(834)积的乘方专项练习50题(有答案无过程)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
积的乘方专项练习50题(有答案)
知识点: 1.积的乘方法则用字母表示就是:当n 为正整数时,(ab )n =_______.
2.在括号内填写计算所用法则的名称.
(-x 3yz 2)2
=(-1)2(x 3)2y 2(z 2)2( )
=x 6y 2z 4 ( )
3.计算:
(1)(ab 2)3=________; (2)(3cd )2=________;
、
(3)(-2b 2)3=________; (4)(-2b )4=________;
(5)-(3a 2b )2=_______; (6)(-32
a 2
b )3=_______; (7)[(a -b )2] 3=______; (8)[-2(a+b )] 2=________.
专项练习:
(1)(-5ab)2 ( 2)-(3x 2y)2
(3)332)3
1
1(c ab (4)2
(5)2 ( 6)11×411
…
(7)(-a 2)2·(-2a 3)2 ( 8)(-a 3b 6)2-(-a 2b 4)3
(9)-(-x m y)3·(xy n+1)2
(10)2(a n b n)2+(a2b2)n
(11)(-2x2y)3+8(x2)2·(-x2)·(-y3)
;
(12)(-2×103)3
(13)(x2)n·x m-n
(14)a2·(-a)2·(-2a2)3(15)(-2a4)3+a6·a6
(16)(2xy2)2-(-3xy2)2
)
(17)620.25(32)⨯-
(18)4224223322()()()()()()x x x x x x x x +-⋅--⋅-⋅-;
(19)(-4
1a n 3- b 1-m )2(4a n 3-b )2
(20)(-2a 2b )3+8(a 2)2·(-a )2·(-b )3
(21) 2112168(4)8m m m m --⨯⨯+-⨯ (m 为正整数)
(22)(-3a 2)3·a 3+(-4a )2·a 7-(5a 3)3
,
(23)=+-2
22)(3ab b a
(24)3
223)()(a a -+- (25) [(-32)8×(2
3)8]7
(26)81999·()2000
(27)2232)2
1()2(ab b a -
—
(28) 33323)5()3(a a a -⋅-
(29)232])2([x -
(30) 99)8()8
1(-⨯ (31)20102009)532()135(
⨯
(32)3322)103()102(⨯⨯⨯.
(33)25234)4()3(a a a ---⋅
@
(34)2
32324)()(b a b a -⋅-
(35)(231)20·(7
3)21. 1010)128910()1218191101(⨯⨯⋯⨯⨯⨯•⨯⨯⋯⨯⨯⨯.
(37)已知32=a ,43=a ,求a 6.
(38)203)(a a a y x =⋅,当2=x 时,求y 的值.
(39)化简求值:(-3a 2b )3-8(a 2)2·(-b )2·(-a 2b ),其中a=1,b=-1.
&
(40)先完成以下填空:
(1)26×56=( )6=10( ) (2)410×2510=( )10=10( ) 你能借鉴以上方法计算下列各题吗
(3)(-8)10×
(4)×42006
(5)(-9)5·(-
23
)5·(13)5 (41)已知x n =2,y n =3,求(x 2y )2n 的值.
—
(42)一个立方体棱长为2×103厘米,求它的表面积(结果用科学记数法表示). (43)已知2m =3,2n =22,则22m+n 的值是多少
(44)已知()8
321943a ⎛⎫⋅= ⎪⎝⎭,求3a 的值
(45).已知105,106αβ==,求2310αβ+的值
(46)已知:5=n x ,3=n y ,求n
xy 2)(的值.
·
(47)已知x n =5,y n =3,求 (x 2y)n -x n 2的值。
(48)若有理数a,b,c 满足(a-1)2+|c+1|+|2
b |=0,试求a 3n+1b 3n+2-
c 4n+2 (49)比较大小:218×310与210×318
(50)观察下列等式:
13=12;
13+23=32;
13+23+33=62;
13+23+33+43=102;
,
(1)请你写出第5个式子:______________
(2)请你写出第10个式子:_____________
(3)你能用字母表示所发现的规律吗试一试! ~
答案:
知识点:
1.a n b n2.积的乘方法则,幂的乘方法则3.(1)a3b6(2)9c2d2(3)-8b6(4)16b4 •
(5)-9a 4b 2 (6)-
278a 6b 3 (7)(a -b )6 (8)4(a+b )2 ]
专项练习:
(1) 25a 2b 2 ( 2) -9x 4y 4
(3)-2764
a 3
b 6
c 9
(4)251x 8y 6 (5)m 2m 6
( 6)-1 (7)4a 10
( 8)2a 6b 12 (9) x 2m 3+y 5n 2+
(10)3a n 2b n 2 (11)7x 6y 3
(12) -8×109 (13)x m+n
(14) -8a 10 (15)-7a 12
(16)-5x 2y 4 (17)41
(18)0 ·
(19)a n 412-b m 2
(20)-16a 16b 3 (21)0
(22)-136a 9 (23)-2a 2b 2
(24)0 (25) 1
(26) (27) -2a 8b 7
(28) 4a 9 (29) 64x 12
(30) 1 (31)513
(32)×1013 (33)-7a 10 (34)1216b a -