①2ab -1-a 2b 2≤0; ②a 2+b 2-1-a 4+b 42≤0;③(a +b )22-1-a 2b 2≤0;④(a 2-1)(b 2-1)≥0. 答案 ④解析 a 2+b 2-1-a 2b 2≤0⇔(a 2-1)(b 2-1)≥0.4.如果a a +b b >a b +b a ,则a 、b 应满足的条件是__________________________. 答案 a ≥0,b ≥0且a ≠b解析 ∵a a +b b -(a b +b a ) =a (a -b )+b (b -a ) =(a -b )(a -b ) =(a -b )2(a +b ).∴当a ≥0,b ≥0且a ≠b 时,(a -b )2(a +b )>0. ∴a a +b b >a b +b a 成立的条件是a ≥0,b ≥0且a ≠b .5.(2016·盐城模拟)如果函数f (x )在区间D 上是凸函数,则对于区间D 内的任意x 1,x 2,…,x n ,有f (x 1)+f (x 2)+…+f (x n )n ≤f (x 1+x 2+…+x n n ),已知函数y =sin x 在区间(0,π)上是凸函数,则在△ABC 中,sin A +sin B +sin C 的最大值为________. 答案332解析 ∵f (x )=sin x 在区间(0,π)上是凸函数, 且A ,B ,C ∈(0,π). ∴f (A )+f (B )+f (C )3≤f (A +B +C 3)=f (π3),即sin A +sin B +sin C ≤3sin π3=332,∴sin A +sin B +sin C 的最大值为332.题型一 综合法的应用例1 数列{a n }满足a n +1=a n2a n +1,a 1=1.(1)证明:数列{1a n}是等差数列;(2)求数列{1a n }的前n 项和S n ,并证明1S 1+1S 2+…+1S n >nn +1.(1)证明 ∵a n +1=a n2a n +1,∴1a n +1=2a n +1a n ,化简得1a n +1=2+1a n ,即1a n +1-1a n=2,故数列{1a n }是以1为首项,2为公差的等差数列.(2)解 由(1)知1a n=2n -1,∴S n =n (1+2n -1)2=n 2.方法一1S 1+1S 2+…+1S n =112+122+…+1n 2>11×2+12×3+…+1n (n +1)=(1-12)+(12-13)+…+(1n -1n +1)=1-1n +1=n n +1. 方法二1S 1+1S 2+…+1S n =112+122+…+1n 2>1,又∵1>n n +1,∴1S 1+1S 2+…+1S n >n n +1. 思维升华 (1)综合法是“由因导果”的证明方法,它是一种从已知到未知(从题设到结论)的逻辑推理方法,即从题设中的已知条件或已证的真实判断(命题)出发,经过一系列中间推理,最后导出所要求证结论的真实性.(2)综合法的逻辑依据是三段论式的演绎推理.若a ,b ,c 是不全相等的正数,求证:lga +b 2+lg b +c 2+lg c +a2>lg a +lg b +lg c . 证明 ∵a ,b ,c ∈(0,+∞), ∴a +b 2≥ab >0,b +c 2≥bc >0,a +c 2≥ac >0. 由于a ,b ,c 是不全相等的正数, ∴上述三个不等式中等号不能同时成立, ∴a +b 2·b +c 2·c +a2>abc >0成立. 上式两边同时取常用对数,得 lg(a +b 2·b +c 2·c +a 2)>lg abc ,∴lg a +b 2+lg b +c 2+lg c +a 2>lg a +lg b +lg c .题型二 分析法的应用例2 已知函数f (x )=tan x ,x ∈⎝⎛⎭⎫0,π2,若x 1,x 2∈⎝⎛⎭⎫0,π2,且x 1≠x 2,求证:12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22.证明 要证12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22, 即证明12(tan x 1+tan x 2)>tan x 1+x 22,只需证明12⎝⎛⎭⎫sin x 1cos x 1+sin x 2cos x 2>tan x 1+x 22,只需证明sin (x 1+x 2)2cos x 1cos x 2>sin (x 1+x 2)1+cos (x 1+x 2).由于x 1,x 2∈⎝⎛⎭⎫0,π2,故x 1+x 2∈(0,π). 所以cos x 1cos x 2>0,sin(x 1+x 2)>0,1+cos(x 1+x 2)>0, 故只需证明1+cos(x 1+x 2)>2cos x 1cos x 2, 即证1+cos x 1cos x 2-sin x 1sin x 2>2cos x 1cos x 2, 即证cos(x 1-x 2)<1.由x 1,x 2∈⎝⎛⎭⎫0,π2,x 1≠x 2知上式显然成立, 因此12[f (x 1)+f (x 2)]>f ⎝⎛⎭⎫x 1+x 22. 引申探究若本例中f (x )变为f (x )=3x -2x ,试证:对于任意的x 1,x 2∈R ,均有f (x 1)+f (x 2)2≥f⎝⎛⎭⎫x 1+x 22. 证明 要证明f (x 1)+f (x 2)2≥f⎝⎛⎭⎫x 1+x 22, 即证明(3x 1-2x 1)+(3x 2-2x 2)2≥1223x x +-2·x 1+x 22,因此只要证明3x 1+3x 22-(x 1+x 2)≥1223x x +-(x 1+x 2),即证明3x 1+3x 22≥1223x x +,因此只要证明3x 1+3x 22≥3x 1·3x 2,由于x 1,x 2∈R 时,3x 1>0,3x 2>0,由基本不等式知3x 1+3x 22≥3x 1·3x 2显然成立,故原结论成立.思维升华 (1)逆向思考是用分析法证题的主要思想,通过反推,逐步寻找使结论成立的充分条件.正确把握转化方向是使问题顺利获解的关键.(2)证明较复杂的问题时,可以采用两头凑的办法,即通过分析法找出某个与结论等价(或充分)的中间结论,然后通过综合法证明这个中间结论,从而使原命题得证.(2016·苏州模拟)下列各式:1+0.12+0.1>12,0.2+30.5+3>0.20.5,2+73+7>23,72+π101+π>72101. 请你根据上述特点,提炼出一个一般性命题(写出已知,求证),并用分析法加以证明.解 已知a >b >0,m >0,求证:b +m a +m >ba .证明如下:∵a >b >0,m >0,欲证b +m a +m >ba ,只需证a (b +m )>b (a +m ),只需证am >bm , 只需证a >b ,由已知得a >b 成立, 所以b +m a +m >b a 成立.题型三 反证法的应用 命题点1 证明否定性命题例3 (2016·连云港模拟)设{a n }是公比为q 的等比数列. (1)推导{a n }的前n 项和公式;(2)设q ≠1,证明:数列{a n +1}不是等比数列. (1)解 设{a n }的前n 项和为S n , 当q =1时,S n =a 1+a 1+…+a 1=na 1; 当q ≠1时,S n =a 1+a 1q +a 1q 2+…+a 1q n -1,① qS n =a 1q +a 1q 2+…+a 1q n ,②①-②得,(1-q )S n =a 1-a 1q n , ∴S n =a 1(1-q n )1-q ,∴S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q,q ≠1.(2)证明 假设{a n +1}是等比数列,则对任意的k ∈N *, (a k +1+1)2=(a k +1)(a k +2+1), a 2k +1+2a k +1+1=a k a k +2+a k +a k +2+1,a 21q 2k +2a 1q k =a 1qk -1·a 1q k +1+a 1q k -1+a 1q k +1, ∵a 1≠0,∴2q k =q k -1+q k +1.∵q ≠0,∴q 2-2q +1=0, ∴q =1,这与已知矛盾.∴假设不成立,故{a n +1}不是等比数列. 命题点2 证明存在性问题例4 已知四棱锥S -ABCD 中,底面是边长为1的正方形,又SB =SD =2,SA =1.(1)求证:SA ⊥平面ABCD ;(2)在棱SC 上是否存在异于S ,C 的点F ,使得BF ∥平面SAD ?若存在,确定F 点的位置;若不存在,请说明理由.(1)证明 由已知得SA 2+AD 2=SD 2,∴SA ⊥AD . 同理SA ⊥AB .又AB ∩AD =A ,AB ⊂平面ABCD ,AD ⊂平面ABCD , ∴SA ⊥平面ABCD .(2)解 假设在棱SC 上存在异于S ,C 的点F ,使得BF ∥平面SAD .∵BC ∥AD ,BC ⊄平面SAD . ∴BC ∥平面SAD .而BC ∩BF =B , ∴平面FBC ∥平面SAD .这与平面SBC 和平面SAD 有公共点S 矛盾, ∴假设不成立.∴不存在这样的点F ,使得BF ∥平面SAD . 命题点3 证明唯一性命题例5 已知a ≠0,证明关于x 的方程ax =b 有且只有一个根. 证明 由于a ≠0,因此方程至少有一个根x =ba .假设x 1,x 2是它的两个不同的根, 即ax 1=b , ① ax 2=b ,②由①-②得a (x 1-x 2)=0, 因为x 1≠x 2,所以x 1-x 2≠0,所以a =0,这与已知矛盾,故假设错误. 所以当a ≠0时,方程ax =b 有且只有一个根.思维升华 应用反证法证明数学命题,一般有以下几个步骤 第一步:分清命题“p ⇒q ”的条件和结论;第二步:作出与命题结论q 相反的假设綈q ;第三步:由p 和綈q 出发,应用正确的推理方法,推出矛盾结果;第四步:断定产生矛盾结果的原因在于开始所作的假设綈q 不真,于是原结论q 成立,从而间接地证明了命题p ⇒q 为真.所说的矛盾结果,通常是指推出的结果与已知公理、已知定义、已知定理或已知事实矛盾,与临时假设矛盾以及自相矛盾等都是矛盾结果.已知二次函数f (x )=ax 2+bx +c (a >0)的图象与x 轴有两个不同的交点,若f (c )=0,且0<x <c 时,f (x )>0.(1)证明:1a 是函数f (x )的一个零点;(2)试用反证法证明1a>c .证明 (1)∵f (x )的图象与x 轴有两个不同的交点, ∴f (x )=0有两个不等实根x 1,x 2, ∵f (c )=0,∴x 1=c 是f (x )=0的根, 又x 1x 2=c a ,∴x 2=1a (1a ≠c ),∴1a 是f (x )=0的一个根. 即1a是函数f (x )的一个零点. (2)假设1a <c ,又1a >0,由0<x <c 时,f (x )>0,知f (1a )>0,与f (1a )=0矛盾,∴1a ≥c ,又∵1a ≠c ,∴1a >c .22.反证法在证明题中的应用典例 (14分)直线y =kx +m (m ≠0)与椭圆W :x 24+y 2=1相交于A 、C 两点,O 是坐标原点.(1)当点B 的坐标为(0,1),且四边形OABC 为菱形时,求AC 的长; (2)当点B 在W 上且不是W 的顶点时,证明:四边形OABC 不可能为菱形.思想方法指导 在证明否定性问题,存在性问题,唯一性问题时常考虑用反证法证明,应用反证法需注意:(1)掌握反证法的证明思路及证题步骤,正确作出假设是反证法的基础,应用假设是反证法的基本手段,得到矛盾是反证法的目的.(2)当证明的结论和条件联系不明显、直接证明不清晰或正面证明分类较多、而反面情况只有一种或较少时,常采用反证法.(3)利用反证法证明时,一定要回到结论上去. 规范解答(1)解 因为四边形OABC 为菱形, 则AC 与OB 相互垂直平分. 由于O (0,0),B (0,1), 所以设点A ⎝⎛⎭⎫t ,12, 代入椭圆方程得t 24+14=1,则t =±3,故|AC |=2 3.[4分] (2)证明 假设四边形OABC 为菱形, 因为点B 不是W 的顶点,且AC ⊥OB , 所以k ≠0.由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m , 消y 并整理得(1+4k 2)x 2+8kmx +4m 2-4=0.[7分] 设A (x 1,y 1),C (x 2,y 2),则 x 1+x 22=-4km1+4k 2,y 2+y 22 =k ·x 1+x 22+m =m 1+4k 2.所以AC 的中点为M ⎝ ⎛⎭⎪⎫-4km 1+4k 2,m 1+4k 2.[10分] 因为M 为AC 和OB 的交点,且m ≠0,k ≠0, 所以直线OB 的斜率为-14k,因为k ·⎝⎛⎭⎫-14k =-14≠-1, 所以AC 与OB 不垂直.[13分]所以OABC 不是菱形,与假设矛盾.所以当点B 不是W 的顶点时,四边形OABC 不可能是菱形.[14分]1.(2017·泰州月考)用反证法证明命题“设a ,b 为实数,则方程x 2+ax +b =0至少有一个实根”时,要做的假设是__________________________. 答案 方程x 2+ax +b =0没有实根解析 因为“方程x 2+ax +b =0至少有一个实根”等价于“方程x 2+ax +b =0有一个实根或两个实根”,所以该命题的否定是“方程x 2+ax +b =0没有实根”.2.若一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值范围为__________.答案 (-3,0]解析 若2kx 2+kx -38<0对一切实数x 都成立,则必有⎩⎪⎨⎪⎧2k <0,Δ=k 2-4×2k ×(-38)<0或k =0. 解得-3<k ≤0.3.设x ,y ,z >0,则关于三个数y x +y z ,z x +z y ,x z +xy 的叙述正确的是________.①都大于2②至少有一个大于2 ③至少有一个不小于2④至少有一个不大于2答案 ③解析 因为(y x +y z )+(z x +z y )+(x z +xy )=(y x +x y )+(y z +z y )+(z x +xz )≥6, 当且仅当x =y =z 时等号成立.所以三个数中至少有一个不小于2,③正确.4.(2016·镇江模拟)若P =a +a +7,Q =a +3+a +4(a ≥0),则P ,Q 的大小关系是____________. 答案 P <Q解析 ∵P 2=2a +7+2a ·a +7=2a +7+2a 2+7a ,Q 2=2a +7+2a +3·a +4=2a +7+2a 2+7a +12,∴P 2<Q 2,∴P <Q .5.(2016·苏州模拟)下列条件:①ab >0,②ab <0,③a >0,b >0,④a <0,b <0,其中能使b a +a b≥2成立的条件的序号是________. 答案 ①③④解析 要使b a +a b ≥2,只需b a >0且a b >0成立,即a ,b 不为0且同号即可,故①③④能使b a +a b≥2成立.6.用反证法证明:若整系数一元二次方程ax 2+bx +c =0 (a ≠0)有有理数根,那么a ,b ,c 中至少有一个是偶数.用反证法证明时,下列假设正确的是________.①假设a ,b ,c 都是偶数;②假设a ,b ,c 都不是偶数;③假设a ,b ,c 至多有一个偶数;④假设a ,b ,c 至多有两个偶数.答案 ②解析 “至少有一个”的否定为“都不是”,故②正确.7.(2016·全国甲卷)有三张卡片,分别写有1和2,1和3,2和3.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.答案 1和3解析 由丙说:“我的卡片上的数字之和不是5”可知,丙为“1和2”或“1和3”,又乙说“我与丙的卡片上相同的数字不是1”,所以乙只可能为“2和3”,又甲说“我与乙的卡片上相同的数字不是2”,所以甲只能为“1和3”.8.若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1,在区间[-1,1]内至少存在一点c ,使f (c )>0,则实数p 的取值范围是____________.答案 ⎝⎛⎭⎫-3,32 解析 若二次函数f (x )≤0在区间[-1,1]内恒成立,则⎩⎪⎨⎪⎧f (-1)=-2p 2+p +1≤0,f (1)=-2p 2-3p +9≤0, 解得p ≤-3或p ≥32, 故满足题干条件的p 的取值范围为⎝⎛⎭⎫-3,32. 9.已知m >0,a ,b ∈R ,求证:(a +mb 1+m )2≤a 2+mb 21+m. 证明 因为m >0,所以1+m >0.所以要证原不等式成立,只需证(a +mb )2≤(1+m )(a 2+mb 2),即证m (a 2-2ab +b 2)≥0,即证(a -b )2≥0,而(a -b )2≥0显然成立,故原不等式得证.10.设f (x )=ax 2+bx +c (a ≠0),若函数f (x +1)与f (x )的图象关于y 轴对称,求证:f (x +12)为偶函数.证明 由函数f (x +1)与f (x )的图象关于y 轴对称,可知f (x +1)=f (-x ).将x 换成x -12代入上式可得 f (x -12+1)=f [-(x -12)], 即f (x +12)=f (-x +12), 由偶函数的定义可知f (x +12)为偶函数. 11.(2016·苏州模拟)已知函数f (x )=a x +x -2x +1(a >1). (1)证明:函数f (x )在(-1,+∞)上为增函数;(2)用反证法证明方程f (x )=0没有负数根.证明 (1)任取x 1,x 2∈(-1,+∞),不妨设x 1<x 2,则x 2-x 1>0.∵a >1,∴ax 2-x 1>1且ax 1>0,∴ax 2-ax 1=ax 1(ax 2-x 1-1)>0.又∵x 1+1>0,x 2+1>0,∴x 2-2x 2+1-x 1-2x 1+1=(x 2-2)(x 1+1)-(x 1-2)(x 2+1)(x 1+1)(x 2+1) =3(x 2-x 1)(x 1+1)(x 2+1)>0. 于是f (x 2)-f (x 1)=ax 2-ax 1+x 2-2x 2+1-x 1-2x 1+1>0, 故函数f (x )在(-1,+∞)上为增函数.(2)假设存在x 0<0(x 0≠-1)满足f (x 0)=0,则ax 0=-x 0-2x 0+1. ∵a >1,∴0<ax 0<1,∴0<-x 0-2x 0+1<1,即12<x 0<2,与假设x 0<0相矛盾, 故方程f (x )=0没有负数根.12.(2016·浙江)设函数f (x )=x 3+11+x,x ∈[0,1],证明: (1)f (x )≥1-x +x 2;(2)34<f (x )≤32. 证明 (1)因为1-x +x 2-x 3=1-(-x )41-(-x )=1-x 41+x , 由于x ∈[0,1],有1-x 41+x ≤1x +1, 即1-x +x 2-x 3≤1x +1, 所以f (x )≥1-x +x 2.(2)由0≤x ≤1得x 3≤x ,故f (x )=x 3+1x +1≤x +1x +1=x +1x +1-32+32=(x -1)(2x +1)2(x +1)+32≤32, 所以f (x )≤32. 由(1)得f (x )≥1-x +x 2=⎝⎛⎭⎫x -122+34≥34, 又因为f ⎝⎛⎭⎫12=1924>34,所以f (x )>34. 综上,34<f (x )≤32. 13.(2015·课标全国Ⅱ)设a ,b ,c ,d 均为正数,且a +b =c +d ,证明:(1)若ab >cd ,则a +b >c +d ;(2)a+b>c+d是|a-b|<|c-d|的充要条件.证明(1)因为(a+b)2=a+b+2ab,(c+d)2=c+d+2cd,由题设a+b=c+d,ab>cd得(a+b)2>(c+d)2. 因此a+b>c+d.(2)①若|a-b|<|c-d|,则(a-b)2<(c-d)2,即(a+b)2-4ab<(c+d)2-4cd.因为a+b=c+d,所以ab>cd.由(1)得a+b>c+d.②若a+b>c+d,则(a+b)2>(c+d)2,即a+b+2ab>c+d+2cd.因为a+b=c+d,所以ab>cd,于是(a-b)2=(a+b)2-4ab<(c+d)2-4cd=(c-d)2.因此|a-b|<|c-d|.综上,a+b>c+d是|a-b|<|c-d|的充要条件.。
数学分析12.3一般项级数
第十二章 数项级数2 一般项级数一、交错级数概念:若级数各项符号正负相间,即u 1-u 2+u 3-u 4+…+(-1)n+1u n +…(u n >0, n=1,2,…),则称它为交错级数.定理12.11:(莱布尼茨判别法)若交错级数∑∞=+1n n 1n u (-1)满足:(1)数列{u n }单调递减;(2)∞n lim +→u n =0,则该级数收敛.证:交错级数的部分和数列{S n }的奇数项和偶数项分别为: S 2m-1=u 1-(u 2-u 3)-…-(u 2m-2-u 2m-1),S 2m =(u 1-u 2)+(u 3-u 4)…+(u 2m-1-u 2m ). 由条件(1)知上述两式括号内的数皆非负,从而 数列{S 2m-1}递减,数列{S 2m }递增. 又由条件(2)知0<S 2m-1-S 2m =u 2m →0 (m →∞),从而{[S 2m ,S 2m-1]}形成一个区间套, 由区间套定理,存在唯一的一个数S ,使得∞m lim +→S 2m-1=∞m lim +→S 2m =S.∴数列{S n }收敛,即该交错级数收敛.推论:若交错级数满足莱布尼茨判别法的条件,则该收敛级数的余项估计式为|R n |≤u n+1.二、绝对收敛级数及其性质概念:若级数各项绝对值所组成的级数|u 1|+|u 2|+…+|u n |+…收敛, 则称它为绝对收敛级数. 若级数收敛,但不绝对收敛,则称该级数为条件收敛级数.定理12.12:绝对收敛级数一定收敛.证:若级数|u 1|+|u 2|+…+|u n |+…收敛,由柯西收敛准则知, 对任意ε>0,总存在正数N ,使得对n>N 和任意正整数r ,有 |u n+1|+|u n+2|+…+|u n+r |<ε,∴|u n+1+u n+2+…+u n+r |<ε, ∴u 1+u 2+…+u n +…收敛. 得证!例1:证明:级数∑!n a n收敛.证:∵n1n ∞n u u lim++→=1n alim ∞n ++→=0<1,∴原级数绝对收敛.性质1:级数的重排:正整数列{1,2,…,n,…}到它自身的一一映射 f:n →k(n)称为正整数列的重排,相应地对数列{u n }按映射F:u n →u k(n)所得到的数列{u k(n)}称原数列的重排;同样的,级数∑∞=1n k(n)u 也是级数∑∞=1n nu 的重排. 记v n =u k(n),即∑∞=1n k(n)u =v 1+v 2+…+v n +….定理12.13:若级数∑n u 绝对收敛,且其和等于S ,则任意重排后所得到的级数∑n v 也绝对收敛,且有相同的和数.证:不妨设∑n u 为正项级数,用S n 表示它的第n 个部分和, 记T m =v 1+v 2+…+v m 表示级数∑n v 的第m 个部分和.∵级数∑n v 是∑n u 的重排,∴对每一个v k 都等于某一ki u (1≤k ≤m).记n=max{i 1,i 2,…i m }, 则对任何m ,都存在n ,使T m ≤S n .由∞n lim +→S n =S 知,对任何正整数m 有T m ≤S, 即∑n v 收敛,其和T ≤S.又级数∑n u 也是∑n v 的重排,∴S ≤T ,推得T=S.若∑n u 为一般级数且绝对收敛,即正项级数∑n u 收敛,同理可推得 级数∑n v 收敛,∴级数∑n v 收敛. 令p n =2u u nn +,q n =2u u nn -;则当u n ≥0时,p n =u n ,q n =u n ;当u n <0时,p n =0,q n =-u n ≥0. 从而有 0≤p n ≤|u n |,0≤q n ≤|u n |,p n +q n =|u n |,p n -q n =u n . 又∑n u 收敛, ∴∑n p ,∑n q 都是正项的收敛级数,且S=∑n u =∑n p -∑n q .同理得:∑n v =∑'n p -∑'n q ,其中∑'n p ,∑'n q 分别是∑n p ,∑n q 的重排. ∴∑n v =∑'n p -∑'n q =∑n p -∑n q =S. 得证!性质2:级数的乘积:由a ∑n u =∑n au 可推得有限项和与级数的乘积:(a 1+a 2+…+a m )∑∞=1n n u =∑∑∞==1n n m1k k u a .继而可推广到无穷级数之间的乘积:设收敛级数∑n u =A, ∑nv=B.将两个级数中每一项所有可能的乘积列表如下:这些乘积u i v j按各种方法排成不同的级数,如按正方形顺序相加,得u1v1+u1v2+u2v2+u2v1+u1v3+u2v3+u3v3+u3v2+u3v1+…,如下表:或按对角线顺序相加,得u1v1+u1v2+u2v1+u1v3+u2v2+u3v1+…,如下表:定理12.14:(柯西定理) 设绝对收敛级数∑n u=A, ∑n v=B,则由它们中每一项所有可能的乘积u i v j按任意顺序排列所得到的级数∑n w绝对收敛,且其和等于AB.证:设级数∑n w,∑n u,∑n v的部分和分别为:S n =|w 1|+|w 2|+…+|w n |,A m =|u 1|+|u 2|+…+|u m |,B m =|v 1|+|v 2|+…+|v m |. 其中w k =kkj i v u (k=1,2,…,n),m=max{i 1,j 1,i 2,j 2,…,i n ,j n },则必有S n ≤A m B m .∵绝对收敛级数∑n u 与∑n v 的部分和数列{A m }和{B m }都有界, ∴{S n }有界,从而级数∑n w 绝对收敛. 利用绝对收敛级数的可重排性, 将绝对收敛级数∑n w 按正方形顺序重排如下: u 1v 1+(u 1v 2+u 2v 2+u 2v 1)+(u 1v 3+u 2v 3+u 3v 3+u 3v 2+u 3v 1)+…, 把每一括号作一项,得新级数:p 1+p 2+p 3+…+p m +…收敛, 且与∑n w 和数相同,其部分和P m =A m B m . 即有∞m lim +→P m =∞m lim +→A m B m =∞m lim +→A m ∞m lim +→B m =AB. 得证!例2:证明:级数1+2r+…+(n+1)r n +…(|r|<1)绝对收敛,并求其和.证:等比级数∑∞=0n n r =1+r+r 2+…+r n +…=r-11(|r|<1),绝对收敛. 将(∑∞=0n n r )2的所有可能的项按对角线顺序相加得:1+(r+r)+(r 2+r 2+ r 2)+…+(r n +…+r n )+… (括号内共有n+1个r n ) =1+2r+…+(n+1)r n +…=2r)-(11. ∴所求级数绝对收敛,其和为2r)-(11.二、阿贝尔判别法和狄利克雷判别法引理:(分部求和公式,也称阿贝尔变换)设εi ,v i (i=1,2,…,n)为两组实数, 若令T k =v 1+v 2+…+v k (k=1,2,…,n),则有如下分部求和公式成立:∑=n1i ii vε=(ε1-ε2)T 1+(ε2-ε3)T 2+…+(εn-1-εn )T n-1+εn T n .证:以v 1=T 1, v k =(T k -T k-1) (k=2,3,…,n)分别乘以εk (k=1,2,…,n),则∑=n1i ii vε=ε1v 1+ε2v 2+…+εn v n =ε1T 1+ε2(T 2-T 1)+…+εn (T n -T n-1)=(ε1-ε2)T 1+(ε2-ε3)T 2+…+(εn-1-εn )T n-1+εn T n .推论:(阿贝尔引理)若(1)ε1, ε2,…, εn 是单调数组;(2)对任一正整数k(1≤k ≤n)有|T k |=|v 1+v 2+…+v k |≤A ,记ε=kmax {|εk |},有∑=n1k k k v ε≤3εA.证:由(1)知ε1-ε2, ε2-ε3, …, εn-1-εn 同号,于是由分部求和公式及(2)有∑=n1k k kv ε=|(ε1-ε2)T 1+(ε2-ε3)T 2+…+(εn-1-εn )T n-1+εn T n |≤A|(ε1-ε2)+(ε2-ε3)+…+(εn-1-εn )|+A|εn |=A|(ε1-εn )|+ A|εn | ≤A(|ε1|+2|εn |)≤3εA.定理12.15:(阿贝尔判别法)若{a n }为单调有界数列,且级数∑n b 收敛, 则级数∑n n b a =a 1b 1+a 2b 2+…+a n b n +…收敛.证:由级数∑n b 收敛,依柯西准则,对任给正数ε, 存在正数N, 使 当n>N 时,对一切正整数p ,都有∑++=pn 1n k kb<ε.又数列{a n }单调有界,∴存在正数M ,使|a n |≤M ,根据阿贝尔引理有∑++=pn 1n k k kb a≤3εM. ∴级数∑n n b a 收敛.注:由阿贝尔判别法知,若级数∑n u 收敛,则下述两个级数:(1)∑p nn u (p>0);(2)∑+1n u n 都收敛.定理12.16:(狄利克雷判别法)若数列{a n }单调递减,且∞n lim +→a n =0,又且级数∑n b 的部分和数列有界,则级数∑n n b a 收敛.例3:证明:若数列{a n }单调递减,且∞n lim +→a n =0,则级数∑sinnx a n 和∑cosnx a n 对任何x ∈(0,2π)都收敛.证:2sin 2x (21+∑=n 1k coskx )=sin 2x +2sin 2x cosx+2sin 2x cos2x+…+2sin 2xcosnx= sin 2x +(sin 23x-sin 2x )+…+[sin(n+21)x-sin(n-21)x]=sin(n+21)x. 当x ∈(0,2π)时,sin 2x ≠0, cot 2x ≠+∞.∴∑=n1k coskx =2x 2sinx 21n sin ⎪⎭⎫ ⎝⎛+-21=21sinnxcot 2x +2cosnx -21.又-21cot 2x -1≤21sinnxcot 2x +2cosnx -21≤21cot 2x ,即当x ∈(0,2π)时,∑cosnx 的部分和数列有界,由狄利克雷判别法知级数∑cosnx an收敛.2sin 2x (∑=n 1k sinkx -21cot 2x )=2sin 2x sinx+2sin 2x sin2x+…+2sin 2x sinnx-cos 2x= (cos 2x-cos 23x) +…+[cos(n-21)x-cos(n+21)x]-cos 2x =-cos(n+21)x. 当x ∈(0,2π)时,sin 2x ≠0, cot 2x ≠+∞.∴∑=n1k sinkx =21cot 2x -2x 2sin x 21n cos ⎪⎭⎫ ⎝⎛+=2x 2sinx 21n cos -2x cos ⎪⎭⎫ ⎝⎛+.又- csc 2x =2x sin 1-≤2x 2sin x 21n cos -2x cos ⎪⎭⎫ ⎝⎛+≤2x sin1=csc 2x ,即当x ∈(0,2π)时,∑sinnx 的部分和数列有界,由狄利克雷判别法知级数∑sinnx an收敛.注:作为例3的特例,级数∑n sinnx 和∑ncosnx对一切x ∈(0,2π)都收敛.习题1、下列级数哪些是绝对收敛,条件收敛或发散的:(1)∑!n sinnx ;(2)∑+-1n n )1(n;(3)∑+n1p n n (-1);(4)∑-n 2sin )1(n ;(5)∑⎪⎪⎭⎫ ⎝⎛+n 1n (-1)n ;(6)∑++1n 1)ln(n (-1)n ;(7)n n 13n 1002n )1(∑⎪⎭⎫ ⎝⎛++-;(8)nn x !n ∑⎪⎭⎫ ⎝⎛. 解:(1)∵!n sinnx <2n 1(n>4);又级数∑2n1收敛,∴原级数绝对收敛. (2)∵1n n)1(limn ∞n +-+→=1≠0;∴原级数发散. (3)∵当p ≤0时,n1p n ∞n n(-1)lim++→≠0;∴原级数发散;当p>1时,n1p n n(-1)+≤p n 1;又级数∑p n1(p>1)收敛,∴原级数绝对收敛. 当0<p ≤1时,令u n =n1p n1+,则n1n u u +=1n 1p n 1p 1)(n n++++=1n 1pn1)1n (n 11n++⎪⎭⎫⎝⎛+<1n 1pn 1n n 11n+⎪⎭⎫ ⎝⎛+=p1)n(n 1n 11n⎪⎭⎫ ⎝⎛++,∵np ∞n n 11lim ⎪⎭⎫ ⎝⎛++→=e p>1, 1n 1∞n n lim ++→=1,∴当n 充分大时,npn 11⎪⎭⎫ ⎝⎛+>1n 1n +,即 p n 11⎪⎭⎫ ⎝⎛+>1)n(n 1n+,从而n1n u u +<1,即u n+1<u n ,∴{u n }在n 充分大后单调减. 又∞n lim +→u n =n1p ∞n n1lim++→=0(0<p ≤1),由莱布尼兹判别法知原级数条件收敛.(4)∵n2n2sin)1(limn ∞n -+→=1, 且级数∑n2发散,∴原级数不绝对收敛. 又{n2sin }单调减,且n2sin lim ∞n +→=0,由莱布尼兹判别法知原级数条件收敛. (5)∵级数∑n(-1)n收敛,而级数∑n1发散,∴原级数发散.(6)∵1n 1)ln(n (-1)n ++>1n 1+(n ≥2),且∑+1n 1发散,∴原级数不绝对收敛.又{1n 1)ln(n ++}单调减且1n 1)ln(n lim ∞n +++→=0,∴原级数条件收敛. (7)记u n =n13n 1002n ⎪⎭⎫⎝⎛++,则n ∞n u lim +→=13n 1002n lim ∞n +++→=32,∴原级数绝对收敛. (8)记u n =n n x !n ⎪⎭⎫ ⎝⎛,则n 1n ∞n u u lim ++→=n∞n 1n n x lim ⎪⎭⎫⎝⎛++→=|e x |, ∴当-e<x<e 时,n1n ∞n u u lim++→<1,原级数绝对收敛; 当x ≥e 或x ≤-e 时,n1n ∞n u u lim++→≥1,即当n 充分大时,|u n+1|≥|u n |>0,∴n ∞n u lim +→≠0,∴原级数发散.2、应用阿贝尔判别法或狄利克雷判别法判断下列级数的收敛性:(1)nn n x 1x n (-1)+⋅∑ (x>0); (2)∑a n sinnx, x ∈(0,2π) (a>0); (3)nnxcos )1(2n∑-, x ∈(0,π).解:(1)∵当x>0时,0<n n x 1x +<n n x x =1,且n n1n 1n x 1xx 1x ++++=1n 1n x 1x x ++++; 若0<x ≤1,则1n 1n x 1x x ++++≤1;若x>1,则1n 1n x1x x ++++>1, 即数列{n n x 1x +}单调有界. 又级数∑n(-1)n收敛,由阿贝尔判别法知原级数收敛. (2)∵当a>0时,数列{a n1}单调递减,且∞n lim +→a n 1=0, 又当x ∈(0,2π)时,∑=n1k sinkx ≤csc 2x,即∑sinnx 的部分和数列有界,由狄利克雷判别法知原级数收敛. (3)∵数列{n 1}单调递减,且∞n lim+→n1=0,又当x ∈(0,π), ∑=n1k 2kkx cos (-1)=∑=+n1k k21cos2kx (-1)≤∑=n 1k k 2(-1)+∑=n1k k 2cos2kx (-1)≤21+∑=n1k cos2kx 21.又由2sinx ∑=n 1k cos2kx =4sin(2n+1)x-4sinx ,得∑=n1k cos2kx =2sinx4sinx -1)x 4sin(2n +≤sinx 2+2, 即对任意x ∈(0,π),级数nx cos )1(2n ∑-有界, 根据狄利克雷判别法知原级数收敛.3、设a n >a n+1>0 (n=1,2,…)且∞n lim +→a n =0.证明:级数∑+⋯++na a a (-1)n211-n 收敛.证:由a n >a n+1>0 (n=1,2,…)且∞n lim +→a n =0知, {na a a n21+⋯++}单调减且趋于0,由莱布尼茨判别法知原级数收敛.4、设p n =2u u nn +,q n =2u u nn -.证明:若∑n u 条件收敛,则级数∑n p 与∑n q 都是发散的. 证:若∑n u 条件收敛,则∑n u 发散, ∴∑n p =∑+2u u nn =∑2u n +∑2u n,发散; ∑n q =∑-2u u nn =∑2u n -∑2u n,发散.5、写出下列级数的乘积:(1)⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=1n 1-n 1-n 1n 1-n nx (-1)nx ; (2)⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=0n n 0n n!(-1)n!1. 解:(1)当|x|<1时,两个级数均绝对收敛,乘积按对角线一般项为:w n =k-n k-n n1k 1-k 1)xk -(n (-1)·kx +∑==xn-1∑=+n1k k-n 1)k -k(n (-1), 从而有w 2m =x2m-1∑=+2m1k k-2m 1)k -k(2m (-1)=[-2m+…+(-1)m (m 2+m)+2m+…+(-1)m-1(m 2+m)]=0; w 2m+1=x 2m∑+=++12m 1k 1k -2m 2)k -k(2m (-1)=x 2m[∑+=++12m 1k 1k -2m 1)k -k(2m (-1)+∑+=+12m 1k 1k -2m k (-1)]=-x 2m∑+=+12m 1k k-2m 1)k -k(2m (-1)+x2m∑+=+12m 1k 1k -2m k (-1)=- w 2m +x2m∑+=-12m 1k 1k k (-1)=x2m∑+=-12m 1k 1k k (-1)=x 2m(1-2+3-4+…-2m+2m+1)=(m+1) x 2m.∴⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=1n 1-n 1-n 1n 1-n nx (-1)nx =∑∞=+0m 2m 1)x (m . (|x|<1).(2)两个级数均绝对收敛,其乘积按对角线一般项为:w 0=1, w n =k)!-(n (-1)·k!1k -n nk ∑==n!1∑=nk k -n k)!-(n k!n!(-1)=n!1)-(1n=0(n=1,2,…) ∴⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛∑∑∞=∞=0n n0n n!(-1)n!1=1.注:二项式n 次幂展开式:(1-1)n=∑=nk k -n k)!-(n k!n!(-1).6、证明级数∑∞=0n n n!a 与∑∞=0n n n!b 绝对收敛,且它们的乘积等于∑∞=+0n nn!b)(a .证:n!a 1)!(n a limn 1n ∞n +++→=1n alim ∞n ++→=0,∴∑∞=0n n n!a 绝对收敛. 同理∑∞=0n nn!b 绝对收敛. 按对角线顺序,其乘积各项为:C 0=1=!0b)(a 0+, ……,C n =k)!-(n b k!a k -n n1k k ⋅∑==n!∑=n 0k k -n k k)!-(n k!n!b a =n!b)(a n +. ∴∑∞=0n n n!a ·∑∞=0n n n!b =∑∞=+0n nn!b)(a .7、重排级数∑+-n1)1(1n ,使它成为发散级数. 解:∑+-n 1)1(1n =1-21+31-41+…+n 1)1(1n +-+…=∑∞=1k 1-2k 1-∑∞=1k 2k 1,∑∞=1k 1-2k 1∵∑∞=1k 2k 1和∑∞=1k 1-2k 1是发散的正项级数,∴存在n 1,使u 1=∑=1n 1k 1-2k 1-21>1,又∑∞+=1n k 11-2k 1发散,∴存在n 2>n 1,使u 2=∑+=21n 1n k 1-2k 1-41>21,同理存在n 3>n 2,使u 3=∑+=32n 1n k 1-2k 1-61>31,…,u i+1=∑++=1i i n 1n k 1-2k 1-1)2(i 1+>1i 1+,可得原级数的一个重排∑∞=1i i u . ∵u i >i 1,且∑i 1发散,∴∑∞=1i i u 必发散.8、证明:级数∑-n)1(]n [收敛.证:记A L ={n|[n ]=L}, L=1,2,…,显然A L 中元素n 满足L 2≤n<(L+1)2,且A L 中元素个数为2L+1. 记U L =∑∈-L A n ]n [n )1(,则有u L =∑∈-LA n Ln )1(=(-1)L V L , 其中V L =∑∈L A n n 1,则V L -V L+1=∑=+2L0s 2s L 1-∑+=++1)2(L 0s 2s)1(L 1=∑=++++2Ls 22s])1s)[(L (L 1L 2-1L 2)1(L 12+++-2L 2)1(L 12+++≥∑=+++2L0s 22L]2)1[(L 1L 2-L 2)1(L 22++=222L]2)1[(L L]2)12[(L -1)L 2(L 2+++++=2222L]2)1[(L L)2-1-L 2L -L L 2(2++-+=222L]2)1[(L 1)-3L L (2++->0(当L ≥4时). ∴当L ≥4时, { V L }是单调下降数列. 当n ∈A L 时,21)(L 1+<n 1≤2L 1, ∴21)(L 1L 2++<V L ≤2L 1L 2+,可见∞L lim +→V L =0,从而∑∞=1L L u =∑∞=1L L LV (-1)收敛. 设级数∑∞=-1n ]n [n )1(的部分和为S N ,记级数∑∞=1n n u 的部分和为U M ,则S N =∑=-N1n ]n [n )1(,U M =∑=M1n n u ,任一个S N 均被包含在某相邻两个部分和U M , U M+1之间,即有|S N -U M |≤|U M+1-U M |,由级数∑∞=1n n u 收敛,知∞M lim +→U M+1-U M =0,∴∞N lim +→S N -U M =0,即极限∞N lim +→S N =∞N lim +→U M =∑∞=1n n u 存在,∴级数∑-n)1(]n [收敛.。
一般项级数
u3v3
L
L
L
L
L
L
L
L
L
对L 角线顺序L
L
u1v1 u1v2 u2v1 u1v3 u2v2 u3v1 L . (15)
数学分析 第十二章 数项级数
高等教育出版社
§3 一般项级数
交错级数
绝对收敛级数及其性质
定理12.14(柯西定理)
阿贝尔判别法和狄利 克雷判别法
若级数un,vn都绝对收敛,则对(13)中 uiv j
高等教育出版社
§3 一般项级数
交错级数
绝对收敛级数及其性质
阿贝尔判别法和狄利 克雷判别法
由此可以立刻推广到收敛级数 un 与有限项和的乘
n1
积,即
m
(a1 a2 L am ) un
akun ,
n1
n1 k 1
那么无穷级数之间的乘积是否也有上述性质?
设有收敛级数
un u1 u2 L un L A,
S2m (u1 u2 ) (u3 u4 ) L (u2m1 u2m ). 由条件(i), 上述两式中各个括号内的数都是非负的,
从而数列S2 m 1是递减的,而数列S2 m 是递增的.
又由条件(ii)知道
0 S2m1 S2m u2m 0 (m ), 从而{ [S2m, S2m-1] }是一个区间套. 由区间套定理, 存
u1 u2 L un L
(6)
收敛, 则称原级数(5)为绝对收敛级数.
定理12.12
绝对收敛的级数是收敛的.
数学分析 第十二章 数项级数
高等教育出版社
§3 一般项级数
交错级数
绝对收级数及其性质
阿贝尔判别法和狄利 克雷判别法
数学分析之数项级数
推 论 如 果 加 括 弧 后 所 成 的 级 数 发 散 ,则 原 来 级 数 也 发 散 .
性质4 (级数收敛的必要条件)
当 n无限,它 增的 大u 一 时 n趋般 于 ,即 项 零
级数收敛 ln im un 0.
证 s un 则 u nsn sn 1, n1 ln i u m nln i s m nln i s m n 1 ss0.
当q1时, ln i m qnln i m sn
如果q 1时
收敛 发散
当q1时, snn a 级数发散 当q1时,级a 数 a a a 变 为
ln im sn不存在 级数发散
综上 aqn
当q 1 时,收敛;
n0
当q 1 时,发散.
例2 讨论数项级数
11 1
(* )
1223 n (n 1 )
1 1 1 . m mp m
因此, 对 任 意 0,可 取 N1, 当m>N及任意正
整数 p,由上式可得 u m 1u m 2 u m pm 1,
依 级 数 收 敛 的 柯 西 准 则 , 知 级 数 n 1 2收敛.
1
注 级数 n 1 n ( n 1 ) 的收敛性已由例2的证明过程所
( c u n d v n ) cu n dv n . 根据级数收敛的柯西准则, 级数 un 的收敛与否与
级数前面有限项的取值无关.从而可得到以下定理. 定理12.3 去掉、增加或改变级数的有限项并不改变 级数的敛散性.
性质3 若级数 un收敛,则 un也收敛
n1
nk1
(k1).且其逆亦真.
Chapt 12 数项级数
级数是数学分析三大组成部分之一, 是逼近理论的基础,是研究函数、进行近 似计算的一种有用的工具. 级数理论的主要 内容是研究级数的收敛性以及级数的应用.
高等数学习题册 第十二章 参考答案
1第十二章 无穷级数第一节 常数项级数的概念与性质1.填空: (1)1+1(-1)n n n -.(2)__0__.(3)111+-n , _1_. (4)11+-n a a ,1a a -.(5) 收敛 ,12-s u .(6) 发散_. 2.根据级数收敛与发散的定义判断下列级数的敛散性,如果收敛,则求级数的和:(1)解:级数的部分和为...n s +++1-.因为lim 1)n n n s →∞→∞=-=+∞,即部分和数列不存在极限,所以原级数发散. (2)解:将级数的一般项进行分解得211111()(1)(1)2111n u n n n n n ===-+--+-, 所以,级数的部分和为111111111[()+()()...()]213243511n s n n =--+-++--+1111(1)221n n =+--+. 因为11113lim lim (1)2214n n n s n n →∞→∞=+--=+, 即部分和数列存在极限,且极限值为34,根据定义可得,原级数收敛,且收敛于34.(3)解: 因为lim lim sin 6n n n n u π→∞→∞=不存在,根据收敛级数的必要性条件可知,级数的一般项极限不为零,则原级数必定发散.3.判断下列级数的敛散性,如果收敛,则求级数的和: (1)解:这是一个公比为34-的等比级数,因为314-<,所以收敛.其和为13343171()4u s q-===----. (2)解:这是公比为32-的等比级数,因为3>12-,所以发散.(3)解:因为1lim lim=0100+1100n n n n u n →∞→∞=≠,根据收敛级数的2必要性条件可知,原级数发散. (4)解:因为级数123nnn ∞=∑是公比为23的等比级数,所以收敛,而级数1131=3n n n n∞∞==∑∑是发散级数,根据收敛级数的性质可知,原级数发散.(5)解:原级数的一般项ln (1)-ln n u n n =+,所以原级数的部分和(ln 2-ln1)(ln 3-ln 2)...[(ln(1)-ln ]n s n n =++++ln(1)-ln1ln(1)n n =+=+,因为lim limln(1)n n n s n →∞→∞=+不存在,所以原级数发散.(6)解:原级数变形为111[()()]32n n n ∞=+∑,因为级数11()3nn ∞=∑和11()2n n ∞=∑均为公比1q <的等比级数,所以原级数收敛. 其和为113321121132s =+=--.(7)解:因为313lim =3lim()3lim011+(1+)(1+)n nn n n n nn n n e n n→∞→∞→∞==≠,根据收敛级数的必要条件可知,原级数发散.第二节 常数项级数的审敛法1.填空: (1) 收敛 .(2) 发散 ; 收敛 ;可能收敛也可能发散 . (3)1k <;1k >时,1k =.(4)1p >;1p ≤时.(5)发散 . (6)可能发散也可能收敛 . 2.选择:(1)D .(2)C .(3)B .(4)C .3.用比较审敛法及其极限形式判断下列级数的敛散性:(1)解:因为222+1++2lim lim 11+2n n n n n n n n→∞→∞==,而级数11n n∞=∑发散,根据比较审敛法的极限形式(或者极限审敛法),原级数一定发散.(2)解:因为2211(1)(21)limlim 1(1)(21)2n n n n n n n n →∞→∞++==++,而3 级数211n n∞=∑收敛,根据比较审敛的极限形式(或者极限审敛法),原级数一定收敛.(3)解:因为0sin 22n n ππ≤≤,而12n n π∞=∑是公比为12的等比级数,根据比较审敛法,原级数一定收敛.(4)解:当>1a 时,110<1n na a ≤+而11n n a∞=∑是公比为1<1a 的等比级数,根据比较审敛法,级数111nn a ∞=+∑一定收敛; 当0<1a <时,因为1lim=101nn a →∞≠+,根据级数收敛的必要性条件,级数111nn a ∞=+∑发散; 当=1a 时,原级数即112n ∞=∑,发散. (5*)解:因为ln (1+)(0,1)x x x x <≠-<<+∞,所以111ln =ln(1+)n n n n +<,即原级数为正项级数; 同时,111ln =ln ln(1)111n n n n n n +-=-->+++, 则:21111110<ln 1(1)n n n n n n n n+-<-=<++, 而211n n∞=∑收敛,所以原级数也收敛. 4.用比值审敛法判断下列级数的敛散性:(1)解:2+122(1)1113lim lim(1)1333n n n nn n n →∞→∞+=+=<,根据比值审敛法,原级数收敛.(2)解:135(2+1)2+1(+1)!limlim 2>1135(21)+1!n n n n n n n n →∞→∞⋅⋅⋅⋅⋅==⋅⋅⋅⋅⋅-,根据比值审敛法,原级数发散.4(3)解:+2+2+1+1(+1)tan+1122limlim 12tan 22n n n n n n n n n n ππππ→∞→∞=⋅=<,根据比值审敛法,原级数收敛.(4)解:1+12(1)!12(+1)lim 2lim()2lim <1112!(1+)n n n n n n n nnn n n n e n n n +→∞→∞→∞+===+, 根据比值审敛法,原级数收敛.5.用根值审敛法判别下列级数的敛散性:(1)解:1lim 12+12n n n n →∞=<,根据根值审敛法,原级数收敛. (2)解:1lim 01ln(+1)n n n →∞=<,根据根值审敛法,原级数收敛. (3)解:n b a, 当1ba<,即>a b 时,原级数收敛; 当>1ba ,即ab <时,原级数发散; 当1ba=,即=a b 时,原级数可能收敛也可能发散. 6.判别下列级数的敛散性: (1)解:10n n ==≠,根据收敛级数的必要条件可知,原级数发散.(2)解:原级数显然为正项级数,根据比较审敛法的极限形式,111lim =lim 1n n na b b aa n n→∞→∞+=+,所以原级数发散. (3)解:因为11lim 1>122nn n e n →∞⎛⎫+= ⎪⎝⎭, 所以原级数发散.7.判别级数的敛散性,若收敛,指出条件收敛还是绝对收敛: (1)解:因为11111(1)=33n n n n n n n ∞∞---==-∑∑,而1+11+113lim =lim <1333n n n n n n n n →∞→∞-=,所以级数113n n n ∞-=∑收敛,5因此原级数绝对收敛.(2)解:因为22(21)(21)cos 22n nn n n π++≤,又因为: 22+122(23)(23)12lim =lim 12(21)2(21)2n n n nn n n n →∞→∞++=<++,所以级数21(21)2nn n ∞=+∑收敛,因此原级数绝对收敛. (3)解:级数的一般项为:11(1)(1)10n n n u -=-+,因为1lim||lim(1)1010n n n n u →∞→∞=+=≠,所以原级数的一般项不趋近 于0,原级数发散. (4*)解:这是一个交错级数11(1)n n n u ∞-=-∑,因为级数1n ∞=-∑发散(见第一节习题2(1)),所以原级数不是绝对收敛,又因为:0n n =,1n n u u +-=---==-,根据莱布尼兹定理可知,原级数收敛且是条件收敛.8*.解:先讨论0x >的情形. 当=1x 时,级数为112n ∞=∑,显然发散;当0<<1x 时,级数为正项级数,利用比值审敛法,1221+122221lim =lim lim 111n n n n n n n n n n nu x x x x x u x x x ++++→∞→∞→∞++⋅==<++, 所以此时级数211+n nn x x ∞=∑收敛且是绝对收敛; 当1x >时,同样利用比值审敛法,2121+12222111lim =lim lim1111n n n n n n n nn u x x x x u x x x +++→∞→∞→∞+++==<++,6 所以此时级数211+nnn x x∞=∑收敛且是绝对收敛; 再看<0x 的情形.当1x =-,级数为1(1)2nn ∞=-∑,显然发散;当10x -<<和1x <-时,级数为21()(1)1nn n n x x ∞=--+∑,这是一个交错级数,对其一般项取绝对值得到正项级数21()1nnn x x ∞=-+∑,按照同样的方法可知21()1nnn x x∞=-+∑收敛,也即原级数绝对收敛; 而当0x =时,级数显然收敛且绝对收敛;综合得,原级数在1x =±时发散,其他均为绝对收敛. 9*.证明:设111(1)n n n a S ∞-=-=∑,若∑∞=-112n n a 收敛,设2121n n aS ∞-==∑,则122121111(1)n n n n n n n a a a S S ∞∞∞--====--=-∑∑∑,即21nn a∞=∑收敛,所以22-111(+)nn n n n aa a ∞∞===∑∑收敛,与11(1)n n n a ∞-=-∑条件收敛矛盾,所以∑∞=-112n n a 发散.因为11(1)n n n a ∞-=-∑条件收敛,所以∑∞=1n n a 发散.10*证明:因为222||0nnn n a b a b +≥≥,所以∑∞=1n nnba 收敛;因为2220()2||n n n nn n a b a b a b ≤+≤++,所以∑∞=+12)(n n nb a收敛;令1n b n =,因为∑∞=12n n b 收敛,所以∑∞=1n n n b a 收敛,即∑∞=1n n na 收敛.第三节 幂级数1.填空:(1)绝对收敛 ; 绝对收敛 .(2)1ρ;+∞;_0_.(3)_1_,7 (-1,1).(4)12=R R ;(5) (),R R -.2.选择:(1)B .(2)B . (3)A . (4)C . (5*)B (提示:令=1y x -,则1111(1)n n n n n n na x na y ∞∞++==-=∑∑21211=()n n n n n n yna yy a y ∞∞-=='=∑∑).(6)B .(7)D .3. 求下列幂级数的收敛域:(1)解:因为+11=lim lim 02(1)n n n na a n ρ→∞→∞==+,收敛半径为R =+∞,收敛域为(,)-∞+∞.(2)解:因为12121(1)(1)limlim 11(1)n n n n n na n a nρ++→∞→∞-+===-, 所以收敛半径1R =,收敛区间为(1,1)-;当1x =时,级数为211(1)nn n ∞=-∑,这是一个绝对收敛级数; 当1x =-时,级数为211n n∞=∑,这是一个收敛的正项级数; 综合得原级数的收敛域为[1,1]-.(3)解:121limlim 121n n n n a n a n +→∞→∞-==+1R ⇒=, 故当231x -<,即12x <<时级数绝对收敛,当1x =时,11(1)(1)12121n n n n n n ∞∞==--=--∑∑,级数发散,当2x =时, 1(1)21nn n ∞=--∑为收敛的交错级数,所以原级数的收敛域为(1,2].(4)解:这是一个缺奇次项的幂级数,直接使用比值审敛法得:1()lim ()n n n nu x u x +→∞=2222n x x =⋅=,8 所以当22<1x,即x <<时,级数绝对收敛;当22>1x时,即x >或<x -时,原级数发散;当x =时,级数为1n ∞=∑,发散;当x =时,级数为21(1)nn ∞=--∑,发散(见第一节习题2(1));所以,级数的收敛域为(-.(5*)解:因为+111111+231=limlim 111123n n n na n n a nρ→∞→∞+++⋅⋅⋅++=+++⋅⋅⋅+11lim(1)111123n n n→∞+=++++⋅⋅⋅+,因为正项级数11n n ∞=∑发散,因此111lim(1)23n n →∞+++⋅⋅⋅+=+∞,所以上述的=1ρ,即级数的收敛半径为1,收敛区间为(1,1)-.当1x =±时,级数为∑∞=+⋅⋅⋅+++1)131211(n n x n,因为 111=1()23n u n n+++⋅⋅⋅+→∞→∞, 所以发散,综合得原级数的收敛域为(1,1)-. 4.求下列幂级数的收敛域与和函数:(1)解:先求收敛域:利用比值审敛法可得454141()45lim lim =()41n n n n n nx u x n x u x x n +++→∞→∞+=+, 因此,当41x <,即||1x <时,级数收敛; 当1x =时,级数为141n n ∞=+∑,发散;当1x =-时,级数为1()41n n ∞=-+∑,发散,所以级数的收敛域为(1,1)-.9为求和函数,令410()=41n n x s x n +∞=+∑,两端同时求导得:4141440001()==,(1,1)41411-n n n n n n x x s x x x n n x ++∞∞∞===''⎛⎫⎛⎫'==∈- ⎪ ⎪++⎝⎭⎝⎭∑∑∑再两端同时积分得:400111+1()(0)=()==ln arctan 4121-xxx s x s s x dx dx x x x '-+-⎰⎰, 显然(0)=0s ,所以原级数的和函数为11+1()=ln arctan ,(1,1)412x s x x x x +∈--.(2)解:212121(22)lim lim 2n n n n n nu x n x u x n ++-→∞→∞+==, 故当211x x <⇒<时级数绝对收敛,当||1x >时,级数发散. 当1x =-时,21112(1)2n n n n n ∞∞-==-=-∑∑发散,当1x =时,12n n ∞=∑发散,⇒ 收敛域为(1,1)-.令211()2(0)0n n S x nxS ∞-==⇒=∑2212211()21xxn nn n x S t dt ntdt xx ∞∞-==⇒===-∑∑⎰⎰22222()(||1)1(1)x x S x x xx '⎛⎫⇒==< ⎪--⎝⎭. (3)解:先求收敛域:因为1(+1)(+2)limlim 1(+1)n n n n a n n a n n ρ+→∞→∞===, 所以收敛半径为1,明显当1x =±原级数发散,故级数的收敛域为(1,1)-;令1()(1)(0)0nn S x n n xS ∞==+⇒=∑,121111()(1)xx nn n n n n S t dt n n t dt nxxnx∞∞∞+-===⇒=+==∑∑∑⎰⎰222211(1)n n x x x x x x x ∞=''⎛⎫⎛⎫=== ⎪ ⎪--⎝⎭⎝⎭∑ 2232()(||1)(1)(1)x x S x x x x '⎛⎫⇒==< ⎪--⎝⎭.10(4)解:212121(21)lim lim (21)n n n n n nu x n x u x n ++-→∞→∞-==+,故当211x x <⇒<时级数绝对收敛, 当||1x >时,级数发散.当1x =-时, 12111(1)(1)(1)2121n n n n n n n +∞∞-==---=--∑∑为收敛的交错级数,当1x =时, 11(1)21n n n +∞=--∑为收敛的交错级数,⇒ 收敛域为[1,1]-.令1211(1)()(0)021n n n x S x S n +-∞=-=⇒=-∑, 122211()(1)1n n n S x x x∞+-='⇒=-=+∑ 201()(0)arctan 1xS x S dt x t ⇒-==+⎰()arctan (11)S x x x ⇒=-≤≤.第四节 函数展开成幂级数1.将下列函数展开成x 的幂级数,并求展开式成立的区间:(1)解:利用间接展开法.因为=0=,(,)!nxn x e x n ∞∈-∞+∞∑,所以ln ln 00(ln )(ln ),(,)!!xn n xa x ann n x a a a eex x n n ∞∞======∈-∞+∞∑∑.(2)解:利用间接展开法.因为1(1)ln(1)=,(1,1]1n n n x x x n ∞+=-+∈-+∑,所以 ln()=ln[(1)]ln ln(1)x xa x a a a a++=++110(1)ln ,(,](1)nn n n a x x a a n a∞++=-=+∈-+∑. (3*)解:利用间接展开法.因为2(1)(1)...(1)(1)1...,||12!!m nm m m m m n x mx x x x n ---++=++++<122(1)x x -=⋅+11357113135...,(1,1]224246x x x x x ⋅⋅⋅=-+-+∈-⋅⋅⋅. 注:当1=2m -时,在右端点处收敛.(4)解:利用间接展开法.因为20(1)cos =,(,)(2)!n nn t t x n ∞=-∈-∞+∞∑,所以22100000(1)(1)cos d =[]d d (2)!(2)!n nxxx n n n n t t t t t t t t n n ∞∞+==--=∑∑⎰⎰⎰ 212200(1)(1)=d ,(,)(2)!(2)!(22)n nxn n n n t t t x n n n ∞∞++==--=∈-∞+∞+∑∑⎰. 2. 解:111(1)=,(,)!nx x x x x e ee e e x n ∞-+-=-=⋅=∈-∞+∞∑.3.解:011111(2),(0,4)2422212n n n x x x x ∞==⋅=-∈---∑. 4.解:将sin x 变形为:1sin sin[()])cos()662626x x x x ππππ=-+=-+-, 利用sin x 和cos x 的展开式可得2-121211sin ()()...221!622!6(1))(),(,)622n!6n n n x x x x x x ππππ-=+---++⋅⋅--+-∈-∞+∞⋅.5.解:211=()34154x x x x x x ----+5(5)111=()531(5)414x x x +--⋅-+-+111005111=(1)(1)(5)(1)(1)(5)3344n n nn n n n n x x ∞∞+++==---+---∑∑, 其中第一个展开式的收敛域为|5|<1x -,第二个展开式的收敛域为|5|<14x -,所以原函数的展开式的收敛域为|5|<1x -,即46x <<.第五节 函数的幂级数展开式的应用1.利用函数的幂级数的展开式求下列各数的近似值: (1)解:根据ln (1+)x 的展开式可得:35111ln2(...)(11)135x x x x x x +=+++-<<-(见教材)12令1=51x x +-,解得2(1,1)3x =∈-,带入上述展开式可得 35793579212121212ln 52(...)335793333=+⋅+⋅+⋅+⋅,如果取前五项作为其近似值,则1113151751113151712121212||=2(...)111315173333r ⋅+⋅+⋅+⋅+1123112312114114114=2(1...)111391517399⋅⋅+⋅+⋅+⋅+1123112322444(1...)119399<⋅++++ 111111112212290.00384111153319<⋅⋅=⋅⋅≈-,符合误差要求,因此取前五项作为其近似值,即35793579212121212ln 52() 1.61335793333≈+⋅+⋅+⋅+⋅≈.(2)解:根据cos x 的幂级数展开式可得246111cos18cos1()()() (10)2!104!106!10ππππ==-+-+, 6-61() 1.335106!10π≈⨯,所以取前四项作为近似值,即 246111cos181()()()0.950992!104!106!10πππ=-+-≈.(3)解:根据cos x 的幂级数展开式可得2621cos 111...2!4!6!x x x x -=-++, 于是可得0.50.5262001cos 111d =(...)d 2!4!6!x x x x x x--++⎰⎰ 3511111111=()()...0.123272!24!326!52⋅-⋅⋅+⋅⋅+≈. 2.解:因为sin arctan x x 、的展开式分为可以写为:33sin ()3!x x x o x =-+,33arctan ()3x x x o x =-+,所以3333001()sin arctan 16lim lim 6x x x o x x x x x→→+-==.第七节 傅里叶级数1.填空:(1)其中的任何两个不同函数的乘积在区间[,]ππ-上的积分为130,相同函数的乘积在此区间上积分不为0 . (2)1()d f x x πππ-⎰,1()cos d (1,2,...)f x nx x n πππ-=⎰,1()sin d (1,2,...)f x nx x n πππ-=⎰. (3)02=0,()sin d n n a b f x nx x ππ=⎰.(4)1+π.(5)在一个周期内连续或者只有有限个第一类间断点 , 在一个周期内至多有有限个极值点 , 收敛 ,()f x , 左右极限均值.2.下列函数以π2为周期,且在[,)ππ-上取值如下,试将其展开成傅里叶级数:(1)解:先利用系数公式得出傅里叶级数.2220111()d d ()2x xx a f x x e x e e πππππππ---===-⎰⎰, 22212()(1)()cos ,( 1.2 (4)n e ea f x nxdx n n ππππππ----==⋅=+⎰, 2-2121(1)()sin ,(n=1,2...)4n n e e nb f x nxdx nππππππ+---==⋅+⎰, 所以,函数的傅里叶级数为2-22221(1)()(2cos sin )44nn e e e e f x nx n nx nππππππ-∞=---+-+∑. 再考虑其收敛性.易知函数满足收敛性定理的条件,其不连续点为(21)(0,1,2,...)x k k π=+=±±,在这些点处,上述的傅里叶级数收敛于左右极限的均值,即22(0)(0)22f x f x e e ππ-++-+=,在连续点处,傅里叶级数收敛于函数2()=xf x e ,因此2-22221(1)()(2cos sin )44nn e e e e f x nx n nx nππππππ-∞=---=+-+∑(,),(21)(0,1,2,...)x x k k π∈-∞+∞≠+=±±.(2)解:先根据系数公式求傅里叶级数.40113()d sin d 4a f x x x x ππππππ--===⎰⎰, 41131sin cos (2cos2cos4)cos 422n a x nxdx x x nxdx ππππππ--==-+⎰⎰, 根据三角函数系的正交性,仅当=2,=4n n 时,0n a ≠,易得142411,28a a =-=,由于4()sin f x x =是[,]ππ-的偶函数,故0n b =; 又因为函数4()sin f x x =是连续函数,所以可得:311()cos 2cos 4,<<828f x x x x =-+-∞∞.3.解:(1) ()()f x x x ππ=-<<作周期延拓的图象如下:其分段光滑,故可展开为傅里叶级数. 由系数公式得.当时,,,所以 11sin ()2(1)()n n nxf x x xππ∞+==--<<∑,为所求. (2)()(02)f x x x π=<<作周期延拓的图象如下:其分段光滑,故可展开为傅里叶级数. 由系数公式得.当时,011()d d 0a f x x x x ππππππ--===⎰⎰1n ≥11cos d d(sin )n a x nx x x nx n ππππππ--==⎰⎰11sin sin d 0|x nx nx x n n ππππππ--=-=⎰11sin d d(cos )n b x nx x x nx n ππππππ---==⎰⎰1112cos cos d (1)|n x nx nx x n n n ππππππ+---=+=-⎰220011()d d 2a f x x x x πππππ===⎰⎰1n ≥22011cos d d(sin )n a x nx x x nx n ππππ==⎰⎰15 ,,所以1sin ()2(02)n nxf x x x ππ∞==-<<∑,为所求. 4.解:要展开为余弦级数,需对函数进行偶延拓,即定义函数1cos 02()cos ,02x x f x x x ππ⎧≤≤⎪⎪=⎨⎪-≤≤⎪⎩,,并将1()f x 以2π周期延拓到整个数轴,得到偶函数()g x . 对()g x 进行傅里叶展开,显然有0n b =,且0024cos d 2x a x πππ==⎰,2024(1)cos cos d ()(=1,2,...)241nn x a nx x n n πππ-==--⎰,根据上述系数即可得到()g x 在整个数轴上的傅里叶展开式,由于()g x 连续,所以其傅里叶均收敛于()g x ,最后将展开式限制在[0,]π,既得()cos2xf x =的傅里叶展开式 2124(1)()cos ,[0,]41nn f x nx x n πππ∞=-=--∈-∑.4.解:将函数进行奇延拓,并求傅里叶系数:0(0,1,2,...)n a n ==,021sin [(1)1](1,2,...)42n n b nxdx n nπππ==---=⎰,因此函数()4f x π=的正弦级数展开式为11sin +sin 3sin 5...(0,)435x x x x ππ=++∈, 根据收敛性定理,在端点=0,=x x π处傅里叶级数收敛于零.令上式中的=2x π,即可得到1111 (4357)π=-+-+.第八节 一般周期函数的傅里叶级数1.填空:220011sin sin d 0|x nx nx x n n ππππ=-=⎰220011sin d d(cos )n b x nx x x nx n ππππ-==⎰⎰2200112cos cos d |x nx nx x n n n ππππ--=+=⎰16(1)-1()cos (0,1,2...)l n l n xa f x dx n l lπ==⎰-1()sin (1,2...)l n l n x b f x dx n l l π==⎰.(2)02()sin(n=1,2...)l n xf x dx l lπ⎰. 2.解:为展开为正弦级数,先将函数()f x 做奇延拓,其傅里叶系数为0(0,1,2,...)n a n ==;20222sin +(-)sin ll l n n x n xb x dx l x dx l l l lππ=⎰⎰224=sin2l n n ππ, 所以1()=sinn n n xf x b lπ∞=∑ 22224131517=(sin sin +sin sin +...)357l x x x xl l l l πππππ--, 由于()f x 连续,上述展开式对于任意的[0,]x l ∈均成立. 3.解:()2+||f x x =为偶函数,所以展为余弦级数,其系数为0(1,2,...)n b n ==,1002(2)d 5a x x =+=⎰,1222(cos 1)2(2)cos()(1,2,...)n n a x n x dx n n πππ-=+==⎰, 因为函数()2+||f x x =满足狄氏收敛定理,所以22152(cos 1)2||cos 2n n x n x n πππ∞=-+=+∑ 2225411(cos cos3cos5...)()235x x x x ππππ=-+++-∞≤≤∞. 令上式中的=0x ,可得2222111 (8135)π+++=,又2222222=11111111(...)(...)135246n n ∞=+++++++∑ 2222221111111(...)(...)4135123=+++++++所以22222=114111=(...)=36135n nπ∞+++∑.第十二章 自测题1.填空:17 (1)仍收敛于原来的和s .(2) 均收敛 ; 均发散 . (3)_1_;_2__.(4)34, 12, 34. 2.选择:(1)C .(2)A (提示:使用阿贝尔定理).(3)D (提示:ln ln ln 2ln ln 2ln 22()n n n e e n λλλλ--⋅--===). (4)B .(5)A . (6)C .3.判别下列级数的敛散性,若收敛指出绝对收敛或条件收敛: (1)解:根据正项级数的根值审敛法,有(!)lim n n n n →∞=+∞, 所以,原级数发散.(2)解:因为2211sin 4n n n π≤,而211n n∞=∑收敛, 所以原级数收敛且绝对收敛.(3)解:这是一个交错级数,由于(1)11=-ln -ln n n n n n n-≥,所以不是绝对收敛.因为111ln(1)ln n n n n-+-+-1ln(1)10(ln )[1ln(1)]n n n n n +-=<-+-+,且1lim=0ln n n n→∞-,根据莱布尼兹定理,级数收敛,即原级数条件收敛.(4*)解:根据比值审敛法,有1(1)lim ||lim ||1n pp n n n pa n n a a n a n +→∞→∞+⎛⎫== ⎪+⎝⎭, 所以,当||<1a 时,即11a -<<时,级数绝对收敛; 当||1a >,根据罗比达法则可知212+++ln (ln )lim lim lim(1)x x x p p p x x x a a a a a x px p p x --→∞→∞→∞=-, 因为p 是常数,有限次使用罗比达法则,可求出上述极限为无穷,因此lim np n a n→∞=∞,所以原级数发散;当1a =时,级数既为11pn n∞=∑,此时若01p <≤时,原级数18 发散,若1p >原级数收敛且绝对收敛;当1a =-时,级数既为1(1)npn n∞=-∑,此时,若01p <≤时,根据莱布尼兹定理可知,原级数条件收敛,若1p >时,根据比较审敛法可知,原级数绝对收敛.4.解:因为11113+(2)[3+(2)]1lim lim 3+(2)(1)[3+(2)]n n n n n nn n n n n n n n++++→∞→∞--+=-+-12[1+()]3lim 3112(1)[1+()]33n n nn +→∞-==+⋅⋅-,所以,级数的收敛半径为13,收敛区间为42(,)33--;在端点4=3x -处,级数为12(1)+()3nnn n ∞=-∑,因为级数11(1)21,()3n n n n n n ∞∞==-⋅∑∑均收敛,所以在此点处,原级数收敛; 在端点2=3x -处,级数为121+()3nn n ∞=-∑,因为级数11,n n ∞=∑发散,而121()3nn n∞=-⋅∑收敛,所以在此端点处,原级数发散; 综合得,原级数的收敛域为42[,)33--. 5.解:先利用比值审敛法求幂级数的收敛域.因为2+222(2+2)!lim =lim (2+2)(2+1)(2)!n n n n x x n n n xn →∞→∞=+∞, 所以级数的收敛域为(,)-∞+∞;令22420()1......(2)!2!4!(2)!n nn x x x x s x n n ∞===+++++∑, 则3521()+......3!5!(21)!n x x x s x x n -'=++++-,所以 234()()1......2!3!4!!nx x x x x s x s x x e n '+=+++++++=,19 即()()x s x s x e '+=,这是一个一阶线性微分方程,解之得1()+2x x s x ce e -=.又因为(0)1s =,带入求得常数12c =,所以幂级数的和函数为11()(,)22x xs x e e x -=+∈-∞+∞,.6.解:因为2ln(12)ln(1)ln(12)x x x x +-=-++,而11(1)ln(1)(11)n nn x x x n -∞=-+=-<≤∑,所以,=1ln(1)(11)nn x x x n∞-=--≤<∑,1=1(1)211ln(12)()22n n n n x x x n -∞-+=-<≤∑,于是得出原函数的展开式为12=1(1)2111ln(12)=()22n n n n x x x x n -∞--+--<≤∑.7.解:为展开为正弦级数,先将函数()f x 在[,0)π-上做奇延拓,再延拓到整个数轴,并求傅里叶系数0(0,1,2...)n a n ==, 02()sin d n b f x nx x ππ=⎰202sin d x nx x ππ=⎰221sincos (1,2,...)22n n n n n πππ=-=, 因此可得函数()f x 在[0,)π的傅里叶级数2=121()(sincos )sin ([0,),)222n n n f x nx x x n n πππππ∞=-∈≠∑, 由于3=2x π-为函数的不连续点,根据狄氏收敛性定理,和函数在3=2x π-处的值3()2s π-为左右极限的均值,即31()=24s ππ-,而5=4x π是函数的连续点,在此点处,收敛于(延拓后的)函数()f x ,即5()=04s π.8.考研题练练看:(1)C .解析:幂级数1(1)k kk ax ∞=-∑的收敛域中心为1x =,而20 =1(1,2,...)n n k k S a n ==∑无界表明1(1)k k k a x ∞=-∑在2x =发散,因此幂级数的收敛半径1R ≤,同时,根据莱布尼兹定理,数列{}n a 单减且收敛于0,表明1(1)kkk ax ∞=-∑在0x =收敛,因此幂级数的收敛半径1R ≥,综合得收敛半径为=1R ,因此选C . (2)A .解析:若1n n u ∞=∑收敛,则对其任意项加括号后仍收敛,其逆命题不一定成立,所以选A . (3)D .解析:=11(1)a n n ∞-∑绝对收敛,即1=121a n n∞-∑收敛,所以32α>,又由2=1(1)n a n n ∞--∑条件收敛可知12α≤<,所以选D .(4)C .解析:根据题意,将函数在[]1,1-展开成傅里叶级数(只含有正弦,不含余弦),因此将函数进行奇延拓:1,(0,1)2()1,(1,0)2x x f x x x ⎧-∈⎪⎪=⎨⎪-+∈-⎪⎩,其傅里叶级数以2为周期,则当()1,1x ∈-且()f x 在x 处连续时,()()S x f x =,所以 91111()()()()44444S S S f -=-=-=-=-.(5)D .解析:因为1P >时,=11P n n ∞∑收敛,且lim =lim 1Pn n n n Pa n a n →∞→∞存在,所以=1nn a∞∑收敛.(6)解:先求收敛域.222212(1)212+1lim lim 12+1(1)21n n n n n nxn n x x n x n +-→∞→∞--==<--,即11x -<<时级数绝对收敛;当=1x ±时,级数为1=1(1)21n n n -∞--∑,根据莱布尼兹定理,可知21此级数收敛,因此原级数的收敛域为[1,1]-.为求和函数,设112211=1(1)(1)()2121n n n n n n s x x x xn n --∞∞-=--==--∑∑, 令1211=1(1)()21n n n s x xn -∞--=-∑,则 1212112=1=1(1)1()=() (11)211n n n n n s x x x x n x -∞∞--'⎛⎫-'=-=-<< ⎪-+⎝⎭∑∑, 两端同时积分,得11201()(0)d arctan (11)1xs x s x x x x -==-<<+⎰,明显1(0)0s =,所以1()arctan (11)s x x x =-<<,既得()arctan (11)s x x x x =-<<,又因为=1x ±时,()arctan s x x x ,都有定义,且连续,所以()arctan (11)s x x x x =-≤≤.(7)B.(8)解:先求收敛域.22224(+1)4(+1)321lim 12(1)1443n n n n x x n n n →∞+++⋅⋅=<++++, 即11x -<<时级数绝对收敛;当=1x ±时,级数为2=044321n n n n ∞+++∑,发散,因此幂级数的收敛域为11x -<<.为求和函数,设2222=0=0443(21)2()==2121n nn n n n n S x x x n n ∞∞++++++∑∑,所以22=0=02()=(21)21nn n n S x n xx n ∞∞+++∑∑,令2212=0=02()=(21)()21nn n n S x n x S x x n ∞∞+=+∑∑,,对1()S x 两端积分得210=0()d =(21)d xx nn S x x n x x ∞+∑⎰⎰212=0= (11)1n n xx x x∞+=-<<-∑, 两端求导得212221()= (11)1(1)xx S x x xx '+⎛⎫=-<< ⎪--⎝⎭;22因为212=02()21n n xS x x n ∞+=+∑,两边求导得 222=02[()]2 (11)1n n xS x x x x ∞'==-<<-∑, 再对两端积分得22021()0(0) ln (11)11xxxS x S dx x xx +-⋅==-<<--⎰,所以211()ln((1,0)(0,1))1xS x x x x+=∈-⋃-, 又因为=0x 时,12(0) 1.(0)2S S ==,综合可得和函数为222111ln ,(1,0)(0,1)()1(1)3, 0x xx S x x xx x ⎧+++∈-⋃⎪=--⎨⎪=⎩. (9)(i)证明:由题意得1=1()n nn S x na x∞-'=∑,22=2=0()(1)(1)(2)n nn n n n S x n n a xn n a x ∞∞-+''=-=++∑∑,2(1)0n n a n n a ---=,2=(1)(2)(0,1,2...)n n a n n a n +∴++=, ()=()S x S x ''∴,即()()0S x S x ''-=.(ii) 解:()()0S x S x ''-=为二阶常系数齐次线性微分方程,其特征方程为210λ-=,从而特征根为1λ=±,于是其通解为12()x xS x C e C e -=+,由0(0)3S a ==,1(0)1S a '==得1212123121C C C C C C +=⎧⇒==⎨-+=⎩,,所以()2x x S x e e -=+. (10)解:(1)证明:由cos cos n n n a a b -=,及0,022n n a b ππ<<<<可得0cos cos 2n n n a a b π<=-<,所以02n n a b π<<<,由于级数1nn b∞=∑收敛,所以级数1nn a∞=∑也收敛,由收敛的必要条件可得lim 0n n a →∞=.(2)证明:由于0,022n n a b ππ<<<<,23 所以sin ,sin 2222n n n n n n n na b a b b a b a ++--≤≤2222sin sin cos cos 22222222n n nnn n n n n nn n n nn n n nn n n a b b a a a b b b b a b b a b a b b b b b +--==+--≤=<=由于级数1nn b∞=∑收敛,由正项级数的比较审敛法可知级数1nn na b ∞=∑收敛. (11)解:由于1lim1n n na a +→∞=,所以得到收敛半径1R =. 当1x =±时,级数的一般项不趋于零,是发散的,所以收敛域为()1,1-.令和函数)(x S =0(1)(3)n n n n x ∞=++∑,则2111()(43)(2)(1)(1)nn n nn n S x n n x n n x n x ∞=∞∞===++=++++∑∑∑211123"'3"'11(1)n n n n x x x x x x x x ∞∞++==⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭⎛⎫-⎛⎫=+= ⎪ ⎪---⎝⎭⎝⎭∑∑。
2018版高考数学文江苏专用大一轮复习讲义文档 第十二
1.合情推理(1)归纳推理①定义:从个别事实中推演出一般性的结论,称为归纳推理(简称归纳法).②特点:归纳推理是由部分到整体、由个别到一般的推理.(2)类比推理①定义:根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相似或相同,像这样的推理通常称为类比推理(简称类比法).②特点:类比推理是由特殊到特殊的推理.(3)合情推理合情推理是根据已有的事实、正确的结论、实验和实践的结果,以及个人的经验和直觉等推测某些结果的推理过程.归纳推理和类比推理都是数学活动中常用的合情推理.2.演绎推理(1)演绎推理一种由一般性的命题推演出特殊性命题的推理方法称为演绎推理.简言之,演绎推理是由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式,包括:①大前提——一般性的原理;②小前提——特殊对象;③结论——揭示了一般原理与特殊对象的内在联系.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.(×)(2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.(√)(3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.(×)(4)“所有3的倍数都是9的倍数,某数m是3的倍数,则m一定是9的倍数”,这是三段论推理,但其结论是错误的.(√)(5)一个数列的前三项是1,2,3,那么这个数列的通项公式是a n=n(n∈N*).(×)(6)在演绎推理中,只要符合演绎推理的形式,结论就一定正确.(×)1.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=________.答案123解析从给出的式子特点观察可推知,等式右端的值,从第三项开始,后一个式子的右端值等于它前面两个式子右端值的和,依据此规律,a10+b10=123.2.下面几种推理过程是演绎推理的是________.①在数列{a n}中,a1=1,a n=12(a n-1+1a n-1)(n≥2),由此归纳数列{a n}的通项公式;②由平面三角形的性质,推测空间四面体性质;③两直线平行,同旁内角互补,如果∠A和∠B是两条平行直线与第三条直线形成的同旁内角,则∠A+∠B=180°;④某校高二共10个班,1班51人,2班53人,3班52人,由此推测各班都超过50人.答案③解析①、④是归纳推理,②是类比推理,③符合三段论模式,③是演绎推理.3.(2017·南京质检)类比平面内“垂直于同一条直线的两条直线互相平行”的性质,可得出空间内的下列结论:①垂直于同一个平面的两条直线互相平行;②垂直于同一条直线的两条直线互相平行;③垂直于同一个平面的两个平面互相平行;④垂直于同一条直线的两个平面互相平行.则正确的结论是________.答案 ①④解析 显然①④正确;对于②,在空间中垂直于同一条直线的两条直线可以平行,也可以异面或相交;对于③,在空间中垂直于同一个平面的两个平面可以平行,也可以相交. 4.(教材改编)在等差数列{a n }中,若a 10=0,则有a 1+a 2+…+a n =a 1+a 2+…+a 19-n (n <19,n ∈N *)成立,类比上述性质,在等比数列{b n }中,若b 9=1,则存在的等式为________________. 答案 b 1b 2…b n =b 1b 2…b 17-n (n <17,n ∈N *) 解析 利用类比推理,借助等比数列的性质, b 29=b 1+n ·b 17-n , 可知存在的等式为b 1b 2…b n =b 1b 2…b 17-n (n <17,n ∈N *).5.(2016·泰州模拟)若数列{a n }的通项公式为a n =1(n +1)2(n ∈N *),记f (n )=(1-a 1)(1-a 2)…(1-a n ),试通过计算f (1),f (2),f (3)的值,推测出f (n )=________. 答案n +22n +2解析 f (1)=1-a 1=1-14=34,f (2)=(1-a 1)(1-a 2)=34(1-19)=23=46,f (3)=(1-a 1)(1-a 2)(1-a 3)=23(1-116)=58,推测f (n )=n +22n +2.题型一 归纳推理命题点1 与数字有关的等式的推理 例1 (2016·山东)观察下列等式:⎝⎛⎭⎫sin π3-2+⎝⎛⎭⎫sin 2π3-2=43×1×2;⎝⎛⎭⎫sin π5-2+⎝⎛⎭⎫sin 2π5-2+⎝⎛⎭⎫sin 3π5-2+⎝⎛⎭⎫sin 4π5-2=43×2×3; ⎝⎛⎭⎫sin π7-2+⎝⎛⎭⎫sin 2π7-2+⎝⎛⎭⎫sin 3π7-2+…+⎝⎛⎭⎫sin 6π7-2=43×3×4;⎝⎛⎭⎫sin π9-2+⎝⎛⎭⎫sin 2π9-2+⎝⎛⎭⎫sin 3π9-2+…+⎝⎛⎭⎫sin 8π9-2=43×4×5;…照此规律,⎝⎛⎭⎫sin π2n +1-2+⎝⎛⎭⎫sin 2π2n +1-2+⎝⎛⎭⎫sin 3π2n +1-2+…+⎝⎛⎭⎫sin 2n π2n +1-2=__________. 答案 43×n ×(n +1)解析 观察等式右边的规律:第1个数都是43,第2个数对应行数n ,第3个数为n +1.命题点2 与不等式有关的推理例2 (2016·苏北四市联考)已知x ∈(0,+∞),观察下列各式:x +1x ≥2,x +4x 2=x 2+x 2+4x 2≥3,x +27x 3=x 3+x 3+x 3+27x 3≥4,…,类比得x +ax n ≥n +1(n ∈N *),则a =________.答案 n n解析 第一个式子是n =1的情况,此时a =11=1;第二个式子是n =2的情况,此时a =22=4;第三个式子是n =3的情况,此时a =33=27,归纳可知a =n n . 命题点3 与数列有关的推理例3 (2016·南京模拟)古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n 个三角形数为n (n +1)2=12n 2+12n ,记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式: 三角形数 N (n,3)=12n 2+12n ,正方形数 N (n,4)=n 2, 五边形数 N (n,5)=32n 2-12n ,六边形数 N (n,6)=2n 2-n .……可以推测N (n ,k )的表达式,由此计算N (10,24)=____________. 答案 1 000解析 由N (n,4)=n 2,N (n,6)=2n 2-n ,可以推测:当k 为偶数时,N (n ,k )=k -22n 2+4-k2n ,∴N (10,24)=24-22×100+4-242×10=1 100-100=1 000.命题点4 与图形变化有关的推理例4 某种树的分枝生长规律如图所示,第1年到第5年的分枝数分别为1,1,2,3,5,则预计第10年树的分枝数为________.答案 55解析 由2=1+1,3=1+2,5=2+3知,从第三项起,每一项都等于前两项的和,则第6年为8,第7年为13,第8年为21,第9年为34,第10年为55. 思维升华 归纳推理问题的常见类型及解题策略(1)与数字有关的等式的推理.观察数字特点,找出等式左右两侧的规律及符号可解. (2)与不等式有关的推理.观察每个不等式的特点,注意是纵向看,找到规律后可解. (3)与数列有关的推理.通常是先求出几个特殊现象,采用不完全归纳法,找出数列的项与项数的关系,列出即可.(4)与图形变化有关的推理.合理利用特殊图形归纳推理得出结论,并用赋值检验法验证其真伪性.(2016·苏州模拟)已知f (n )=1+12+13+…+1n (n ∈N *),经计算得f (2)=32,f (4)>2,f (8)>52,f (16)>3,f (32)>72,则可以归纳出一般结论:当n ≥2时,有____________.答案 f (2n )>n +22(n ∈N *)解析 由题意知f (22)>42,f (23)>52,f (24)>62,f (25)>72,所以当n ≥2时,有f (2n )>n +22.故填f (2n )>n +22 (n ∈N *).题型二 类比推理例5 (1)对于命题:如果O 是线段AB 上一点,则|OB →|OA →+|OA →|OB →=0;将它类比到平面的情形是:若O 是△ABC 内一点,有S △OBC ·OA →+S △OCA ·OB →+S △OBA ·OC →=0;将它类比到空间的情形应该是:若O 是四面体ABCD 内一点,则有________.(2)(2017·苏州月考)求1+1+1+…的值时,采用了如下方法:令1+1+1+…=x ,则有x =1+x ,解得x =1+52(负值已舍去).可用类比的方法,求得1+12+11+12+1…的值为________.答案 (1)V O -BCD ·OA →+V O -ACD ·OB →+V O -ABD ·OC →+V O -ABC ·OD →=0 (2)1+32解析 (1)线段长度类比到空间为体积,再结合类比到平面的结论,可得空间中的结论为V O -BCD ·OA →+V O -ACD ·OB →+V O -ABD ·OC →+V O -ABC ·OD →=0. (2)令1+12+1…=x ,则有1+12+1x =x , 解得x =1+32(负值已舍去).思维升华 (1)进行类比推理,应从具体问题出发,通过观察、分析、联想进行类比,提出猜想.其中找到合适的类比对象是解题的关键.(2)类比推理常见的情形有平面与空间类比;低维的与高维的类比;等差数列与等比数列类比;数的运算与向量的运算类比;圆锥曲线间的类比等.在平面上,设h a ,h b ,h c 是三角形ABC 三条边上的高,P 为三角形内任一点,P到相应三边的距离分别为P a ,P b ,P c ,我们可以得到结论:P a h a +P b h b +P ch c =1.把它类比到空间,则三棱锥中的类似结论为______________________. 答案P a h a +P b h b +P c h c +P dh d=1 解析 设h a ,h b ,h c ,h d 分别是三棱锥A -BCD 四个面上的高,P 为三棱锥A -BCD 内任一点,P 到相应四个面的距离分别为P a ,P b ,P c ,P d ,于是可以得出结论:P a h a +P b h b +P c h c +P dh d =1.题型三 演绎推理例6 已知函数y =f (x )满足:对任意a ,b ∈R ,a ≠b ,都有af (a )+bf (b )>af (b )+bf (a ). (1)试证明:f (x )为R 上的单调增函数;(2)若x ,y 为正实数且4x +9y=4,比较f (x +y )与f (6)的大小.(1)证明 设x 1,x 2∈R ,且x 1<x 2, 则由题意得x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1), ∴x 1[f (x 1)-f (x 2)]+x 2[f (x 2)-f (x 1)]>0, [f (x 2)-f (x 1)](x 2-x 1)>0,∵x 1<x 2,∴f (x 2)-f (x 1)>0,∴f (x 2)>f (x 1). ∴f (x )为R 上的单调增函数.(2)解 ∵x ,y 为正实数,且4x +9y =4,∴x +y =14(x +y )(4x +9y )=14(13+4y x +9x y )≥14(13+2 4y x ·9x y )=254, 当且仅当⎩⎨⎧ 4y x =9x y,4x +9y =4,即⎩⎨⎧x =52,y =154时取等号,∵f (x )在R 上是增函数,且x +y ≥254>6,∴f (x +y )>f (6).思维升华 演绎推理是由一般到特殊的推理,常用的一般模式为三段论,演绎推理的前提和结论之间有着某种蕴含关系,解题时要找准正确的大前提,一般地,若大前提不明确时,可找一个使结论成立的充分条件作为大前提.(1)某国家流传这样的一个政治笑话:“鹅吃白菜,参议员先生也吃白菜,所以参议员先生是鹅.”结论显然是错误的,是因为________. ①大前提错误②小前提错误③推理形式错误(2)(2016·南京模拟)下列四个推导过程符合演绎推理三段论形式且推理正确的是________. ①大前提:无限不循环小数是无理数;小前提:π是无理数;结论:π是无限不循环小数; ②大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数; ③大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数; ④大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数. 答案 (1)③ (2)②解析 (1)因为大前提“鹅吃白菜”,不是全称命题,大前提本身正确,小前提“参议员先生也吃白菜”本身也正确,但不是大前提下的特殊情况,鹅与人不能类比,所以不符合三段论推理形式,所以推理形式错误.(2)①中小前提不是大前提的特殊情况,不符合三段论的推理形式,故①错误;③、④都不是由一般性命题到特殊性命题的推理,所以①、③、④都不正确,只有②正确.10.高考中的合情推理问题考点分析合情推理在近年来的高考中,考查频率逐渐增大,题型多为填空题,难度为中档.解决此类问题的注意事项与常用方法:(1)解决归纳推理问题,常因条件不足,了解不全面而致误.应由条件多列举一些特殊情况再进行归纳.(2)解决类比问题,应先弄清所给问题的实质及已知结论成立的缘由,再去类比另一类问题.典例(1)传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列{a n},将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n},可以推测:①b2 014是数列{a n}的第________项;②b2k-1=________.(用k表示)(2)设S,T是R的两个非空子集,如果存在一个从S到T的函数y=f(x)满足:(ⅰ)T={f(x)|x∈S};(ⅱ)对任意x1,x2∈S,当x1<x2时,恒有f(x1)<f(x2).那么称这两个集合“保序同构”.以下集合对不是“保序同构”的是________.①A=N*,B=N;②A={x|-1≤x≤3},B={x|x=-8或0<x≤10};③A={x|0<x<1},B=R;④A=Z,B=Q.解析 (1)①a n =1+2+…+n =n (n +1)2,b 1=4×52=a 4,b 2=5×62=a 5,b 3=9×(2×5)2=a 9,b 4=(2×5)×112=a 10,b 5=14×(3×5)2=a 14,b 6=(3×5)×162=a 15,…b 2 014=⎝⎛⎭⎫2 0142×5⎝⎛⎭⎫2 0142×5+12=a 5 035.②由①知b 2k -1=⎝⎛⎭⎫2k -1+12×5-1⎝⎛⎭⎫2k -1+12×52=5k (5k -1)2. (2)对于①,取f (x )=x -1,x ∈N *,所以A =N *,B =N 是“保序同构”的,故排除①; 对于②,取f (x )=⎩⎪⎨⎪⎧-8,x =-1,x +1,-1<x ≤0,x 2+1,0<x ≤3,所以A ={x |-1≤x ≤3},B ={x |x =-8或0<x ≤10}是“保序同构”的,故排除②; 对于③,取f (x )=tan(πx -π2)(0<x <1),所以A ={x |0<x <1},B =R 是“保序同构”的, 故排除③. ④不符合,故填④.答案 (1)①5 035 ②5k (5k -1)2(2)④1.若大前提是:任何实数的平方都大于0,小前提是:a ∈R ,结论是:a 2>0,那么这个演绎推理出错在________. ①大前提 ②小前提 ③推理过程④没有出错答案 ①解析 推理形式正确,但大前提错误,故得到的结论错误. 2.下列推理是归纳推理的是________.①A ,B 为定点,动点P 满足P A +PB =2a >AB ,则P 点的轨迹为椭圆; ②由a 1=1,a n =3n -1,求出S 1,S 2,S 3,猜想出数列的前n 项和S n 的表达式; ③由圆x 2+y 2=r 2的面积πr 2,猜想出椭圆x 2a 2+y 2b2=1的面积S =πab ;④科学家利用鱼的沉浮原理制造潜艇. 答案 ②解析 从S 1,S 2,S 3猜想出数列的前n 项和S n ,是从特殊到一般的推理,所以②是归纳推理,其余都不是.3.(2017·苏州质检)如图,有一个六边形的点阵,它的中心是1个点(算第1层),第2层每边有2个点,第3层每边有3个点,…,依此类推,如果一个六边形点阵共有169个点,那么它的层数为________.答案 8解析 由题意知,第1层的点数为1,第2层的点数为6,第3层的点数为2×6,第4层的点数为3×6,第5层的点数为4×6,…,第n (n ≥2,n ∈N *)层的点数为6(n -1).设一个点阵有n (n ≥2,n ∈N *)层,则共有的点数为1+6+6×2+…+6(n -1)=1+6n (n -1)2=3n 2-3n +1,由题意得3n 2-3n +1=169,即(n +7)·(n -8)=0,所以n =8(舍去负值),故共有8层. 4.(2016·扬州模拟)平面内有n 条直线,最多可将平面分成f (n )个区域,则f (n )的表达式为f (n )=__________. 答案 n 2+n +22解析 1条直线将平面分成1+1个区域;2条直线最多可将平面分成1+(1+2)=4个区域;3条直线最多可将平面分成1+(1+2+3)=7个区域;……;n 条直线最多可将平面分成1+(1+2+3+…+n )=1+n (n +1)2=n 2+n +22个区域. 5.(2016·徐州模拟)推理“①矩形是平行四边形;②三角形不是平行四边形;③三角形不是矩形”中的小前提是________.答案 ②解析 由演绎推理三段论可知,①是大前提;②是小前提;③是结论.6.给出下列三个类比结论:①(ab )n =a n b n 与(a +b )n 类比,则有(a +b )n =a n +b n ;②log a (xy )=log a x +log a y 与sin(α+β)类比,则有sin(α+β)=sin αsin β;③(a +b )2=a 2+2ab +b 2与(a +b )2类比,则有(a +b )2=a 2+2a ·b +b 2.其中正确结论的个数是________.答案 1解析 (a +b )n ≠a n +b n (n ≠1,a ·b ≠0),故①错误.sin(α+β)=sin αsin β不恒成立.如α=30°,β=60°,sin 90°=1,sin 30°·sin 60°=34, 故②错误.由向量的运算公式知③正确.7.把正整数按一定的规则排成如图所示的三角形数表,设a ij (i ,j ∈N *)是位于这个三角形数表中从上往下第i 行,从左往右数第j 个数,如a 42=8,若a ij =2 009,则i 与j 的和为________.答案 107解析 由题意可知奇数行为奇数列,偶数行为偶数列,2 009=2×1 005-1,所以2 009为第1 005个奇数,又前31个奇数行内数的个数为961,前32个奇数行内数的个数为1 024,故2 009在第32个奇数行内,则i =63,因为第63行第1个数为2×962-1=1 923,2 009=1 923+2(j -1),所以j =44,所以i +j =107.8.已知等差数列{a n }中,有a 11+a 12+…+a 2010=a 1+a 2+…+a 3030,则在等比数列{b n }中,类似的结论为______________________.答案 10b 11b 12…b 20=30b 1b 2…b 30解析 由等比数列的性质可知b 1b 30=b 2b 29=…=b 11b 20, ∴10b 11b 12…b 20=30b 1b 2…b 30.9.若P 0(x 0,y 0)在椭圆x 2a 2+y 2b 2=1(a >b >0)外,过P 0作椭圆的两条切线的切点分别为P 1,P 2,则切点弦P 1P 2所在的直线方程是x 0x a 2+y 0y b 2=1,那么对于双曲线则有如下命题:若P 0(x 0,y 0)在双曲线x 2a 2-y 2b 2=1(a >0,b >0)外,过P 0作双曲线的两条切线,切点分别为P 1,P 2,则切点弦P 1P 2所在直线的方程是________________.答案 x 0x a 2-y 0y b 2=1 解析 设P 1(x 1,y 1),P 2(x 2,y 2),则P 1,P 2的切线方程分别是x 1x a 2-y 1y b 2=1,x 2x a 2-y 2y b 2=1. 因为P 0(x 0,y 0)在这两条切线上,故有x 1x 0a 2-y 1y 0b 2=1,x 2x 0a 2-y 2y 0b 2=1, 这说明P 1(x 1,y 1),P 2(x 2,y 2)在直线x 0x a 2-y 0y b 2=1上, 故切点弦P 1P 2所在的直线方程是x 0x a 2-y 0y b 2=1. 10.如图(1),若从点O 所作的两条射线OM 、ON 上分别有点M 1、M 2与点N 1、N 2,则三角形面积之比1122OM N OM N S S ∆∆=OM 1OM 2·ON 1ON 2.如图(2),若从点O 所作的不在同一平面内的三条射线OP 、OQ 和OR 上分别有点P 1、P 2,点Q 1、Q 2和点R 1、R 2,则类似的结论为_____________.答案 111222O PQ R O P Q R V V --=OP 1OP 2·OQ 1OQ 2·OR 1OR 2解析 考查类比推理问题,由图看出三棱锥P 1-OR 1Q 1及三棱锥P 2-OR 2Q 2的底面面积之比为OQ 1OQ 2·OR 1OR 2,又过顶点分别向底面作垂线,得到高的比为OP 1OP 2,故体积之比为111222O P Q R O P Q R V V --=OP 1OP 2·OQ 1OQ 2·OR 1OR 2. 11.设f (x )=13x +3,先分别求f (0)+f (1),f (-1)+f (2),f (-2)+f (3),然后归纳猜想一般性结论,并给出证明.解 f (0)+f (1)=130+3+131+3 =11+3+13(1+3)=33(1+3)+13(1+3)=33, 同理可得f (-1)+f (2)=33,f (-2)+f (3)=33. 由此猜想f (x )+f (1-x )=33. 证明:f (x )+f (1-x )=13x +3+131-x +3=13x +3+3x 3+3·3x =13x +3+3x 3(3+3x )=3+3x 3(3+3x )=33. 12.(2016·连云港模拟)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:①sin 213°+cos 217°-sin 13°cos 17°;②sin 215°+cos 215°-sin 15°cos 15°;③sin 218°+cos 212°-sin 18°cos 12°;④sin 2(-18°)+cos 248°-sin(-18°)cos 48°;⑤sin 2(-25°)+cos 255°-sin(-25°)cos 55°.(1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为一个三角恒等式,并证明你的结论. 解 (1)选择②式,计算如下:sin 215°+cos 215°-sin 15°cos 15°=1-12sin 30°=1-14=34. (2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos 30°cos α+sin 30°sin α)2-sin α(cos 30°cos α+sin 30°sin α)=sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α=34sin 2α+34cos 2α=34. 13.对于三次函数f (x )=ax 3+bx 2+cx +d (a ≠0),给出定义:设f ′(x )是函数y =f (x )的导数,f ″(x )是f ′(x )的导数,若方程f ″(x )=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.若f (x )=13x 3-12x 2+3x -512,请你根据这一发现, (1)求函数f (x )的对称中心;(2)计算f (12 017)+f (22 017)+f (32 017)+f (42 017)+…+f (2 0162 017). 解 (1)f ′(x )=x 2-x +3,f ″(x )=2x -1,由f ″(x )=0,即2x -1=0,解得x =12. f (12)=13×(12)3-12×(12)2+3×12-512=1. 由题中给出的结论,可知函数f (x )=13x 3-12x 2+3x -512的对称中心为(12,1). (2)由(1)知函数f (x )=13x 3-12x 2+3x -512的对称中心为(12,1),所以f (12+x )+f (12-x )=2, 即f (x )+f (1-x )=2.故f (12 017)+f (2 0162 017)=2, f (22 017)+f (2 0152 017)=2, f (32 017)+f (2 0142 017)=2, …,f (2 0162 017)+f (12 017)=2. 所以f (12 017)+f (22 017)+f (32 017)+f (42 017)+…+f (2 0162 017)=12×2×2 016=2 016.。
《数学分析》 第十二章 数项级数 1
(
1 2m
1
1 2m
2
1 2m1
)
每项均大于1
2m项
2
即前m 1项大于(m 1) 1 2
级数发散 .
由性质4推论,调和级数发散.
五、小结
常数项级数的基本概念
基本审敛法
1.由定义,若sn s,则级数收敛;
2.当lim n
un
0,则级数发散;
3.按基本性质.
思考题
设 bn 与 cn 都收敛,且bn an cn
lim
n
sn不存在
发散
综上
n0
aq
n
当q 当q
1时,收敛 1时, 发散
例 2 判别无穷级数
1 1
1
的收敛性.
13 35
(2n 1) (2n 1)
解
un
(2n
1 1)(2n
1)
1( 1 2 2n
1
1 2n
), 1
sn
1 1
1
13 35
(2n 1) (2n 1)
1 (1 1) 1 (1 1) 1 ( 1 1 )
1 (4)2 39
1 (4)n2 ]} 39
n 2,3,
于是有
lim
n
Pn
1
lim
n
An
A1
(1
1
3
4
)
A1 (1
3) 5
2 3. 5
9
雪花的面积存在极限(收敛).
结论:雪花的周长是无界的,而面积有界.
例 1 讨论等比级数(几何级数)
aqn a aq aq2 aqn (a 0)
n0
的收敛性.
《数学分析》课件 (完整版)
§1 无穷限广义积分
定积分的两个限制
积分区间的有界性 被积函数的有界性 实践中,我们却经常要打破这两个限制。如:关于级数收敛的Cauchy积分判别法;概率统计中,随机变量的空间通常是无限的;第二宇宙速度;物理中的 函数;量子运动;‥‥‥
无穷限积分的定义
设函数 在 有定义,在任意有限区间 上可积。若 存在,则称之为 在 上的广义积分,记为 此时亦称积分 收敛;若 不存在,则称积分 发散。
P.S. 为一符号,表示的是一无穷积分;而当它收敛时,还有第二重意义,可用来表示其积分值。
1. 2. 当 , 均收敛时,定义 显然, 的值与 的选取无关。
类似地,我们可以给出其它无穷积分的定义:
特别地,我们若可利用Taylor公式,求得
则
时 收敛, 时 发散, 时,只能于 时推得 收敛。
Question
我们将参照物取为幂函数 ,而有了上述的比较判别法;那么,将参照物取为指数函数 ,结果又如何呢? 无穷限的广义积分有着与级数非常类似的比较判别法,都是通过估计其求和的对象大小或收敛于0的速度而判断本身的敛散性;而且,我们还有Cauchy积分判别法,使某些级数的收敛与某些无穷限积分的收敛等价了起来。那么,是否可以将关于级数中结论推广至无穷限积分中来呢?某些结论不能推广的原因是什么呢?
1. 结合律
对于收敛级数,可任意加括号,即
2. 交换律
仅仅对于绝对收敛的级数,交换律成立 而对于条件收敛的级数,是靠正负抵消才可求和的,故重排后结果将任意。可见,绝对收敛才是真正的和。
定理 10.19 若级数 绝对收敛,其和为 ,设 为 的任意重排,则 亦绝对收敛,且和仍为
第十章 数项级数
§5 无穷级数与代数运算 有限和中的运算律,如结合律,交换律,分配律,在无穷和中均不成立。具体地,我们有下面的一些结论。
高数课件-D12习题课
基本问题:判别敛散; 求收敛域; 求和函数; 级数展开.
目录 上页 下页 返回 结束
第3页
一、数项级数的审敛法
1. 利用部分和数列的极限判别级数的敛散性
2. 正项1. 级利数用审部敛分法和数列的极限判别级数的敛散性
必要条件 nl im un 0
满足
不满足 发 散
比值审敛法
lim
n
u n 1 un
法2 因 n l i u m nn l i v m n0, n l i (m unvn)0,
故存在 N > 0,当n >N 时 0 (u n vn) 1 ,从而
(unvn)2(unvn) 再利用比较法可得结论
目录 上页 下页 返回 结束
P320 题4. 设级数 u n
n 1
收敛 , 且 lim vn n un
n 1
n 1
目录 上页 下页 返回 结束
第10页
P320 题5.讨论下列级数的绝对收敛性与条件收敛性:
(1)
(1)n
n1
1 np
;
(2) n 1(1)n1sπinn nπ11;
(3) (1)nlnn1;
n1
n
(4) n 1(1)n(nnn11)!.
提示: (1) p >1 时, 绝对收敛 ; 0 < p≤1 时, 条件收敛 ; p≤0 时, 发散 .
Leibniz审敛法: 若 unun 10, 且 nl im un0,
则交错级数 (1)nun 收敛 , 且余项 rn un1.
n 1
目录 上页 下页 返回 结束
第5页
解答提示:
P320 题2. 判别下列级数的敛散性:
(1)
数学分析12.2正项级数
第十二章 数项级数2 正项级数一、正项级数收敛的一般判别原则概念:若数项级数各项的符号都相同,则称它为同号级数. 各项都是正数组成的同号级数称为正项级数.定理12.5:正项级数∑n u 收敛的充要条件是:部分和数列{S n }有界,即存在某正数M ,对一切正整数n ,有S n <M.证:∵u i >0(i=1,2,…),∴{S n }递增. 根据数列的单调有界定理,得证.定理12.6:(比较原则)设∑n u 和∑n v 是两个正项级数,如果存在某正数N ,对一切n>N ,都有:u n ≤v n 则: (1)若级数∑n v 收敛,则级数∑n u 也收敛; (2)若级数∑n u 发散,则级数∑n v 也发散. 证:由改变级数的有限项不影响其收敛性, 不妨设对一切正整数,u n ≤v n 都成立.以S ’n 和S ”n 分别记级数∑n u 和∑n v 的部分和,则对一切正整数n , 有S ’n ≤S ”n .(1)若∑n v 收敛,则∞n lim +→S ”n 存在,记为S ,则S ’n ≤S ,即{S ’n }有界,∴∑n u 也收敛.(2)若级数∑n v 收敛,由(1)知级数∑n u 收敛,矛盾!得证.例1:考察∑+1n -n 12的收敛性.解:当n ≥2时,1n -n 12+<1)-n (n 1.∵正项级数∑-1)n(n 1收敛,∴∑+1n -n 12也收敛.推论:设∑n u =u 1+u 2+…+u n +…与∑n v =v 1+v 2+…+v n +… 是两个正项级数,若nn∞n v u lim+→=l. 则 (1)当0<l<+∞时,同时收敛或同时发散; (2)当l=0且级数∑n v 收敛时,级数∑n u 也收敛; (3)当l=+∞且级数∑n v 发散时,级数∑n u 也发散.证:(1)当0<l<+∞时,对任意正数ε(ε<l),存在某正数N ,当n>N 时, 恒有l -nnv u <ε,即(l-ε)v n <u n <(l+ε)v n . 显然, 若∑n v 收敛,则∑n ε)v +(l 收敛,∴∑n u 也收敛; 若∑n v 发散,则∑-n ε)v (l 发散,∴∑n u 也发散.(2)当l=0时,由u n <(l+ε)v n =εv n ,可知∑n v 收敛时,∑n u 也收敛. (3)当l=+∞时,任给正数M ,存在相应的正数N ,当n>N 时,都有nnv u >M ,即u n >Mv n ,由比较原则知:若∑n v 发散时,∑n u 也发散.例2:证明:级数∑n -21n 收敛.证:∵nn ∞n 21n -21lim+→=n ∞n 2n 11lim -+→=1, 又等比级数∑n21收敛,∴级数∑n -21n 也收敛.例3:证明:级数∑n 1sin =sin1+sin 21+…+sin n1+…发散. 证:∵n1n 1sinlim∞n +→=1,又调和级数∑n 1发散,∴级数∑n 1sin 也发散.二、比式判别法和根式判别法定理12.7:(达朗贝尔判别法,或称比式判别法)设∑n u 为正项级数,且存在某正整数N 0及常数q(0<q<1). (1)若对一切n> N 0,不等式n1n u u +≤q 成立,则级数∑n u 收敛; (2)若对一切n> N 0,不等式n1n u u +≥1成立,则级数∑n u 发散. 证:(1)不妨设不等式n1n u u +≤q 对一切n ≥1都成立,于是有 12u u ≤q, 23u u ≤q,…, n 1n u u +≤q, .... 把前n-1个不等式的左右各相乘得 12u u .23u u .. (1)-n n u u ≤q n-1,即u n ≤u 1q n-1. ∵等比级数∑1-n q (0<q<1)收敛,∴级数∑n u 也收敛. (2)由对一切n> N 0,不等式n1n u u +≥1成立,∴有u n+1≥u n ≥0N u ,可知∞n lim +→u n ≠0,∴级数∑n u 发散.推论1:(比式判别法极限形式)若∑n u 为正项级数,且n1n ∞n u u lim++→=q ,则 (1)当q<1时,级数∑n u 收敛; (2)当q>1或q=+∞时,级数∑n u 发散. 证:∵n 1n ∞n u u lim++→=q ,∴对取定的正数ε=21|1-q|,存在正数N , 当n>N 时,都有q-ε<n1n u u +<q+ε. (1)当q<1时,n 1n u u +<q+ε=21(1-q)<1,∴级数∑n u 收敛. (2)当q>1时,n 1n u u +>q-ε=21(1+q)>1,∴级数∑n u 发散; 当q=+∞时,存在N ,当n>N 时,有n1n u u +>1,∴级数∑n u 发散.例4:证明:级数12+5152⨯⨯+951852⨯⨯⨯⨯+…+)]1n (41[951)]1n (32[852-+⋯⨯⨯-+⋯⨯⨯+…收敛.证:∵n 1n ∞n u u lim++→=n 41n 32lim ∞n +++→=43<1,∴该级数收敛.例5:讨论级数∑1-n nx (x>0)的敛散性. 解:当x=1时,级数∑n 发散. 又n 1n ∞n u u lim++→=nx)1n (lim ∞n ++→=x. ∴当0<x<1时,该级数收敛;当x ≥1时,该级数发散;推论2:设∑n u 为正项级数,则 (1)若n1n ∞n u u lim++→=q<1,则级数∑n u 收敛; (2)若n1n ∞n u u lim ++→=q>1,则级数∑n u 发散.例6:讨论级数1+b+bc+b 2c+b 2c 2+…+b m c m-1+b m c m +…的敛散性,0<b<c.解:∵n 1n u u +=⎩⎨⎧为偶数为奇数n c n b . ∴n1n ∞n u u lim ++→=c, n 1n ∞n u u lim ++→=b. ∴当c<1时,该级数收敛;当b>1时,该级数发散; 当c<1<b 时,无法判定.定理12.8:(柯西判别法,或称根式判别法)设∑n u 为正项级数,且存在某正数N 0及正常数l ,则(1)若对一切n>N 0,不等式n n u ≤l<1成立,则级数∑n u 收敛; (2)若对一切n>N 0,不等式n n u ≥1成立,则级数∑n u 发散. 证:(1)∵n n u ≤l<1,∴u n ≤l n ,又等比级数∑n l 当0<l<1时收敛, 由比较原则知∑n u 也收敛.(2)∵n n u ≥1,∴u n ≥1n =1, ∴∞n lim +→u n ≠0,∴级数∑n u 发散.推论1:(根式判别法极限形式)设∑n u 为正项级数,且n n ∞n u lim +→=l ,则 (1)当l<1时,级数∑n u 收敛;(2)当l>1时,级数∑n u 发散.证:∵n n ∞n u lim +→=l ,∴当取ε<|1-l|时,存在某正数N ,对一切n>N , 有l-ε<n n u <l+ε. 根据定理12.8得证.例7:研究级数∑+nn2)(-12的敛散性.解:∵n n ∞n u lim +→=nnn ∞n 2)(-12lim ++→=21<1,∴该级数收敛.推论2:设∑n u 为正项级数,且n n ∞n u lim +→=l ,则当 (1)当l<1时,级数∑n u 收敛;(2)当l>1时,级数∑n u 发散.例8:讨论级数b+c+b 2+c 2+…+b m +c m +…的敛散性,0<b<c<1.解:∵n n u =⎪⎩⎪⎨⎧-为偶数为奇数n cn b 2m m12m m . ∴n n∞n u lim +→=2m m ∞n c lim +→=c <1, ∴该级数收敛.注:根式判别法较比式判别法更有效,所以优先使用根式判别法.例9:讨论级数∑∞=+1n n2nx1x 的敛散性,其中x>0. 解:∵nn 2∞n x 1lim ++→=max{1,x 2},∴n n ∞n u lim +→=nn 2n∞n x 1x lim ++→=}x max {1,x 2=⎩⎨⎧==≠<1x 11x 1. ∴当x ≠1时,该级数收敛;当x=1时,该级数发散.例10:判别下列级数的敛散性:(1)∑∞=1n 2!n)2()(n!;(2)∑∞=⎪⎭⎫⎝⎛+1n n2n 12n .解:(1)∵n1n ∞n u u lim ++→=1)2)(2n n 2(1)(n lim 2∞n ++++→=41<1,∴该级数收敛. (2)∵n n ∞n u lim+→=n12n lim n2∞n ++→=21<1,∴该级数收敛.三、积分判别法定理12.9:设f 为[1,+∞)上非负减函数,那么正项级数∑f(n)与反常积分⎰+∞1f(x )dx 同时收敛或同时发散.证:∵f 在[1,+∞)上非负减,∴对任何正数A ,f 在[1,A]上可积,从而 有f(n)≤⎰n1-n f(x )dx ≤f(n-1), n=2,3,…. 依次相加可得:∑=m2n f(n)≤⎰m1f(x )dx ≤∑=m 2n 1)-f(n =∑=1-m 1n f(n).若反常积分收敛,则有S m =∑=m1n f(n)≤f(1)+⎰m 1f(x )dx ≤f(1)+⎰+∞1f(x )dx ,根据定理12.5知,级数∑f(n)收敛.若级数∑f(n)收敛,则有⎰m1f(x )dx ≤S m-1≤∑f(n)=S. 又f 在[1,+∞)上非负减,∴对任何正数A ,都有 0≤⎰A1f(x )dx ≤S n <S, n ≤A ≤n+1. ∴⎰+∞1f(x )dx 收敛.用反证法或同理可证:正项级数∑f(n)与反常积分⎰+∞1f(x )dx 同时发散.例11:讨论p 级数∑p n1的敛散性. 解:当p<0时,p∞n n 1lim+→≠0,∴级数∑p n 1的发散. 当p>0时,f(x)=p x1为[1,+∞)上非负减函数,又当0<p ≤1时,⎰+∞1px 1dx 发散,∴级数∑p n 1也发散; 当p>1时,⎰+∞1p x 1dx 收敛,∴级数∑p n1也收敛.例12:讨论下列级数的敛散性:(1)∑∞=2n p lnn)(n 1;(2)∑∞=3n plnlnn)(lnn)(n 1. 解:(1)∵⎰+∞2p lnn)(n 1dx=⎰+∞2p lnn)(1dlnn=⎰+∞ln2p u1du. ∴当p ≤1时,原级数发散;当p>1时,原级数收敛. (2)∵⎰+∞3plnlnn)(lnn)(n 1dx=⎰+∞3p lnlnn)(lnn 1dlnn=⎰+∞ln3p u(lnu)1du. 由(1)可知: ∴当p ≤1时,原级数发散;当p>1时,原级数收敛.四、拉贝判别法定理12.10:(拉贝判别法)设∑n u 为正项级数,且存在某正整数N 0及数常r, 则:(1)若对一切n>N 0, 不等式n ⎪⎪⎭⎫⎝⎛-+n 1n u u 1≥r>1成立,则级数∑n u 收敛; (2)若对一切n>N 0, 不等式n ⎪⎪⎭⎫ ⎝⎛-+n 1n u u 1≤1成立,则级数∑n u 发散. 证:(1)由n ⎪⎪⎭⎫ ⎝⎛-+n 1n u u 1≥r>1可得n 1n u u +<1-nr,取p 使1<p<r ,则 由nr n 1-1-1lim p∞n ⎪⎭⎫⎝⎛+→=()rx x -1-1lim p0x →=rp <1知:存在正数N ,使对任意n>N ,有n r >p n 1-1-1⎪⎭⎫ ⎝⎛. ∴n n u 1u +<1-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛p n 1-1-1=p n 1-1-1⎪⎭⎫ ⎝⎛=pn 1-n ⎪⎭⎫⎝⎛. 于是当n>N 时,就有u n+1=N N 1N 1-n n n 1n u u u u u u u ⋅⋅⋯⋅⋅++≤pn 1-n ⎪⎭⎫ ⎝⎛p1-n 2-n ⎪⎭⎫ ⎝⎛…Npu N 1-N ⋅⎪⎭⎫ ⎝⎛=u N (N-1)p ·p n 1. ∵p>1,∴∑p n1收敛,∴原级数收敛. (2)由n ⎪⎪⎭⎫ ⎝⎛-+n 1n u u 1≤1可得n1n u u +≥1-n 1=n 1-n ,于是 u n+1=2231-n n n 1n u u u u u u u ⋅⋅⋯⋅⋅+>2u 211-n 2-n n 1-n ⋅⋅⋯⋅⋅=u 2·n1. ∵调和级数∑n1发散,∴原级数发散.推论:(拉贝判别法的极限形式)设∑n u 为正项级数,且极限⎪⎪⎭⎫⎝⎛-++→n 1n ∞n u u 1n lim =r 存在,则 (1)当r>1时,级数∑n u 收敛;(2)当r<1时,级数∑n u 发散.例13:讨论级数:∑⎥⎦⎤⎢⎣⎡⋯⋅⋯⋅s(2n)421)-(2n 31当s=1,2,3时的敛散性. 解:n1n ∞n u u lim++→=s∞n (2n)421)-(2n 312)(2n 421)(2n 31lim ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⋯⋅⋯⋅+⋯⋅+⋯⋅+→=s ∞n 22n 12n lim ⎪⎭⎫ ⎝⎛+++→=1,无法判别. 当s=1时,⎪⎪⎭⎫⎝⎛-++→n 1n ∞n u u 1n lim =⎪⎭⎫ ⎝⎛++-+→22n 12n 1n lim ∞n =22n n lim ∞n ++→=21<1,∴发散; 当s=2时,⎪⎪⎭⎫ ⎝⎛-+n 1n u u 1n =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛++-222n 12n 1n =4n 84n 3n4n 22+++<1,∴发散;当s=3时,⎪⎪⎭⎫⎝⎛-++→n 1n ∞n u u 1n lim =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++-+→3∞n 22n 12n 1n lim=8n 42n 248n n 7n 1812n lim 2323∞n ++++++→=23>1,∴收敛.习题1、应用比较原则判别下列级数的敛散性: (1)∑+22a n 1;(2)∑n n3πsin 2;(3)∑+2n11;(4)∑n )n (ln 1; (5)∑⎪⎭⎫ ⎝⎛-n 1cos 1;(6)∑n nn 1;(7)∑-)1a (n (a>1);(8)∑∞=2n n ln )n (ln 1;(9)∑-+)2a 1a (nn(a>0);(10)∑n12nsinn1.解:(1)∵0≤22a n 1+≤2n 1,又级数∑2n 1收敛,∴原级数收敛. (2)∵0<n n 3πsin 2<n32π⎪⎭⎫ ⎝⎛,又等比级数∑⎪⎭⎫⎝⎛n32收敛,∴原级数收敛.(3)∵2n 11+>1n 1+,又级数∑+1n 1发散,∴原级数发散. (4)∵0<n )n (ln 1<n 21 (n>e 2),又级数∑∞=2n n21收敛,∴原级数收敛. (5)∵0≤n 1cos 1-=2sin 22n 1<22n 1,又级数∑22n1收敛,∴原级数收敛. (6)∵n nn 1>2n 1,又级数∑2n1发散,∴原级数发散. (7)∵1a n ->n a ,又当a>1时,n∞n a lim +→=1≠0,∴级数∑n a 发散, ∴原级数发散. (8)∵0≤n ln )n (ln 1=ln(lnn)n 1<2n 1 (n>2e e ),又级数∑2n 1收敛,∴原级数收敛.(9)∵2nn∞n n 12a1a lim-++→=2t t 0t t2a 1a lim-+→=(lna)2>0, 又级数∑2n 1收敛,∴原级数收敛. (10)∵2n12nsin∞n n 1n 1lim +→=2tsint 20t t tlim ⋅→=1>0,又级数∑2n 1收敛,∴原级数收敛.2、用比式判别法或根式判别法鉴定下列级数的敛散性.(1)∑⋯⋅n!1)-(2n 31;(2)∑+n 101)!(n ;(3)∑⎪⎭⎫⎝⎛+n1n 2n ;(4)∑n n n!;(5)∑n 22n ;(6)∑⋅n n n n!3;(7)∑⎪⎪⎭⎫⎝⎛nn a b (其中n ∞n a lim +→=a, a n ,b,a>0, 且a ≠b). 解:(1)∵n1n ∞n u u lim++→=n!1)-(2n 31!)1(n 1)(2n 31lim ∞n ⋯⋅++⋯⋅+→=1n 12n lim ∞n +++→=2>1,∴原级数发散. (2)∵n1n ∞n u u lim++→=n1n ∞n 101)!(n 102)!(n lim ++++→=102n lim ∞n ++→=+∞,∴原级数发散. (3)∵n n∞n u lim +→=n n∞n 1n 2n lim ⎪⎭⎫⎝⎛++→=1n 2n lim∞n ++→=21<1,∴原级数收敛. (4)∵n1n ∞n u u lim++→=n1n ∞n n n!)1(n 1)!(n lim ++→++=n∞n 1n n lim ⎪⎭⎫ ⎝⎛++→=e1<1,∴原级数收敛. (5)∵n n∞n u lim +→=nn 2∞n 2n lim +→=2n lim n2∞n +→=21<1,∴原级数收敛.(6)∵n1n ∞n u u lim++→=n n 1n 1n ∞n nn!31)(n 1)!n (3lim ⋅++⋅+++→=n∞n 1n n 3lim ⎪⎭⎫ ⎝⎛++→=e 3>1,∴原级数发散.(7)∵n n∞n u lim +→=n ∞n a b lim +→=ab,∴当a=b 时,无法判定; 当b>a>0时,原级数发散;当a>b>0时,原级数收敛.3、设∑n u 与∑n v 为正项级数,且存在正数N 0,对一切n>N 0, 有n1n u u +≤n 1n v v +. 证明: 若级数∑n v 收敛,则级数∑n u 收敛;若∑n u 发散,则∑n v 发散. 证:由题意知:当n>N 0时,1n 1n v u ++≤nn v u,从而对n>N 0有, 0<1n 1n v u ++≤n n v u ≤1-n 1-n v u ≤…≤1N 1N 00v u ++,∴u n ≤1N 1N 00v u ++v n ,又1N 1N 00v u ++是常数, 根据比较原则,得证.4、设正项级数∑n a 收敛,证明∑2n a 也收敛;试问反之是否成立? 证:由∑n a 收敛知n ∞n a lim +→=0,∴存在N ,使n ≥N 时,有0≤a n <1,从而n ≥N 时,有0≤a n 2<a n ,由比较原则知 ∑2n a 也收敛.但反之不成立,如∑2n1收敛,而∑n 1发散.5、设a n ≥0, n=1,2,…. 且{na n }有界,证明∑2n a 收敛. 证:∵a n ≥0, {na n }有界,可设0≤na n ≤M ,则0≤a n ≤nM,从而a n 2≤22nM ,又级数∑22n M 收敛,由比较原则知 ∑2na也收敛.6、设级数∑2n a 收敛,证明∑na n(a n >0)也收敛. 证:∵0<n a n <21(a n 2+2n 1),又级数∑2n a 和∑2n1都收敛,∴级数∑+)n1(a 22n 收敛,由比较原则知级数∑n a n 也收敛.7、设正项级数∑n u 收敛,证明级数∑+1n n u u 也收敛.证:∵0<1n n u u +<21(u n +u n+1),又由级数∑n u 收敛知∑+1n u 也收敛, ∴级数∑)u +(u 1+n n 收敛,由比较原则知∑+1n n u u 也收敛.8、利用级数收敛的必要条件,证明下列等式:(1)2n∞n )(n!n lim +→=0;(2)n!∞n a )!(2n lim +→=0 (a>1). 证:(1)记u n =2n)(n!n ,则n1n ∞n u u lim ++→=2n 21n ∞n )(n!n ]1)![(n 1)(n lim ++++→=n∞n n 1n 1n 1lim ⎪⎭⎫ ⎝⎛+⋅++→=0<1, ∴级数∑2n)(n!n 收敛,∴2n ∞n )(n!n lim +→=0.(2)记u n =n!a )!(2n ,则当a>1时,n1n ∞n u u lim ++→=n!1)!(n ∞n a)!(2n a )!2(2n lim ++→+=!n n ∞n a )21)(2n (2n lim ⋅+→++=0, ∴级数∑n!a )!(2n 收敛,∴n!∞n a )!(2n lim +→=0 (a>1).9、用积分判别法讨论下列级数的敛散性:(1)∑+1n 12;(2)∑+1n n 2;(3)∑∞=3n )nlnnln(lnn 1;(4)∑∞=3n qp (lnlnn)n(lnn)1. 解:(1)∵f(x)=1x 12+在[1,+ ∞)上非负减,且 ⎰+∞1f(x )dx=⎰++∞121x 1dx=2π,积分收敛;∴原级数收敛. (2)∵f(x)=1x x2+在[1,+ ∞)上非负减,且由1x x x lim 2∞x +⋅+→=1知 ⎰++∞121x xdx 发散;∴原级数发散. (3)∵f(x)=ln(lnx )lnx x 1⋅⋅在(3,+ ∞)上非负减,且⎰+∞3f(x )dx=⎰+⋅⋅∞3ln(lnx )lnx x 1dx=⎰+∞ln(ln3)u1du ,积分发散;∴原级数发散.(4)∵f(x)=qp (lnlnx )x (lnx )1在(3,+ ∞)上非负减,且 ⎰+∞3f(x )dx=⎰+∞3q p (lnlnx )x (lnx )1dx=⎰+∞ln(ln3)q 1)u -(p ue 1du , 当p=1时,⎰+∞3f(x )dx=⎰+∞ln(ln3)q u1du ;若q>1,收敛;若q ≤1,发散. 当p ≠1时,取t>1,有q 1)u -(p t∞u u e 1u lim ⋅+→=1)u -(p q -t ∞u e u lim +→=⎩⎨⎧<∞+>1p 1p 0,,, ∴当p>1或(p=1且q>1)时,由积分收敛知原级数收敛; 当p<1或(p=1且q ≤1)时,由积分发散知原级数发散.10、判别下列级数的敛散性:(1)∑1-2n n -n ;(2)∑+na 11 (a>1);(3)∑n 2nlnn ;(4)∑n n n n!2; (5)∑n n n n!3;(6)∑lnn 31;(7)∑+⋯++)x (1)x x)(1(1x n2n(x>0). 解:(1)∵1-2n n -n >1-2n 1(n ≥3),又级数∑1-2n 1发散,∴原级数发散. (2)∵n a 11+<n a 1,又当a>1时,等级级数∑na1收敛,∴原级数收敛. (3)n1n ∞n u u lim++→=n1n ∞n 2nlnn 21)1)ln(n (n lim ++→++=nlnn 21)1)ln(n (n lim ∞n +++→=21<1,∴原级数收敛. (4)∵n1n ∞n u u lim++→=n n 1n 1n ∞n n n!21)(n 1)!2(n lim +++→++=n∞n 1n n 2lim ⎪⎭⎫ ⎝⎛+⋅+→=e2<1,∴原级数收敛. (5)∵n1n ∞n u u lim++→=nn 1n 1n ∞n n n!31)(n 1)!3(n lim +++→++=n∞n 1n n 3lim ⎪⎭⎫ ⎝⎛+⋅+→=e3>1,∴原级数发散. (6)3lnn =n ln3,又ln3>1,∴∑ln3n 1收敛,∴原级数收敛. (7)n1n ∞n u u lim++→=1n ∞n x 1xlim++→+=⎪⎩⎪⎨⎧<=<><1x x 1x 1211x 10,,∴原级数收敛.11、设{a n }为递减正项数列,证明:级数∑∞=1n n a 与∑∞=0m 2m ma 2同敛散性.证:记两个级数的部分和分别为S n , T n ,由{a n }为递减正项数列知: S n <n2S ≤a 1+(a 2+a 3)+…+(n2a +…+121n a -+)≤a 1+2a 2+…+2n n2a =T n ,∴当级数∑∞=0m 2mma 2收敛时,级数∑∞=1n n a 也收敛.又n2S =a 1+a 2+(a 3+a 4)+…+(121n a +-+…+n2a )≥21a 1+a 2+2a 4+…+2n-1n2a =21T n , ∴当级数∑∞=1n n a 收敛时,级数∑∞=0m 2m ma 2也收敛. 得证!12、用拉贝判别法判别下列级数的敛散性: (1)12n 1(2n)421)-(2n 31+⋅⋯⋅⋯⋅∑;(2)∑+⋯++n)(x 2)1)(x (x n!(x>0). 解:(1)∵⎪⎪⎭⎫ ⎝⎛-++→n 1n ∞n u u 1n lim =6n 104n 5n 6n lim 22∞n ++++→=23>1,∴原级数收敛. (2)当x=1时,原级数为∑+1n 1发散,又⎪⎪⎭⎫ ⎝⎛-++→n 1n ∞n u u 1n lim =1x n xn lim ∞n +++→=x , ∴当x>1时,原级数收敛;当0<x ≤1时,原级数发散.13、用根式判别法证明级数∑n(-1)--n 2收敛,并说明比式判别法对此级数无效.证:∵n n∞n u lim +→=n (-1)-n -∞n n2lim +→=n(-1)-1-∞n n2lim +→=21<1,∴原级数收敛.又n 1n ∞n u u lim ++→=n 1n (-1)-n -(-1)-1--n ∞n 22lim ++→=n1n )1((-1)--1∞n 2lim -++→+=⎪⎩⎪⎨⎧><为偶数为奇数n 12n 181,,,可见, 比式判别法对此级数无效.14、求下列极限(其中p>1): (1)⎥⎦⎤⎢⎣⎡+⋯+++++→p p p ∞n (2n)12)(n 11)(n 1lim ;(2)⎪⎪⎭⎫ ⎝⎛+⋯+++++→2n 2n 1n ∞n p 1p 1p 1lim . 解:(1)∵当p>1时,级数∑p n1收敛,由柯西准则知,任给ε>0,存在N ,当n>N 时,有pp p (2n)12)(n 11)(n 1+⋯++++<ε, ∴⎥⎦⎤⎢⎣⎡+⋯+++++→p p p ∞n (2n)12)(n 11)(n 1lim =0. (2)∵当p>1时,等级级数∑n p1收敛,由柯西准则知, 任给ε>0,存在N ,当n>N 时,有2n 2n 1n p1p 1p 1+⋯++++<ε, ∴⎪⎪⎭⎫⎝⎛+⋯+++++→2n 2n 1n ∞n p 1p 1p1lim =0.15、设a n >0,证明数列{(1+a 1)(1+a 2)…(1+a n )}与级数∑n a 同敛散性. 解:数列{(1+a 1)(1+a 2)…(1+a n )}与级数∑+)a ln(1n 有相同的敛散性. 又当级数∑n a 或∑+)a ln(1n 收敛时,都有n ∞n a lim +→=0,∴nn ∞n a )a 1ln(lim++→=1. 由比较判别法知∑+)a ln(1n 与∑n a 有相同的敛散性. ∴数列{(1+a 1)(1+a 2)…(1+a n )}与级数∑n a 同敛散性.。
高等数学课件D12习题课
( 2 ) 如 果 p 1 而 n l in p m u n l( 0 l ) 则 级 数 n 1 u n收 敛 .
发散
3. 任意项级数审敛法
概念: uຫໍສະໝຸດ n 为收敛级数n 1
若 u n 收敛 , 称 u n 绝对收敛
n 1
n 1
若
un
n 1
发散 , 称 u n 条件收敛
n 1
Leibniz判别法: 若 unun 10, 且 nl im un0,
例例 34 判 别 级 数 n 1 l1 n n 1 2 ) 的 ( 收 敛 性 .
解解 因 为 n l i l1 m n 1 n 1 2 ) ( 1 >而 >>级 数 n 1 n 1 2 收 敛
n 2
所 以 级 数 n 1 l 1 n n 1 2 ) 也 收 敛 ( .
解解 因 为 li u n m 1 li 1 2 m 3 ( n 1 ) li 1 m 0 1 n u nn 1 2 3 nn n
所以 根据比值审敛法可知所给级数收敛.
定理 (比值审敛法 达朗贝尔判别法)
设 n 1 u n为 正 项 级 数 如 果 n l iu u n m n 1 则 当 1时 级 数
下页
定理 (极限审敛法)
设 u n 为 正 项 级 数 n 1
( 1 ) 如 果 n l in m n u l 0 ( 或 n l in m n u ) 则 级 数 n 1 u n发 散 ;
江苏大数学分析-第十二章 数项级数习题课
同的敛散性.
1n
1n 1
答:不能,例如
与
,前者收敛,后者发散,但却有
n
n n
1n 1
lim
n
n 1.
n
n
1
n
注意:正项级数与一般级数的性质有很大的差异,对正项级数成立的结论对一般级数不
一定成立.读者在学习时,一定要分清那些是关于正项级数的结论,那些是关于一般项级数
, cn n
, an 0 ,
n
an 收敛,
假如还有条件 bn 0 ,则 an 发散,这由比较原则得到.
8.设
un
为正项级数,且 un1 un
1 ,则级数
un 收敛吗?
1
答:不一定,例如
1 满足 un1 n 1 n 1 ,但
1
发散,因此一定要强调
第十二章 数项级数习题课
一 概念叙述
1. un 收敛于 S 部分和数列Sn 收敛于 S lim Sn S n n1
2. un 收敛的柯西准则 0, N 0, m, n N , 有 um1 um2 un .
3. un 发散的柯西准则 0 N , m0 ( N ) , p0 ,有
2.级数 un , vn , un vn 的敛散性有何联系?
答:1)若 un 与 vn 都收敛,则 un vn 收敛,且 un vn un vn ;
2)若 un 与 vn 中有一个收敛有一个发散,则 un vn 发散;
3)若 un 与 vn 都发散,则 un vn 可能收敛可能发散.
例如,
数学分析数项级数课后习题答案
A 一、不定积分部分1.设()f x 具有可微的反函数()1fx -。
设()F x 是()f x 的一个原函数。
试证明()()()111f x dx xf x F f x C ---⎡⎤=-+⎣⎦⎰。
证 在公式右端对x 求导,我们有()(){}()()()()()()()()1111111111.df x df x d xf x F f x C f x x f f x dx dx dx df x df x f x x x f x dx dx----------⎡⎤⎡⎤-+=+-⎣⎦⎣⎦=+-=2. 设()f x 定义在(),a b 上,a c b <<,且有()()()()()()()()1212;;lim ,lim x cx cF x f x a x c F x f x c x b F x A F x B -+→→''=<<=<<==,若()f x 在x c =处连续,试证明()f x 在(),a b 上存在原函数。
证 作函数()F x 如下:()()()12,,,,,.F x a x c F x A x c F x B A c x b <<⎧⎪==⎨⎪-+<<⎩则()F x 在x c =处连续,由()f x 在x c =处连续知,()()lim lim x cx cF x F x -+→→=,故根据导函数的特征,即知()()F c f c '=。
因而()F x 是()f x 在(),a b 上的原函数。
3. 试证明下列命题:(1)(函数方程)设()f x 是(),-∞+∞上的可微函数,且满足()()()2,f x y f x f y xy x y +=++∈(),-∞+∞,则()()20f x x f x '=+;(2)设()f x 在[],a b 上连续,在(),a b 内可微,且()()0f a f b ==。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由 bn an cn 得 0 an bn cn bn ,而 cn bn 收敛,由比较原则得 an bn ,
因此 an 收敛.(注意比较原则适用于正项级数,不能直接由 cn 收敛得 an 收敛)
1
1
2)不一定,例如 bn
(1 1) (1 1) (1 1) 0 0 0 0
收敛,而级数
1111
是发散的.但级数加括号后发散,则原级数一定发散.
5.级数 un 收敛,与 lim un 0 有什么关系? n
答: un 收敛
lim un
第十二章 数项级数习题课
一 概念叙述
1. un 收敛于 S 部分和数列Sn 收敛于 S lim Sn S n n1
2. un 收敛的柯西准则 0, N 0, m, n N , 有 um1 um2 un .
3. un 发散的柯西准则 0 N , m0 ( N ) , p0 ,有
n
un 1 n 1
n
n
un1 q 1 . un
9.如何判断正项级数的敛散性?
答:1)先判断 un 的通项 un 的极限是否为 0,若 lim un 0 ,则 un 发散,若 lim un 0 ,
n
n
则需继续判断; 2)根据通项特点选取合适的方法判断正项级数的敛散性: 若通项很容易找等价无穷小量就用比较原则的极限形式; 若通项含有阶乘连乘 n 次幂等因子时用比式判别法的极限形式; 若通项含有 n 次幂因子时用根式判别法的极限形式; 若通项非负单调用积分判别法. 若上述方法失效用比较原则(例如含 sin n 等容易放缩成已知收敛的级数)或级数收敛
un 收敛的柯西准则 0, N 0, n N , p 0, 有 un1 un2 un p .
1
例如,级数 ,对每个固定的 p ,都有
n
1 1
1
1
1
1
lim
lim lim lim
0,
n n 1 n 2
, cn n
, an 0 ,
n
an 收敛,
假如还有条件 bn 0 ,则 an 发散,这由比较原则得到.
8.设
un
为正项级数,且 un1 un
1 ,则级数
un 收敛吗?
1
答:不一定,例如
1 满足 un1 n 1 n源自 1 ,但1发散,因此一定要强调
(条件收敛的级数重排后所得到的级数,不一定收敛;即使收敛,也不一定收敛于原 来的和数;条件收敛的级数适当重排后,可得到发散级数,或收敛于事先指定的任何数.)
当然,如果仅仅交换一个级数的有限项的次序,则级数的敛散性不变. (去掉、增加或改变级数的有限个项并不改变级数的敛散性;级数的敛散性与级数的 有限个项无关,但当收敛时其和可能是要改变的.) 如果一个级数是正项级数或是绝对收敛的级数,则可以任意改变一个级数的项的次序, 其收敛性不变,且和也不变. (绝对收敛的级数任意重排后所得到的级数也绝对收敛亦有相同的和数.) 类似地,一个收敛级数可以任意加括号,加括号后的级数与原来的级数有相同的收敛性 与相同的和; (在收敛级数的项中任意加括号,既不改变级数的收敛性,也不改变它的和.) 但一个发散级数,经适当添加无限个括号后,可能变成一个收敛级数.有一种特殊情形, 如果添加括号后,每个括号中的项都保持同一正,负号,则所得级数与原级数同收敛,且和 (如有的话)也不变.
2.级数 un , vn , un vn 的敛散性有何联系?
答:1)若 un 与 vn 都收敛,则 un vn 收敛,且 un vn un vn ;
2)若 un 与 vn 中有一个收敛有一个发散,则 un vn 发散;
um0 1 um0 2 um0 p0 0
二 疑难解析与注意事项
1.有人说,既然一个级数是无限多个数“相加”的结果,而数的加法满足交换律和结 合律,所以在一个级数中,可以任意交换项的次序,也可以任意加括号.这种说法对吗?
答:不对.一个收敛级数,适当改变项的次序以后,可能得到一个发散级数;即使得到 的仍收敛级数,其和也可能与原级数的不同.这就是无限项相加与有限项相加的质的不同.
n
0
,但
lim
n
un
0
un 发散.
6.若级数
un
对每个固定的 p 满足条件 lim
n
un1 un p
0 ,则级数
un 一定收
敛吗? 答:不一定,这里说法与柯西准则有本质的不同,这里是对固定的 p ,可找到与任给正
数 有关的 N (这里一般与 p 还有关),使得当 n N ,有 un1 un2 un p ,而
n p n n 1 n n 2
n n p
1
但级数 发散.
n
7.1)若 bn 和 cn 都收敛,且 bn an cn ,则 an 收敛吗?
2)若 bn 和 cn 都发散,且 bn an cn ,则 an 发散吗?
答:1) 若 bn 和 cn 都收敛,且 bn an cn ,则 an 收敛.
3)若 un 与 vn 都发散,则 un vn 可能收敛可能发散.
例如,
1 n
,
1 n
都发散,但
1 n
1 n
0
收敛,
1 n
,
1 n
都发散,但
1 n
1 n
2 n
发散.
3.设级数 un , vn 都是发散级数,则 unvn 发散吗?
答:不一定, unvn 可能收敛,可能发散.
11
1 1 1
例如, ,
nn
都发散,但
n
n
n2
收敛.
n, n 都发散, n n n2 也发散.
4.若加括号后的级数收敛,加括号前的级数收敛吗? 答:从级数加括号后的收敛,不能推断它在未加括号前也收敛,例如