华中科技大学2014年601数学分析考研真题
中科大历年考研数学真题
直线 l1, l2 平行,且 π 与 l1 的距离是 91, 求 π 的方程。
3. 设 A : U → V 为数域 F 上的线性空间 U 到 V 上线性映射. 证明:
dim KerA + dim Im A = dim U
2 −1 1 4. 设 A = 2 2 −1 , 求方阵 P , 使得 P −1AP 为 A 的 Jordan 标准形。
··· ···
(α1, αn)
(α2, αn) ...
,
其中 (αi, αj) 是 V 的内积.
(αn, α1) (αn, α2) · · · (αn, αn)
求证:G 正定的充分必要条件是 α1, · · · , αn 线性无关。
5. 设 A 是无限维线性空间 V 的线性变换,B 是 A 在 ImA 上的限制变换. 求证:
.
a2x1 + x2 + x3 = 1
5.
使线性方程组
x1 + ax2 + x3 = a x1 + x2 + x3 =a2
有解的实数 a 的取值范围是
.
6.
已知实方阵 A 的伴随矩阵 A∗
2.
以曲线
y = x2 z=2
为准线,原点为顶点的锥面方程为
.
3. 以 xOy 平面上的权限 f (x, y) = 0 绕 x 轴旋转所得的旋转面的方程是
.如
果曲线方程是 x2 − y2 − 1 = 0, 由此得到的曲面类型是
.
4. 设 α1, α2α3α4 是线性空间 V 中 4 个线性无关的向量,
为 α1 = (1, 0, −1), α2 = (?, ?, ?), 求矩阵 A 以及使 A 对角化的矩阵 P 7. A 是复方阵,线性变换 T → AX + XA, 证明:如果 A 可对角化,那么 T 也可以对
2014年考研数学二试题及答案解析
2014年全国硕士研究生入学统一考试数学(二)试题及答案解析一、选择题:1~8小题,每小题4分,共32分。
下列每题给出的四个选项中,只有一个选项是符合题目要求的,请将所选项前的字母填在答题纸指定位置上。
(1)当x →0+时,若1ln (12),(1-cos )x x αα+均是比x 高阶的无穷小,则α的取值范围是( ) (A )),(∞+2 (B )(1,2) (C )),(121 (D ))(210, 【答案】B【解析】当x →0+时,∵()()ln12~2x x αα+,111211(1cos )~()()22x x ααα-=·2x α ,∴由2111 2.ααα>>⇔<<且(2)下列曲线有渐近线的是( )(A ).sin x x y += (B ).sin 2x x y +=(C ).1sin x x y += (D )21sin .y x x=+【答案】C【解析】1sin()11lim lim lim(1sin )1x x x x f x x a x x x x→∞→∞→∞+===+= 11lim[()]lim[sin ]lim sin 0x x x b f x ax x x x x→∞→∞→∞=-=+-==∴y=x 是y=x +1sin x的斜渐近线注:渐近线有3种:水平、垂直、斜渐近线。
本题中(A)(B)(D)都没有渐近线,(C)只有一条斜渐近线。
(3)设函数()f x 具有2阶导数,()()()()011g x f x f x =-+,则在区间[0,1]上( )(A)当0f x '≥()时,()()f x g x ≥.(B)当0f x '≥()时,()()f x g x ≤ (C)当0f ''≥时,()()f x g x ≥.(D)当0f ''≥时,()()f x g x ≤【答案】D【解析】方法1:(利用函数的凹凸性)当() 0f x "≥时,()f x 是凹函数,而()g x 是连接()()0,0f 与()1,1f ()的直线段,如右图 故()()f xg x ≤方法2:(利用函数的单调性)()()()h x g x f x =-令,则(0)(1)0h h ==,由洛尔定理知,(0,1)()0,h ξξ'∃∈=,使若()0f x ''≥,则()0,()h x h x '''≤单调递减, 当(0,)x ξ∈时,()()0h x h ξ''≥=,()h x 单调递增,()(0)0,g(x)()h x h f x ≥=≥即; 当(,1)x ξ∈时,()()0h x h ξ''≤=,()h x 单调递减,()(1)0,g(x)()h x h f x ≥=≥即;注:当0f x '≥()时,只能说明()f x 是单调增加的,但增加的方式可能是以凸的形式,也可能是以凹的形式,若是前者,则()()f x g x ≥,此时(A)成立,如()f x x =;若是后者,则()()f x g x ≤,此时(B)成立,如2()f x x =.(4)曲线⎪⎩⎪⎨⎧++=+=,t t y ,t x 14722上对应1t =的点处的曲率半径是( )(A ).5010 (B ).10010 (C ).1010 (D ).105 【答案】C【解析】令()27x t t ϕ==+ ()241y t t t ψ==++则2,()2t t t ϕϕ'''=()=; ()24t t ψ'=+ ()2t ψ"=当t =1时,(1)2,(1)2(1)6,(1)2ϕϕψψ''''''====则332222|2226|811010(26)40K ⨯-⨯===+,曲率半径11010.K ρ== (5)设函数()arctan f x x =,若)()(ξf x x f '=,则22limx xξ→=( )(A )1. (B ).32 (C ).21(D ).31【答案】D【解析】由()()arctan , f x x f x ==()xf ξ'得21arctan 1x x ξ=⋅+ ()3322222|||()()()()|1[()()]y t t t t K y t t ϕψϕψϕψ''''''''-=='''++2arctan arctan x x x ξ-=,222232000011arctan arctan 11lim lim lim lim arctan 33x x x x x x x xx x x x xx ξ→→→→---+∴==== (6)设函数()u x y ,在有界闭区域D 上连续,在D 的内部具有2阶连续偏导数,且满足0022222=∂∂+∂∂≠∂∂∂yux u y x u 及,则( ) (A )()u x y ,的最大值和最小值都在D 的边界上取得. (B )()u x y ,的最大值和最小值都在D 的内部取得.(C )()u x y ,的最大值在D 的内部取得,最小值在D 的边界上取得. (D )()u x y ,的最小值在D 的内部取得,最大值在D 的边界上取得. 【答案】A【解析】A=22u x ∂∂,B=2u x y∂∂∂,C=22u y ∂∂,22200 0B A C AC B A B ≠+=-=--<,,,∴D 内部无极值.(7)行列式=dc dc b a ba 00000000( )(A )2()ad bc - (B )2()ad bc --(C )2222a dbc - (D)2222b c a d -【答案】B【解析】41440000004(1)00(1)00000000a ba b a ba bc bd a c d c d c dc d++-+-按第行展开 32212(1)(1)()()()()()a b a b c b d a c dc dad bc bc ad ad bc ad bc bc ad ad bc ++=-⋅-+⋅⋅-=-⋅--=--=--注:此题按其它行或列展开计算都可以。
2014年中国科学院大学601高等数学(甲)考研真题及详解(圣才出品)
圣才电子书 十万种考研考证电子书、题库视频学习平台
7 / 11
圣才电子书 十万种考研考证电子书、题库视频学习平台
8 / 11
圣才电子书 十万种考研考证电子书、题库视频学习平台
9 / 11
圣才电子书 十万种考研考证电子书、题库视频学习平台
3 / 11
圣才电子书 十万种考研考证电子书、题库视频学习平台
4 / 11
圣才电子书 十万种考研考证电子书、题库视频学习平台
5 / 11
圣才电子书 十万种考研考证电子书、题库视频学习平台
6 / 11
圣才电子书 十万种考研考证电子书、题库视频学习平台
2014 年中国科学院大学 601 高等数学(甲)考研真题及详解[频讲解]
1 / 11
圣才电子书 十万种考研考证电子书、题库视频学习平台
2 / 11
圣才电子书 十万种考研考证电子书、题库视频学习平台
10 / 11
圣才电子书 十万种考研考证电子书、题库视频学习平台
11 / 11
华中科技大学历年考研真题
华中科技大学数学系数学分析1997,2000——2007(2004有答案)数值分析1999,2001——2002高等代数1997——2002,2004——2007概率统计2001——2002综合课程(应用数学、计算数学、概率统计专业)2003C语言程序设计(数学系计算数学专业)2002常微分方程2001——2002数理方程与泛函分析2001——2002专业英语翻译(概率论与数理统计、应用数学、计算数学专业)2006物理系数学(含高等数学线性代数)(物理系各专业)2007数学(物理类)2001,2003——2006数学(工科)(单考)2005数学(工科各专业)2003数学(理、工科类)(单)2002数学(单考)(工科各专业)2004数学(理工科)2006数学(理工类)(单考)2007高等数学(物理系)2002量子力学2001,2002,2003,2004,2005,2006(第1种),2006(第2种),2007统计物理2001——2002电动力学2001力学与电磁学2001——2004化学系物理化学2000——2007(2000——2002有答案)化学综合2007化工基础2007生物化工基础2007有机化学(化学各专业、结构工程、环境工程、生物化工专业)2000(2000有答案)有机化学(化学各专业、生物化工、材料加工工程、结构工程等专业)2001(2001有答案)有机化学(化学系各专业、环境科学专业)2002(2002有答案)有机化学(化学各专业)2003(2003有答案)有机化学(化学各专业、材料加工、环境化学专业)2004(2004有答案)有机化学(化学各专业、生物化学与分子生物学、生物信息技术、生物制药工程专业)2005有机化学(B卷)(应用化学等专业)2002有机化学(含高分子化学)(化学各专业及其他相关专业)2006有机化学(环境科学专业)2005无机化学2001——2002,2004——2005无机及分析化学2006无机与分析化学2003分析化学(分析化学、高分子化学与物理专业)2005分析化学(分析化学、高分子化学专业)2004分析化学(化学类各专业)2002分析化学(环境科学专业)2002——2005分析化学(环境科学、能源与环境工程专业)2006分析化学(有机化学、高分子化学与物理、环境工程专业)2001高分子化学2002——2003,2005——2006高分子化学(二)2004——2005高分子化学(一)2004高分子化学及物理2001——2002机械科学与工程学院机械设计1997——2002(1997——2001有答案)机械设计基础2002——2007机械原理1999——2002机械原理及机械零件2001液压传动2000——2002液压流体力学2000——2001画法几何与机械制图2001机械工程控制基础2006信号与线性系统1996——2002,2006——2007(1997有答案)信号与系统2002——2006控制理论(化工过程机械专业)2001控制理论(经典控制理论、现代控制理论)(控制理论与控制工程、检测技术及自动化装置、系统工程、系统信息化技术、系统分析与集成、建筑技术科学、模式识别与智能系统、机械制造及其自动化、机械电子工程、机械设计及理论、精微制造工程、数字化设计及制造、设计艺术学专业)2005控制理论(经典控制理论、现代控制理论)(控制系所有专业、模式识别与智能系统、建筑技术科学专业)2006控制理论(控制理论与控制工程、检测技术及自动化装置、系统工程、机制、机电、车辆、材料加工、轮机工程、模式识别、导航、制导专业)2002(2002有答案)控制理论(控制系、图象所各专业及生物物理学、机械制造及自动化、机械电子工程等专业)2001(2001有答案)控制理论(自控系各专业、机电学院各专业、模式识别与智能控制、内燃机专业)1996(1996有答案)控制理论(自控系各专业、机械学院、交通学院有关专业、制冷及低温工程、模式识别与智能控制专业)1998(1998有答案)控制理论(自控系各专业、机械学院及其他有关专业)1997(1997有答案)控制理论(自控系各专业、机械学院有关专业、制冷及低温工程、生物医学工程、模式识别与智能系统、电力电子与电力传动、轮机工程、动力机械及工程专业)1999(1999有答案)控制理论(自控系各专业、机械制造、机械电子、材料加工、动力机械、模式识别、制冷、轮机工程、车辆工程等专业)2000(2000有答案)控制理论(自控系各专业、模式识别、机电控制等专业)1995(1995有答案)控制理论基础(船舶与海洋工程专业)2007自动控制理论(电机与电器、电力系统及其自动化、电力电子与电力传动专业)2001自动控制理论(电机与电器、电力系统及其自动化、高电压与绝缘技术、电力电子与电力传动、电工理论与新技术、脉冲功率与等离子体、动力工程及其自动化专业)2005自动控制理论(电机与电器、电力系统及其自动化专业)2000自动控制理论(电力系统及其自动化、水力发电工程专业)1998自动控制理论(电气工程所有专业、动力机械及工程专业)2004自动控制理论(电气工程所有专业、制冷及低温工程专业)2002自动控制理论(电气学院所有专业)2006自动控制理论(电气学院所有专业、能源学院部分专业)2003自动控制理论(水利水电工程、电机与电器、电力系统及其自动化专业)1999 自动控制理论(水利水电工程、系统分析与集成专业)2003自动控制理论(水利水电工程专业)2001,2004——2007自动控制原理(水文学及水资源、水利水电工程、系统分析与集成专业)2002 自动控制原理(系统分析与集成、控制科学与工程、机械工程、仪器科学与技术、建筑技术与科学专业)2007电子技术基础(测试计量技术及仪器专业)2001电子技术基础(电磁场与微波技术、电路与系统、电力电子与电力传动、微电子学与固体电子学、半导体芯片系统与工艺、软件工程、模式识别与智能系统、信息安全、光学工程、光电信息工程、物理电子学、机械工程、仪器科学与技术专业)2007电子技术基础(电机与电器、电力电子与电力传动、微电子学与固体电子学、动力机械及工程、轮机工程、车辆工程专业)2000电子技术基础(电机与电器、电力电子与电力传动专业)1999电子技术基础(电机与电器、电力系统及其自动化、电力电子与电力传动、电工理论与新技术、轮机工程等专业)2001电子技术基础(电机与电器、电力系统及其自动化、电力电子与电力传动、电工理论与新技术、轮机工程等专业)2001电子技术基础(电气学院各专业、模式识别、精密仪器、测试计量、光学工程、物理电子学、微电子学专业)2002电子技术基础(光学工程、物理电子学、固体力学、流体力学、微电子学与固体电子学、模式识别与智能系统专业)1999电子技术基础(光学工程、物理电子学、光电信息工程、机械学院各专业)2005 电子技术基础(光学工程、物理电子学、机械制造及其自动化、机械电子工程、机械设计及理论、精微制造工程专业)2004电子技术基础(光学仪器、物理电子学与光电子学、固体力学、流体力学、电子材料与元器件、模式识别与智能控制、内燃机、汽车设计制造专业)1998电子技术基础(光学仪器、物理电子学与光电子学、固体力学、汽车设计制造、电子材料与元器件、模式识别与智能控制、内燃机专业)1997电子技术基础(化工过程机械专业)2005——2006电子技术基础(精密仪器及机械专业)2003电子技术基础(轮机工程、车辆工程、精密仪器及机械、测试计量技术及仪器专业)2005电子技术基础(生物医学工程、生物物理学、生物材料与组织工程专业)2005——2006电子技术基础(生物医学工程、生物物理学专业)2003——2004电子技术基础(生物医学工程专业)2002电子技术基础(微电子学与固体电子学、半导体芯片系统设计与工艺、电力电子与电力传动、模式识别与智能系统专业)2005电子技术基础(微电子学与固体电子学、半导体芯片系统设计与工艺、电力电子与电力传动、模式识别与智能系统专业)2006电子技术基础(微电子学与固体电子学、电力电子与电力传动、导航、制导与控制专业)2003电子技术基础(微电子学与固体电子学、电力电子与电力传动、导航、制导与控制专业)2004电子技术基础(物理电子学、光信息科学与技术、光学工程专业)2006电子技术基础(物理电子学、光学工程、模式识别与智能系统、流体力学专业)2000电子技术基础(物理电子学、光学工程、模式识别与智能系统专业)2001电子技术基础(物理电子学与光电子学专业)1995数据结构1999——2001,2006——2007数据结构及程序设计技术2004——2006数据结构与算法分析2006——2007数据库系统原理1996——2002,2004计算机组成原理(计算机科学与技术、模式识别与智能系统、机械工程、仪器科学与技术、建筑技术科学专业)1992——2002,2006——2007(另有模拟试题一份)计算机组成原理(生物医学工程、生物信息技术专业)2007C语言程序设计(计算机软件与理论专业)2001——2002操作系统1995——2002程序设计基础1995——2002程序设计语言及编译1999——2002互换性与技术测量2000——2007工业设计史2004——2005工业设计史论2006——2007工业设计综合考试2004——2007微机原理(8086)及应用(控制科学系各专业、模式识别与智能系统、力学各专业、材料加工工程专业)2000(2000有答案)微机原理(8086)及应用(控制科学与工程系各专业、模式识别与智能系统专业)2001(2001有答案)微机原理(8086)及应用(自动控制工程系各专业、模式识别与智能系统、流体力学、工程力学专业)1999(1999有答案)微机原理(电信系各专业、电子材料与元器件专业)1996(1996有答案)微机原理(电信系各专业、电子材料与元器件专业)1998微机原理(电信系各专业、微电子学与固体电子学专业)1999微机原理(二)(光学工程、物理电子学专业)2002微机原理(光学工程、物理电子学专业)1999——2002微机原理(光学仪器、物理电子学与光电子学专业)1997——1998(1997有答案)微机原理(软件工程专业)2007微机原理(三)(电路与系统专业)2002微机原理(通信与电子系统、信号与信息处理、电路与系统、电磁场与微波技术、电子材料与元器件专业)1997微机原理(一)(电机与电气、电力系统及其自动化、高电压与绝缘技术、电力电子与电力传动、电工理论与新技术专业)2002微机原理及微机控制技术(自动控制理论及应用、工业自动化、模式识别与智能控制专业)1996——1998(1997——1998有答案)微机原理及应用(材料加工工程、数字化材料成形专业)2005——2006微机原理及应用(材料加工工程专业)2003——2004微机原理及应用(电机与电器、电力系统及其自动化、电力电子与电力传动专业)2001微机原理及应用(二)(电力电子与电力传动、微电子学与固体电子学专业)2002 微机原理及应用(机械制造及其自动化、机械电子工程专业)2001微机原理及应用(控制科学与工程系各专业、模式识别与智能系统专业)2001 微机原理及应用(软件工程专业)2006微机原理及应用(三)(控制理论与控制工程、系统工程、固体力学、模式识别、检测技术及自动化装置、工程力学、导航、制导专业)2002(2002有答案)微机原理及应用(水利水电工程、轮机工程、微电子学与固体电子学、供热、供燃气通风及空调工程专业)2001微机原理三(电路与系统专业)2002微机原理与接口技术(生物医学工程专业)2004微机原理与应用(机械制造及其自动化、机械电子工程、车辆工程、精密仪器及机械、测试计算技术及仪器、材料加工工程、轮机工程专业)2002微机原理与应用(机械制造及其自动化、机械电子工程等专业)2001结构力学(固体力学、工程力学专业)2001——2002结构力学(结构工程、道路与桥梁工程专业)2004结构力学(结构工程、桥梁隧道工程、防灾减灾及防护工程专业)2005——2006 结构力学(结构工程、桥梁隧道与工程专业)2002——2003结构力学(结构工程、岩土工程专业)1997——2000(1999有答案)结构力学(结构工程专业)1996,2001结构力学(市政工程、道路与铁道工程专业)2001电动力学2001综合考试(含C语言程序设计、数据结构)(计算机应用技术专业)2001综合考试(含计算机系统结构、计算机网络、数据结构)(计算机系统结构专业)2002综合考试(计算机应用技术专业)(数据结构、C语言程序设计)1999——2001 通信原理(电路与系统、通信与信息系统、信号与信息处理专业)2001通信原理(通信与信息系统、信号与信息处理专业)2002通信原理(物理电子学、光学工程专业)2001汽车理论2004——2006汽车理论和设计2001——2002汽轮机原理2001——2002发动机原理2001综合考试(1)(脉冲与数字电路、微机、高频电路)(电信系各专业、模式识别与智能系统专业)2000综合考试(含程序设计技术、数据结构、计算机组成原理、离散数学)(计算机学院各专业、机械学院各专业、模式识别与智能系统专业)2003综合考试(含数字电路、微机原理)(通信与信息系统、信号与信息处理、模式识别与智能系统专业)2002综合考试二(含通信原理、高频电子线路)(电信系各专业、模式识别与智能系统专业)2000综合考试一(传感器原理、数字电子技术)(控制、机械各专业、建筑技术科学、模式识别专业)2005综合考试(含数据结构、计算机组成原理、离散数学)2004——2005光电检测技术2001——2003,2005综合考试(含信号与线性系统、数字信号处理)2005综合考试(一)(含信号与线性系统、数字信号处理)2003——2004(2004有答案)专业英语翻译(计算机体系结构、软件与理论、应用技术、信息安全专业)2006 专业英语翻译(模式识别与智能系统专业)2006英语专业翻译(机械工程、工业工程、仪器科学与技术、管理科学与工程专业)2006材料科学与工程学院量子力学2001,2002,2003,2004,2005,2006(第1种),2006(第2种),2007物理化学2000——2007(2000——2002有答案)计算机图形学2002化学综合2007化工基础2007生物化工基础2007塑性成形原理2002有机化学(化学各专业、结构工程、环境工程、生物化工专业)2000(2000有答案)有机化学(化学各专业、生物化工、材料加工工程、结构工程等专业)2001(2001有答案)有机化学(化学系各专业、环境科学专业)2002(2002有答案)有机化学(化学各专业)2003(2003有答案)有机化学(化学各专业、材料加工、环境化学专业)2004(2004有答案)有机化学(化学各专业、生物化学与分子生物学、生物信息技术、生物制药工程专业)2005有机化学(B卷)(应用化学等专业)2002有机化学(含高分子化学)(化学各专业及其他相关专业)2006有机化学(环境科学专业)2005无机化学2001——2002,2004——2005无机及分析化学2006无机与分析化学2003分析化学(分析化学、高分子化学与物理专业)2005分析化学(分析化学、高分子化学专业)2004分析化学(化学类各专业)2002分析化学(环境科学专业)2002——2005分析化学(环境科学、能源与环境工程专业)2006分析化学(有机化学、高分子化学与物理、环境工程专业)2001高分子化学2002——2003,2005——2006高分子化学(二)2004——2005高分子化学(一)2004高分子化学及物理2001——2002材料成形原理2003——2007材料科学基础2002——2003,2005——2007材料学基础2001微机原理及接口技术(材料加工工程、数字化材料成形、环境科学与工程专业)2007微机及接口技术(生物医学工程、生物物理学专业)2001微机接口与技术(生物医学工程专业)2003微机原理及接口技术(生物医学工程专业)2002微机原理(8086)及应用(控制科学系各专业、模式识别与智能系统、力学各专业、材料加工工程专业)2000(2000有答案)微机原理(8086)及应用(控制科学与工程系各专业、模式识别与智能系统专业)2001(2001有答案)微机原理(8086)及应用(自动控制工程系各专业、模式识别与智能系统、流体力学、工程力学专业)1999(1999有答案)微机原理(电信系各专业、电子材料与元器件专业)1996(1996有答案)微机原理(电信系各专业、电子材料与元器件专业)1998微机原理(电信系各专业、微电子学与固体电子学专业)1999微机原理(二)(光学工程、物理电子学专业)2002微机原理(光学工程、物理电子学专业)1999——2002微机原理(光学仪器、物理电子学与光电子学专业)1997——1998(1997有答案)微机原理(软件工程专业)2007微机原理(三)(电路与系统专业)2002微机原理(通信与电子系统、信号与信息处理、电路与系统、电磁场与微波技术、电子材料与元器件专业)1997微机原理(一)(电机与电气、电力系统及其自动化、高电压与绝缘技术、电力电子与电力传动、电工理论与新技术专业)2002微机原理及微机控制技术(自动控制理论及应用、工业自动化、模式识别与智能控制专业)1996——1998(1997——1998有答案)微机原理及应用(材料加工工程、数字化材料成形专业)2005——2006微机原理及应用(材料加工工程专业)2003——2004微机原理及应用(电机与电器、电力系统及其自动化、电力电子与电力传动专业)2001微机原理及应用(二)(电力电子与电力传动、微电子学与固体电子学专业)2002 微机原理及应用(机械制造及其自动化、机械电子工程专业)2001微机原理及应用(控制科学与工程系各专业、模式识别与智能系统专业)2001 微机原理及应用(软件工程专业)2006微机原理及应用(三)(控制理论与控制工程、系统工程、固体力学、模式识别、检测技术及自动化装置、工程力学、导航、制导专业)2002(2002有答案)微机原理及应用(水利水电工程、轮机工程、微电子学与固体电子学、供热、供燃气通风及空调工程专业)2001微机原理三(电路与系统专业)2002微机原理与接口技术(生物医学工程专业)2004微机原理与应用(机械制造及其自动化、机械电子工程、车辆工程、精密仪器及机械、测试计算技术及仪器、材料加工工程、轮机工程专业)2002微机原理与应用(机械制造及其自动化、机械电子工程等专业)2001结构力学(固体力学、工程力学专业)2001——2002结构力学(结构工程、道路与桥梁工程专业)2004结构力学(结构工程、桥梁隧道工程、防灾减灾及防护工程专业)2005——2006 结构力学(结构工程、桥梁隧道与工程专业)2002——2003结构力学(结构工程、岩土工程专业)1997——2000(1999有答案)结构力学(结构工程专业)1996,2001结构力学(市政工程、道路与铁道工程专业)2001电动力学2001综合考试(材料加工工程专业)2001——2002陶瓷材料2005——2006陶瓷材料学2001——2002,2004金属材料2004金属材料学2001——2002金属塑性成形原理1997,1999,2001金属学及热处理2001——2002铸件形成理论2002铸件形成理论基础1998,2001铸造金属学及热处理1998,2001专业英语(材料学、纳米材料及技术专业)2006能源与动力工程学院传热学1999,2000,2001(第1种),2001(第2种),2003——2007(1999,2000,2001(第1种)有答案)锅炉原理2001——2002,2005流体机械原理2002内燃机原理2001——2002离心压缩机原理2001工程流体力学2002,2007结构力学(固体力学、工程力学专业)2001——2002结构力学(结构工程、道路与桥梁工程专业)2004结构力学(结构工程、桥梁隧道工程、防灾减灾及防护工程专业)2005——2006 结构力学(结构工程、桥梁隧道与工程专业)2002——2003结构力学(结构工程、岩土工程专业)1997——2000(1999有答案)结构力学(结构工程专业)1996,2001结构力学(市政工程、道路与铁道工程专业)2001不可压缩流体力学2001——2006低温原理与设备2000——2002(2000有答案)电工电子技术2001,2003电站锅炉原理2004化工原理2001,2005制冷原理与设备2001——2002热工自动化2002工程热力学2001(第1种),2001(第2种),2002——2006专业英语翻译(动力机械及工程专业)2006电气与电子工程学院电路理论(电力系统及其自动化、高电压与绝缘技术、电机与电器、电工理论与新技术、电力电子与电力传动、环境工程专业)2001——2003电路理论(电气工程、环境科学与工程专业)2007电路理论(电气工程学科所有专业、环境工程、机械制造及自动化、精密制造、数字化设计专业)2005电路理论(电气工程学科所有专业、环境工程等专业)2006电路理论(电气工程学科所有专业、机械制造及自动化、环境工程、机械电子工程、机械设计及其理论、精微制造工业等专业)2004电路理论(光学工程、物理电子学、控制理论与控制工程、检测技术与自动化装置、系统工程、模式识别与智能系统专业)2002电路理论(光学工程、物理电子学专业)1999——2001电路理论(物理电子学与光电子学、光学仪器专业)1998电磁场2002,2007电磁场与电磁波2001——2006电磁学与热学2005电机学2001——2002电力电子技术2000——2001电力电子学2001——2002电力系统分析1999——2002发电厂及电力系统1998高电压技术2001——2002高压电器2001电子器件2002力学与电磁学2001——2004英语(电力系统及其自动化、电力电子与电力传动、电工理论与新技术、电气信息检测技术专业)2006交通科学与工程学院交通工程2001——2002,2004交通工程学2003,2005——2007综合考试(轮机工程专业)2004高级语言程序设计(C语言)2001——2002城市道路规划与设计2002,2006——2007城市道路设计2001——2005船舶力学基础2007船舶设计原理2001——2002船舶原理2001——2002控制理论(化工过程机械专业)2001控制理论(经典控制理论、现代控制理论)(控制理论与控制工程、检测技术及自动化装置、系统工程、系统信息化技术、系统分析与集成、建筑技术科学、模式识别与智能系统、机械制造及其自动化、机械电子工程、机械设计及理论、精微制造工程、数字化设计及制造、设计艺术学专业)2005控制理论(经典控制理论、现代控制理论)(控制系所有专业、模式识别与智能系统、建筑技术科学专业)2006控制理论(控制理论与控制工程、检测技术及自动化装置、系统工程、机制、机电、车辆、材料加工、轮机工程、模式识别、导航、制导专业)2002(2002有答案)控制理论(控制系、图象所各专业及生物物理学、机械制造及自动化、机械电子工程等专业)2001(2001有答案)控制理论(自控系各专业、机电学院各专业、模式识别与智能控制、内燃机专业)1996(1996有答案)控制理论(自控系各专业、机械学院、交通学院有关专业、制冷及低温工程、模式识别与智能控制专业)1998(1998有答案)控制理论(自控系各专业、机械学院及其他有关专业)1997(1997有答案)控制理论(自控系各专业、机械学院有关专业、制冷及低温工程、生物医学工程、模式识别与智能系统、电力电子与电力传动、轮机工程、动力机械及工程专业)1999(1999有答案)控制理论(自控系各专业、机械制造、机械电子、材料加工、动力机械、模式识别、制冷、轮机工程、车辆工程等专业)2000(2000有答案)控制理论(自控系各专业、模式识别、机电控制等专业)1995(1995有答案)控制理论基础(船舶与海洋工程专业)2007自动控制理论(电机与电器、电力系统及其自动化、电力电子与电力传动专业)2001自动控制理论(电机与电器、电力系统及其自动化、高电压与绝缘技术、电力电子与电力传动、电工理论与新技术、脉冲功率与等离子体、动力工程及其自动化专业)2005自动控制理论(电机与电器、电力系统及其自动化专业)2000自动控制理论(电力系统及其自动化、水力发电工程专业)1998自动控制理论(电气工程所有专业、动力机械及工程专业)2004自动控制理论(电气工程所有专业、制冷及低温工程专业)2002自动控制理论(电气学院所有专业)2006自动控制理论(电气学院所有专业、能源学院部分专业)2003自动控制理论(水利水电工程、电机与电器、电力系统及其自动化专业)1999 自动控制理论(水利水电工程、系统分析与集成专业)2003自动控制理论(水利水电工程专业)2001,2004——2007自动控制原理(水文学及水资源、水利水电工程、系统分析与集成专业)2002 自动控制原理(系统分析与集成、控制科学与工程、机械工程、仪器科学与技术、建筑技术与科学专业)2007结构力学(固体力学、工程力学专业)2001——2002结构力学(结构工程、道路与桥梁工程专业)2004结构力学(结构工程、桥梁隧道工程、防灾减灾及防护工程专业)2005——2006 结构力学(结构工程、桥梁隧道与工程专业)2002——2003结构力学(结构工程、岩土工程专业)1997——2000(1999有答案)结构力学(结构工程专业)1996,2001结构力学(市政工程、道路与铁道工程专业)2001专业英语翻译(船舶与海洋结构物设计制造、轮机工程、交通工程专业)2006力学系材料力学(船舶与海洋结构物设计制造专业)2003——2004材料力学(船舶与海洋结构物设计制造、化工过程机械专业)2001——2002材料力学(船舶与海洋结构物设计制造、水下工程专业)2005——2006材料力学(固体力学、工程力学、材料加工工程专业)2001——2002材料力学(力学系所有专业)2002,2005——2006材料力学(岩土工程、道路与铁道工程、化工过程机械专业)2005——2006材料力学(岩土工程、道路与铁道工程专业)2003——2004材料力学(岩土工程专业)2001——2002材料力学一(固体力学、工程力学、动力机械及工程专业)2004理论力学1997——2006(1997——2001有答案)(另有《理论力学》考研复习内部资料,含理论力学课程考研基本要求、考研试题内容及题型的分析,10元。
2014年考研数学试题详解及评分参考
有
ò ò ò EY1 =
+¥ -¥
y
×
1 2
[
f1( y) +
f2 ( y)]dy
=
1 2
+¥ -¥
y
×
f1( y)dy
+
1 2
+¥ -¥
y
×
f2 ( y)dy
=
1 2
(m1
+
m2 ),
EY2
=
1 2
(EX1
+
EX 2
)
=
1 2
(m1
+
m2
)
,可见
EY1
=
EY2
;
ò ò ò 又 E(Y12 ) =
+¥ -¥
x + sin x
1 x
= 1,且 lim[(x+ sin x®=
0
,故
y
=
x
是其斜渐近线.
综上所述,应选 (C) .
(2) 设函数 f (x) 具有 2 阶导数, g(x) = f (0)(1- x) + f (1)x ,则在区间[0,1] 上
(A) 当 f ¢(x) ³ 0 时, f (x) ³ g(x)
y2
×
1 2
[
f1( y) +
f2 ( y)]dy=
1 2
+¥ -¥
y2
f1 (
y)dy
+
1 2
+¥ -¥
y2
f2
(
y)dy
=
1 2
(s12
+
m12 )
+
2014考研数学(一)真题
2014年全国硕士研究生招生考试数学(一)真题一、选择题(1—8小题,每小题4分,共32分。
下列每题给出的四个选项中,只有一个选项符合题目要求)1.下列曲线有渐近线的是( )。
(A)(B)sin y x x =+2sin y x x =+ (C)1siny x x =+(D)21siny x x =+2.设函数()f x 具有2阶导数,()(0)(1)(1)g x f x f x =-+,则在区间[0上( )。
,1](A)当时,()0f x '≥()()f x g x ≥ (B)当()0f x '≥时,()()f x g x ≤ (C)当时,()0f x ''≥()()f x g x ≥(D)当()0f x ''≥时,()()f x g x ≤3.设是连续函数,则110(,)ydy f x y dx -=⎰⎰( )。
(A)110010(,)(,)x dx f x y dy dx f x y dy--+⎰⎰⎰(B)11001(,)(,)xdx f x y dy dx f x y dy--+⎰⎰⎰⎰(C)112cos sin 02(cos ,sin )(cos ,sin )d f r r dr d f r r ++⎰⎰⎰⎰ππθθπθθθθθdrθ(D)112cos sin 02(cos ,sin )(cos ,sin )d f r r rdr d f r r ++⎰⎰⎰⎰ππθθπθθθθθrdrθ4.若{}ππ2211-π-π,(cos sin )min(cos sin )a b Rx a x b x dx x a x b x dx ∈--=--⎰⎰,则11cos sin a x b x +=( )。
(A)2sin x(B)2cos x(C)2sin x π(D)2cos x π5.行列式0000000aba bc d c d =( )。
(A)(B)(C)(D)2(ad bc -))2(ad bc --2222a dbc -2222b c a d -6.设123,,ααα均为三维向量,则对任意常数,向量组l k ,132,k 3l αααα++线性无关是向量组123,,ααα线性无关的( )。
2014考研数学一真题及答案解析(完整版)
ρ2
1
= − ∫ dθ ∫ dρ ∫ [ 3ρ 2 − 6 ρ 2 cos θ − 6 ρ 2 sin θ + 7 ρ ] dz
0 0
2π
1
ρ2
= −2π ∫ ( 3ρ 3 + 7 ρ )( 1 − ρ 2 )dρ = −4π
0
1
5
(19)【答案】 (1)证 { a n } 单调 由 0 < an <
y 3 + xy 2 + x 2 y + 6 = 0 − 8 x 3 + x ⋅ ( 4 x 2 ) + x 2 ⋅ ( −2 x ) + 6 = 0 − 8x3 + 4 x3 − 2 x3 + 6 = 0 − 6 x3 + 6 = 0 x 3 = 1 ⇒ x = 1, y = −2
6( y′ )2 y + 3 y 2 y′′ + 2 yy′ + 2 y′y + x ⋅ 2( y′ )2 + x ⋅ 2 yy′′ + 2 y + 2 xy′ + 2 xy′ + x 2 y′′ = 0 12 y′′( 1 ) − 4 y′′( 1 ) − 4 + y′′( 1 ) = 0 9 y′′( 1 ) = 4 y′′( 1 ) = 9 >0 4
1
2
2014 年全国硕士研究生入学统一考试
数学一试题答案
一、选择题:1~8 小题,每小题 4 分,共 32 分,下列每小题给出的四个选项中,只有一项 符合题目要求的,请将所选项前的字母填在答题纸 指定位置上. ... (1)B (2)D (3)D (4)B (5)B (6)A (7) (B) (8) (D)
2014年全国硕士研究生入学统一考试数学一试题及答案解析
2014年全国硕士研究生入学统一考试数学一试题一、选择题:1~8小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上. (1)下列曲线中有渐近线的是( )(A )sin y x x =+ (B )2sin y x x =+ (C )1sin y x x =+ (D )21sin y x x=+ 【答案】C【考点】函数图形的渐近线【解析】对于选项A , lim(sin )x x x →∞+ 不存在,因此没有水平渐近线,同理可知,选项A 没有铅直渐近线, 而sinxlimlim x x y x x x→∞→∞+=不存在,因此选项A 中的函数没有斜渐近线; 对于选项B 和D ,我们同理可知,对应的函数没有渐近线;对于C 选项,1siny x x=+.由于1sin lim lim1x x x yx x x→∞→∞+==,又()1lim 1lim sin0x x y x x →∞→∞-⋅==.所以1sin y x x=+存在斜渐近线y x =.故选C. (2)设函数()f x 具有2阶导数,()(0)(1)(1)g x f x f x =-+,则在区间[0,1]内( ) (A )当()0f x '≥时,()()f x g x ≥ (B )当()0f x '≥时,()()f x g x ≤ (C )当()0f x ''≥时,()()f x g x ≥ (D )当()0f x ''≥时,()()f x g x ≤ 【答案】D【考点】函数图形的凹凸性 【解析】令()()()()(0)(1)(1)F x f x g x f x f x f x =-=---有(0)(1)0F F ==,()()(0)(1)F x f x f f ''=+-,()()F x f x ''''=当()0f x ''≥时,()F x 在[0,1]上是凹的,所以()0F x ≤,从而()()f x g x ≤.选D. (3)设(,)f x y 是连续函数,则21101(,)yy dy f x y dx ---=⎰⎰( )(A )21110010(,)(,)x x dx f x y dy dx f x y dy ---+⎰⎰⎰⎰(B )211011(,)(,)xx dx f x y dy dx f x y dy ----+⎰⎰⎰⎰(C )112cos sin 02(cos ,sin )(cos ,sin )d f r r dr d f r r dr ππθθπθθθθθθ++⎰⎰⎰⎰(D )112cos sin 02(cos ,sin )(cos ,sin )d f r r rdr d f r r rdr ππθθπθθθθθθ++⎰⎰⎰⎰【答案】D【考点】交换累次积分的次序与坐标系的变换 【解析】画出积分区域.21101(,)yy dy f x y dx ---=⎰⎰21111(,)+(,)x xdx f x y dy dx f x y dy ---⎰⎰⎰⎰或112cos sin 02(cos ,sin )(cos ,sin )d f r r rdr d f r r rdr ππθθπθθθθθθ++⎰⎰⎰⎰.故选D.(4)若{}2211,(cos sin )min (cos sin )a b Rx a x b x dx x a x b x dx ππππ--∈--=--⎰⎰,则11cos sin a x b x +=( )(A )2sin x (B )2cos x (C )2sin x π (D )2cos x π 【答案】A【考点】定积分的基本性质 【解析】222(cos sin )[2(cos sin )(cos sin )]x a x b x dx xx a x b x a x b x dx ππππ----=-+++⎰⎰22222[2cos 2sin cos 2sin cos sin ]x ax x bx x a x ab x x b x dx ππ-=--+++⎰22222[2sin cos sin ]x bx x a x b x dx ππ-=-++⎰2222202[2sin cos sin ]x bx x a x b x dx π=-++⎰333222222222(2)(4)[(2)4]32233b a b a b b a b ππππππππ=-++=+-+=+--+故当0,2a b ==时,积分最小.故选A.(5)行列式0000000a b abc d cd=( )(A )2()ad bc - (B )2()ad bc -- (C )2222a dbc - (D )2222b c a d - 【答案】B【考点】行列式展开定理 【解析】2141000000(1)0(1)000000000a b a b a b a ba c d cbcd d c d c d++=⨯-+⨯- 3323(1)(1)a b a b a d c b c d c d ++=-⨯⨯--⨯⨯-a b a bad bcc d c d=-+ 2()()a bbc ad ad bc c d=-=--.故选B. (6)设123,,ααα均为3维向量,则对任意常数,k l ,向量组1323,k l αααα++线性无关是向量组123,,ααα线性无关的( )(A )必要非充分条件 (B )充分非必要条件 (C )充分必要条件 (D )既非充分也非必要条件 【答案】A【考点】向量组的线性无关的充要条件【解析】132312310(,)(,,)01k l k l ααααααα⎛⎫ ⎪++= ⎪ ⎪⎝⎭记132312310(,),(,,),01A k l B C k l ααααααα⎛⎫⎪=++== ⎪ ⎪⎝⎭若123,,ααα线性无关,则1323()()()2,r A r BC r C k l αααα===⇒++线性无关. 由1323,k l αααα++线性无关不一定能推出123,,ααα线性无关.如:123100=0=1=0000ααα⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,1323,k l αααα++线性无关,但此时123,,ααα线性相关.故选A.(7)设随机事件A 与B 相互独立,且3.0)(,5.0)(=-=B A P B P ,则=-)(A B P ( ) (A )0.1 (B)0.2 (C)0.3 (D)0.4 【答案】B【考点】概率的基本公式 【解析】()()()()()()P A B P A P AB P A P A P B -=-=- ()0.5()0.5()0.3()0.6P A P A P A P A =-==⇒=.()()()()()()0.50.50.60.2P B A P B P AB P B P A P B -=-=-=-⨯=.故选B.(8)设连续型随机变量21,X X 相互独立,且方差均存在,21,X X 的概率密度分别为)(),(21x f x f ,随机变量1Y 的概率密度为)]()([21)(211y f y f y f Y +=,随机变量)(21212X X Y +=,则(A )2121,DY DY EY EY >> (B )2121,DY DY EY EY == (C )2121,DY DY EY EY <= (D )2121,DY DY EY EY >= 【答案】D【考点】统计量的数学期望 【解析】2121()2Y X X =+,2121211[()]()22EY E X X EX EX =+=+, 2121211[()]()24DY D X X DX DX =+=+.1121()[()()]2Y f y f y f y =+,1121221[()()]()22y EY f y f y dy EX EX EY +∞-∞=+=+=⎰.2222112121[()()]()22y EY f y f y dy EX EX +∞-∞=+=+⎰, 22222111121211()()()24DY EY EY EX EX EX EX =-=+-+ 2222121212122()()24EX EX EX EX EX EX ⎡⎤=+---⋅⎣⎦ 22121212124DX DX EX EX EX EX ⎡⎤=+++-⋅⎣⎦ 221212121()()24DX DX EX EX EX EX ⎡⎤≥+++-⋅⎣⎦ 2121221()4DX DX EX EX DY ⎡⎤=++-≥⎣⎦ 1212,EY EY DY DY ∴=>二、填空题:9~14小题,每小题4分,共24分.请将答案写在答题纸...指定位置上. (9)曲面)sin 1()sin 1(22x y y x z -+-=在点)1,0,1(处的切平面方程为【答案】210x y z ---= 【考点】曲面的切平面【解析】22(,,)(1sin )(1sin )F x y z x y y x z =-+--22(1sin )cos x F x y x y '=--⋅,2cos 2(1sin )y F y x y x '=-⋅+-,1z F '=-∴(1,0,1)2x F '=,(1,0,1)1y F '=-,(1,0,1)1z F '=-曲面在点)1,0,1(处的切平面方程为2(1)(1)(0)(1)(1)0x y z -+--+--=,即210x y z ---=(10)设)(x f 是周期为4的可导奇函数,且]2,0[),1(2)(∈-='x x x f ,则=)7(f【答案】1【考点】函数的周期性 【解析】由于]2,0[),1(2)(∈-='x x x f ,所以2()(1),[0,2]f x x C x =-+∈又)(x f 是奇函数,(0)0f =,解得1C =-2()(1)1,[0,2]f x x x ∴=--∈)(x f 是以4为周期的奇函数,故2(7)(3)(1)(1)[(11)1]1f f f f ==-=-=---=(11)微分方程0)ln (ln =-+'y x y y x 满足条件3)1(e y =的解为=y【答案】21x y xe+=【考点】变量可分离的微分方程 【解析】(ln ln )0ln 0y xxy y x y y x y''+-=⇒+= ① 令yu x=,则y ux =,y u u x ''=+ 代入①,得ln 0u u x u u '+-=即(ln 1)u u u x-'=分离变量,得(ln 1)(ln 1)ln 1du d u dxu u u x-==--两边积分得1ln ln 1ln u x C -=+,即ln 1u Cx -=即ln 1yCx x-= 代入初值条件3)1(e y =,可得2C =,即ln 12yx x-= 整理可得21x y xe +=.(12)设L 是柱面122=+y x 与平面0=+z y 的交线,从z 轴正向往z 轴负向看去为逆时针方向,则曲线积分⎰=+Lydz zdx【答案】π【考点】斯托克斯公式 【解析】由斯托克斯公式,得0xyLD dydz dzdx dxdyzdx ydz dydz dzdx dydz dzdx x y z z yπ∑∑∂∂∂+==+=+=∂∂∂⎰⎰⎰⎰⎰⎰⎰其中{}22(,)1xy D x y x y =+≤(13)设二次型3231222132142),,(x x x ax x x x x x f ++-=的负惯性指数为1,则a 的取值范围是【答案】]2,2[-【考点】惯性指数、矩阵的特征值、配方法化二次型为标准形 【详解】 【解法一】二次型对应的系数矩阵为:O a a ≠⎪⎪⎪⎭⎫⎝⎛-0221001,记特征值为321,,λλλ则0011)(321=+-==++A tr λλλ,即特征值必有正有负,共3种情况; 故二次型的负惯性指数为⇔1特征值1负2正或1负1正1零;0402210012≤+-=-⇔a a a,即]2,2[-∈a【解法二】2222222212312132311332233(,,)2424f x x x x x ax x x x x ax x a x x x x a x =-++=++-+- 2222222213233123()(2)(4)(4)x ax x x a x y y a y =+--+-=-+-若负惯性指数为1,则240[2,2]a a -≥⇒∈-(14)设总体X 的概率密度为⎪⎩⎪⎨⎧<<=其他,02,32),(2θθθθx xx f ,其中θ是未知参数,n X X X ,,,21 为来自总体X 的简单随机样本,若∑=ni i X c 12是2θ的无偏估计,则=c【答案】n52【考点】统计量的数字特征 【解析】根据题意,有322222112()()()3n ni i i i x E c X c E X ncE X nc dx θθθ=====∑∑⎰4222221523425nc nc x c nθθθθθ=⋅==∴= 三、解答题:15~23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分10分)求极限)11ln(])1([lim2112xx dtt e t xtx +--⎰+∞→【考点】函数求极限、变限积分函数求导、等价无穷小、洛必达法则【详解】11221122((1))((1))limlim11ln(1)xxttx x t e t dt t e t dtx x xx→+∞→+∞----=+⋅⎰⎰1122(1)1lim lim (1)1xx x x x e x x e x→+∞→+∞--==-- 2001111lim lim 22t t t t e t e t x t t ++→→---===令 (16)(本题满分10分)设函数)(x f y =由方程322+60y xy x y ++=确定,求)(x f 的极值【考点】极值的必要条件【解析】对方程两边直接求导:2223220y y x y xy y xyy '''++++= ① 令0y '=,得2y x =-,或0y =(舍去)将2y x =-代入原方程得 3660x -+= 解得1x =,此时2y =-. 对①式两端再求导,得222(32)2(3)()4()20y xy x y y x y y x y y ''''+++++++=将1x =,2y =-,0y '=代入上式,得 409y ''=>,即4(1)09f ''=> ()y f x ∴=在1x =处取极小值,极小值为(1)2f =-.(17)(本题满分10分)设函数)(u f 具有2阶连续导数,)cos (y e f z x=满足22222(4cos )x xz z z e y e x y∂∂+=+∂∂,若0)0(,0)0(='=f f ,求)(u f 的表达式. 【考点】多元函数求偏导、二阶常系数非齐次线性微分方程 【解析】由)cos (y e f z x=,知(cos )cos x x z f e y e y x ∂'=⋅∂,(cos )(sin )x x zf e y e y y∂'=⋅-∂ 22(cos )cos cos (cos )cos x x x x xz f e y e y e y f e y e y x∂'''=⋅⋅+⋅∂, 22(cos )(sin )(sin )(cos )(cos )x x x x xz f e y e y e y f e y e y y∂'''=⋅-⋅-+⋅-∂ 由22222(4cos )x x z zz e y e x y∂∂+=+∂∂,代入得 22(cos )[4(cos )cos ]x x x x x f e y e f e y e y e ''⋅=+即(cos )4(cos )cos x x x f e y f e y e y ''-= 令cos x u e y =,则()4()f u f u u ''-= 特征方程212402,2r r r -=⇒==- 齐次方程通解为2212uu y C eC e -=+设特解*y au b =+,代入方程得1,04a b =-=,特解*14y u =- 原方程的通解为221214uu y C eC e u -=+-由(0)0,(0)0f f '==,得 1211,1616C C ==- 22111()16164u u y f u e e u -∴==--(18)(本题满分10分)设∑为曲面)1(22≤+=z y x z 的上侧,计算曲面积分dxdy z dzdx y dydz x I )1()1()1(33-+-+-=⎰⎰∑【考点】高斯公式【解析】因∑不封闭,添加辅助面2211:1x y z ⎧+≤∑⎨=⎩,方向向上.133(x 1)(y 1)(z 1)dydz dzdx dxdy ∑+∑-+-+-⎰⎰22(3(1)3(1)1)x y dxdydz Ω=-+-+⎰⎰⎰22(3633631)x x y y dxdydz Ω=++++++⎰⎰⎰ 22(337)x y dxdydz Ω=++⎰⎰⎰1220(z)(337)D dz x y dxdy =++⎰⎰⎰1220(37)4zdz d r rdr πθπ=+=⎰⎰⎰(其中(66)0x y dxdydz Ω+=⎰⎰⎰,因为积分区域关于,xoz yoz对称,积分函数(,)66f x y x y =+分别是,y x 的奇函数.)在曲面1∑上,133(1)(1)(1)0x dydz y dzdx z dxdy ∑-+-+-=⎰⎰故33(1)(1)(1)4x dydz y dzdx z dxdy π∑-+-+-=-⎰⎰ .(19)(本题满分10分) 设数列}{},{n n b a 满足n n n n n b a a b a cos cos ,20,20=-<<<<ππ,且级数1n n b ∞=∑收敛.(I )证明:;0lim =∞→n n a(II )证明:级数∑∞=1n nnb a 收敛. 【考点】级数敛散性的判别【解析】证明:(I )cos cos cos cos n n n n n n a a b a a b -=⇒=-0,022n n a b ππ<<<<,cos cos 00n n n n a b a b ∴->⇒<<级数1n n b ∞=∑收敛,∴级数1n n a ∞=∑收敛,lim 0n n a →∞=.(II )解法1:2sinsin cos cos 22n n n nn n nn nna b a ba ab b b b +---== 02n a π<<,02n b π<<,sin,sin 2222n n n n n n n n a b a b a b a b++--∴≤≤ 222222n n n nn n n nn n a b a b a b a b b b +--⋅-∴≤=222n n n b b b ≤= 02n a π<<,02n b π<<,且级数1nn b∞=∑收敛,∴级数∑∞=1n nnb a 收敛. 解法2:cos cos 1cos n n n nn n na ab b b b b --=≤21cos 1cos 1lim lim 2n n n n n n n b b b b b →∞→∞--== ∵同阶无穷小有相同的敛散性,∴由1n n b ∞=∑⇒ 11cos n n n b b ∞=-∑收敛⇒∑∞=1n n n b a收敛(20)(本题满分11分)设E A ,302111104321⎪⎪⎪⎭⎫⎝⎛----=为3阶单位矩阵.(I )求方程组0=Ax 的一个基础解系; (II )求满足E AB =的所有矩阵B .【考点】齐次线性方程组的基础解系、非齐次线性方程组的通解 【详解】对矩阵()A E 施以初等行变换1234100()01110101203001A E --⎛⎫ ⎪=- ⎪ ⎪-⎝⎭1205412301021310013141--⎛⎫ ⎪→--- ⎪ ⎪--⎝⎭ 100126101021310013141-⎛⎫ ⎪→--- ⎪ ⎪---⎝⎭(I ) 方程组0=Ax 的同解方程组为⎪⎪⎩⎪⎪⎨⎧===-=4443424132x x x x xx x x ,即基础解系为⎪⎪⎪⎪⎪⎭⎫⎝⎛-1321(II )⎪⎪⎪⎭⎫ ⎝⎛=001Ax 的同解方程组为:⎪⎪⎩⎪⎪⎨⎧+=-=-=+-=01312244434241x x x x x x x x ,即通解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-011213211k⎪⎪⎪⎭⎫ ⎝⎛=010Ax 的同解方程组为:⎪⎪⎩⎪⎪⎨⎧+=-=-=+-=04332644434241x x x x x x x x ,即通解为⎪⎪⎪⎪⎪⎭⎫⎝⎛--+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-043613212k ⎪⎪⎪⎭⎫ ⎝⎛=100Ax 的同解方程组为:⎪⎪⎩⎪⎪⎨⎧+=+=+=--=01312144434241x x x x x x x x ,即通解为⎪⎪⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-011113213k ,123123123123261212321313431k k k k k k B k k k k k k -+-+--⎛⎫⎪--+ ⎪∴= ⎪--+ ⎪⎝⎭,321,,k k k 为任意常数 (21)(本题满分11分)证明:n 阶矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛111111111与⎪⎪⎪⎪⎪⎭⎫⎝⎛n 00200100 相似【考点】矩阵的特征值、相似对角化 【详解】设111111111A ⎛⎫ ⎪ ⎪= ⎪⎪⎝⎭,0010020B n ⎛⎫ ⎪ ⎪=⎪ ⎪⎝⎭因为()1r A =,()1r B =所以A 的特征值为:n A tr n n ======-)(,0121λλλλB 的特征值为:n B tr n n =='='=='='-)(,0121λλλλ 关于A 的0特征值,因为1)()()0(==-=-A r A r A E r ,故有1-n 个线性无关的特征向量,即A 必可相似对角化于⎪⎪⎪⎪⎪⎭⎫⎝⎛n 00 同理,关于B 的0特征值,因为1)()()0(==-=-B r B r B E r ,故有1-n 个线性无关的特征向量,即B 必可相似对角化于⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n 00 由相似矩阵的传递性可知,A 与B 相似. (22)(本题满分11分)设随机变量X 的概率分布为21}2{}1{====X P X P ,在给定i X =的条件下,随机变量Y 服从均匀分布)2,1)(,0(=i i U ,(I )求Y 的分布函数)(y F Y ; (II )求EY【考点】一维随机变量函数的分布、随机变量的数字特征(期望) 【详解】(I )()()y F y P Y y =≤(1)(1)(2)(2)P X P Y y X P X P Y y X ==≤=+=≤=11(1)(2)22P Y y X P Y y X =≤=+≤= ① 当0y < 时,(y)0Y F =② 当01y ≤<时,1113(y)2224Y F y y y =+⨯= ③ 当12y ≤<时,1111(y)22224Y yF y =+⨯=+④ 当2y ≥时,11(y)122Y F =+=综上:003y 014(y)1122412Y y y F y y y <⎧⎪⎪≤<⎪=⎨⎪+≤<⎪⎪≥⎩(II )随机变量Y 的概率密度为'30141(y)(y)1240Y Y y f F y ⎧<<⎪⎪⎪==≤<⎨⎪⎪⎪⎩其他12-013131133()4442424Y EY yf y dy ydy ydy +∞∞==+=⨯+⨯=⎰⎰⎰ (23)(本题满分11分)设总体X 的分布函数21,0(;)00x e x F x x θθ-⎧⎪-≥=⎨⎪<⎩,,其中θ是未知参数且大于零,12,,,n X X X 为来自总体X 的简单随机样本.(Ⅰ)求EX 与2EX ;(Ⅱ)求θ的最大似然估计量ˆnθ;(Ⅲ)是否存在实数a ,使得对任何0ε>,都有{}ˆlim 0nn P a θε→∞-≥=? 【考点】统计量的数字特征、最大似然估计、估计量的评选标准(无偏性) 【解析】(Ⅰ)X 的概率密度为22,0(;)(;)0,0xx e x f x F x x θθθθ-⎧⎪≥'==⎨⎪<⎩222()(;)()x x xE X xf x dx x edx xd eθθθθ--+∞+∞+∞-∞==⋅=-⎰⎰⎰22200012222x x x xeedx edx θθθθπθπ+∞---+∞+∞=-+==⋅=⎰⎰ 22222202()(;)()x x xE X x f x dx x edx x d e θθθθ--+∞+∞+∞-∞==⋅=-⎰⎰⎰2222200222x x x x xx ex edx x edx edx θθθθθθθ+∞----+∞+∞+∞=-+⋅=⋅=⋅=⎰⎰⎰(Ⅱ)设12,,,n x x x 为样本的观测值,似然函数为2112(),0(1,2,,),()(;)0,0ix n n ni i i i i x e x i n L f x x θθθθ-==⎧≥=⎪==⎨⎪<⎩∏∏当0(1,2,,)i x i n ≥= 时,22111122()()()ni i i x nn x nn i i i i L x ex eθθθθθ=--==∑==∏∏两边取对数,得2211112121ln ()lnln lnln nnnni ii ii i i i L n x x n x x θθθθθ=====+-=+-∑∑∑∏两边求导,得221ln ()1nii d L n xd θθθθ==-+∑令ln ()0d L d θθ=,得211n i i x n θ==∑所以,θ的最大似然估计量为211ˆn i i X n θ==∑.(Ⅲ)存在a θ=.因为{}2n X 是独立同分布的随机变量序列,且21EX θ=<+∞,所以根据辛钦大数定律,当n →∞时,211ˆnn i i X n θ==∑依概率收敛于21EX ,即θ. 所以对于任何0ε>都有{}ˆlim 0nn Pθθε→∞-≥=.。
2014考研数学一真题及答案详解
2014考研数学一真题及答案详解2014年全国硕士研究生入学考试数学一真题及答案详解Part A1. 设f(x) = sinx + cosx (0 ≤ x ≤ π),则f '(x) = _____解析:f(x) = sinx + cosx,则f '(x) = cosx - sinx 当x ∈ [0, π]时,cosx ≥ 0 且sinx ≥ 0,所以f '(x) = cosx - sinx ≥ 0答案:cosx - sinx2. 已知函数f(x) = sinx + cosx,定义在[0, π]上,则f(x)在[0, π]上的最大值为____,最小值为____。
解析:f(x)在[0, π]上的最大值和最小值分别为f(π/4)和f(π/4 + π)。
f(π/4) = sin(π/4) + cos(π/4) = √2f(π/4 + π) = sin(π/4 + π) + cos(π/4 + π) = -√2答案:最大值为√2,最小值为-√23. 设向量a = 2i - 3j + k,b = i + j + 2k,则向量a与向量b的夹角为____°。
解析:向量a与向量b的夹角cosθ为cosθ = (a·b)/(|a||b|) = (2 - 3 + 2)/(√4 + 9 + 1)√6 = 1/√6故θ = arccos(1/√6)答案:θ ≈ 32.5°4. 已知向量a,b,其大小分别为3和4,且它们的夹角为60°。
则向量a + b的大小为____。
解析:根据余弦定理,a + b的大小为|a + b|² = |a|² + |b|² + 2|a||b|cosθ = 9 + 16 + 2×3×4×1/2 = 25故|a + b| = √25 = 5答案:55. 设函数y = f(x)在点x = a处可导,且f '(a) > 0,则以下哪个极限一定存在?()(A) lim[x→a]f(x)/x(B) lim[x→a]f(x)(C) lim[x→a](f(x))^2(D) lim[x→a]f(x) - f(a)解析:由可导性可知,右导数和左导数存在且相等,则有lim[x→a]f(x)/x = lim[x→a](f(x) - f(a))/(x -a)×(x - a)/x = f '(a)×1 = f '(a)lim[x→a]f(x) = f(a)lim[x→a](f(x))^2 = (lim[x→a]f(x))² = (f(a))²lim[x→a]f(x) - f(a) = lim[x→a](f(x) - f(a)) = f '(a)×(a - a) = 0故正确选项为:(A) lim[x→a]f(x)/x答案:(A)6. 设函数y = x³ + px + q,则当p = 0 时,y = x³+ q有两个零点,一个为0,另一个为____。
2014考研数学二真题及答案(完整版)
2014考研数学二真题及答案(完整版)
1月4日-1月6日是考研最紧张的三天,也是最要保持一颗平常心的三天,考研频道是您最坚实的后盾,小编快速为您整理了2014年数学考研真题及答案解析,帮助考友们更准确的估算自己的成绩,还有更多2014考研真题及答案资讯尽在考研真题栏目及考研答案栏目,期待您的关注(CTRL+D收藏即可)。
2014年考研数学一真题及答案解析
(A)必要非充分条件 (B)充分非必要条件
(C)充分必要条件
(D)既非充分也非必要条件
(7)设随机事件 A 与 B 相互独立,且 P(B) 0.5, P(A B) 0.3 ,则 P(B A) ( )
(A)0.1 (B)0.2 (C)0.3 (D)0.4
(8)设连续型随机变量 X1, X 2 相互独立,且方差均存在, X1, X 2 的概率密度分别为
5、B 解析:
0a b0 a00b 0cd 0 c00d
ab 0
ab0
a (1)21 c d 0 c (1)41 0 0 b
00d
cd0
a d (1)33 a b c b (1)23 a b
cd
cd
ad a b bc a b cd cd
(bc ad ) a b cd
(ad bc)2
2
2a
xx 13
4xx 23
x 2 2a x x a2 x 2 x 2 4 x x a2 x 2
1
13
3
2
23
3
(x 1
a
x )2 3
(x 2
2
x )2 3
(4
a 2)x 2 3
y2 1
y2 2
(4
a 2 )y 2 3
若负惯性指数为1,则4 a2 0,a [2,2]
2
14、
5n
(x2 a2 cos2 x b2 sin2 x 2ax cos x 2bx sin x 2ab sin x cos x)dx
2 (x2 a2 cos2 x b2 sin2 x 2bx sin x)dx 0
3 2(
a2
b2
2b)
32 2
2014年考研试题数学分析
x b) .
d F ( x) f ( x). dx
1 3 x sin 的收敛域. 3n 3 2 x n 1
n
四、 (15 分)求级数
五、 (15 分) 计算 I
ABC
(12 xy e y )dx (cos( y) xe y )dy, 其中 AOB 为由点 A(1,1) 沿
( xy 2 f ( x) y)dx ( x 2 y f ( x))dy 0
为全微分方程. 1.求出 f ( x) 2.求出全微分方程的通解.
第 2 页
共 2 页
0
第 1 页
共 2 页
七 、( 10 分 ) 设 f ( x) 是 定 义 在 区 间 [a, b] 上 的 函 数 , 满 足 : 对 每 一 点
x0 [a, b], 0, 0, 对 x [a, b] ( x0 , x0 ), 成立 f ( x) f ( x0 ) . 证
曲线 y 1 1 x 到点 O(0,0) 再沿直线 y 0 到点 B(1,0) 的路径.
2
六、 (10 分)设函数 f ( x) 定义在区间 I 上,定义
( ) sup | f ( x) f ( x) |,
| x x| x, xI
( ) 0. 证明: f ( x) 在区间 I 上一致连续 lim
明: f ( x) 在 [a, b] 上取得最大值. 八、 ( 10 分)设 f ( x, y) (| xy |), 其中 (0) 0, 在 u 0 附近满足 (u ) u 2 . 证明
f ( x, y) 在 (0, 0) 处可微.